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Abstract. The construction of reachability graphs is suited to verify the 

properties and behavior of Petri net models based on the structure of the net and 

the initial marking. It allows checking whether a model conforms to the 

intended specification of a system and to obtain information about it. This paper 

proposes an algorithm to compute the reachability graphs of IOPT (Input-

Output Place-Transition) nets, which is a Petri net class, using NVIDIA's 

CUDA (Compute Unified Device Architecture), which supports the co-

processing using GPU and CPU. While CPU is used to schedule threads on 

GPU, GPU is used to calculate all the child nodes of the reachability graph, 

including the management of a hash-table for efficiently storing the new states 

and retrieving the states stored in the database. The presented algorithm takes 

advantage of CUDA memory functions to allocate and access data that can be 

used by code running on CPU or GPU, supporting the share of data between the 

two processor units. Six IOPT net models were used to validate the proposed 

algorithm. 
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1   Introduction 

The increasing complexity of distributed embedded systems have been a motivation 

for the use of Petri nets [1], [2]. This graphical modelling formalism enables the 

explicit specification of concurrent systems, their synchronization and conflicts, and 

the share of resources [3]. As a result, they ensure that systems behavior conforms to 

the intended specification so as not to endanger people. 

IOPT-Tools, which are online available at http://gres.uninova.pt/IOPT-Tools/ 

supports the development of embedded systems controller using Petri nets [4], [5]. 

This framework offers a set of tools to support the creation of IOPT-net models [1], 

their verification, and the automatic code generation (C and VHDL) [6], [7]. To 

enable the verification, an automatic code generator is used to compute the models' 

reachability graphs [8]. As real world applications can present exponential 

reachability graphs with a huge number of states, their generation can take a long time 

to compute [2], requiring high computational performance [9]. Some tools generate 
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the condensed reachability graph of a Petri net model, preventing the exponential 

growth of the graph [10] – [12]. 

The work presented in this paper is focused on obtain the complete reachability 

graph of a model, based on a new model-checking algorithm to compute the 

reachability graphs of IOPT Petri net models using NVIDIA's CUDA. NVIDIA's 

CUDA supports CPU-GPU co-processing for parallel computing [13]. As a matter of 

fact, GPU calculates all the child nodes of the reachability graph and handles their 

storing with the support of a hash-table. In addition, the CPU schedules the threads to 

be launched on the GPU, which are needed to process a new set of unprocessed states 

of the graph. 

Section 2 mentions how this paper contributes to life improvement. In section 3 

IOPT Petri nets and IOPT-Tools are briefly described, including the current 

reachability graph generation tool. In the following section, it is mentioned how 

CUDA Toolkit contributes to program and run parallel C++ applications on GPU. 

Section 5 presents the proposed algorithm, for the computation of reachability graphs, 

for IOPT Petri net models. In section 6 are presented the results supported by an 

NVIDIA Titan V GPU, and finally in section 7 the conclusions about the results and 

future work are presented. 

2   Relationship to Life Improvement 

Currently, technological advances enabled the creation of many types of distributed 

embedded systems that contribute to a significant improvement in people's quality of 

life across different areas, ranging from appliances and home products, medical and 

health solutions, surveillance and security equipment, to transportation and 

communication systems, among others. 

Concerning to safety-critical systems, to make sure that they are safe and free of 

development errors, they must be formally verified, by checking all possible 

interactions and potential unwanted properties [14] – [16]. There are large number of 

Petri net tools [17], which support not only the models edition and simulation, but 

also their formal verification and analysis, to ensure that the system specification 

conforms to the desired properties or has no unwanted properties. This work, 

addressing the construction of reachability graph for IOPT nets, aims to contribute for 

the safety-critical systems properties verification. 

3   IOPT Nets 

The IOPT nets are a low-level and non-autonomous Petri net class proposed to 

develop automation and embedded systems, allowing the rapid prototyping of system 

controllers through IOPT-Tools framework [18], [19], [20]. The IOPT Petri net relies 

on signals and events to specify the interaction of the models with the environment: 

while input signals and events constraint the evolution of the net, directly associated 

with transition firing, outputs are updated according with the marking of the net and 

transition firing. In detail, a transition fires if it is enabled from the point of view of 
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place marking, the associated events occur and if the associated guards are verified. 

When more than one transition is enabled, but not all of them are allowed to firing, 

transition priorities and test arcs can be used [8]. As a result, each system’s state is 

composed of a vector of all places’ marking; and an output event signal vector, with 

the values of all signals associated with output events [19]. 

3.1   Reachability Graph Generator 

The IOPT-Tools offer a tool to compute the reachability graphs [19] of IOPT Petri net 

models. During graph generation, the tool gathers information about the model, 

namely the influence of input signals and events on the firing of transitions, as well as 

all combinations of all enabled transitions. The automatic C code generated by the 

reachability graph generator provides libraries to compute a model’s reachability 

graph, managed with a hash-table that allows ordering multiple states for each key, to 

help search for repeated states. At the end of the computation, the resulting 

reachability graph is stored in a hierarchical XML file, in which the connections 

between the states are represented. 

The reachability graph algorithm [21] initiates with the creation of the database and 

initial state, obtained from the initial marking M0 and the values of all output event 

signals presented on the net at that moment. After that, the initial node is added into 

the database and hash-table, and the algorithm proceeds from there or any other state 

by modifying the value of net's initial marking. The algorithm will continue until all 

the unprocessed states are treated, or the graph reaches the maximum size, which is 

specified according to the computation platform available resources. Each evaluation 

of an unprocessed state is carried out with the calculation of its child states (the next 

unprocessed states), by executing a function that recursively analyzes all transitions 

that are enabled to firing. Then, all child nodes are stored in the database and sorted in 

the hash-table if they are not repeated states, whose marking and outputs refer to 

previously existing nodes. Finally, the new child nodes are added to the set of 

unprocessed states, waiting to be processed. The generated reachability graph includes 

the nodes, the arcs that connect them, and links that represent existing nodes. 

4   CUDA Architecture 

To increase the performance of the IOPT reachability graphs generation, the use of 

GPU is proposed in this paper. The GPU is used to improve the processing of each 

state, parallelizing the calculation and analysis of its child nodes. For that, it was used 

a NVIDIA GPU and the CUDA Toolkit, which enable the co-processing of C++ 

programs in platforms with CPU and GPU [22], [23]. The execution starts and ends in 

the CPU, which exchanges data with the GPU and launch the kernels to running on 

the GPU. 

A kernel is a sequential program that runs in parallel as many times as the number 

of threads running on the GPU distributed by blocks in a grid. Although, there is a 
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limit to the number of threads per block, a kernel can be executed by multiple blocks 

in parallel, so the total number of threads launched is equal to the number of threads 

per block times the number of blocks thar compose the grid. A set of functions, such 

as __threadfence, __syncthreads, and atomic operations, can be used to ensure the 

correct access to shared and global memory, avoiding hazards that can occur from 

simultaneous read and write operations at the same memory address [24]. 

5   Proposed Approach and Algorithm 

The reachability graph generation at IOPT-Tools is mainly composed of two parts: for 

each state, it is calculated its child nodes; and for each child node it is inspected if it is 

a new independent state or if it is equal to a previously existing one. In the generator 

of the IOPT tool framework, this entire process is done sequentially in CPU, with 

each state being analyzed one at a time. An algorithm proposed in [25] reused part of 

IOPT-Tools generator code and adapted it to run on a GPU used to perform the 

calculation all the child nodes of unprocessed states in parallel, while the CPU 

schedules threads on the GPU, handles the hash-table and the categorization of states. 

The algorithm proposed in this paper also uses co-processing, taking even more 

advantage of the GPU. For that, the initialization of the database and the creation of 

the initial state are handled by the CPU, and from that moment onwards the task of 

searching for new states it's responsibility of the GPU until all graph it's done. During 

the computation, the CPU receives feedback on the status of the graph through 

memory copies from the device to the host, receiving the update of the number of 

calculated states and the number of states to be processed. This allows the continuity 

of the algorithm that ends only when there are no more unprocessed states to process 

or the maximum number of states associated with the allocation of the database is 

reached. So, three kernels were implemented, each one responsible for a specific part 

of the algorithm, as described in Figure 1. 
 

 

 

 

 

 

 

 

 

 

Fig. 1. Sequence of actions of the algorithm. 

When the kernel calc_ChildrenStates, presented in Algorithm 1, is invoked, the 

values of the number of states to be processed and the current number of states stored 

in the database are passed. The first instruction performed is the assignment of an 

unprocessed state from the array states to the threads of a block. At this point, CPU 

has been launched as many blocks as the number of unprocessed states that need to be 
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processed, and as many threads as the number of transitions of the Petri net. The way 

to provide each thread the state to process is using the unique index of the block, the 

size of the array states, that stores all the states, and the number of blocks launched. 

Algorithm 1. Kernel calc_ChildrenStates 

program calc_ChildrenStates(unp_states, n_states) 

  __shared__ state s* 

  netMarking init_m, m, avail_m 

  eventOutputSignals init_out, out 

  outputSignalEvents ev 

  begin 

    IF threadIdx.x == 0 

      s = &states[blockIdx.x+n_states-gridDim.x] 

    __syncthreads() 

    calc_FiringBlends(threadIdx.x, init_m, m, avail_m, unp_states, 

      n_states, s->id, ev, out, init_out) 

end. 

Using the __syncthreads() function all the threads in the current block will 

synchronize, waiting for thread 0 to share the state that needs to be processed. The 

kernel continues with a recursively analysis of all enabled transitions of a state, 

calculating all the combinations between them. The transition with the highest priority 

will analyze the remaining ones; the second most priority will analyze the other ones 

except the first one, and so on. The latter transition will only consider itself. As there 

is one thread per transition, each one of them will analyze the combinations in parallel 

for each state, saving the founded new states inside the array childs. 

After that, the kernel returns the number of child nodes calculated to proceed with 

the search of repeated children. The CPU launches a number of threads equal to the 

number of founded states, one for each thread to compare with the others. The 

comparison of the states is made at find_RepeatedChildren kernel, presented in 

Algorithm 2, by comparing the marking and outputs of the Petri net. If there is a 

repeated sibling, the value of the link flag and the id of the state are changed, followed 

by the storage of the state in the array links. 

Algorithm 2. Kernel find_RepeatedChildren 

program find_RepeatedChildren(n_links) 

  For i=0; i<threadIdx; i++: 

    int cmp = memcmp(childs[threadIdx.x].m, childs[j].m) 

    IF cmp == 0: 

      cmp = memcmp(childs[threadIdx.x].o, childs[j].o) 

        IF cmp == 0: 

          childs[threadIdx.x].link = -1 

          childs[threadIdx.x].id = dev_childs[j].id 

          memcpy(links[atomicAdd(n_links,1)], childs[threadIdx.x]) 

end. 

The last kernel, presented in Algorithm 3, compare the child nodes that have not 

been copied to the array links with all existing nodes. For that, it was implemented a 

multivalue hash-table where multiple values for the same key are represented by 

different key-state_id pairs. In the same way as the previous kernel, the CPU launches 

a number of threads equal to the number of founded states. Each thread will search on 



96 C. Lagartinho-Oliveira et al. 

 

 

hash-table for repeated states starting by calculating the key based on the marking and 

outputs of the state, using it to limit the search to elements with the same key. Several 

threads could access the hash-table, including threads whose states have the same key. 

If there is no repeated state at the database, the value of the id of the child state is 

actualized, and the state is stored in the array states; if there is a repeated state it is 

stored in the array links. 

Algorithm 3. Kernel find_RepeatedStates 

program find_RepeatedStates(unp_states, n_states, n_links) 

  IF childs[threadIdx.x].link != -1: 

    key = calcHash(childs[threadIdx.x].m, childs[threadIdx.x].o) 

    p = findHash(key, childs[threadIdx.x].m, childs[threadIdx.x].o) 

    IF p < 0: 

      state_id = atomicAdd(n_states,1) 

      addHash(h, state_id, -p) 

      childs[threadIdx.x].id = state_id 

      memcpy(states[state_id], childs[threadIdx.x]) 

    Else: 

      childs[threadIdx.x].id = p 

      memcpy(links[atomicAdd(n_links,1)], childs[threadIdx.x]) 

end. 

6   Results of Experiments 

The algorithm presented was applied to six IOPT-net models. These models were also 

used to document the results at [25], and are available online at 

http://gres.uninova.pt/IOPT-Tools/, in the user account “models”. Using these models, 

we could compare the results between the two approaches. The results are presented 

in Table 1. Considered the amount of time that GPU took to calculate the entire 

reachability graph and the time spent on co-processing we have obtained much better 

results with this algorithm. The results are, in some cases, two or three orders of 

magnitude better than the ones presented at [25]. 

Table 1. Results obtained with an GPU TITAN V. 

Models Trans. Cycles States Links Time 

CPU+GPU(ms) 

Time on 

GPU(ms) 

ICIT13_bldc_commut 24 2 7 0 0.8 0.6 

PNSE-53b 8 9 21 8 2.3 1.8 

ICIT13_denoise 14 9 14 11 2.5 2.0 

concrete_mixer_6xA 11 56 110 108 17.5 14.7 

ICIT13_quad_encoder 12 103 1025 1020 67.3 59.7 

ICIT13_pwm_gen 6 1025 4096 12287 655.5 561.7 

 

The number of cycles and nodes presented express the graph with the respect to its 

size and format. This characteristic can affect the execution time depending on the 

number of states processed in parallel as well as the number of transitions of the net. 

The models PNSE−53b and ICIT13_denoise presented the same number of cycles 
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processed; for the first was calculated 29 nodes and for the second 25. Although the 

number of transitions in the second is almost twice that of the first, the execution 

times obtained were approximately equal, such that parallel threads were launched 

and used at the same time to exploit the computing power of the GPU. 

7   Conclusions and Future Work 

The proposed algorithm presents an improvement in the computation of the 

reachability graph for IOPT Petri net models in GPU. Threads were used to analyze 

combinations of transitions in parallel, improving the calculation of child states; and 

the use of a hash-table implemented in GPU prevented the time spent with memory 

management. As future work we intend to analyze the impact of the proposed 

algorithm using GPU as a function of the number of global states obtained, namely as 

a function of the initial marking. Additionally, the impact of computation efforts 

necessary for evaluating transition enabling conditions and output expressions is 

intended to be analyzed. 
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