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Abstract. The notions of Collaborative Virtual Power Plant Ecosystem (CVPP-
E) and Cognitive Household Digital Twin (CHDT) have been proposed to 
contribute to the efficient organization and management of households within 
Renewable Energy Communities (RECs). Both ideas can be represented by 
digital twins, which complement each other. CHDTs can be modelled as software 
agents, designed to possess some cognitive capabilities which could enable them 
to make autonomous decisions, based on the preferences or value system of their 
owner. Due to their cognitive and decision-making capabilities, these agents 
could exhibit some behavioural attributes such as engaging in collaborations, 

mutually influencing one another and the ability to adopt some form of social 
innovation. These behavioural attributes are expected to promote collaboration 
which are envisioned to increase the survivability and sustainability of the CVPP-
E. This study therefore seeks to demonstrate the capability of CHDTs to mutually 
influence one another towards a common goal - thus promote sustainable energy 
consumption. We adopted a multi-method simulation technique that involves the 
integration of multiple simulation paradigms such as System Dynamics, Agent-
Based, and Discrete Event simulation techniques on a single simulation platform. 

The outcome of the study shows that mutual influence could enhance the 
sustainable consumption in the ecosystem. 

Keywords: Mutual influence, Collaborative networks, Sustainable consumption, 
Digital twins, Renewable energy communities. 

1 Introduction 

It was claimed in a recent study that buildings consume  nearly  40% of global  energy, 

25% of global water and 40% of global  resources [1].  The study further advanced the 

argument that one-third of global greenhouse gases are emitted by residential and 

commercial buildings. Other similar studies such as [2] have also affirmed that energy 

consumption in households (HHs) is in the rise and this could partially be attributed to 

the increasing demands for comfort and its consequent requirement for larger HH 

equipment. This has also been attributed to higher purchasing power and improvement 

in the standard of living of occupants [2].  
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Generally, it is known that the Earth´s resources are depleting rapidly. This 

depletion can partly be ascribed to the global surge in energy demand, of which HHs 

play a key role. The adverse effect of depleting the earth resources is currently resulting 

in the problem of climate change. This phenomenon poses severe threats to the 

survivability and sustainability of planet earth and its entire occupants. To help address 

this immense concern, several studies have suggested diverse approaches that can help 

reduce energy consumption at the HH levels. One of such approaches, as described in 
[3], [4] and [5], involves the notions of Collaborative Virtual Power Plant Ecosystem 

(CVPP-E) and Cognitive HH Digital Twin (CHDT). These are a pair of concepts that 

are proposed to complement each other and can be conceptualized as digital twin 

representation of (a) a Renewable Energy Community, which is hereby represented as 

the CVPP-E, and (b) the constituent HHs of the community, also represented as 

CHDTs. According to the authors of  [5], CHDTs can be designed and modelled as 

software agents that can possess some cognitive capabilities which could enable them 

to make autonomous and rational decisions based on the preferences of their owners. 

Furthermore, it is claimed that CHDTs could exhibit some behavioural attributes such 

as engaging in collaborations and mutually influencing one another towards collective 

decision-making. In this study we attempt to demonstrate “Mutual Influence” 

capabilities of these CHDTs, and further endeavour to show how such influence can be 
adopted to alter the decision making of CHDTs. The study is therefore guided by the 

following research questions: 

RQ-1. In the context that “influencer” CHDTs could convey either positive or negative 
influence on “infuencee” CHDTs in a CVPP-E, how can the aggregation of these 
influences over time be used to determine the overall behaviour of a CHDT? 

RQ-2. How can the overall behaviour of a CHDT be used in decision-making? 

RQ-3. Considering that CHDTs could be influenced to alter their decisions, how can 
“mutual influence” be used to alter the decisions of CHDTs towards sustainable 
energy consumption. 

2 Relationship with Technological Innovation for Digitalization 

and Virtualization 

Advances in digitalization and virtualization are helping to gradually bridge the divide 
between the physical and virtual worlds. The coupling of these two worlds unveils the 

possibility of mirroring the real world in its equivalent form within the virtual space 

[6]. These concepts represent facets of a major transformation that is currently ongoing 

in industry and services, often referred to as industry 4.0. They encompass the adoption 

and integration of a variety of new information and communication technologies for 

the development of more efficient, flexible, agile, and sustainable solutions [7]. In the 

domain of energy, these concepts are helping to facilitate the integration of intelligence 

in the form of software agents for optimum grid management and operation. In this 

context, this study proposes the virtualization of Renewable Energy Communities 

(RECs) and their constituent HHs into a form of Digital Twins (DTs). Furthermore, the 

study suggests the digitalization of energy use preferences of the constituent HHs of 
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these RECs, in a form of delegated autonomy, which is assigned to their DT 

counterparts. It is perceived that these DTs could possess some cognitive or intelligent 

attributes that could enable them to make rational and autonomous decisions on behalf 

of their owners. This could help to provide flexible and sustainable energy consumption 

within these virtualized RECs. In view of the above, the scope of this work aligns well 

with the ongoing trend in the digital transformation. 

3 Theoretical Framework and Related Works 

We derived the Collaborative Virtual Power Plant Ecosystem concept by merging 
principles and concepts from the disciplines of Collaborative Networks (CNs) [8], and 
Virtual Power Plants (VPP) [9]. The central theme for the concepts of CNs is the idea 
of collaboration, where multiple entities come together with the primary objective of 
achieving a common goal. In studies such as [10] and [11], CN concepts are well 
elaborated. Conversely, VPPs are virtual entities that involve the interaction between 
multiple stakeholders and are comprised of decentralized multi-site and heterogeneous 
technologies, formed by aggregating deferrable and non-deferrable distributed energy 
sources [3]. The mix of these two concepts resulted in the proposed hybrid concept 
called Collaborative Virtual Power Plant Ecosystem (CVPP-E). This idea was first 
introduced in [3]. A CVPP-E can be perceived as a Digital Twin (DT) model of a REC, 
such as described in [12]. Other relevant studies described a CVPP-E as a form of a 
business ecosystem or a community of practice where members approach energy 
generation, consumption, and conservation from a sustainability point of view using 
collaboration as a key technique. The governing structure is claimed to be polycentric 
and decentralized with a manager who plays a coordinating role and promotes 
collaborative behaviours. Our current work extends previous developments by focusing 
on the effects of mutual influence among CHDTs and how such influence can be 
channelled to promote more sustainable energy consumption. 
 

4 Modelling Framework 

Modelling the CVPP-E and CHDTs: According to [13], a  REC is a community that 

is formed based on open and voluntary participation. It is usually owned, managed, and 

controlled by shareholders or members who are autonomous and located within the 

proximity of the projects. Essentially, members of a REC can generate renewable 

energy for their own consumption, and may store, sell, or share  excess with community 

members. In this context, the study, attempt to replicate the REC concept by 

aggregating several autonomous software agents into a population of CHDTs. Each 

CHDT represents a unit of HH within the community. In the model, we categorized the 

constituent HHs (CHDTs) into 5 different categories. The categorization and related 
data was sourced from [14]. The considered categories are: (a) HHs with single 

pensioner (b) HHs with single non-pensioner (c) HHs with multiple pensioners (d) HHs 

with children (e )HHs with multiple persons with no dependent children.  
A key aspect of the CHDTs concept is their cognitive capabilities. In this study, 

CHDTs are modelled at three abstraction levels. The upper-level is used to model the 
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community status and decision making processes, while the mid-level is used to model 
the different behavioural attributes of the CHDT. At the low-level is where energy assets 
such as HH appliances, energy storage devices, as well as the PV systems are modelled. 
Although it is acknowledged that the physical layer involves the integration of diverse 
energy assets, it is expected that several technical factors should be taken into 
consideration as far as the organization and efficient management of these energy assets 
are concerned. However, the emphasis of the study was focused primarily at the upper 
and mid layers where decision-making and varied behavioural attributes occur. 
Therefore, the lower level technical factors are not addressed in this work. This is 
because this study hinges around two key principles: (a) collaborations which is based 
on some common goals, and (b) the notion of community. Currently, the literature on 
energy communities suggests that members usually form a cohesive union around the 
energy infrastructure, due to the notion of “community membership”, “sense of 
belonging”, “common identity”, etc. Furthermore, it is claimed that members of these 
communities are usually expected to conform to community norms, practices, and rules. 
Therefore, the behavioural traits as well as the decision-making attributes of members is 
what we deem paramount in this work 

In modelling a CHDT, we first consider its community status, which defines a 

CHDTs long-term characteristics which enables it to play some specific roles in the 

community. For instance, being a prosumer, consumer, influencer, or influencee. Thus, 

the status of a CHDT is modelled using a “composite state” as shown in Fig. 1, and is 

assumed at the model initialization stage, and is remembered and maintained as an 
“active state” by the agent throughout the model run. The behavioural attribute at the 

mid-level includes behaviours such as the ability to convey influence (influencer) or 

being the recipient of an influence (influencee). These behavioural attributes are also 

modelled as internal states, using “simple states” which are embedded inside the 

“composite state” as shown in Fig.1.  

 

Fig. 1. A composite and simple states of a CHDT 

At the low-level, prosumer CHDT are modelled to possess a Photovoltaic (PV) unit for 
energy generation, a local energy storage system, and nine (9) HH appliances. An 
Anylogic [17] model of the nine considered appliances as shown in Fig. 2. The 
Anylogic enables the integration of multiple simulation paradigms such as system 
dynamics, agent based, and discrete event techniques on a single platform. The 
considered appliances are: (a) Washing machine, (b) Dishwasher, (c) Tumble/clothes 
dryer, (d) Audio-visuals, (e) Microwave, (f) Cooker, (g) lighting, (h) Oven, and (i) 
Refrigerator. The consumption priority of a prosumer is firstly from the PV system, 
then the local storage, followed by the community storage, and finally the grid. 
Prosumers can share excess energy with the community through a common community 
storage system as shown in Fig.3.  Consumers are also modelled to possess nine HH 
appliances. Their primary energy source is the grid, however, when community storage 
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is found to be available, they switch sources to utilize the storage until it runs out, then 
they revert to the grid.  

In the model, the consumption of each HH appliance per CHDT is continuously 
aggregated  throughout the period of the model run. The data from these aggregated 
values form the load profile for each appliance per household. Furthermore, the 
consumption for all appliances per household are also aggregated to form the load 
profile for that HH. Finally, the consumption for all the households in the community 
is also aggregated to form the global load profile of the entire community. The anylogic 
simulation platform has a built-in graphical analysis tool that enables these data be 
plotted. In section 6 of this study, the data collected at the global level is used  in the 
analysis of the global behaviour of CHDTs in the community. 

 

Fig. 2. Anylogic model of the nine HH appliances.     

 

Fig. 3. Anylogic model of the community storage  

An active state, as mentioned earlier, defines the aspects of the CHDT that are 
functional. An inactive state, on the contrary, describes attributes that are dormant. As 
shown in Fig.s  4 and 5, active states are depicted using unshaded regions with 
continuous boundary lines. Inactive states on the other hand are shown as shaded 
regions with dotted boundary lines. In Fig. 4 as an example, we elucidate an active 
CHDT (CHDT-1) whose status as a prosumer is active and a state describing this 
CHDT as an influencer is also active. Likewise, in Fig. 5, we show an active CHDT 
(CHDT-2) whose  status as a consumer is active and a state describing this CHDT as 
an “influencee” is also shown active.  
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Additionally, Influencer CHDTs also have an active internal state labelled “send 
influence” which contains algorithms responsible for the conveyance of influence.  
Similarly, influences CHDTs have an active “receive influence” states which also 
contain algorithms responsible for the reception of influence. In this described scenario, 
it is assumed that influencer CHDTs do not receive influence and influencee CHDTs 
also do not convey influence. Generally, when the status or state of a CHDT is active 
it executes algorithmic instructions that are associated with that particular status or 
state, and this enables the CHDT to behave according to the embedded instructions. 
Having knowledge of all active states (both composite and simple) as well as the 
accompanying algorithmic instructions, and making basic rational decisions based on 
this knowledge is what gives the CHDT its cognitive capabilities. 
 

Modelling influences and decision-making: In this study we consider two types of 

endogenous influences. These are positive and negative influences. Endogenous 

influence refers to influences that are of external origin relative to a CHDT. These 

influences could originate from the CVPP manager or other influential CHDTs that are 

within the ecosystem. Each influence possesses the following attributes (a) Polarity (b) 

Intensity (c) Impact and (d) Frequency of transmission. Polarity signifies whether an 

influence is positive or negative. The intensity on the other hand describes the 

magnitude of the influence. For instance, a positive influence may have a positive 
polarity and a minimum intensity/magnitude of “X” and a maximum 

intensity/magnitude of “Y”. Likewise, the impact describes the severity (how strong or 

weak) of the influence on the CHDT. A high-impact influence affects the CHDT for a 

longer duration while a low-impact influence has a short duration. The frequency of 

transmission describes how often an influencer CHDT convey influence to the 

community. CDHTs make decision based on a predefined threshold called the 

“decision constant” which is represented by “”. This parameter is a positive value 

and can be reached when the aggregated impact of all influences acting on the CHDT 

equals this constant. A negative constant could also be adopted and used to determine 

when a CHDT makes a negative decision such as refusal to participate in 

collaborations. Additionally, influences are conveyed and received in the form of 

“pulses” that are transmitted sporadically from several sources (i.e., from the various 

influencer CHDTs) to random destination (influencee CHDTs). The pulsating 

characteristics of the influences are modelled using a probability distribution functions. 
These functions are expressed as follows: (a) Positive influence: Uniform distribution 

(+a, +b), (b) Negative influence: Uniform distribution (-c, -d), (c) Frequency of 

transmission: 

 

  

Initialization state

 

No installed PV

Status:Prosumer

State: Consumer 

CHDT-1

State: Influencer

 Send 

finfluence

Receive 

influence

 

  

Initialization state

 

Status:Consumer

CHDT-1

State: Influencee

 Send influence

Receive 

influence

State: Influencer

Fig. 5. A CHDT with active consumer status, 
active “influence” state and active “receive 
influence” state 

 

Fig. 4. A CHDT with active prosumer 
status, active influencer state and active 

“send influence” state 
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Uniform distribution (e, f) times per hours, days, weeks, months, or  years. (d) Impact: 

Uniform distribution (g, h) hours, days, weeks, months, or years, (g) Decision threshold 

= . Where +a, -c, e, and  g are the possible lower limits, and +b, -d, f, and h are the 

possible upper limits for each related elements of the influence. 

5 Demonstration of the Modelling Technique  Using Selected 

Scenarios 

Scenario for modelling CHDT population: In Table 1, we define the population size 

for each category of HH within the CVPP-E. This population shall be maintained 

throughout the demonstration.  

Table 1. CHDT population considered for each category of HHs 

Item Category of CHDT Population size 

1 CHDT with single pensioner 10 

2 CHDT with single non-pensioner 10 

3 CHDT with multiple pensioners 10 

4 CHDT with children 10 

5 CHDT with multiple persons with no dependent children 10 

Total population size 50 

 

Scenario for modelling installed PV systems: For the prosumers population, four 

different capacities of PV systems are considered. Each prosumer CHDT can inherit 

any one of them. The PV systems and their respective capacities are: (a) BainSystem = 

6.930kW, (b) BrainSystem = 1.950kW, (c) Helius = 3.99kW, and (d) DaSS = 3.22kW. 
All PVs are located in the Great Britain [15]. Data from these real-life systems are used 

to model the PV generation aspects of the model. The aspects of the energy storage is 

modelled as following: (a) State of charge = M, (b) the storage capacity = N, and (c) 

depth of discharge = K. Condition for discharging storage is when M >= 70% of N. 

Condition for charging is when M <= 30% of N. 
 

Scenario for the modelling of influences and decision-making: The defined 
parameters for this scenario are as follows: (a). Positive influence: Uniform distribution 

(0, 2), (b) Negative influence: Uniform distribution (-2, 0), (c) Frequency of 

transmission: Uniform distribution (0, 3) times per week, (d) Impact: Uniform 
distribution (0, 5) hours from the moment of receiving the influence, (e) Decision 

threshold ( ) = 50. Community Storage capacity (NC)= 300Kwh. Local storage capacity 
(NL)= 20kwh for BrainSystem, 15kwh for helious, 12kwh for DaSS, and 10kwh for 

BainBridge. Finally, the depth of discharge for all storage was 70% of N. 
 

Scenario for modelling embedded HH appliances: The parameters that were used to 

model the use-behaviours of all the nine (9) HH appliances are shown in Table 2. The 

parameters were obtained from [14] and [16]. The data from [14] was sourced from the 

Household Electricity Survey: A Study of Domestic Electrical Product Usage (Intertek 

Report R66141) [14]. The report is a comprehensive and extensive one that covers 

several aspects of household’s energy use. The data was collected from 251 households 

in England spanning the period May 2010 to July 2011. For each category of HH, the 
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survey captured the HH size i.e., the number of occupants per HH. For instance, table 

2, shows the number of HH per each category, that was used for that survey. For each 

HH, the number of occupants or household size was different. Therefore, the data that was 

used to model the appliance´s consumption, which was borrowed from this report captures the 
different occupants per household 

Table 2. Parameters used to model the use-behaviour of the considered appliances 

Type of inhabitant Number of HH 

Single pensioner households 34 

Single non-pensioner household 35 

Multiple pensioner household 29 

Household with children 78 

Multiple person household with no dependent children  74 

 

Table 1 shows the Duration of Use (DoU), Appliance Power Rating (APR), and 

Frequency of Use (FoU). 

Table 3. Parameters used to model the use-behaviour of the considered appliances. 

Type of 
Appliance 

DoU (hrs) APR (kW) FoU/ week 

min max min max min ave max 

Wash. Mach. 0.50 3.00 0.500 1.000 0.00 4.00 8.00 

Tumble dryer 0.50 3.00 1.000 3.000 4.38 6.00 5.38 

Dishwasher 0.50 3.00 1.000 1.500 4.19 6.19 5.19 

Audio-visuals 0.50 6.00 0.025 0.148 1.00 11 21.0 

Microwave 0.16 1.00 0.600 1.150 1.00 7.00 14.0 

Electric Cooker 0.50 3.00 2.000 4.000 1.00 7.00 14.0 

Lighting 0.16 8.00 0.015 0.165 1.00 7.00 21.0 

Refrigeration 24.0 24.0 0.011 0.091 - - - 

Oven 0.50 2.00 2.000 4.000 1.00 7.00 14.0 

 

Scenario for testing collective decision making: As shown in Table 4, two different 

cases, constituting of different population sizes, were considered. In all cases, the 

influencer CHDTs attempt to influence the “influencee” CHDTs  towards the 

Delegation of  Deferrable Loads (DDL), i.e., suspend the use of loads whose utilization 

can be deferred to a later time without causing much inconvenience to the user. The 

appliances that were considered for DDL are (a) washing machines, (b) dish washers 

and (c) tumble dryers. DDL appliances avoid consumption from the grid and wait until 

local storage or community storage is available. To help test these cases, the Anylogic 

simulation platform [17] was adopted.  

Table 4. Two cases with varying population sizes are used to test collective decision making. 

Cases 

Population (%) 

Influencer 

population 

“A” 

Influencee 

population 

Positive 

Influencer 

Population 

Negative 

Influencer 

population 

Prosumer 

population 

 

Consumer 

population 

Case-1a 90%  of  50 10%  of 50 90% of A 10% of A 20% of 50 80% of 50 

Case 1b 90%  of  50 10%  of 50 10%  of A 90 %of A 20% of 50 80% of 50 

Case-2a 10%  of  50 90%  of 50 90%  of A 10% of A 80% of 50 20% of 50 

Case-2b 10%  of  50 90%  of 50 10% of A 90% of A 80% of 50 20% of 50 
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6 Results and Discussion 

RQ-1 & RQ-2: In this section, we attempt to answer research questions 1 & 2. After 

running the simulation model for a period of 728 hours (30 days) the following sample 

behaviours were extracted from some selected CHDTs. In Fig.s 6a & 6b we show the 

characteristics of the modelled influence that was received by two different CHDTs, 

i.e., CHDT-1 and CHDT-2. The pulses that appear below the x-axis represent negative 
influences whilst the ones above the x-axis are positive influences. Attributes such as 

polarity, intensity, impact, and frequency of transmissions can be observed in both Figs.  

In Fig.s 7a to 7d, we show how the aggregation of influences over time, can be 

used to determine the overall behaviour of a CHDT. We also demonstrate how the 

overall behaviour can be used in decision-making. For instance, Fig.s 7a, 7b and 7c, 

show CHDTs 3,4 & 5 that initially behaved negatively. However, the duration of their 

negative behaviour lasted differently. It lasted longer with CHDT-4 than CHDTs 3&5. 

Eventually, all three CHDTs changed behaviour from negative to positive. However, 

CHDT 3 changed behaviour faster than CHDT 4 & 5. This was because CHDT 3 was 

highly influenced positively than CHDTs 4&5. For this reason, CHDT-3 exceeded the 

decision threshold “” and therefore was able to decide within the simulated period 

(30 days) but CHDT 4 and CHDT 5 were unable. Finally in Fig. 7d, CHDT 6 behaved 

positively right from the beginning of the model execution and it was also able to decide 
much quicker than CHDTs 3,4 and 5. 

    

Fig. 6a. Influences received by CHDT-1.          Fig. 6b. Influences received by CHDT-2 

         

        Fig. 7a. CHDT-3.                                                         Fig. 7b. CHDT-4 

      

       Fig. 7c. CHDT-5.                                                       Fig. 7d. CHDT-6 

  RQ-3: Also in this section, we attempt to answer research question 3. By referring to 

Table 4, we hereby consider cases 1a &1b. The outcome of the model for these cases 

are shown in Fig. 8a & 8b. For this case, the population of prosumers, consumers, 

 = 50  = 50 

 = 50 

 = 50 
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influencers, and influencees were maintained the same. The difference between the two 

scenarios is the number of positive and negative influencers. In case1b, 10% of the 

influencer population were positive influencers and 90% were negative influencers. For 

this reason, the majority of the CHDTs were influenced negatively and this resulted in 

few decisions-making causing high proportion of energy to be consumed from the grid,  

(about  69%). Furthermore, it is observed that consumption from the community 

storage was also low (about 13%). By comparing case 1b to case 1a, where the 
population of positive influencers was high, thus, 90% and the population of negative 

influences was low, thus, 10%, it can be seen that the majority of the CHDTs were 

influenced positively resulting in more decision making, hence a reduction in the 

consumption from the grid, thus, 51%, and an increase in the consumption from the 

community storage thus, 24%. 

                         

Fig. 8a. Case-1a.  90% positive influencers.       Fig. 8b. Case-1b. 10% positive influencers. 

Referring to Table 4 and Figs 9a and 9b, we hereby consider cases 2a and 2b. In 
case 2a we consider 90% of the influencer population to be positive influencers and 

10% to be negative influencers. On the contrary, in case 2b, we consider 10% of the 

influencer population to be positive influencers and 90% to be negative influencers. It 

can therefore be observed that in case 2a where the number of positive influencers was 

high, the use of the grid is relatively low, about 53%, as compared to case 2b where the 

use of the grid is relatively high, about 60% due to the rather low population of positive 

influencers (i.e., high population of negative influencers). The use of PV and local 

storage also appreciated significantly in case 2a as compared to case 2b. The difference 

in both cases resulted from the population difference between negative and positive 

influencers.  

              

Fig. 9a. Case-2a.  90% positive influencers        Fig. 9b. Case-2b. 10% positive influencer 

 

There are several techniques that can be used to help spread influence in a social 

system or network. In particular, the power of online information diffusion is one 

effective method that has been utilized to positively influence citizens in many ways. 

For instance, in the response to natural or man-made disasters [18] and the Hotmail 

phenomenon in the early 1990s [19]. This effect, which is often referred to as the “viral 
phenomenon” or “viral marketing” has been adopted by companies to encourage 

sharing between individuals with social connections, because it is known that social 
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recommendations can help increase traffic to websites of businesses, resulting in higher 

engagement and revenue. In this study, positive influencers in the ecosystem could 

utilize the power of viral marketing and social recommendation. When combined with 

incentives (monetary incentives or social recognition incentives) it is possible to 

increase the number of influencers and thus help spreading their influence out to other 

members of the ecosystem. 

7 Conclusion and Future Work 

This study has enabled the furtherance of the notions of CHDTs by demonstrating the 

decision-making and mutual influence capabilities of these software agents. Firstly, we 

showed how influence is exchanged between influencer and influence CHDTs. 
Furthermore, we illustrated how the aggregation of influences over time can help to 

determine the overall behaviour of a CHDT. Again, the study has shown how CHDTs 

are able to make influence-induced decisions using the principle of thresholds. This 

work has further helped to establish the fact that CHDTs could engage in collective 

actions that could result in the global achievement of some common goals. It has further 

been shown that a high population of positive influencers can help influence the 

community positively and a high population of negative influencers could also 

influence the community negatively, subsequently affecting the sustainability of the 

ecosystem. In future studies, we shall consider the use of incentives to help increase the 

number of positive influencers and thus leverage the positive effect. Finally, we draw 

the conclusion that the notion of CVPP-E and CHDTs are feasible concepts. In terms 
of possible implementation, IoT, sensors, and smart HH devices could be adopted as 

interfaces between the various HH appliances and the respective CHDT. For the 

software aspect, a CHDT could have the form of smart software agents or a HH energy 

management system which could be used to initiate the exchange of information 

between energy assets, the community manager, and other CHDTs. A local area 

network with network devices like routers, edge servers, and IoT gateways on top of 

the physical layer could also surface for the communication aspects. 
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