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Chapter 15

INSIDER THREAT DETECTION USING
MULTI-AUTOENCODER FILTERING
AND UNSUPERVISED LEARNING

Yichen Wei, Kam-Pui Chow and Siu-Ming Yiu

Abstract Insider threat detection and investigation are major challenges in digital
forensics. Unlike external attackers, insiders have privileges to access
resources in their organizations and violations of normal behavior are
difficult to detect.

This chapter describes an unsupervised deep learning framework
for detecting insider threats by analyzing system log files. A typical
deep neural network can capture normal behavior patterns, but not in-
sider threat behavior patterns because of the presence of small, if any,
amounts of insider threat data. For example, the autoencoder unsuper-
vised deep learning model, which is widely used for anomaly detection,
requires a dataset containing labeled normal data for training purposes
and does not work well when the training dataset contains anomalies. In
contrast, the framework proposed in this chapter leverages unsupervised
multi-autoencoder filtering to remove anomalies from a training dataset
and uses the resulting trained Gaussian mixture model to estimate the
distributions of encoded and recognized normal data; data with lower
probabilities is identified as insider threat data by the trained model.
Experiments demonstrate that the multi-autoencoder-filtered unsuper-
vised learning framework has superior detection performance compared
with state-of-the-art baseline models.

Keywords: Insider threat detection, unsupervised deep learning, autoencoders

1. Introduction
The insider threat continues to cause significant losses to governments,

businesses, hospitals and educational institutions. Insiders are masquer-
aders, traitors [22] or unintentional violators whose behaviors are abnor-
mal compared with their organizations’ computer system conventions.
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Malicious insiders are difficult to detect because they are located within
their organizations and have privileges to access resources in their orga-
nizations.

Insider threat detection and investigation are challenging tasks in dig-
ital forensics. Malicious insiders may take actions such as inserting back-
doors in internal systems to launch attacks later, installing keyloggers to
gain credentials and steal sensitive information, even deleting traces of
their unauthorized activities. According to the Breach Level Index [28],
almost 214 sensitive data records are compromised every second in the
world and around 40 percent of the compromises are due to insiders [20].

Digital forensics is a posteriori in nature – investigations are con-
ducted after crimes were committed and the damage has been done.
To address the insider threat, it is necessary to make a priori predic-
tions with the help of deep learning methods that automatically detect
anomalous user behavior and capture evidence of malicious activity.

This chapter presents a novel unsupervised deep learning insider threat
investigation framework that can profile normal user behavior patterns
and prevent data leakage. A synthetic insider threat dataset from the
Software Engineering Institute at Carnegie Mellon University [26] is em-
ployed to evaluate the insider threat detection framework. The original
log files in the dataset are pre-processed to extract daily system opera-
tion features and user metadata [29] that are used to distinguish insider
threat activities from normal activities. Unfortunately, the dataset con-
tains very limited, if any, insider threat data, which makes it difficult
for traditional supervised deep learning models to learn insider threat
behavior patterns.

The proposed framework employs a neoteric unsupervised deep learn-
ing model that is inspired by the basic autoencoder model [10]. The
framework leverages unsupervised learning to solve the detection prob-
lem. It is based on the intuition that an autoencoder may not learn
feature patterns well if it seldom or never observes insider threat behav-
ior patterns; in other words, the reconstruction error of insider threat
data would be large. Therefore, multiple autoencoders are cascaded to
filter out data with large reconstruction errors as potential insider threat
data, leaving the dataset with normal data. Following this, a Gaussian
mixture model is employed to estimate the distribution of the recognized
encoded normal data.

Experiments demonstrate that the proposed framework compares fa-
vorably with state-of-the-art unsupervised insider detection methods.
Specifically, the framework increases the recall and area under the ROC
curve (AUC) metrics by more than 19% and 23%, respectively.
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2. Related Work
Insider threat detection has been studied widely by academia and

industry. The Software Engineering Institute at Carnegie Mellon Uni-
versity has done considerable work on detecting insider threats. For
example, researchers have inspected network traffic through the Squid
proxy server [25], set up access control lists and signatures, and tagged
documents to check if data leakage has occurred from within an or-
ganization. Splunk [27] has created mature security products for log
management and anomaly detection.

In general, there are two broad insider threat detection solutions: (i)
traffic inspection; and (ii) behavior profiling. Traffic inspection solu-
tions examine network traffic content to check whether or not sensitive
information leaks outward from an organization. Wei et al. [31, 32] have
developed payload attribution techniques that trace data leaks. An-
other approach is to use steganography or watermarking to ensure that
distributors of the marked files cannot deny their leakage [14],

While traffic inspection solutions perform post mortem detection of
insider threats, behavior profiling solutions are useful for insider threat
prediction. Le and Zincir-Heywood [15] have used a hidden Markov
model to capture normal user behavior sequences; insider threat alarms
are raised when normal sequence violations are observed. Graph-based
anomaly detection methods have been used to discover insider threats [7].
Axelrad et al. [2] have developed a directed acyclic graph representation
of a Bayesian network for insider threat detection. However, graph con-
struction is costly and human experts are required to manually provide
empirical estimates of probabilities.

Machine learning models [9, 15] such as self organizing maps [13] and
C4.5 decision trees [19] have been applied to insider threat detection.
While several well-designed supervised models have been used to detect
anomalies [5], small numbers of insider threat records present in training
datasets prevent supervised models from learning insider threat data
patterns. Additionally, in real-world situations, labeled insider threat
data is generally not available. As a result, unsupervised learning models
should be applied to detect insider threats.

Popular unsupervised learning approaches include the k-means [17]
and isolation forest [16] methods. One-class classification has also been
used for anomaly detection (e.g., one-class kernel Fisher discriminant
analysis [21] and one-class support vector machines [23]). However, these
methods implicitly assume that all the training data is normal, which is
not appropriate in practice. Thus, few, if any, insider threat detection
techniques actually employ unsupervised deep learning.
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Autoencoders [10] and variants such as denoising autoencoders [30]
and variational autoencoders [12] have been used to detect anomalies.
Although many anomaly detection applications claim that their models
employ unsupervised learning, they still correspond to one-class clas-
sification models because they rely on a priori labeling to select only
normal data for training. The state-of-the-art deep autoencoding Gaus-
sian mixture model [33] also relies on labeled normal data for training,
but its performance is sensitive to contamination by anomalies. In other
words, the model is not well suited to insider threat detection without
labeled data.

In the case of data leakage and intranet attacks, malicious insider ac-
tivities tend to manifest themselves as anomalous behavior or abnormal
network traffic content for the specific insider. For example, it is normal
for a salesman to download price records from a remote sales department
server and abnormal for a human resources specialist to do so, but the
operation itself is normal in the enterprise system. In fact, insider threat
behavior is very complex and it is infeasible to use traditional rule-based
approaches and estimation theory for detection [3]. Moreover, collecting
a large amount of labeled training data manually is difficult and time-
consuming. The state-of-the-art unsupervised insider threat detection
approach proposed by Tuor et al. [29] augments a basic deep neural net-
work with long short-term memory to recognize insider threat data with
high anomaly scores, but the recall rate is not high enough. In contrast,
by relying on multiple autoencoders and true unsupervised learning, the
proposed framework estimates the distribution of normal encoded data
using a Gaussian mixture model and can identify insider threat data.
Indeed, experiments demonstrate that the proposed multi-autoencoder-
filtered unsupervised learning model has superior detection performance
compared with state-of-the-art baseline models.

3. Multi-Autoencoder Detection Framework
A basic autoencoder is a deep neural network with a symmetric struc-

ture (Figure 1). The network comprises two fully-connected-layer parts,
encoder and decoder, that do not require supervisory labels. The ob-
jective of the network is to reconstruct the input in the output layer.
In this feed-forward network, the encoder layers encode the input into
the middle code layer, following which the decoder layers decode the
code layer into the output. The basic loss function is defined as the
reconstruction error between the input and output.

Traditionally, an autoencoder implements a non-linear reduction of
high dimensional data [18]. Most unsupervised anomaly detection ap-
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Figure 1. Basic autoencoder structure.

plications that use autoencoders require labeled normal data for training;
their models are essentially semi-supervised because they assume that
no anomalous data exists in their training sets (which is not realistic).
This section presents a true unsupervised learning model that does not
need labeled data at any time during its processing.

3.1 Problem Statement
Given a dataset of system logs about user operations without anno-

tated labels, the objective is to detect potential insider threat activity
within an organization. The assumption is that insider threat events are
rare in system logs. The proposed framework is based on the idea that
a deep neural network can learn the patterns of the majority normal
data, but it would not reconstruct anomalous data patterns due to the
paucity of insider threat data.

Feature aggregation should accommodate five insider threat scenar-
ios [3]: (i) an employee logs in after working hours and uses removable
devices to steal sensitive information; (ii) an employee suddenly visits
job-hunting websites and emails large attachments to competitors; (iii)
an employee masquerades as the employer to send email to employees
and disrupt normal company operations; (iv) an employee logs into an-
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Table 1. Extracted features.

user, day, role, projects, department, team, supervisor, function,
psychometricScoreO, psychometricScoreC, psychometricScoreE,
psychometricScoreA, psychometricScoreN, officehour logon usualPC,
afterhour logon unusualPC, officehour logon unusualPC,
afterhour logon usualPC, officehour deviceConnect,
officehour deviceDisConnect, afterhour deviceConnect,
afterhour deviceDisconnect, officehour FileOpen,
officehour FileCopy, officehour FileWrite, officehour FileDelete,
afterhour FileOpen, afterhour FileCopy, afterhour FileWrite,
afterhour FileDelete, officehour unusualUrl wwwVisit,
officehour usualUrl wwwVisit, officehour unusualUrl wwwUpload,
officehour usualUrl wwwUpload, officehour unusualUrl wwwDownload,
officehour usualUrl wwwDownload, afterhour unusualUrl wwwVisit,
afterhour usualUrl wwwVisit, afterhour unusualUrl wwwUpload,
afterhour usualUrl wwwUpload, afterhour unusualUrl wwwDownload,
afterhour usualUrl wwwDownload, officehour Logon, officehour Logoff,
afterhour Logon, afterhour Logoff, officehour unusualEmail AttachYes,
officehour usualEmail AttachYes, officehour unusualEmail AttachNo,
officehour usualEmail AttachNo, afterhour unusualEmail AttachYes,
afterhour usualEmail AttachYes, afterhour unusualEmail AttachNo,
afterhour usualEmail AttachNo

other employee’s computer to find sensitive documents and emails the
documents or stores them on a removable device; and (v) an employee
suddenly uploads a large number of files to his/her mailbox.

In order to extract appropriate features to distinguish insider threat
records from normal records, the log files containing device, email, file,
network and login data are combined to aggregate the discriminating
features of each record of each user for each day [29]. Event occurrences
are recorded in the feature columns (e.g., how many times a user sent
email messages with or without large attachments to an unusual third
party after office hours in one day).

Table 1 shows the aggregated data and user metadata features after
the deletion of meaningless columns. A value is deemed to be usual if
it has appeared in more than 5% of the log records before the given log
record.

3.2 Multi-Autoencoder Filtering
After extracting appropriate features from the log files, an aggregated

feature matrix is constructed. Each row of the aggregated feature matrix
corresponds to the operations done by a user during a day and each
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Figure 2. Multi-autoencoder filtering structure.

column represents the number of instances of a specific event or user
metadata item. The feature matrix is randomly divided to produce the
training and testing datasets.

In the following, the unlabeled training input and the corresponding
output are denoted by X = (x(j)

i ) and X̂ = (x̂(j)
i ), respectively, where

i = 1, . . . , n; j = 1, . . . , d; x
(j)
i , x̂

(j)
i ∈ R; n is the number of input records;

and d is the dimension of the input and output matrices.
Figure 2 shows the multi-encoder filtering structure. The structure

comprises k cascaded separately-trained autoencoders with the structure
shown in Figure 1. The following steps are involved:

Step 1: Train the first autoencoder (AE1) using the entire training
set.

Step 2: Compute the reconstruction error L(X, X̂) between the
input X and output X̂ according to the following equation:

f
(j)
i =

exp(x̂(j)
i )∑d

l=1 exp (x̂(l)
i )

, Li = −∑d
j=1 x

(j)
i · log (f (j)

i ) (1)

where L(X, X̂) is an n-dimensional vector whose ith entry is de-
noted by Li. Following this, filter out r% of the training set with
the largest reconstruction errors.

Step 3: Train the next autoencoder using the remaining training
set. Repeat Step 2 until filtering has been done by all k autoen-
coders.

Assume that the proportion of the insider events in the entire training
set is p0. Then, the probability of randomly selecting an insider event
record is p0. Let c be a coefficient. Furthermore, let cp0 be the probabil-
ity of one autoencoder filtering out one item as an insider threat record.
In other words, the ability of one autoencoder to filter insider threat
data is c times better than random filtering.
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Using the first autoencoder, the corresponding largest r% of training
data is filtered out according to the reconstruction error metric L(X, X̂).
If the original training dataset contains n total records and s insider
threat records, then the proportion of insider records remaining in the
training set after the kth autoencoder (AEk) is pk.

The remaining proportion of insider threat records in the training set
after the first autoencoder (also the same as the original insider threat
record proportion before training the second autoencoder) is given by:

p1 =
np0 − nrcp0

n(1 − r)
=

1 − cr

1 − r
p0 (2)

where cr ≤ 1.
Mathematical induction yields the following expression:

pk = (
1 − cr

1 − r
)kp0 (3)

In order to filter out all the insider threat records in the training set, the
following condition must hold:

pkn(1 − r)k < 1 ⇒ (1 − cr)ks < 1. (4)

The multi-autoencoder filtering process yields data that is almost
completely normal with a negligible number of insider threat records.
The normal data is then encoded to its code layer representation for the
kth autoencoder and the distribution of the recognized encoded normal
records is estimated. This enables insider threat records to be identified
when their encoded feature representations deviate from the distribution
of recognized encoded normal records.

3.3 Insider Threat Prediction
After recognizing the compressed representation of pure normal data,

the data is fitted to a Gaussian mixture model to estimate the distribu-
tion of normal encoded data.

Let Z = (z(j)
i ) be the compressed representation of the normal input to

the code layer, where i = 1, . . . ,m; j = 1 . . . , d; z
(j)
i ∈ R; m is the number

of recognized normal records; and d is the dimension of the compression
representation in the code layer. Then, the probability density function
of the multivariate Gaussian mixture distribution parameterized by θ ={
(θc = (μc,Σ2

c), αc)
}C

c=1
is given by:

P (z | θ) =
∑C

c=1 αcΦ(z | θc) (5)
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where C is the number of Gaussian components, (μc,Σ2
c) are the mean

and covariance matrix of the cth Gaussian component, αc is the prob-
ability that a sample belongs to the cth Gaussian component, and the
probability density of the cth Gaussian component Φ(z | θc) is given by:

Φ(z | θc) =
1

(2π)
D
2 |Σ| 12

exp (−(z − μ)T Σ−1(z − μ)
2

) (6)

Maximum likelihood estimation is employed to obtain the Gaussian
mixture model parameters. Given a set of N samples x1, . . . , xN and
assuming independent sampling, the likelihood L(θ) of a fixed parameter
θ is given by:

L(θ) =
∏m

j=1 P (zj | θ) (7)

Hence, the log-likelihood log L(θ) is given by:

log L(θ) =
∑m

j=1 log P (zj | θ) (8)

The expectation-maximization algorithm [6] is used to maximize the
log-likelihood via the following iterative process:

Step 1: Initialize the parameters θ =
{
μc,Σ2

c , αc

}C

c=1
.

Step 2: Repeat Steps 3 and 4 in sequence to update θ until con-
vergence.

Step 3: Compute the probability γjc that sample j comes from
the cth component as follows:

γjc =
αcΦ(zj | θc)∑C
c=1 αcΦ(zj | θc)

, j = 1, . . . ,m; c = 1, . . . , C

Step 4: Update the parameters:

μc =

∑m
j (γjczj)∑m

j γjc
, c = 1, . . . , C

Σc =

∑m
j γjc(zj − μc)(zj − μc)T∑m

j γjc
, c = 1, . . . , C

αc =

∑m
j γjc

C
, c = 1, . . . , C

Given a sample input x, it is compressed to z via multi-autoencoder
filtering, after which the negative log probability density, − log P (z | θ),
is computed as its behavior score. All the samples with behavior scores
larger than a threshold ε are predicted to be insider threat records. The
threshold ε is set based on cross-validation.
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Figure 3. Framework workflow.

3.4 Framework Workflow
Figure 3 shows the overall framework workflow. A total of 53 fea-

tures were aggregated from the log files of user login/logout activities,
operations on devices, files, email and network connections, along with
user metadata. The feature matrix was then used to train the multi-
autoencoder filtering model in an unsupervised manner without labels.
Each row in the matrix corresponded to user behavior on a given day.
Multi-autoencoder filtering was used to recognize a portion of the normal
data. Meanwhile, the code layer in the last autoencoder was treated as
the appropriate low-dimensional representation of normal behavior pro-
filing. Next, the compressed normal data was used to fit a Gaussian
mixture model to estimate the distribution of normal encoded data.
Records with behavior scores larger than the threshold were predicted
to be insider threat records.

4. Framework Evaluation
This section presents the evaluation results obtained when applying

the framework to the Insider Threat Dataset (r6.2) [26].

4.1 Multi-Autoencoder Filtering Performance
Figure 4 shows the theoretical minimum k values for different propor-

tions r = 10%, 20% and 30% for dropping insider threat items from the
training set based on coefficient c (Equation (4)). The number of insider
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Figure 4. Minimum k values for eliminating all insider threat items.

records in the synthetic dataset after feature aggregation was s = 73 out
of a total 1,391,247 records.

A key evaluation metric is the purification performance of autoencoder
filtering versus that of random filtering. A coefficient c greater than one
implies that autoencoder filtering of insider threat records is better than
random filtering.

Figure 5 shows the percentages of insider threat records remaining
in the training set after one round of autoencoder filtering and random
filtering over 100 trials.

Figure 6 shows the percentages of insider threat records remaining in
the training set after using five (k = 5) multi-autoencoder filters (MAFs)
and after five random filtering rounds over 100 trials.

Table 2 shows the corresponding average remaining insider record
percentages after multi-autoencoder and random filtering.

Figure 7 shows the filtering performance of five continuous autoen-
coder filters on the Insider Threat Dataset (r6.2) during a single trial.
The graph reveals that the proportion of insider threat records remaining
in the training set continuously decreases from autoencoder to autoen-
coder.



284 ADVANCES IN DIGITAL FORENSICS XVI

Figure 5. Insider threat records after one round of filtering.

Figure 6. Insider threat records after five rounds of filtering.
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Table 2. Average percentages of remaining insider threat records after filtering.

Filtering Technique Remaining Insider Threat Records
One Round Five Rounds

Autoencoder Filtering 0.0028301982% 0.0009267764%
Random Filtering 0.0052504669% 0.0052508192%
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Figure 7. Multi-autoencoder filtering performance in a single trial.

4.2 Comparison Against Baseline Methods
This section compares the performance of the proposed framework

against state-of-the-art baseline models, specifically, the k-means, one-
class support vector machine, unsupervised deep neural network [29],
one-class autoencoder [8] and deep autoencoding Gaussian mixture [33]
models using the Insider Threat Dataset (r6.2).

Applying feature extraction to the dataset yielded 53 dimensions of
1,391,247 instances that included only 73 insider threat records. The
dataset was randomly split into a training set, cross-validation set and
testing set with percentages of 80%, 10% and 10%, respectively. Note
that the one-class classification models (i.e., one-class support vector ma-
chine, one-class autoencoder and deep autoencoding Gaussian mixture
models) were semi-supervised over the entire anomaly detection process.
The implicit assumption was that they had a high-quality training set
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Table 3. Comparison of the proposed framework against five baseline models.

Method Recall AUC

k-means model 0 NA
One-class support vector machine model 0.733 0.405
Unsupervised deep neural network model 0.556 0.625
One-class autoencoder model 0.364 0.589
Deep autoencoding Gaussian mixture model 0.476 0.692
Proposed framework 0.923 0.925

containing only normal data, although, in a real unsupervised learning
scenario, it would not be known if any (and how much) anomalous data
existed in the training dataset.

The proposed framework and the other deep learning models were
implemented in Keras [11] running on the TensorFlow [1] backend. The
k-means and one-class support vector machine models were implemented
in scikit-learn [24]. All the experiments were executed on an Intel Core
i5-3570 2.4 GHz CPU with 32 GB memory.

The framework was configured with five autoencoders and dropping
rate r = 20%. Each autoencoder network executed with Input(53) –
Dense(53, 50, none) – Dense(50, 25, tanh) – Dropout(0.2) – Dense(25,
8, relu) – Dense(8, 25, relu) – Dropout(0.2) – Dense(25, 50, tanh) –
Dense(50, 53, relu), where Input(x) is an input layer with x-dimensional
input, Dense(i, o, g) is a fully connected layer with i input neurons and
o output neurons with activation function g, and Dropout(d) denotes
a drop out of d% of neurons to avoid overfitting. All the autoencoders
were compiled by a stochastic gradient descent optimizer with a learning
rate of 1 × 10−4, training epoch number of 500 and batch size of 1,024.

In insider threat detection scenarios, due to the property that ma-
licious insiders are rare and just one overlooked incident could cause
considerable damage, the recall metric is more significant than other
metrics. In other words, it is critical to detect the insider threat even
if the number of false alarms are increased. At the same time, a good
solution would reduce the number of false alarms to the extent possible
while maintaining a high recall value. Because recall (also called the
true positive rate) and the false positive rate constitute a tradeoff, the
area under the ROC curve (AUC) is also used as a metric. Note that the
horizontal and vertical axes of the ROC curve correspond to the false
positive rate and true positive rate (recall), respectively.

Table 3 compares the performance of the proposed framework against
the five baseline models. The proposed framework clearly outperforms
all the baseline models. Indeed, the proposed framework has recall and
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AUC scores that are more than 19% and 23% higher, respectively, than
the best scores of the other five models.

5. Conclusions
The proposed unsupervised deep learning framework for insider threat

detection is an advancement over other unsupervised deep learning mod-
els that require a training dataset containing labeled normal data and do
not work well when the training dataset includes anomalous (i.e., insider
threat) data. The framework leverages automated multi-autoencoder
filtering to eliminate anomalies and then estimates the distributions of
encoded and recognized normal data using a Gaussian mixture model.
Data with negative log probability density values larger than a threshold
are identified as insider threat data. Experiments demonstrate that the
multi-autoencoder-filtered unsupervised learning framework has much
better recall and AUC scores compared with five state-of-the-art insider
threat detection models.

The framework is founded on the notion that an autoencoder can re-
construct the majority normal data, but cannot reconstruct rare insider
threat data satisfactorily. Due to the difficulty of detecting insider threat
data using a deep neural network without supervisory labels, the only
option is to filter out potentially anomalous data with larger reconstruc-
tion errors. However, this approach filters out portions of normal data,
which reduces the amount of normal data for estimating the multivariate
Gaussian mixture model distribution, contributing to an elevated false
positive rate [4]. Future research will modify the framework to decrease
the false positive rate.

The current version of the framework is designed for static data. Fu-
ture research will extend the framework to detect anomalies in sequen-
tial and spatial data. Since the encoded non-linear representation of the
input is automatically generated by multi-autoencoder filtering, the re-
search will treat concatenated log files as inputs and use natural language
processing methods to solve the anomaly detection problem.
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