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Abstract. The study of Self-organizing lists deals with the problem
of lowering the average-case asymptotic cost of a list data structure
receiving query accesses in Non-stationary Environments (NSEs) with
the so-called “locality of reference” property. The de facto schemes for
Adaptive lists in such Environments are the Move To Front (MTF) and
Transposition (TR) rules. However, significant drawbacks exist in the
asymptotic accuracy and speed of list re-organization for the MTF and
TR rules. This paper improves on these schemes using the design of an
Adaptive list data structure as a hierarchical data “sub”-structure. In
this framework, we employ a hierarchical Singly-Linked-Lists on Singly-
Linked-Lists (SLLs-on-SLLs) design, which divides the list data structure
into an outer and inner list context. The inner-list context is itself a SLLs
containing sub-elements of the list, while the outer-list context contains
these sublist partitions as its primitive elements. The elements belong-
ing to a particular sublist partition are determined using reinforcement
learning schemes from the theory of Learning Automata. In this pa-
per, we show that the Transitivity Pursuit-Enhanced Object Migration
Automata (TPEOMA) can be used in conjunction with the hierarchi-
cal SLLs-on-SLLs as the dependence capturing mechanism to learn the
probabilistic distribution of the elements in the Environment. The idea
of Transitivity builds on the Pursuit concept that injects a noise filter
into the EOMA to filter divergent queries from the Environment, thereby
increasing the likelihood of training the Automaton to approximate the
“true” distribution of the Environment. By taking advantage of the Tran-
sitivity phenomenon based on the statistical distribution of the queried
elements, we can infer “dependent” query pairs from non-accessed el-
ements in the transitivity relation. The TPEOMA-enhanced hierarchi-
cal SLLs-on-SLLs schemes results in superior performances to the MTF
and TR schemes as well as to the EOMA-enhanced hierarchical SLLs-
on-SLLs schemes in NSEs. However, the results are observed to have
superior performances to the PEOMA-enhanced hierarchical schemes in
Environments with a Periodic non-stationary distribution but were infe-
rior in Markovian Switching Environments.

⋆ Chancellor’s Professor; Life Fellow: IEEE and Fellow: IAPR. This author is also an
Adjunct Professor with the University of Agder in Grimstad, Norway.
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1 Introduction

Research in self-organizing lists is aimed at mitigating the worst-case linear cost
of list retrieval by adaptively rearranging the list nodes in response to query
accesses from a Non-Stationary Environment (NSE). This paper optimizes the
singly linked-list data structure. The models of NSEs are covered in Section 3.1.
The goal of the rearrangement is to move towards the head of the list, elements
that are more frequently accessed. This has the result of improving the asymp-
totic average cost of retrievals. However, this action requires information of the
“unknown” probability distribution of the Environment. The Environment has a
dependency property where element Oi is not conditionally independent of Oj ,
Oi 6⊥⊥ Oj . This property is called “locality of reference”. Queries are requests
coming from the Environment to retrieve elements from the data structure.

The asymptotic cost is an empirical measure for assessing the algorithmic
performance of the list re-organization strategies [1]. This is performed by im-
plementing the corresponding strategy, and taking an ensemble average of the
averages of the cost as the algorithm converges. Since the schemes are ergodic
(meaning that they have a final solution that is independent of the starting states
of a Markov chain), they can be seen to provide an accurate estimation of the
asymptotic cost.

The formal expression for the asymptotic cost of an adaptive strategy, A, is
given as:

E[A] =
∑

1≤j≤J!

P{πj}A C(πj) (1)

=
∑

1≤j≤J!

[ P{πj}A
∑

1≤i≤J

siπj(i) ]. (2)

In Eq. (1) and Eq. (2), the expression P{πj}A represents the steady-state (or
stationary) probability of choosing the list permutation πj in the Markov chain
that involves the adaptive strategy, A. Further, C(πj) is the ordering cost or the
average-access cost of the list permutation πj . For more mathematical details on
the asymptotic cost and Markov chains, the reader is directed to [1, 5].

The de facto schemes for list self-organization in NSEs are the Move To Front
(MTF) and Transposition (TR) rules. In the MTF update scheme, the queried
element is moved to the list head, except when it is the first element, because,
in that case, it is already at the head (Figure 1). As opposed to this, in the
TR adaptive scheme, if the queried element is not already at the list head, it is
moved one position towards the front of the list (Figure 2).

Another deterministic scheme for self-organization in NSEs is the Frequency
Count (FC) scheme. The FC rule maintains an accumulator for recording the ac-
cess frequencies of the list elements. The resulting list is re-arranged according to
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Fig. 1. A diagrammatic description of the Move-To-Front (MTF) rule

Fig. 2. A diagrammatic description of the Transposition (TR) rule

the descending order of the counters. This relatively simple scheme yields rather
impressive results with regard to its asymptotic cost being close to optimal, and
its amortized cost being about two times the optimal cost [4]. Notwithstanding,
the FC scheme has some obvious drawbacks, the first being that the memory cost
scales poorly for large lists [12]. Secondly, in environments exhibiting “locality

of reference”, the FC scheme yields an unacceptable performance [11, 15].

The MTF and TR rules are of greater interest to this work for two reasons.
The first being that they have been shown to empirically out-perform the other
schemes [2], and the second, that the time and space complexities involved in
implementing other surveyed schemes render most of them impractical for real-
world settings. It is for these sort of Environments with dependent query accesses
that this present work seeks to provide novel solutions.

Indeed, while these schemes (MTF, TR, FC) show superior performances in
minimizing the asymptotic average-cost of Singly-Linked-Lists (SLLs) in NSEs [13],
they, however, suffer peculiar drawbacks in NSEs exhibiting “locality of refer-

ence”. An empirical analysis of TR responding to query accesses from different
probability distributions shows that TR outperforms MTF for the Zipf’s dis-
tribution [17], and the results of [9] showed that the asymptotic cost of TR
outperforms MTF for the Lotka, exponential, linear, and 80-20 probability dis-
tributions. However, the MTF has a faster adaptive rate and quickly converges
early-on in the algorithm’s execution [8].
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This work combines the MTF and TR rules to take advantage of the quick
updates of the MTF rule and the asymptotically stable convergence of the TR
rule in designing our improved hierarchical adaptive strategies. This design led
to the hierarchical Singly-Linked-Lists on Singly-Linked-Lists (SLLs-on-SLLs)
variations of the MTF-MTF, MTF-TR, TR-MTF and TR-TR schemes, where
the first component is the rule governing the list outer-context and the second
component is the rule for the list inner-context [1].

However, the hierarchical SLLs-on-SLLs configuration as-is results in a cer-
tain static ordering of the elements within the inner sublist context. This pre-
supposed static ordering carries the “false” assumption that there exists a prob-
abilistic dependence between the elements in the sublist. In reality, the initial
elements within a sublist are due to an arbitrary permutation. Hence, it turns
out that the performance of the vanilla hierarchical SLLs-on-SLLs is worse of
than the MTF and TR in NSEs [1, 6].

This static pre-supposed ordering is relaxed by the introduction of a rein-
forcement learning update scheme from the theory of Learning Automata (LA)
called the Object Migration Automaton (OMA). The OMA algorithm is de-
signed to learn the probabilistic dependence of elements in the Environment.
This information is used to update the elements contained in the hierarchical
sublist context represents their dependence ordering in the Environment. This
formulation led to the OMA-hierarchical SLLs-on-SLLs consisting of the MTF-
MTF-OMA, MTF-TR-OMA, TR-MTF-OMA and TR-TR-OMA schemes [1].

However, the OMA suffers from the “deadlock” problem1 which occurs when
an accessed element is swapped from one action to another and then back to
the original action and thus prevented from converging to their optimal ordering
(this concept is further explained in Section 2.2). To mitigate this, the Enhanced
Object Migration Automaton (EOMA) was introduced by [10] that imposes
conditions to restrict unnecessary swaps on action-state boundaries as well as to
redefine the convergence criteria to when the automaton is in the two-innermost
states as the “final” states instead of when the automaton is in the innermost
state.

Bisong and Oommen [6] employed the EOMA reinforcement scheme in de-
signing the EOMA-augmented hierarchical SLLs-on-SLLs which resulted in su-
perior performances to the de facto MTF and TR schemes and the OMA-
augmen-ted hierarchical schemes in NSEs. Further, the work by [7] further im-
proved the performance of the hierarchical SLLs-on-SLLs by incorporating the
PEOMA reinforcement scheme. The PEOMA algorithm by [18] employed the
Pursuit concept to filter divergent query pairs from the Environment. To the
best of our knowledge, the work by [7] is currently the state-of-the-art for self-
organizing lists in NSEs.

This paper further explores the state of the art by incorporating the con-
cept of Transitivity in the PEOMA algorithm, that is the Transitivity Pursuit-
Enhanced Object Migration Automaton (TPEOMA) to design a TPEOMA-

1 Albeit referred to as a “deadlock” in the literature, it could more appropriately be
described as a “livelock”.
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augmented hierarchical SLLs-on-SLLs. This proposed hierarchical formulation
consists of the MTF-MTF-TPEOMA,MTF-TR-TPEOMA, TR-MTF-TPEOMA
and TR-TR-TPEOMA schemes. The Transitivity concept is used to infer “de-
pendent” queries from the Environment to further train the automaton to ap-
proximate its “unknown” distribution. The Transitivity concept is discussed in
more detail in Section 2.3.

The novel contributions of this paper include:

– The design and implementation of the TPEOMA-enhanced SLLs-on-SLLs;
– Demonstrating the superiority of the TPEOMA-augmented hierarchical sch-

emes to the MTF and TR rules and to the original OMA-augmented schemes
that pioneered the idea of a hierarchical LOL approach;

– Demonstrating the superiority of the TPEOMA-augmented hierarchical sch-
emes to the EOMA-augmented hierarchical schemes;

– Highlighting the performances of the TPEOMA-augmented hierarchical sch-
emes to the PEOMA variants;

– Showing that the “Periodic” and “UnPeriodic” versions of the TPEOMA-
augmented hierarchical schemes yielded superior and comparable perfor-
mances respectively in PSEs to those without such additions.

Section 1 introduces the idea of a hierarchical SLLs-on-SLLs for minimiz-
ing the asymptotic average case for list retrieval in NSEs. It also lays out the
case for incorporating the OMA-family of reinforcement schemes for learning the
probability dependence distribution of elements in the Environment. Section 2
reviews the theory of LA2 as the foundational theory for the TPEOMA rein-
forcement scheme. In addition, this section accesses the idea of the Transitivity
concept that builds on the Pursuit concept in the PEOMA algorithm. Section 3
explains the design of the TPEOMA-augmented hierarchical SLLs-on-SLLs for
NSEs. Section 4 presents the Results and Discussions, and Section 5 concludes
the paper.

2 Theoretical Background

2.1 Learning Automata

Learning automata (LA) arose in the Soviet Union in the 1960s by Tsetlin as a
computational adaptive scheme for learning. [20] The LA task can be modeled
by means of a feedback loop between the Environment and the automaton. The
automaton interacts with the Environment by choosing from a set of actions
based on the feedback it receives from the Environment. The LA model is set
up as an adaptive process [3] in which little or no information is known a priori

about the Environment. The goal of the learner (the LA) is then to learn the
optimal action that maximizes a utility function or improves a performance
index [1, 5, 18].

2 Due to space limitations, the background material is only briefly surveyed. The
seminal work by [14] and the theses by Shirvani [18] and the first author of this
paper [5] contain exhaustive details of the theory and applications of LA.
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2.2 The OMA & EOMA

The OMA improves on the Tsetlin/ Krinsky strategies for partitioning objects
into groups in the Equal-Partitioning Problem (EPP) [16]. In the OMA, the
number of actions represents the number of groups, or partitions, R, where each
action contains a set number of states, N . The OMA partitions the object group
W into R partitions by moving the abstract objects O around the action-states
of the automaton. To learn more about the OMA algorithm the reader is referred
to [5–7, 18].

The EOMA algorithm improves on the OMA to mitigate the inability of the
OMA algorithm to converge due to a “deadlock“ scenario. The deadlock scenario
occurs when there is a query pair

〈

Oi, Oj

〉

in a stream of query pairs belonging to
different actions, αh and αg. If one object is in the boundary state of its action,
and the other is not, the query pairs are prevented from converging to their
optimal ordering, and this can lead to an “infinite” loop scenario. The boundary
state of the OMA is the outermost memory state of an action α (see Figure 3).
To learn more about the EOMA algorithm the reader is referred to [5–7, 18].

To resolve the deadlock scenario for the query pair
〈

Oi, Oj

〉

, let us say that
there exists an object in the boundary state of the action-group, αg contain-
ing Oj , given that the other element Oi is not in the boundary state of its
action-group αh. The EOMA moves moves Oj from action-group αg to be in the
boundary state of action-group, αh. By taking this step, the partitions become
unequal. To regain the equi-partitioning, the object that is closest to Oi in αh,
which we will call Ol, is moved to the boundary state of αg.

Hence, given a set of query elements, the transitions of the EOMA for the
abstract objects

〈

Oi, Oj

〉

on reward and on penalty are illustrated in Figure 3.
In addition, the EOMA also modifies the convergence criteria to reduce its vul-
nerability to divergent queries by setting the two-innermost states as the “final”
states, as opposed to just the innermost state in the vanilla OMA.

To learn more about how the EOMA algorithm mitigates the “deadlock”
scenario in the OMA, the reader is referred to [5–7, 18].

2.3 The Case for Transitivity

The Pursuit concept is incorporated into the EOMA design to filter divergent

queries from the Environment using Maximum Likelihood Estimates (MLEs). It
works by updating the joint query probabilities using ranked estimates of the
reward probabilities to asymptotically choose or “pursue” better actions. For
a detailed discussion of the pursuit concept, the reader is referred to [18]. The
Pursuit-EOMA scheme was the best-known object-partitioning algorithm until
the authors of [19] introduced the TPEOMA.

The TPEOMA algorithm is based on the observation that the Pursuit ma-
trix can also be used to infer underlying relations in the Environment [18]. It
then invokes a policy that spins off reward/penalty operations by incorporat-
ing the statistics obtained between objects that have been previously accessed.
The Pursuit matrix M is defined as a W

R
× W

R
matrix whose element [i, j] are
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φhMφhM−1

Oj

φhM−2

· · ·

Oi

φh1

αh

(a) On reward: Move the accessed abstract objects 〈Oi, Oj〉 towards the extreme states.

φgM φgM−1

· · ·

φg3 φg2 φg1

αg

φhMφhM−1

Oi

φhM−2

· · ·

φh1

αh

(b) On penalty: Move the accessed abstract objects 〈Oi, Oj〉 towards their boundary states.

φgM φgM−1

· · ·

φg3 φg2

Oj

φg1

αg

φhMφhM−1

Oi

φhM−2

· · ·

φh1

Ol

αh

(c) On penalty: Move the accessed abstract objects 〈Oi, Oj〉 to be in the same group. An extra object Ol in the old
group of Oi is moved to the old group of Oj .

Oj

φgM φgM−1

· · ·

φg3 φg2 φg1

αg

φhM

Oi

φhM−1φhM−2

· · ·

φh1

αh

(d) On penalty: If both abstract objects 〈Oi, Oj〉 are in the boundary states, move one of them, say Oi, to the boundary
state of the other group. An extra object Ol in the group of Oj is moved to the old group of Oi.

Oj

φgM φgM−1

· · ·

φg3

Ol

φg2 φg1

αg

Fig. 3. The EOMA Algorithm

the probabilities that
〈

Oi, Oj

〉

are simultaneously accessed where 1 ≤ i, j ≤ W .
The Pursuit matrix M is computed using Maximum Likelihood estimates, where
each entry mi in the matrix is the ratio of the frequency of occurrence of mi to
the total number of query accesses. The probabilities in M sum to unity. The
reader is referred to [19] for a details analysis of the Pursuit matrix.

When an estimate of the Pursuit matrix is obtained, the transitivity property
can be used to infer queries to further train the automaton to learn the model
of dependence of the Environment. In other words, if the current query received
from the Environment is

〈

Oi, Oj

〉

and Oj is in relation with Ok, k ∈ {1, · · · ,Wj},
k 6= i, we can infer that Oi is also in a relation with Ok, where i, j, and k are
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the indices of the entries in the Pursuit matrix. Thus, given the transitivity
threshold, τT , which is a suitable user-defined threshold which is set to a value

1

W 2−W
, where W is the number of elements in the list. We can assert that

Pij > τT ∧ Pjk > τT ⇒ Pik > τT . This means that if i and j, and i and k

are also accessed together often, it is also likely that i and k are also accessed
together often. The transitivity relation is illustrated in Figure 4. The reader
is referred to [19] for a thorough analysis of the Transitivity property in the
TPEOMA algorithm.

Fig. 4. Left: This figure displays the magnitude of the elements in the Transitivity-
Pursuit matrix showing the joint probability distribution of query pairs with a defined
cut-off threshold τ and transitivity threshold τT . Right: The transitivity relation is
demonstrated in the simplest case. Source: [18]

3 TPEOMA-Augmented Hierarchical SLLs-on-SLLs

The concept of a hierarchical data “sub”-structure involves dividing a list of size
W into k sub-lists. The re-organization strategy is then hierarchically applied
to the list by first considering the elements within the sub-list (also called the
sub-context) and then operating over the sublists (or sub-contexts) themselves.

The re-organization strategies involved are the MTF and TR rules. When
used in a hierarchical scheme, this yields MTF-preceding-MTF, (MTF-MTF),
MTF-preceding-TR, (MTF-TR), TR-preceding-MTF, (TR-MTF), and TR-pre-
ceding-TR, (TR-TR) schemes. For example, in the case of MTF-TR, the element
within a sub-context is first moved to the front of the list, and then the sub-
context is moved to the front of the list context. Again, the fundamental idea of
combining the MTF and TR schemes in this hierarchical formulation is princi-
pally to take advantage of the fast convergence properties of the MTF rule and
the more accurate asymptotic convergence of the TR rule.
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In NSEs with “locality of reference”, let us assume that query accesses m

are made to a sub-context (or local context) Qa. For a given query access mi

from Qa, the probability that the next query access, mj will come from the same
local context, Qa is high. Hence, it is useful to take advantage of this depen-
dency relationship by moving the entire sublist of elements of the sub-context
en masse towards the head of the list to cut-down the access-time cost when
an element within the sub-context Qa is requested. The hierarchical schemes
mentioned above are preferred in Environments characterized by such a “locality

of reference”. Observe that the stand-alone MTF will require at least J
k
distinct

requests to promote the entire sub-context to the head of the list.

Further, if a recordmu is accessed that is not in the re-organized sub-context,
the hierarchical schemes will promote en masse all records that are part of mu’s
sub-context towards the head of the list thereby reducing the subsequent access
costs. As opposed to this in the MTF and TR schemes, for example, the entire
context is promoted towards the list head one record at a time.

In the TPEOMA-Augmented Hierarchical SLLs-on-SLLs, the Transitivity
phenomenon, included in the TPEOMA, takes advantage of the statistical dis-
tribution of the queried elements to infer good query pairs from non-accessed
elements in the transitivity relation. Both of these are used to improve the
dependence-capturing aspect to be included in the sub-lists when it concerns
the Lists-on-Lists hierarchy. The augmentation of hierarchical SLLs with the
TPEOMA reinforcement scheme gives rise to the MTF-MTF-TPEOMA, MTF-
TR-TPEOMA, TR- MTF-TPEOMA and the TR-TR-TPEOMA.

3.1 Models of NSEs

In NSEs, the penalty probabilities for each action vary with time. In the context
of adaptive data structures, this variation affects the expected query cost because
the Environment exhibits the so-called “locality of reference”, or is characterized
by dependent accesses. The “locality of reference” occurs when there exists a
probabilistic dependence between the consecutive queries [2]. In other words,
there is a considerably small number of distinct or unrelated queries within a
segment of the access sequence.

To initiate the design of adaptive data structures in NSEs, we introduce
and examine two dependent query generators for simulating an Environment
producing queries with dependent accesses. They are the Markovian and Periodic
query generators. Given a set of n distinct elements, if we split it into k disjoint
and equal partitions with m elements where n = k.m, the k subsets can be
considered to be local or “sub”-contexts. The elements within a sub-context ki
exhibit “locality of reference”. This implies that if an element from set ki is
queried at time t, there exists a high likelihood that the next queried element at
time t+1 will also arrive from the same set ki. In other words, the Environment
itself can be seen to have a finite set of states {Qi|1 ≤ i ≤ k}, and the dependent
model defines the transition from one Environmental state to another.
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3.2 NSEs and their Distributions

The Environment generates queries according to a probability distribution. In
recording the behaviour of the hierarchical list schemes proposed in this work, we
considered five different types of query distributions, namely, the Zipf, Eighty-
Twenty, Lokta, Exponential and Linear distributions. For a given list of size W ,
divided into k sub-lists, with each sub-list containing W

k
elements, the probability

distribution {si} where 1 ≤ i ≤ m describes the query accesses for the elements
in the subset k. Notice that in this way, the total probability mass for the query
accesses in each group is the same, and the distribution within each group has
the respective distribution.

A rationale for conducting the simulations with these query distributions
is that, for the most part, they result in “L-shaped” graphs. This is true in
particular, for the Exponential and Lotka distribution, and to an extent for
the Zipf distributions. Such “L-shaped” distributions assign high probabilities
to a small number of the sub-list elements. By working in this manner, we can
compare our hierarchical variants against the MTF and TR schemes, which were
the de facto schemes for adaptive lists in NSEs.

4 Results and Discussions

The experimental setup for the simulations involving the TPEOMA-augmented
hierarchical schemes in MSEs involved splitting a list of size 128 into k sublists
with k ∈ 2, 4, 8, 16, 32, 64. The degree of dependence of the MSE, α, was set to
0.9 and the period for the PSE, T = 30. For all the results discussed in this
section, the simulation involved an ensemble of 10 experiments, each evaluating
300, 000 query accesses, and for the various aforementioned query generators.
For conciseness sake, we present results for k = 8.

From Table 1, when k = 8, we observed that the TPEOMA-augmented hi-
erarchical schemes were superior to the MTF and TR standalone schemes for
all query distributions in the MSE. As an example in the Lotka distribution,
the asymptotic and amortized costs for the MTF-MTF-TPEOMA, MTF-TR-
TPEOMA, TR-MTF-TPEOMA and TR-TR-TPEOMA were (6.60, 6.11, 4.39,
4.37) and (8.09, 7.84, 6.57, 6.54) respectively. As opposed to this, the corre-
sponding asymptotic and amortized costs for the MTF and TR were signifi-
cantly higher at (39.30, 48.25) and (39.17, 48.66) respectively. Further, in the
Exponential distribution for the MSE, the MTF-MTF-TPEOMA, MTF-TR-
TPEOMA, TR-MTF-TPEOMA and TR-TR-TPEOMA had asymptotic and
amortized costs of (7.01, 6.99, 7.50, 7.64) and (8.98, 8.83, 9.66, 9.87), while
the MTF and TR rule had asymptotic and amortized costs of (8.72, 10.52) and
(8.71, 10.93) respectively. Hence, showing the superiority of the the TPEOMA-
augmented schemes to the MTF and TR rules respectively in the MSE. Also,
from Table 1, observe that while the TPEOMA-augmented hierarchical schemes
are superior to the EOMA-augmented hierarchical schemes, the PEOMA-augmen-
ted hierarchical still boasts superior performances in MSEs.
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Figure 5 accesses the asymptotic cost ratio of the MTF-MTF-TPEOMA
scheme to the MTF for varying number of sublist partitions ranging from k =
{2, 4, 8, 10, 16, 32, 64}. For all the query distributions under consideration, the
MTF-MTF-TPEOMA scheme possesses a superior asymptotic cost to the MTF
except for the Exponential scheme where the MTF has a better asymptotic cost
when k = {2, 4}.

Table 1: Asymptotic (top) and
Amortized (bottom) costs in MSE

with α = 0.9 and k = 8.

Scheme Zipf 80-20 Lotka Exp. Linear

MTF 43.35 43.76 39.30 8.72 43.60
TR 55.44 56.74 48.25 10.52 56.79

MTF-MTF-EOMA 19.14 19.23 18.70 12.34 19.31
MTF-TR-EOMA 27.80 27.77 27.17 16.89 28.04
TR-MTF-EOMA 18.84 18.99 18.37 12.87 18.96
TR-TR-EOMA 27.55 27.62 26.96 17.17 27.70

MTF-MTF-PEOMA 5.80 6.73 1.25 2.45 6.76
MTF-TR-PEOMA 5.35 6.21 1.25 2.97 6.77
TR-MTF-PEOMA 4.67 6.00 0.96 2.88 5.61
TR-TR-PEOMA 5.07 6.49 0.98 2.99 6.34

MTF-MTF-TPEOMA 13.45 10.73 6.60 7.01 9.62
MTF-TR-TPEOMA 11.51 10.97 6.11 6.99 8.74
TR-MTF-TPEOMA 12.50 13.42 4.39 7.50 8.09
TR-TR-TPEOMA 14.80 12.38 4.37 7.64 8.30

MTF 43.25 43.82 39.17 8.71 43.64
TR 55.85 56.96 48.66 10.93 57.26

MTF-MTF-EOMA 19.35 19.40 19.26 12.90 19.45
MTF-TR-EOMA 27.93 28.02 27.54 16.57 28.08
TR-MTF-EOMA 19.09 19.18 19.07 13.35 19.18
TR-TR-EOMA 27.72 27.80 27.25 17.10 27.87

MTF-MTF-PEOMA 6.97 7.77 2.32 4.00 7.79
MTF-TR-PEOMA 7.14 7.87 2.63 4.23 8.31
TR-MTF-PEOMA 5.95 7.13 2.04 4.65 6.71
TR-TR-PEOMA 6.84 8.05 2.29 4.77 7.91

MTF-MTF-TPEOMA 15.44 13.04 8.09 8.98 11.56
MTF-TR-TPEOMA 14.08 13.41 7.84 8.83 11.00
TR-MTF-TPEOMA 14.81 15.62 6.57 9.66 10.15
TR-TR-TPEOMA 16.88 15.07 6.54 9.87 10.67

Table 2: Asymptotic (top) and
Amortized (bottom) costs in PSE

with T = 30 and k = 8.

Scheme Zipf 80-20 Lotka Exp. Linear

MTF 49.64 50.24 44.52 8.46 50.08
TR 55.65 56.91 48.51 11.18 57.19

MTF-MTF-EOMA 14.63 14.70 14.12 8.59 14.72
MTF-TR-EOMA 25.82 25.90 25.32 13.88 25.92
TR-MTF-EOMA 14.39 14.49 13.76 8.92 14.50
TR-TR-EOMA 25.58 25.69 24.97 13.70 25.70

MTF-MTF-EOMA-P 7.16 7.24 6.66 6.14 7.26
MTF-MTF-EOMA-UP 7.69 7.78 7.19 8.90 7.79

MTF-MTF-PEOMA 11.80 11.29 10.57 4.10 10.30
MTF-TR-PEOMA 23.31 23.22 21.64 5.56 21.42
TR-MTF-PEOMA 12.00 11.04 10.21 4.32 10.04
TR-TR-PEOMA 20.94 20.11 19.28 5.56 21.17

MTF-MTF-PEOMA-P 7.13 7.21 6.53 6.10 7.21
MTF-MTF-PEOMA-UP 7.40 7.57 5.45 6.31 7.49

MTF-MTF-TPEOMA 12.30 12.16 12.40 11.57 11.50
MTF-TR-TPEOMA 12.79 12.62 12.61 10.37 12.03
TR-MTF-TPEOMA 12.40 12.26 12.48 10.60 12.26
TR-TR-TPEOMA 12.56 12.41 12.37 11.00 12.18

MTF-MTF-TPEOMA-P 8.95 9.19 9.56 12.56 10.49
MTF-MTF-TPEOMA-UP 12.25 11.91 13.65 12.50 14.50

MTF 49.62 50.23 44.53 8.48 50.06
TR 56.09 57.28 48.91 11.58 57.60

MTF-MTF-EOMA 14.76 14.84 14.31 8.68 14.84
MTF-TR-EOMA 25.93 26.01 25.44 12.49 26.02
TR-MTF-EOMA 14.54 14.62 14.03 9.69 14.63
TR-TR-EOMA 25.71 25.80 25.12 13.11 25.80

MTF-MTF-EOMA-P 7.28 7.38 6.82 7.53 7.40
MTF-MTF-EOMA-UP 7.86 7.95 7.48 10.57 7.92

MTF-MTF-PEOMA 12.44 11.35 10.81 4.88 10.37
MTF-TR-PEOMA 23.84 23.78 21.64 5.90 21.63
TR-MTF-PEOMA 12.59 12.13 10.41 5.25 10.13
TR-TR-PEOMA 17.33 17.05 19.32 6.32 21.22

MTF-MTF-PEOMA-P 7.27 7.34 6.75 7.07 7.36
MTF-MTF-PEOMA-UP 7.44 7.68 5.51 6.90 7.59

MTF-MTF-TPEOMA 12.63 12.50 12.49 12.34 11.92
MTF-TR-TPEOMA 12.72 12.57 12.51 12.13 11.96
TR-MTF-TPEOMA 12.69 12.54 12.51 12.00 11.97
TR-TR-TPEOMA 12.65 12.50 12.50 11.93 11.98

MTF-MTF-TPEOMA-P 9.55 9.47 9.50 10.12 10.35
MTF-MTF-TPEOMA-UP 13.33 13.08 13.09 14.86 15.22

In Table 2, the performance of the TPEOMA-augmented hierarchical schemes
in the PSEs were superior to the standalone MTF and TR rules for all distri-
butions under consideration except for the Exponential scheme which boasted
slightly comparable results. As an example, consider the 80-20 distribution where
the MTF-MTF-TPEOMA, MTF-TR-TPEOMA, TR-MTF-TPEOMA and TR-
TR-TPEOMA had asymptotic and amortized costs of (12.16, 12.62, 12.26, 12.41)
and (12.50, 12.57, 12.54, 12.50) respectively. Whereas the MTF and TR had
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asymptotic and amortized costs of (50.24, 56.91) and (50.23, 57.28) respectively
showing the superiority of the TPEOMA-augmented schemes in such Environ-
ments. Moreover, the results from Table 2 also indicate that the TPEOMA-
augmented schemes have superior performances to EOMA-augmented and PEO-
MA-augmented hierarchical schemes in PSEs for the query distributions under
consideration.
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Fig. 5. The asymptotic cost ratio of the MTF-MTF-TPEOMA to the MTF scheme for
different values of the sub-list partitions k = {2, 4, 8, 10, 16, 32, 64} for MSE-dependent
query Environments in which α = 0.9.
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Fig. 6. Changes in the asymptotic cost of the stand-alone and hierarchical schemes
with TPEOMA in the MSE. In this experiment, a list of 128 elements is partitioned
into 8 sub-lists.

Also, when the knowledge of the Periodic state change is passed to the
TPEOMA-augmented hierarchical schemes, we observed that the “periodic”
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variations yielded superior performances to their vanilla versions, whereas the
unperiodic variations had comparable performances to the vanilla versions.

From Figure 6, we see that the TPEOMA-augmented hierarchical schemes
were superior to the MTF and TR schemes in noisy Environments when the
dependence degree α > 0.2. Actually, when α = 0.2, the TPEOMA enhanced
schemes already displayed comparable (and in some cases better) performances
to the MTF and TR schemes for the Zipf distribution.

5 Conclusion

In this paper, we designed a TPEOMA-augmented hierarchical Singly-Linked-
Lists on Singly-Linked-Lists (SLLs-on-SLLs) using reinforcement learning schemes
from the theory of Learning Automata, which led to the MTF-MTF-TPE-OMA,
MTF-TR-TPEOMA, TR-MTF-TPEOMA and TR-TR-TPEOMA schemes. The
TPEOMA-augmented hierarchical schemes showed superior performances to the
standalone MTF and TR schemes in MSEs. Also, they are superior to the
EOMA-augmented hierarchical schemes. However, the PEOMA-augmented hi-
erarchical schemes are still superior to the TPEOMA-augmented hierarchical
schemes in the MSE. In the PSE, the TPEOMA-augmented hierarchical were for
the most part superior to the MTF and TR schemes for the query distributions
under consideration. Further, the TPEOMA-augmented schemes were also su-
perior to the EOMA-augmented and PEOMA-augmented hierarchical schemes
in the PSE. However, when the knowledge of the periodic state change were
incorporated to the hierarchical schemes, the “periodic” case had superior per-
formances to their vanilla versions while the “unperiodic” case had comparable
performances.
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