
HAL Id: hal-03770535
https://inria.hal.science/hal-03770535

Submitted on 6 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Multiple Algorithms Against Multiple Hardware
Architectures: Data-Driven Exploration on Deep

Convolution Neural Network
Chongyang Xu, Zhongzhi Luan, Lan Gao, Rui Wang, Han Zhang, Lianyi

Zhang, Yi Liu, Depei Qian

To cite this version:
Chongyang Xu, Zhongzhi Luan, Lan Gao, Rui Wang, Han Zhang, et al.. Multiple Algorithms Against
Multiple Hardware Architectures: Data-Driven Exploration on Deep Convolution Neural Network.
16th IFIP International Conference on Network and Parallel Computing (NPC), Aug 2019, Hohhot,
China. pp.371-375, �10.1007/978-3-030-30709-7_36�. �hal-03770535�

https://inria.hal.science/hal-03770535
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

This document is the original author manuscript of a paper submitted to an IFIP
conference proceedings or other IFIP publication by Springer Nature. As such, there
may be some differences in the official published version of the paper. Such
differences, if any, are usually due to reformatting during preparation for publication or
minor corrections made by the author(s) during final proofreading of the publication
manuscript.

Multiple Algorithms Against Multiple Hardware
Architectures: Data-Driven Exploration on Deep

Convolution Neural Network

Chongyang Xu1, Zhongzhi Luan1, Lan Gao1, Rui Wang1?, Han Zhang2, Lianyi
Zhang2, Yi Liu1, and Depei Qian1

1 Beihang University, Beijing, China
{xuchongyang1995,07680,lan.gao,wangrui,yi.liu,depeiq}@buaa.edu.cn

2 Secience and Technology on Special System Simulation Laboratory, Beijing
Simulation Center, Beijing, China
{xia mei2000,lyzhang117}@163.com

Abstract. With the rapid development of deep learning (DL), various
convolution neural network (CNN) models have been developed. More-
over, to execute different DL workloads efficiently, many accelerators
have been proposed. To guide the design of both CNN models and hard-
ware architectures for a high-performance inference system, we choose
five types of CNN models and test them on six processors and mea-
sure three metrics. With our experiments, we get two observations and
conduct two insights for the design of CNN algorithms and hardware
architectures.

Keywords: Convolutional neural network ·Hardware architecture · Per-
formance evaluation.

1 Introduction

CNN models have large computation and consume much energy, putting signif-
icant pressure on CPUs and GPUs. To execute CNN models more efficiently,
many specific accelerators are proposed (e.g., Cambricon-1A [11] and TPU [9]).

Due to the complexity of both sides, it is challenging to design high-performance
processors for various CNN models and design CNN models with different types
of processors. To tackle this, we perform a lot of evaluations, and we get two
observations. Based on observations, we get two insights for the design of CNN
algorithms and hardware architectures.

Following of this paper includes related work, experiments methodology, ex-
periments result and analysis, conclusion and acknowledgements.

2 Related Work

Related evaluation work of CNN inference systems is as follows.

? corresponding author

2 C. Xu et al.

AI benchmark [7] measures only latency and one type of processors. Fath-
om [2] and SyNERGY [13] test two different types of processors and one metric.
However,they do not compare the same type of processors with different ver-
sions. DjiNN and Tonic [3] measure the latency and throughput.They only use
one CPU and one GPU without comparing different versions of same processor.
BenchIP [16] and [9] use three metrics and three types of processors.BenchIP
focuses on the design of hardware and use prototype chips instead of prodution
level accelerators. [9] focus the performance of hardware architecture only, we
give insights for the design of both CNN models and hardware architectures.

3 Experiment Methodology

In this section, we present the principles of workloads choosing, processors choos-
ing, and software environment. We also give details of measurement.

Table 1. Selected Models

Model Conv FC Weights(106) Gflopsa input size dataset

AlexNet [5] 5 3 60.1 0.62 227×227×3 Imagenet [14]
MobileNetv1 [6] 27 1 4.2 0.57 227×227×3 Imagenet
ResNet50 [4] 49 1 25.6 3.89 227×227×3 Imagenet
Vgg16 [15] 13 3 138.3 15.47 227×227×3 Imagenet
Yolov2 [12] 19 0 67.4 17.51 416×416×3 COCO [10]

Table 2. Selected Processors and Software Environment

Processor GHz TDP(W) #TFLOPS/s #core GB /s Numeric Library

CPU-E5 2.40 240 2.15 28 76.8 Intel MKL 2017 update 4
CPU-I5 3.40 65 0.20 4 34.1 Intel MKL 2017 update 4
GPU-P100 1.33 300 9.30 3584 732 Cuda8,CuDNN7
GPU-970 1.05 145 3.50 1664 224 Cuda8,CuDNN7
Cambricon - - 1.92 1 27.8 Libipu
TPU - - 180.00 8 600 -

Workloads are chosen from widely used tasks, with different layers, of differ-
ent depths, of different size and of different topology as shown in table 1.

Hardware architectures are chosen from scenarios such as user-oriented situ-
ation, datacenter usage and mobile devices as shown in table 2, (1) Intel Xeon
E5-2680 v4, (2) Intel Core I5-6500, (3) Nvidia TESLA P100, (4) Nvidia GeForce
GTX 970, (5) Cambricon is a typical neural processor and the actual processor is
HiSilicon Kirin 970 SoC in Huawei Mate 10. and (6) TPUv2, a publicly available
DL accelerator from Google Cloud.

Title Suppressed Due to Excessive Length 3

The same frame framework(tensorflow v1.6 [1]) and pre-trained models (.pb
file) are used except Cambricon. Cambricon has its inference API and model
format. Tensorflow 1.8 is provided for TPU by Google Cloud.

Three metrics are measured. Latency, the average milliseconds spent for an
image. Throughput, the average images processed in a second. Energy efficiency,
the amount of computation when a processor consumes 1 joule of energy.

To measure latency, we (1) load 100 images into memory and perform pre-
processing, (2) run once to warm up, (3) infer one image each time, record time
of 100 times inference and compute average latency. It is similar to throughput
but using 1000 images and inferring one batch each time. Max throughput is
achieved by tuning batch size. Measuring energy efficiency is similar to measur-
ing the maximum throughput. Power is sampled via sysfs powercap interface at
1Hz, nvidia-smi at 10Hz on CPU and GPU respectively. We take energy con-
sumption as energy consumed when the processor is under workload minus when
the processor is idle. For Cambricon, we use MC DAQ USB-2408.

4 Experiment Results and Analysis

Figure 1 shows the result. As shown in figure 1, for most cases, the more is
the computation, the higher is the latency or lower is the throughput. However,
there are exceptions; we summarize them into two observations.

0 200 400 600 800

MobileNet

AlexNet

ResNet-50

VGG-16

YOLOv2

GEOMEAN

Throughput(#sample/s)

GPU-P100 GPU-970 TPU CPU-E5 Cambricon CPU-I5

0 100 200 300

MobileNet

AlexNet

ResNet-50

VGG-16

YOLOv2

GEOMEAN

1/Latency(s-1)

(a) Latency (b) Throughput

0 20 40 60 80 100 120

MobileNet

AlexNet

ResNet-50

VGG-16

YOLOv2

GEOMEAN

Energy Efficiency(GFlops/J)

(c)Energy Efficiency

Fig. 1. Measured data. The longer the bar is, the better the performance is.

Observation 1: CNN models that have more computation may not incur
higher latency or lower throughput. Models have more computation are expected
to take more computing time, thus have higher latency and lower throughput.
However, in figure 1(a), on CPU-E5, AlexNet with more computation has lower
latency than MobileNetv1; on GPU-P100, Vgg16, AlexNet with more computa-
tion has lower latency than ResNet50, MobileNetv1 respectively.

Observation 2: Optimizations on CNN models are only applicable to spe-
cific processors. As shown in figure 1(a), MobileNetv1 has lower latency than
AlexNet on CPU-I5 but higher latency on CPU-E5. MobileNetv1 is an opti-
mized model but only performs well on a less powerful CPU.

4 C. Xu et al.

To explain these two observations, we measure latency breakdown by layer
types and functions, the result is shown in figure 2.

0

2

4

6

8

10

12

14

16

18

20

m
s

0

20

40

60

80

100

E5-
alexnet

E5-
mobilnet

i5-alexnet i5-
mobilnet

m
s

Add BiasAdd Const Conv2D

DWConv FusedBN LRN MatMul

MaxPool Relu Relu6 other

(a) GPU latency break down according to layer type (b) CPU latency break down according to layer type

0

50

100

E5-Alexnet I5-Alexnet E5-
Mobilenet

I5-
Mobilenet

m
s

__kmp_hyper_barrier_release __kmp_yield

__sched_yield __schedule

__switch_to _raw_spin_lock

Entry_SYSCALL_64 Entry_SYSCALL_64_fastpath

__memcpy_avx_unaligned Simple_reorder_impl

LaunchDepthwiseConv Mkl_blas_avx2_xsgemv_n

ref_batch_normalization_fwd_t ref_pooling_fwd

native_write_msr_safe Other

(c) CPU latency break down according to function

Fig. 2. Experiments for Observations

For observation 1, as shown in figure 2(a),2(b) BatchNorm layers have large
execution time with low computation, which cause higher latency of MobileNetv1
than AlexNet on CPU-E5, higher latency of ResNet50 and MobileNetv1 than
Vgg16 and AlexNet respectively on GPU-P100. Thus, we give insight 1.

Insight 1: BatchNorm layers have a low ratio of computation but a dispro-
portionately high ratio of computing time on CPUs and GPUs. This suggests
a trade-off between using more BatchNorm layers to achieve faster convergence
for training [8] and using less BatchNorm to achieve faster inference.

For observation 2, as shown in figure 2(c), for MobileNetv1, the runtime
overhead (kmp yield(), sched yield(), switch to(), raw spin lock(), etc) on CPU-
E5 occupies more than 40ms of 86.8ms in total, while the runtime overhead on
CPU-I5 is about 20ms of 68.8ms in total. More cores of CPU-E5 increase the
runtime overhead of DL frameworks.

Insight 2: The runtime overhead of modern DL frameworks increases with
the increment of the core number on CPU. This suggests improving the com-
puting capability of individual cores rather than increasing the number of cores
to reduce latency.

5 Conclusion

In this work, we choose five CNN models and six processors and measure the
latency, throughput, and energy efficiency. We present two observations and
conclude two insights. These insights might be useful for both algorithms and
hardware architectures designers.

– For algorithm designers, they need to balance the usage of BatchNorm layers
for which can accelerate the training process but slow down inference.

– For hardware designers, BatchNorm layers deserve more attention; to reduce
latency, it is more critical to improve the computing capability of individual
cores than increasing the number of cores.

Title Suppressed Due to Excessive Length 5

6 Acknowledgements

This work is supported by the National Key Research and Development Program
of China under grant 2017YFB0203201. This work is also supported by the NSF
of China under grant 61732002.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine
learning. In: OSDI 2016

2. Adolf, R., Rama, S., Reagen, B., Wei, G.Y., Brooks, D.: Fathom: Reference work-
loads for modern deep learning methods. In: IISWC 2016

3. Hauswald, J., Kang, Y., Laurenzano, M.A., Chen, Q., Li, C., Mudge, T., Dreslinski,
R.G., Mars, J., Tang, L.: Djinn and tonic: Dnn as a service and its implications
for future warehouse scale computers. In: ISCA 2015

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition

5. Hinton, G.E., Krizhevsky, A., Sutskever, I.: Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems

6. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

7. Ignatov, A., Timofte, R., Chou, W., Wang, K., Wu, M., Hartley, T., Van Gool,
L.: Ai benchmark: Running deep neural networks on android smartphones. In:
European Conference on Computer Vision (2018)

8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: ICML 2015

9. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates,
S., Bhatia, S., Boden, N., Borchers, A., et al.: In-datacenter performance analysis
of a tensor processing unit. In: ISCA 2017

10. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: Fleet, D., Pajdla,
T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision – ECCV 2014 (2014)

11. Liu, S., Du, Z., Tao, J., Han, D., Luo, T., Xie, Y., Chen, Y., Chen, T.: Cambricon:
An instruction set architecture for neural networks. In: ACM SIGARCH Computer
Architecture News (2016)

12. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the
IEEE conference on computer vision and pattern recognition (2017)

13. Rodrigues, C.F., Riley, G.D., Luján, M.: Fine-grained energy profiling for deep
convolutional neural networks on the jetson TX1. CoRR abs/1803.11151 (2018)

14. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Imagenet large
scale visual recognition challenge. International Journal of Computer Vision (2015)

15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

16. Tao, J.H., Du, Z.D., Guo, Q., Lan, H.Y., Zhang, L., Zhou, S.Y., Xu, L.J., Liu,
C., Liu, H.F., Tang, S., et al.: B ench ip: Benchmarking intelligence processors.
Journal of Computer Science and Technology (2018)

