
HAL Id: hal-03741727
https://inria.hal.science/hal-03741727

Submitted on 1 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

ANAS: Sentence Similarity Calculation Based on
Automatic Neural Architecture Search

Dong-Sheng Wang, Cui-Ping Zhao, Qi Wang, Kwame Dwomoh Ofori, Bin
Han, Ga-Qiong Liu, Shi Wang, Hua-Yu Wang, Jing Zhang

To cite this version:
Dong-Sheng Wang, Cui-Ping Zhao, Qi Wang, Kwame Dwomoh Ofori, Bin Han, et al.. ANAS: Sentence
Similarity Calculation Based on Automatic Neural Architecture Search. 4th International Conference
on Intelligence Science (ICIS), Feb 2021, Durgapur, India. pp.185-195, �10.1007/978-3-030-74826-
5_16�. �hal-03741727�

https://inria.hal.science/hal-03741727
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

ANAS： Sentence similarity calculation based on automatic neural
architecture search

WANG Dong-Sheng*a,ZHAO Cui-Pinga,WANG Qia,Oforia,HAN Bina,LIU Ga-Qionga,WANG
Shib,WANG Hua-Yuc，ZHANG Jinga

a(School of Computer Science, Jiangsu university of Science of Technology, Zhenjiang, Jiangsu
212001, China)

b(Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese
Academy of Sciences, Beijing 100190 ,China)

C(School of Army Engineering University, Nanjing, Jiangsu 210007, China)

ABSTRACT

Sentence similarity calculation is one of several research topics in natural language processing. It has been widely used
in information retrieval, intelligent question answering and other fields. Traditional machine learning methods generally
extract sentence features through manually defined feature templates and then perform similarity calculations. This type
of method usually requires more human intervention and constantly has to deal with domain migration problems.
Automatically extracting sentence features using certain deep learning algorithms helps to solve domain migration
problems. The training data is of the domain is required to complete the extraction process. However, the neural network
structure design in the deep learning model usually requires experienced experts to carry out multiple rounds of the
tuning design phase. Using an automatic neural architecture search (ANAS) technology deals with all the network
structure design problems. This paper proposes a sentence similarity calculation method based on neural architecture
search. This method uses a combination of grid search and random search. The method in this paper is tested on the
Quora "Question-Pairs" data set and has an accuracy of 81.8%. The experimental results show that the method proposed
in this paper can efficiently and automatically learn the network structure of the deep learning model to achieve high
accuracy.

Keywords: Natural language processing, Deep learning, Neural architecture search, Sentence similarity calculation

1. INTRODUCTION
Sentence similarity calculation is a branch of artificial intelligence in natural language processing. Traditional machine
and deep learning methods have proven to be highly efficient when dealing with problems encountered in sentence
similarity calculation. The neural network structure design in a deep learning model usually requires experienced experts
to carry out multiple rounds of tuning and design. Adjusting the network structure to adapt to the characteristics of the
field then becomes necessary.

At present, research done in automatic searches under neural architecture search have produced promising results. This
paper proposes a sentence similarity calculation model based on neural architecture search. The model uses padding and
label encoding technology to convert text inputs into a real number vector. It applies the GloVe model to get the word
embedding representation next and finally returns a numerical output between 0 and 1. Adam algorithm is then used for
intensive training. This algorithm ascertains the similarity between the two sentences according to the numerical results
output by the model. The proposed model uses neural architecture search technology to initiate the model generation
process and strategy. It then applies the random search method to iteratively find a better model combination. The main
purpose of this paper is to design a deep neural network model using an automatic neural architecture search with
minimal human intervention. This way, the domain migration ability increases hence the efficiency of the model in
general is improved.

2. RELATEDWORK
Many researchers have conducted extensive research in sentence similarity calculation. Zhai Sheping [12] fully
considered sentence structure and semantic information. He proposed a method for calculating semantic similarity of
sentences based on multi-feature fusion of semantic distance. Liu Jiming et al. [13] combined smooth inverse frequency
(SIF) with dependent syntax to calculate sentence similarity. Ji Mingyu et al. [14] calculated sentence similarity by
reducing and normalizing the difference features between sentence vectors. He Yinggang [15] proposed a sentence
similarity calculation method based on word vectors and LSTM... There are also numerous studies done on neural
architecture search. Google [16] proposed neural architecture search for convolutional neural networks. Qi Fei et al.
fitted a multivariate Gaussian process function to construct an acquisition function for optimized search based on the
trained neural network architecture map and the corresponding evaluation value... Although the above method was
highly efficient, there are recurring problems such as low accuracy and time-consuming search process. Therefore, this
paper proposes an automated neural architecture search technology which greatly improves efficiency.

3. OUR APPROACH
This paper can be divided into two aspects: the first part is the research and realization of automated neural architecture
search technology; the second is the implementation of a deep learning model for sentence similarity calculation based
on neural architecture search.

3.1 Neural architecture search technology

With the increasing demand of deep learning models, designing a complex network structure requires more time and
effort. Therefore, neural architecture search is used to automate the construction of neural networks. This section
describes the three key components of ANAS: search space, search strategy and search performance evaluation strategy.

Search space. There are two common search space types in the current research results which are the chain structure
neural network space and the unit search space. The NAS search architecture used in this article refers to the idea of unit
search space. By pre-defining some neural network structural units and then using NAS to search the stacking mode of
these network units to build a complete neural network. The basic network block is created as the main search object and
ultimately generates good models.

Search strategy. Although the search space is theoretically limited, it requires a certain search strategy to balance
exploration and utilization: on one hand, it is necessary to search for a good-performance architecture rapidly, on the
other hand, it should be avoided due to the repercussion of early convergence.

Many different search strategies like Bayesian optimization and evolutionary algorithms are used to explore the neural
architecture space. Restricted by experimental conditions, this paper uses a search strategy that combines grid search and
random search commonly used in machine learning. Firstly, we use grid search on the framework parameter and then
perform random search on other parameters. Next, we combine them into a complete model for training and evaluation.
Finally, we keep the model parameters with the highest accuracy on the test set.

The ANAS search strategy algorithm used in this paper is as follows:

Algorithm ANAS Strategy Based on Random Search of Network Blocks algorithm
Input: training data set, search space
Output: good model in search space
Begin
Define search space, including 1earning rate space, batch size space, framework space, dense
space, dropout space, random space.
(2)For i=1 to 1ength(framework space) do
(3) For j=1 to 1ength(random space) do
(3) Get model block parameters in search space randomly.
(4) Generate a complete model by model block parameters in (3).
(5) Training model in data set, get the result
(б) If the results are better now than last time.

then record and cover model block parameters.
Else
continue.
(7) End;

(8) End;
(9) Get good model parameters.
(10)End.

End.
The input of the algorithm is the training set and the search space. The output is a set of network parameters. Using this
set of parameters, a complete model can be generated. The model performance outperforms other models with same
functions.

In the above analysis, the data set used is a subset of the target data set. The specific determination of the search space
depends on the outcome of search space experiments carried out. The search space parameters used in this paper are
shown in Table 1 below:
Table 1. Margins and print area specifications.

ANAS parameters Value range
Learning rate space （0.0001, 0.1）

Batch size space （50, 10000）
Framework space （0, 20）
Dense space （10, 500）

Dropout space （0, 0.5）

Random search times 100
The parameters in Table 1 are mainly defined based on the experience of designing deep learning models in the past. The
upper limit of Random search times is the number of all permutations and combinations in the search space, but subject
to the computing power of the experimental platform. We set this value to 100 and eventually generate 2000 models.
The model was trained and tested, and it took more than 60 consecutive hours to get the final result.

Figure 1. ANAS implementation diagram

The neural architecture search technology proposed in this paper is based on the backbone network. It is also based on
the network block stacking and internal parameter changes. It randomly searches for network combinations that perform
well. The ANAS implementation is shown in Figure 1.

Performance Evaluation Strategy. The goal of ANAS is to find a model architecture that achieves high predictive
performance on unknown data, Therefore, effective performance evaluation strategies need to be developed. Considering

the computational cost, only standard training and verification of 2000 generated models were performed. Under the
premise of GPU acceleration, it took more than 60 hours. In the subsequent research, measures need to be taken to
improve the efficiency of ANAS search.

3.2 Model implementation and evaluation optimization

Model construction. This paper uses TensorFlow and Keras to implement the construction, training, and prediction of
deep learning models. The deep learning model structure used in this paper is shown in Figure 2:

Figure 2. Discriminant model neural network architecture
The input sentence is vectorized using the Glove word embedding of feature engineering and transformed into a real
number matrix of shape (1, 25), which respectively represents two sentences to be differentiated. After the Embedding
layer is processed, the matrix becomes (300, 25) and each vocabulary is transformed into a word embedding vector with
a length of 300 dimensions. After calculation, a result of (1, 1) size is output and the value ranges between 0~1. The next
task is to determine if the intent of the two sentences are the same according to the magnitude of the value. The model is
implemented using TensorFlow-based Keras. Embedding is the advanced neural network layer that comes with Keras.
The input layer serves as the initial occupancy layer of the Keras network and is used to agree on the matrix shape of the
input data. The Embedding layer implements the mapping of data to the word embedding vector. The weight of the word
embedding vector is set through the weight’s parameter. The trainable parameter is usually set to False so that the
training can proceed normally. The TimeDistributed layer is an advanced encapsulator. The application in this model is
equivalent to independently applying a fully connected layer with 300 neurons on each vocabulary output by the
Embedding layer. The Lambda layer is used to encapsulate any expression into the Layer object of the network model. In
this model, the Lambda layer selects the word embedding vector with the largest activation value of each word in the
output of the TimeDistributed layer. This is done to improve the nonlinear learning ability of the model. The Concatenate
layer is used to connect two matrices together. In this model, the (300, 1) matrix output by the two Lambda layers is
connected into a (600, 1) matrix. The Dropout layer receives dropout parameters between 0 and 1 and randomly discards
the output results of the previous layer according to the parameter size. This process only takes effect during network
training which then reduces the overfitting of the model. The dense layer is a fully connected layer. After setting the
number of neurons, Keras will automatically establish weight connections between all neurons in this layer and all
outputs of the previous layer. BatchNormlization will normalize the calculation data of the current batch which reduces
the over-fitting of the model.

Model training. The Adam algorithm is used to train the model with the help of the fit method of the Keras framework.
Using Adam algorithm can speed up the training speed, making the model converge in less epoch training. TensorFlow
and Keras are used directly in the training, “model.fit([x1, x2], y, epochs=50, validation_split=0.1,batch_size=4096)”
can be executed to achieve model training.

Part of the information during the model training process is shown in Table 2 below:

Table 2. Part of the information during model training

epoch time cost loss acc val_loss val_acc
1/50 6s 18us 0.6028 0.6781 0.5384 0.7247

2/50 4s 11us 0.5047 0.7484 0.5259 0.7264

3/50 4s 11us 0.4644 0.7728 0.4968 0.7537

4/50 4s 11us 0.4332 0.7913 0.4567 0.7797

5/50 4s 11us 0.4042 0.8080 0.4461 0.7877

6/50 4s 11us 0.3810 0.8219 0.4299 0.7937
In Table 2, val_loss and val_acc respectively represent the loss function value and accuracy of the current training batch
of the model in the validation set.

Model evaluation and optimization. There are many ways to optimize models. This article only considers optimizing
the accuracy of the model.

Underfitting. The word embedding of the GloVe model and TimeDistribute layer are used to improve the network
structure. After embedding is output, a fully connected layer of the same 300 dimensions is applied to the representation
of each word to make up for the insufficiency of the embedding layer trainable=False setting and improve the accuracy
of the model. In order to deal with under-fitting, the neural network structure is deepened and the basic network. After
the block, the neural architecture search mechanism determines how deep the network needs to be stacked.

Overfitting. By reducing the number of network parameters or the Dropout method, the Dropout layer of Keras receives
the parameter rate and its value should be set between 0 and 1. This indicates the proportion of discarding. Use
BatchNormlization layer to reduce model overfitting and speed up training.

4. EXPERIMENT
4.1 Datasets

The training set data uses a data set published by Quora in the form of a competition on the Kaggle platform with a size
of about 55MB and a total of about 400,000 training samples. The format of the original data set is a text format with
tabs separating different columns and line breaks separating different rows and each row represents a labeled sample.

Table 3. Example of training data

index question1 question2 is_duplicate

1 What is the step by step
guide to invest in sh...

What is the step by step
guide to invest in sh... 0

2 What does manipulation
mean?

What does manipulation
mean? 1

3 Why are so many Quora
users posting questions ...

Why do people ask Quora
questions which can be... 1

As shown in Table 3, mark 0 means that the intent of question 1 and question 2 are inconsistent, and mark 1 means that
the schematic diagram is consistent.

To train and evaluate the model, the labeled dataset is divided into three subsets: training set, validation set and test set.
There is no strict basis for the division ratio of the data set. In this work, we divide the data set into 3 parts. The test set
(10%) , the validation set (5%) and the training set (85%).

4.2 Evaluation index

The focus of this paper is to calculate the accuracy of the model but also to consider other evaluation indicators.

Model accuracy. The research focuses on the accuracy of the model. The following is the accuracy calculation formula:

A is the accuracy rate, R is the number of samples the model predicts correctly in the data set and S is the number of all
samples in the data set.

The following figure shows the changes in accuracy on training set and validation set during the training process of the
model:

Figure 3. Changes in the accuracy of the model in the training set

Table 4 shows the accuracy results of the three data sets after the model training is completed.

Table 4. Accuracy result after model training is completed

Training set Validation set Test set

Accuracy 0.9640 0.8185 0.8180

Training time and prediction time-consuming. Model training time-consuming is mainly related to model structure,
optimization algorithm, experimental software and hardware environment. GPU acceleration is used in the experimental
environment of this paper. Table5 shows whether GPU acceleration is used to train the model influences:

Table 5. The impact of GPU acceleration on training time

Use GPU Without GPU

1 training batch time 4.04s 54.70s

Total training time 202s 2735s

rate 1 13.54

Table 5 shows that in the experimental environment of this article, keeping other configurations unchanged and using
GPU when training the model can be 13.54 times faster than not using GPU. In actual application, how long the model
needs to be used to obtain the prediction result is also a factor that needs to be considered. This is slightly different from
the factors that affect the time-consuming model training. It is related to the structure of the model and the experimental
software and hardware environment, but is related to the use The optimization algorithm has nothing to do.

Table 6. The impact of GPU on model prediction time

Use GPU Without GPU

Time-consuming
prediction of 1 sample 5ms 17ms

Time-consuming
prediction of 10
samples

5ms 17ms

Time-consuming
prediction of 100
samples

11ms 39ms

It is reflected from Table 6 that the prediction time is very short, in the order of milliseconds. However, the time
consumption of predicting 1 sample and predicting 10 samples or even predicting 50 samples has not changed much in
the two cases of using GPU acceleration and not using GPU acceleration. The reason is the design of the model in this
article and the characteristics of TensorFlow. It is decided that the model can calculate multiple samples at the same time,
which is the result of automatically calling multi-threaded calculations behind TensorFlow. Therefore, within a certain
range of predictions, the prediction results can be quickly obtained without being affected by the number of samples.

4.3 Experimental results and analysis

This chapter compares and analyzes the training results of the deep learning model proposed mainly considering the
accuracy and time-consuming aspects of the model. The models participating in the comparison include random forest
algorithm, gradient boosting tree algorithm (GBDT), and support vector machine (SVM) model.

Model accuracy. Table 7 shows the accuracy of each model.

Table 7. Accuracy performance of each model

Acc. on the training set Acc. on the test set

Random forest 0.9459 0.7450

GBDT 0.9843 0.7706

SVM 0.7875 0.6799

ANAS 0.9640 0.8180

The ANAS in Table 7 refers to the model used in this paper. The results in the table cannot directly judge the pros and
cons of different model algorithms. Because this paper does not perform feature engineering on the data suitable for the
specific algorithm, the data results does not reflect the best performance of the model on this data set.

Comparison of prediction time-consuming models. Table 8 shows the prediction time-consuming results of each
model.

Table 8. Forecast time-consuming results of each model

Prediction 1 sample Prediction 10 samples Prediction 100 samples

Random forest 110ms 115ms 270ms

GBDT 3ms 3ms 9ms

SVM 95ms 98ms 250ms

ANAS 5ms 5ms 11ms

As shown in Table 8, the prediction time is greatly affected by the implementation framework. This paper uses the
random forest algorithm and support vector machine implemented by Sklearn. It also uses the LightGBM provided by
Microsoft to implement the gradient boosting tree algorithm. A deep learning model implemented by TensorFlow and
Keras is also used. Sklearn is mainly used in the data preprocessing stage and did not do calculation optimization work.
Microsoft's LightGBM and Google's TensorFlow are commercial open source applications that have made a lot of
optimizations on computing performance. Therefore, the time-consuming is significantly better than the model
implemented by Sklearn.

5. CONCLUSION
This paper mainly focuses on the problem of sentence similarity calculation. In order to use the deep learning method,
the deep learning model and neural architecture search are discussed and studied. Feature engineering chooses GloVe
word embedding and this choice is also confirmed by the results. The research of neural architecture search mainly
realizes the search based on the unit search space, creating the backbone network and the basic network block. We
combine grid search and random search strategies using network generators and neural architecture search engines.
Finally, a relatively good deep learning model is formed. The key points of the deep learning model are evaluated and
analyzed. The basic structure and function principle and optimization direction of the deep learning model are described
and summarized. The model obtained in this paper scores an accuracy of 81.8% on the test set. The results indicate that
using the ensemble learning techniques commonly used in machine learning competitions, combined with multiple
model methods should be further improved.

ACKNOWLEDGEMENT
This paper is funded by the National Natural Science Foundation of China "Research on Automatic Learning Method of
Constrained Semantic Grammar for Short Text Understanding" (61702234).

REFERENCES
[1] Gabor Angeli and Christopher D Manning. Naturalli: Natural logic inference for common sense reasoning. In

EMNLP, 2014.
[2] Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts. In: International Conference on

Learning Representations (2017)
[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to

align and translate. In ICLR, 2015.
[4] Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment challenge. In

Machine Learning Challenges. Lecture Notes in Computer Science, volume 3944, pages 177–190.
Springer,2006.

[5] Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: Learning Augmentation Policies
from Data. In: arXiv:1805.09501 (May 2018)

[6] Karl Moritz Hermann, Toma´sKocisky´, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. Teaching machines to read and comprehend. In NIPS, 2015.

[7] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In NIPS, 2015.
[8] Ahmed,K.,Torresani, L.: Maskconnect: Connectivity learning by gradient descent. In: European Conference on

Computer Vision (ECCV) (2018)
[9] Huang, G., Liu, Z., Weinberger, K.Q.: Densely Connected Convolutional Networks. In: Conference on

Computer Vision and Pattern Recognition (2017)
[10]Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions (2016)
[11]Chen, T., Goodfellow, I.J., Shlens, J.: Net2net: Accelerating learning via knowledge transfer. In: International

Conference on Learning Representations (2016)
[12]ZHAI She-ping, LI Zhao-zhao, DUAN Hong-yu, et al. Sentence semantic similarity method based on

multifeatured fusion [J]. Computer Engineering and Design,2019. (In Chinese)
[13]LIU Ji-ming, TAN Yun-dan, YUAN Ye. Calculation Method of Sentence Similarity Based on Smooth Inverse

Frequency and Dependency Parsing. Chongqing University of Posts and Telecommunications, 2019. (In
Chinese)

[14] JI Mingyu, WANG Chenlong, AN Xiang, et al. Method of sentence similarity calculation for intelligent
customer service.Computer Engineering and Applications, 2019, 55（13）：123-128. (In Chinese)

[15]HE Ying-gang, WANG Yu. Method of Sentence Similarity Calculation for Intelligent Customer Service [J].
Journal of Yangtze University (Self Science Edition),2019. (In Chinese)

[16]Google. Neural architecture search for convolutional neural networks:CN201880022762.8[P].2019-11-19. (In
Chinese)

	ANAS： Sentence similarity calculation based on aut
	ABSTRACT
	Keywords: Natural language processing, Deep learni
	1.INTRODUCTION
	2.RELATED WORK
	3.OUR APPROACH
	3.1Neural architecture search technology
	3.2Model implementation and evaluation optimization

	4.EXPERIMENT
	4.1Datasets
	4.2Evaluation index
	4.3Experimental results and analysis

	5.CONCLUSION

