A Case for Guided Machine Learning
Abstract
Involving humans in the learning process of a machine learning algorithm can have many advantages ranging from establishing trust into a particular model to added personalization capabilities to reducing labeling efforts. While these approaches are commonly summarized under the term interactive machine learning (iML), no unambiguous definition of iML exists to clearly define this area of research. In this position paper, we discuss the shortcomings of current definitions of iML and propose and define the term guided machine learning (gML) as an alternative.
Origin | Files produced by the author(s) |
---|