Feature Selection for Classification Using an Ant System Approach
Abstract
Many applications such as pattern recognition and data mining require selecting a subset of the input features in order to represent the whole set of features. The aim of feature selection is to remove irrelevant, redundant or noisy features while keeping the most informative ones. In this paper, an ant system approach for solving feature selection for classification is presented. The results we got are promising in terms of the accuracy of the classifier and the number of selected features in all the used datasets.
Origin | Files produced by the author(s) |
---|
Loading...