
HAL Id: hal-03741552
https://inria.hal.science/hal-03741552

Submitted on 1 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Reachability Graph of IOPT Petri Net Models Using
CUDA C++ Parallel Application

Carolina Lagartinho-Oliveira, Filipe Moutinho, Luís Gomes

To cite this version:
Carolina Lagartinho-Oliveira, Filipe Moutinho, Luís Gomes. Reachability Graph of IOPT Petri Net
Models Using CUDA C++ Parallel Application. 11th Doctoral Conference on Computing, Electrical
and Industrial Systems (DoCEIS), Jul 2020, Costa de Caparica, Portugal. pp.93-100, �10.1007/978-3-
030-45124-0_8�. �hal-03741552�

https://inria.hal.science/hal-03741552
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

This document is the original author manuscript of a paper submitted to an IFIP
conference proceedings or other IFIP publication by Springer Nature. As such, there
may be some differences in the official published version of the paper. Such
differences, if any, are usually due to reformatting during preparation for publication or
minor corrections made by the author(s) during final proofreading of the publication
manuscript.

Reachability Graph of IOPT Petri Net Models Using

CUDA C++ Parallel Application

Carolina Lagartinho-Oliveira, Filipe Moutinho and Luís Gomes

Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Portugal

UNINOVA – CTS, Portugal

ci.oliveira@campus.fct.unl.pt, fcm@fct.unl.pt, lugo@fct.unl.pt

Abstract. The construction of reachability graphs is suited to verify the

properties and behavior of Petri net models based on the structure of the net and

the initial marking. It allows checking whether a model conforms to the

intended specification of a system and to obtain information about it. This paper

proposes an algorithm to compute the reachability graphs of IOPT (Input-

Output Place-Transition) nets, which is a Petri net class, using NVIDIA's

CUDA (Compute Unified Device Architecture), which supports the co-

processing using GPU and CPU. While CPU is used to schedule threads on

GPU, GPU is used to calculate all the child nodes of the reachability graph,

including the management of a hash-table for efficiently storing the new states

and retrieving the states stored in the database. The presented algorithm takes

advantage of CUDA memory functions to allocate and access data that can be

used by code running on CPU or GPU, supporting the share of data between the

two processor units. Six IOPT net models were used to validate the proposed

algorithm.

Keywords: Co-processing, CUDA, GPU, IOPT Nets, Reachability Graph.

1 Introduction

The increasing complexity of distributed embedded systems have been a motivation

for the use of Petri nets [1], [2]. This graphical modelling formalism enables the

explicit specification of concurrent systems, their synchronization and conflicts, and

the share of resources [3]. As a result, they ensure that systems behavior conforms to

the intended specification so as not to endanger people.

IOPT-Tools, which are online available at http://gres.uninova.pt/IOPT-Tools/

supports the development of embedded systems controller using Petri nets [4], [5].

This framework offers a set of tools to support the creation of IOPT-net models [1],

their verification, and the automatic code generation (C and VHDL) [6], [7]. To

enable the verification, an automatic code generator is used to compute the models'

reachability graphs [8]. As real world applications can present exponential

reachability graphs with a huge number of states, their generation can take a long time

to compute [2], requiring high computational performance [9]. Some tools generate

92 C. Lagartinho-Oliveira et al.

the condensed reachability graph of a Petri net model, preventing the exponential

growth of the graph [10] – [12].

The work presented in this paper is focused on obtain the complete reachability

graph of a model, based on a new model-checking algorithm to compute the

reachability graphs of IOPT Petri net models using NVIDIA's CUDA. NVIDIA's

CUDA supports CPU-GPU co-processing for parallel computing [13]. As a matter of

fact, GPU calculates all the child nodes of the reachability graph and handles their

storing with the support of a hash-table. In addition, the CPU schedules the threads to

be launched on the GPU, which are needed to process a new set of unprocessed states

of the graph.

Section 2 mentions how this paper contributes to life improvement. In section 3

IOPT Petri nets and IOPT-Tools are briefly described, including the current

reachability graph generation tool. In the following section, it is mentioned how

CUDA Toolkit contributes to program and run parallel C++ applications on GPU.

Section 5 presents the proposed algorithm, for the computation of reachability graphs,

for IOPT Petri net models. In section 6 are presented the results supported by an

NVIDIA Titan V GPU, and finally in section 7 the conclusions about the results and

future work are presented.

2 Relationship to Life Improvement

Currently, technological advances enabled the creation of many types of distributed

embedded systems that contribute to a significant improvement in people's quality of

life across different areas, ranging from appliances and home products, medical and

health solutions, surveillance and security equipment, to transportation and

communication systems, among others.

Concerning to safety-critical systems, to make sure that they are safe and free of

development errors, they must be formally verified, by checking all possible

interactions and potential unwanted properties [14] – [16]. There are large number of

Petri net tools [17], which support not only the models edition and simulation, but

also their formal verification and analysis, to ensure that the system specification

conforms to the desired properties or has no unwanted properties. This work,

addressing the construction of reachability graph for IOPT nets, aims to contribute for

the safety-critical systems properties verification.

3 IOPT Nets

The IOPT nets are a low-level and non-autonomous Petri net class proposed to

develop automation and embedded systems, allowing the rapid prototyping of system

controllers through IOPT-Tools framework [18], [19], [20]. The IOPT Petri net relies

on signals and events to specify the interaction of the models with the environment:

while input signals and events constraint the evolution of the net, directly associated

with transition firing, outputs are updated according with the marking of the net and

transition firing. In detail, a transition fires if it is enabled from the point of view of

Reachability Graph of IOPT Petri Net Models Using CUDA C++ Parallel Application 93

place marking, the associated events occur and if the associated guards are verified.

When more than one transition is enabled, but not all of them are allowed to firing,

transition priorities and test arcs can be used [8]. As a result, each system’s state is

composed of a vector of all places’ marking; and an output event signal vector, with

the values of all signals associated with output events [19].

3.1 Reachability Graph Generator

The IOPT-Tools offer a tool to compute the reachability graphs [19] of IOPT Petri net

models. During graph generation, the tool gathers information about the model,

namely the influence of input signals and events on the firing of transitions, as well as

all combinations of all enabled transitions. The automatic C code generated by the

reachability graph generator provides libraries to compute a model’s reachability

graph, managed with a hash-table that allows ordering multiple states for each key, to

help search for repeated states. At the end of the computation, the resulting

reachability graph is stored in a hierarchical XML file, in which the connections

between the states are represented.

The reachability graph algorithm [21] initiates with the creation of the database and

initial state, obtained from the initial marking M0 and the values of all output event

signals presented on the net at that moment. After that, the initial node is added into

the database and hash-table, and the algorithm proceeds from there or any other state

by modifying the value of net's initial marking. The algorithm will continue until all

the unprocessed states are treated, or the graph reaches the maximum size, which is

specified according to the computation platform available resources. Each evaluation

of an unprocessed state is carried out with the calculation of its child states (the next

unprocessed states), by executing a function that recursively analyzes all transitions

that are enabled to firing. Then, all child nodes are stored in the database and sorted in

the hash-table if they are not repeated states, whose marking and outputs refer to

previously existing nodes. Finally, the new child nodes are added to the set of

unprocessed states, waiting to be processed. The generated reachability graph includes

the nodes, the arcs that connect them, and links that represent existing nodes.

4 CUDA Architecture

To increase the performance of the IOPT reachability graphs generation, the use of

GPU is proposed in this paper. The GPU is used to improve the processing of each

state, parallelizing the calculation and analysis of its child nodes. For that, it was used

a NVIDIA GPU and the CUDA Toolkit, which enable the co-processing of C++

programs in platforms with CPU and GPU [22], [23]. The execution starts and ends in

the CPU, which exchanges data with the GPU and launch the kernels to running on

the GPU.

A kernel is a sequential program that runs in parallel as many times as the number

of threads running on the GPU distributed by blocks in a grid. Although, there is a

94 C. Lagartinho-Oliveira et al.

GPU

CPU

limit to the number of threads per block, a kernel can be executed by multiple blocks

in parallel, so the total number of threads launched is equal to the number of threads

per block times the number of blocks thar compose the grid. A set of functions, such

as __threadfence, __syncthreads, and atomic operations, can be used to ensure the

correct access to shared and global memory, avoiding hazards that can occur from

simultaneous read and write operations at the same memory address [24].

5 Proposed Approach and Algorithm

The reachability graph generation at IOPT-Tools is mainly composed of two parts: for

each state, it is calculated its child nodes; and for each child node it is inspected if it is

a new independent state or if it is equal to a previously existing one. In the generator

of the IOPT tool framework, this entire process is done sequentially in CPU, with

each state being analyzed one at a time. An algorithm proposed in [25] reused part of

IOPT-Tools generator code and adapted it to run on a GPU used to perform the

calculation all the child nodes of unprocessed states in parallel, while the CPU

schedules threads on the GPU, handles the hash-table and the categorization of states.

The algorithm proposed in this paper also uses co-processing, taking even more

advantage of the GPU. For that, the initialization of the database and the creation of

the initial state are handled by the CPU, and from that moment onwards the task of

searching for new states it's responsibility of the GPU until all graph it's done. During

the computation, the CPU receives feedback on the status of the graph through

memory copies from the device to the host, receiving the update of the number of

calculated states and the number of states to be processed. This allows the continuity

of the algorithm that ends only when there are no more unprocessed states to process

or the maximum number of states associated with the allocation of the database is

reached. So, three kernels were implemented, each one responsible for a specific part

of the algorithm, as described in Figure 1.

Fig. 1. Sequence of actions of the algorithm.

When the kernel calc_ChildrenStates, presented in Algorithm 1, is invoked, the

values of the number of states to be processed and the current number of states stored

in the database are passed. The first instruction performed is the assignment of an

unprocessed state from the array states to the threads of a block. At this point, CPU

has been launched as many blocks as the number of unprocessed states that need to be

Start Database initialization Creation of initial state End States to
process?

Launch nr of threads equal to

the nr of unprocessed states
times nr of net transitions

Launch nr of threads equal to

the nr of calculated states

Launch nr of threads equal to

the nr of calculated states

find_RepeatedChildren:

Find repeated states
between the children

find_RepeatedStates: Find

repeated states between the
children states and database

calc_ChildrenStates:

Calculate all the children

states

Yes

No

Reachability Graph of IOPT Petri Net Models Using CUDA C++ Parallel Application 95

processed, and as many threads as the number of transitions of the Petri net. The way

to provide each thread the state to process is using the unique index of the block, the

size of the array states, that stores all the states, and the number of blocks launched.

Algorithm 1. Kernel calc_ChildrenStates

program calc_ChildrenStates(unp_states, n_states)

 __shared__ state s*

 netMarking init_m, m, avail_m

 eventOutputSignals init_out, out

 outputSignalEvents ev

 begin

 IF threadIdx.x == 0

 s = &states[blockIdx.x+n_states-gridDim.x]

 __syncthreads()

 calc_FiringBlends(threadIdx.x, init_m, m, avail_m, unp_states,

 n_states, s->id, ev, out, init_out)

end.

Using the __syncthreads() function all the threads in the current block will

synchronize, waiting for thread 0 to share the state that needs to be processed. The

kernel continues with a recursively analysis of all enabled transitions of a state,

calculating all the combinations between them. The transition with the highest priority

will analyze the remaining ones; the second most priority will analyze the other ones

except the first one, and so on. The latter transition will only consider itself. As there

is one thread per transition, each one of them will analyze the combinations in parallel

for each state, saving the founded new states inside the array childs.

After that, the kernel returns the number of child nodes calculated to proceed with

the search of repeated children. The CPU launches a number of threads equal to the

number of founded states, one for each thread to compare with the others. The

comparison of the states is made at find_RepeatedChildren kernel, presented in

Algorithm 2, by comparing the marking and outputs of the Petri net. If there is a

repeated sibling, the value of the link flag and the id of the state are changed, followed

by the storage of the state in the array links.

Algorithm 2. Kernel find_RepeatedChildren

program find_RepeatedChildren(n_links)

 For i=0; i<threadIdx; i++:

 int cmp = memcmp(childs[threadIdx.x].m, childs[j].m)

 IF cmp == 0:

 cmp = memcmp(childs[threadIdx.x].o, childs[j].o)

 IF cmp == 0:

 childs[threadIdx.x].link = -1

 childs[threadIdx.x].id = dev_childs[j].id

 memcpy(links[atomicAdd(n_links,1)], childs[threadIdx.x])

end.

The last kernel, presented in Algorithm 3, compare the child nodes that have not

been copied to the array links with all existing nodes. For that, it was implemented a

multivalue hash-table where multiple values for the same key are represented by

different key-state_id pairs. In the same way as the previous kernel, the CPU launches

a number of threads equal to the number of founded states. Each thread will search on

96 C. Lagartinho-Oliveira et al.

hash-table for repeated states starting by calculating the key based on the marking and

outputs of the state, using it to limit the search to elements with the same key. Several

threads could access the hash-table, including threads whose states have the same key.

If there is no repeated state at the database, the value of the id of the child state is

actualized, and the state is stored in the array states; if there is a repeated state it is

stored in the array links.

Algorithm 3. Kernel find_RepeatedStates

program find_RepeatedStates(unp_states, n_states, n_links)

 IF childs[threadIdx.x].link != -1:

 key = calcHash(childs[threadIdx.x].m, childs[threadIdx.x].o)

 p = findHash(key, childs[threadIdx.x].m, childs[threadIdx.x].o)

 IF p < 0:

 state_id = atomicAdd(n_states,1)

 addHash(h, state_id, -p)

 childs[threadIdx.x].id = state_id

 memcpy(states[state_id], childs[threadIdx.x])

 Else:

 childs[threadIdx.x].id = p

 memcpy(links[atomicAdd(n_links,1)], childs[threadIdx.x])

end.

6 Results of Experiments

The algorithm presented was applied to six IOPT-net models. These models were also

used to document the results at [25], and are available online at

http://gres.uninova.pt/IOPT-Tools/, in the user account “models”. Using these models,

we could compare the results between the two approaches. The results are presented

in Table 1. Considered the amount of time that GPU took to calculate the entire

reachability graph and the time spent on co-processing we have obtained much better

results with this algorithm. The results are, in some cases, two or three orders of

magnitude better than the ones presented at [25].

Table 1. Results obtained with an GPU TITAN V.

Models Trans. Cycles States Links Time

CPU+GPU(ms)

Time on

GPU(ms)

ICIT13_bldc_commut 24 2 7 0 0.8 0.6

PNSE-53b 8 9 21 8 2.3 1.8

ICIT13_denoise 14 9 14 11 2.5 2.0

concrete_mixer_6xA 11 56 110 108 17.5 14.7

ICIT13_quad_encoder 12 103 1025 1020 67.3 59.7

ICIT13_pwm_gen 6 1025 4096 12287 655.5 561.7

The number of cycles and nodes presented express the graph with the respect to its

size and format. This characteristic can affect the execution time depending on the

number of states processed in parallel as well as the number of transitions of the net.

The models PNSE−53b and ICIT13_denoise presented the same number of cycles

Reachability Graph of IOPT Petri Net Models Using CUDA C++ Parallel Application 97

processed; for the first was calculated 29 nodes and for the second 25. Although the

number of transitions in the second is almost twice that of the first, the execution

times obtained were approximately equal, such that parallel threads were launched

and used at the same time to exploit the computing power of the GPU.

7 Conclusions and Future Work

The proposed algorithm presents an improvement in the computation of the

reachability graph for IOPT Petri net models in GPU. Threads were used to analyze

combinations of transitions in parallel, improving the calculation of child states; and

the use of a hash-table implemented in GPU prevented the time spent with memory

management. As future work we intend to analyze the impact of the proposed

algorithm using GPU as a function of the number of global states obtained, namely as

a function of the initial marking. Additionally, the impact of computation efforts

necessary for evaluating transition enabling conditions and output expressions is

intended to be analyzed.

Acknowledgments. The work presented in this paper was partially supported by

Portuguese Agency FCT (“Fundação para a Ciência e a Tecnologia”), in the

framework of the project with the reference UID/EEA/00066/2019 and

UIDB/00066/2020 (CTS – Center of Technology and Systems). We would also like to

thank NVIDIA Corporation for the donation of the GPU used in this work, a Titan V.

References

1. Gomes, L., Barros, J., Costa, A., Nunes, R.: The Input-Output Place-Transition Petri Net

Class and Associated Tools. In: Proceedings of the 5th IEEE International Conference on

Industrial Informatics (INDIN 2007), Vienna, Austria (July 2007)

2. Girault, C., Valk, R.: Petri Nets for Systems Engineering: A Guide to Modeling,

Verification, and Applications. In: Girault, C., Valk, R. (Eds.). Springer, Heidelberg (2003)

3. David, R., Alla, H.: Discrete, Continuous, and Hybrid Petri Nets. In: David, R., Alla, H.

(Eds.). Springer, Heidelberg (2010)

4. Pereira, F., Moutinho, F., Gomes, L.: IOPT-tools — Towards cloud design automation of

digital controllers with Petri nets. In: Proceedings of the 2014 International Conference on

Mechatronics and Control (ICMC 2014), Jinzhou, China (July 2014)

5. Gomes, L., Moutinho, F., Pereira, F.: IOPT-tools — A Web based tool framework for

embedded systems controller development using Petri nets. In: Proceedings of the 23rd

International Conference on Field Programmable Logic and Applications, Portugal (2013)

6. Pereira, F., Gomes, L.: Automatic synthesis of VHDL hardware components from IOPT

Petri net models. In: IECON 2013 – 39th Annual Conference of the IEEE Industrial

Electronics Society (IECON 2013), Vienna, Austria (November 2013)

7. Gomes, L., Rebelo, R., Barros, J., Costa, A., Pais, R.: From Petri net models to C

implementation of digital controllers. In: Proceedings of the ISIE’2010 - IEEE International

Symposium on Industrial Electronics, Bari, Italy (July 2010)

98 C. Lagartinho-Oliveira et al.

8. Pereira, F., Moutinho, F., Gomes, L.: A State-Space Based Model-Checking Framework for

Embedded System Controllers Specified Using IOPT Petri Nets. In: Camarinha-Matos,

L.M., Shahamatnia, E., Nunes, G. (eds.) DoCEIS 2012. IFIP AICT, vol. 372, pp. 123–132.

Springer, Heidelberg (2012)

9. Pereira, F., Moutinho, F., Gomes, L., Rebelo, R.: IOPT Petri net state space generation

algorithm with maximal-step execution semantics. In: Proceedings of the 2011 9th IEEE

International Conference on Industrial Informatics, Caparica, Lisbon (July 2011)

10. Jensen, K.: Condensed state spaces for symmetrical Coloured Petri Nets. In Journal of

Formal Methods in System Design, 9(1), 4-40 (August 1996)

11. Kristensen, M., Mailund, T.: Condensed State Spaces for Timed Petri Nets. In Proceedings.

of 22nd International Conference on Application and Theory of Petri Nets (ICATPN 2001),

Newcastle upon Tyne, United Kingdom (June 2001)

12. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg G. (eds)

Advances in Petri Nets 1990. ICATPN 1989. Lecture Notes in Computer Science, vol 483.

Springer, Heidelberg (1989)

13. Nickolls, J., Dally, W. J.: The GPU Computing Era. In IEEE Micro 30(2), (March 2010)

14. Knight, J.C.: Safety critical systems: challenges and directions. In Proceedings of the 24th

International Conference on Software Engineering (ICSE 2002), Orlando, USA (May 2002)

15. Hsiung, P., Chen, Y., Lin, Y.: Model Checking Safety-Critical Systems Using Safecharts. In

IEEE Transactions on Computers 56(5), 692-705 (May 2007)

16. Moutinho, F., Gomes, L.: Distributed Embedded Controller Development with Petri Nets:

Application to Globally-Asynchronous Locally-Synchronous Systems. In: SpringerBriefs in

Electrical and Computer Engineering, Springer (2016)

17. Petri Nets Tool Database, https://www.informatik.uni-

hamburg.de/TGI/PetriNets/tools/db.html

18. Gomes, L., Costa, A., Barros, J. P., Lima, P.: From Petri net models to VHDL

implementation of digital controllers. In: IECON 2007 - 33rd Annual Conference of the

IEEE Industrial Electronics Society, Taipei, Taiwan (November 2007)

19 Gomes, L., Lourenco, J.: Rapid Prototyping of Graphical User Interfaces for Petri-Net-

Based Controllers. In: IEEE Transactions on Industrial Electronics 57(5), (May 2010)

20. Pereira, F., Moutinho, F., Ribeiro, R., Gomes, L.: Web based IOPT Petri net Editor with an

extensible plugin architecture to support generic net operations. In: IECON 2012 - 38th

Annual Conference on IEEE Industrial Electronics Society, Canada (December 2012)

21. Moutinho, F., Gomes, L.: State space generation algorithm for GALS systems modeled by

IOPT Petri nets. In: IECON 2011 - 37th Annual Conference of the IEEE Industrial

Electronics Society, Melbourne, VIC, Australia (November 2011)

22. Parande, J. G., Kulkarni, M., Bawaskar, A.: GPGPU Processing in CUDA Architecture. In:

Advanced Computing: An International Journal, 3(1), 105–120 (January 2012)

23. Jin, H., Li, B., Zheng, R., Zheng, Q., Ao, W.: memCUDA: Map Device Memory to Host

Memory on GPGPU Platform. In: Ding, C., Shao, Z., Zheng, R. (eds) Network and Parallel

Computing, Springer, Berlin Heidelberg (2010)

24. Cuda Toolkit Documentation, https://docs.nvidia.com/cuda/cuda-c-programming-guide/

25. Lagartinho-Oliveira, C., Moutinho, F., Gomes, L.: GPGPU applied to support the

construction of the state-space graphs of IOPT Petri net model. In: IECON 2019 - 45th

Annual Conference on IEEE Industrial Electronics Society, Lisbon, Portugal (October 2012)

