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Abstract. With the rapid development of deep learning (DL), various
convolution neural network (CNN) models have been developed. More-
over, to execute different DL workloads efficiently, many accelerators
have been proposed. To guide the design of both CNN models and hard-
ware architectures for a high-performance inference system, we choose
five types of CNN models and test them on six processors and mea-
sure three metrics. With our experiments, we get two observations and
conduct two insights for the design of CNN algorithms and hardware
architectures.

Keywords: Convolutional neural network ·Hardware architecture · Per-
formance evaluation.

1 Introduction

CNN models have large computation and consume much energy, putting signif-
icant pressure on CPUs and GPUs. To execute CNN models more efficiently,
many specific accelerators are proposed (e.g., Cambricon-1A [11] and TPU [9]).

Due to the complexity of both sides, it is challenging to design high-performance
processors for various CNN models and design CNN models with different types
of processors. To tackle this, we perform a lot of evaluations, and we get two
observations. Based on observations, we get two insights for the design of CNN
algorithms and hardware architectures.

Following of this paper includes related work, experiments methodology, ex-
periments result and analysis, conclusion and acknowledgements.

2 Related Work

Related evaluation work of CNN inference systems is as follows.
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AI benchmark [7] measures only latency and one type of processors. Fath-
om [2] and SyNERGY [13] test two different types of processors and one metric.
However,they do not compare the same type of processors with different ver-
sions. DjiNN and Tonic [3] measure the latency and throughput.They only use
one CPU and one GPU without comparing different versions of same processor.
BenchIP [16] and [9] use three metrics and three types of processors.BenchIP
focuses on the design of hardware and use prototype chips instead of prodution
level accelerators. [9] focus the performance of hardware architecture only, we
give insights for the design of both CNN models and hardware architectures.

3 Experiment Methodology

In this section, we present the principles of workloads choosing, processors choos-
ing, and software environment. We also give details of measurement.

Table 1. Selected Models

Model Conv FC Weights(106) Gflopsa input size dataset

AlexNet [5] 5 3 60.1 0.62 227×227×3 Imagenet [14]
MobileNetv1 [6] 27 1 4.2 0.57 227×227×3 Imagenet
ResNet50 [4] 49 1 25.6 3.89 227×227×3 Imagenet
Vgg16 [15] 13 3 138.3 15.47 227×227×3 Imagenet
Yolov2 [12] 19 0 67.4 17.51 416×416×3 COCO [10]

Table 2. Selected Processors and Software Environment

Processor GHz TDP(W) #TFLOPS/s #core GB /s Numeric Library

CPU-E5 2.40 240 2.15 28 76.8 Intel MKL 2017 update 4
CPU-I5 3.40 65 0.20 4 34.1 Intel MKL 2017 update 4
GPU-P100 1.33 300 9.30 3584 732 Cuda8,CuDNN7
GPU-970 1.05 145 3.50 1664 224 Cuda8,CuDNN7
Cambricon - - 1.92 1 27.8 Libipu
TPU - - 180.00 8 600 -

Workloads are chosen from widely used tasks, with different layers, of differ-
ent depths, of different size and of different topology as shown in table 1.

Hardware architectures are chosen from scenarios such as user-oriented situ-
ation, datacenter usage and mobile devices as shown in table 2, (1) Intel Xeon
E5-2680 v4, (2) Intel Core I5-6500, (3) Nvidia TESLA P100, (4) Nvidia GeForce
GTX 970, (5) Cambricon is a typical neural processor and the actual processor is
HiSilicon Kirin 970 SoC in Huawei Mate 10. and (6) TPUv2, a publicly available
DL accelerator from Google Cloud.
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The same frame framework(tensorflow v1.6 [1]) and pre-trained models (.pb
file) are used except Cambricon. Cambricon has its inference API and model
format. Tensorflow 1.8 is provided for TPU by Google Cloud.

Three metrics are measured. Latency, the average milliseconds spent for an
image. Throughput, the average images processed in a second. Energy efficiency,
the amount of computation when a processor consumes 1 joule of energy.

To measure latency, we (1) load 100 images into memory and perform pre-
processing, (2) run once to warm up, (3) infer one image each time, record time
of 100 times inference and compute average latency. It is similar to throughput
but using 1000 images and inferring one batch each time. Max throughput is
achieved by tuning batch size. Measuring energy efficiency is similar to measur-
ing the maximum throughput. Power is sampled via sysfs powercap interface at
1Hz, nvidia-smi at 10Hz on CPU and GPU respectively. We take energy con-
sumption as energy consumed when the processor is under workload minus when
the processor is idle. For Cambricon, we use MC DAQ USB-2408.

4 Experiment Results and Analysis

Figure 1 shows the result. As shown in figure 1, for most cases, the more is
the computation, the higher is the latency or lower is the throughput. However,
there are exceptions; we summarize them into two observations.
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Fig. 1. Measured data. The longer the bar is, the better the performance is.

Observation 1: CNN models that have more computation may not incur
higher latency or lower throughput. Models have more computation are expected
to take more computing time, thus have higher latency and lower throughput.
However, in figure 1(a), on CPU-E5, AlexNet with more computation has lower
latency than MobileNetv1; on GPU-P100, Vgg16, AlexNet with more computa-
tion has lower latency than ResNet50, MobileNetv1 respectively.

Observation 2: Optimizations on CNN models are only applicable to spe-
cific processors. As shown in figure 1(a), MobileNetv1 has lower latency than
AlexNet on CPU-I5 but higher latency on CPU-E5. MobileNetv1 is an opti-
mized model but only performs well on a less powerful CPU.
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To explain these two observations, we measure latency breakdown by layer
types and functions, the result is shown in figure 2.
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Fig. 2. Experiments for Observations

For observation 1, as shown in figure 2(a),2(b) BatchNorm layers have large
execution time with low computation, which cause higher latency of MobileNetv1
than AlexNet on CPU-E5, higher latency of ResNet50 and MobileNetv1 than
Vgg16 and AlexNet respectively on GPU-P100. Thus, we give insight 1.

Insight 1: BatchNorm layers have a low ratio of computation but a dispro-
portionately high ratio of computing time on CPUs and GPUs. This suggests
a trade-off between using more BatchNorm layers to achieve faster convergence
for training [8] and using less BatchNorm to achieve faster inference.

For observation 2, as shown in figure 2(c), for MobileNetv1, the runtime
overhead (kmp yield(), sched yield(), switch to(), raw spin lock(), etc) on CPU-
E5 occupies more than 40ms of 86.8ms in total, while the runtime overhead on
CPU-I5 is about 20ms of 68.8ms in total. More cores of CPU-E5 increase the
runtime overhead of DL frameworks.

Insight 2: The runtime overhead of modern DL frameworks increases with
the increment of the core number on CPU. This suggests improving the com-
puting capability of individual cores rather than increasing the number of cores
to reduce latency.

5 Conclusion

In this work, we choose five CNN models and six processors and measure the
latency, throughput, and energy efficiency. We present two observations and
conclude two insights. These insights might be useful for both algorithms and
hardware architectures designers.

– For algorithm designers, they need to balance the usage of BatchNorm layers
for which can accelerate the training process but slow down inference.

– For hardware designers, BatchNorm layers deserve more attention; to reduce
latency, it is more critical to improve the computing capability of individual
cores than increasing the number of cores.
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