
HAL Id: hal-03630904
https://inria.hal.science/hal-03630904

Submitted on 5 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Application of a DSML in Industry 4.0 Production
Processes

Marko Vještica, Vladimir Dimitrieski, Milan Pisarić, Slavica Kordić, Sonja
Ristić, Ivan Luković

To cite this version:
Marko Vještica, Vladimir Dimitrieski, Milan Pisarić, Slavica Kordić, Sonja Ristić, et al.. An Applica-
tion of a DSML in Industry 4.0 Production Processes. IFIP International Conference on Advances in
Production Management Systems (APMS), Aug 2020, Novi Sad, Serbia. pp.441-448, �10.1007/978-3-
030-57993-7_50�. �hal-03630904�

https://inria.hal.science/hal-03630904
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An Application of a DSML in Industry 4.0 Production

Processes

Marko Vještica1[0000-0003-2368-5818], Vladimir Dimitrieski1[0000-0003-3234-6543], Milan Pisa-

rić2[0000-0002-0764-4453], Slavica Kordić1[0000-0002-3992-0096], Sonja Ristić1[0000-0003-0059-6062] and

Ivan Luković1[0000-0003-1319-488X]

1 University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia
{marko.vjestica, dimitrieski, slavica, sdristic, ivan}@uns.ac.rs

2 Industrial Automation, KEBA AG, Linz, Austria
pisa@keba.com

Abstract. One of the goals of Industry 4.0 is to enable mass customization of

products and to satisfy specific needs of customers. This goal is often hard to

achieve in traditional manufacturing systems. To enable fast production changes,

an automatic and flexible production is needed. In this context we propose a

Model-Driven Software Development (MDSD) approach and a Domain-Specific

Modeling Language (DSML) to model production processes. The language sup-

ports two levels of abstraction. A Master-Level (ML) model is used by a process

designer to model process steps. A Detail-Level (DL) model is used by Orches-

trator, a cluster of industrial computers that manages production, to fill existing

ML models with a specification of production logistic and smart resources. A

code generator is used to generate machine-readable or human-readable instruc-

tions from DL models. Generated code is used for automatic execution of pro-

duction processes within a simulation or a shop floor. In this paper we provide

an application of a DSML, which is capable of modeling production processes

that are ready for automatic code generation.

Keywords: Production Process Modeling, Domain-Specific Modeling Lan-

guages, Model-Driven Software Engineering, Industry 4.0, Process Execution.

1 Introduction

Industry 4.0 aims to establish a flexible production in the traditional manufacturing [1],

moving from mass production to mass customization [2]. Introducing variability to the

production process in traditional manufacturing systems requires either stopping the

production to reconfigure machines or having multiple production lines for every prod-

uct variant. To achieve aimed production flexibility, production process variability need

to be enabled during manufacturing, without a need to stop the production [3]. Thus, a

customized product’s price could be lower, as one of the key aspects of the mass cus-

tomization is to provide products with prices that are near to mass production prices

[4]. In order to establish production flexibility at the lower cost and to enable automatic

production, we proposed a Model-Driven Software Development (MDSD) approach to

2

model and automate the execution of production processes [5]. The overview of the

approach is given in Fig. 1 and described in short below.

Fig. 1. The proposed MDSD approach

In the presented MDSD approach, a process designer uses a Domain-Specific Mod-

eling Language (DSML) to specify production processes. This production process spec-

ification is a technical description of a production process, which we call a Master-

Level (ML) model. It includes specification of: (i) process steps, (ii) required capabili-

ties, i.e. skills to execute the step, (iii) input and output products, i.e. transformed re-

sources like raw materials, components or finished goods, (iv) constraints and (v) ca-

pability parameters. In order to use such a production process model for automatic code

generation and execution, additional information needs to be added. This information

includes: (i) specific smart resources, e.g. storage, machines, robots and humans, which

execute process steps, (ii) logistic information for product and resource movement and

(iii) configuration tasks of smart resources, e.g. software setup, changing grippers, plug-

ging into a charger or a workstation. This enrichment is automatically performed by

Orchestrator and we denote the enriched process model as a Detail-Level (DL) model.

It is up to process designers to either mark the process model for execution or perform

manual interventions and optimization where they deem necessary.

Orchestrator is a software run on top of a cluster of industrial computers that is able

to orchestrate smart resources and assign them to process steps for their execution [6].

It also needs to detect and configure new smart resources or reconfigure existing ones

[7]. Each process step is specified with a required capability, a skill required to execute

the process step. On the other hand, each resource offers a set of capabilities, i.e. skills

it is able to perform. Using a knowledge base and the required and offered capabilities,

Orchestrator is able to identify smart resources which are able to execute specific pro-

cess steps. It is also able to identify storages that contain required products and process

steps that need to be changed or added, e.g. transportation or machine configuration

process steps, in order to execute the production process with the available resources.

A DL model is used by the code generator to automatically generate instructions that

are to be performed by humans or machines. The executor sends generated instructions

to the digital twin that comprises both the simulation and the command proxies to the

shop floor. In our case, the digital twin can be used as the simulation only or it can

forward instruction to shop floor smart resources via the built-in proxies.

As a DSML is an integral part of the proposed MDSD approach which aims to im-

prove flexibility and automation of a factory, and as no appropriate DSML has been

3

found for modeling all the aspects of a production process, we decided to create a new

one which fits this need. In this paper we present basic concepts of the proposed DSML

that is used to model production processes. In this paper an application of this DSML

in an assembly use case is presented. The DSML is used by domain experts to model

production processes using familiar, domain concepts. This should result in faster, eas-

ier and comprehensive modeling of production processes which are suitable for auto-

matic execution that yields less faults. Using the DSML within our MDSD approach

should also improve the manufacturing flexibility and the level of overall automation

of production.

Apart from Introduction, this paper is structured as follows. An overview of the re-

lated work is presented in Section 2. Basic concepts of the proposed DSML for produc-

tion process modeling and an assembly production use case are described in Section 3.

Conclusions and future work are given in Section 4.

2 Related Work

Modeling production processes in Industry 4.0 is an important industrial informatics

research topic [8], as production processes are digitally supported, and they need to be

integrated with Cyber-Physical Production Systems [9].

There are many process modeling languages, but most of them are neither tailored

for production processes, nor ready to model execution-ready production processes.

There is the manufacturing process chart standard named KS A 3002 [10], however it

lacks a tooling support for modeling and automatic execution [11]. Companies often

utilize process charts or Bill of Materials (BOM) specifications, but none of them can

fully describe production processes that could be automatically executed. BOM speci-

fications are not sufficient to understand a production flow [11]. Bill of Materials and

Operations (BOMO) specifications include the production flow, but cannot specify the

selection and iteration patterns or smart resources.

Conceptual process modeling languages like Business Process Modeling and Nota-

tion (BPMN), Unified Modeling Language (UML) Activity Diagram, Petri Nets and

Event-Driven Process Chains usually cannot support the material flow concept, which

makes modeling production processes very difficult. To model production processes,

BPMN extensions have been created [12], but a depiction of material flow is still hard

to achieve [13] and there was an absence of uniformity [11]. Also, BPMN extensions

were created for production process similarity measurements [11], but it is not possible

to model selection or iteration patterns or smart resources. Using Systems Modeling

Language (SysML) or Petri Nets to model production processes usually lack to model

complex production processes or the material flow. To overcome usual lack of the ma-

terial flow concept, a new material flow-oriented process modeling language –

GRAMOSA has been created using UML profiles, but the material flow-oriented ap-

proach was complex [13]. Some languages lack production logistic specifications like

DELMIA Process Engineer (DPE), while others are limited to simple linear process

sequences like Value Stream Design (VSD) [13]. We have identified the lack of a mod-

eling language capable to specify all relevant aspects of a production process in the

4

context of its formal definition suitable for automatic execution. That is the main reason

why we have decided to create a new DSML instead of applying an existing one in our

MDSD approach. The main goal of introducing such a DSML is to improve the pro-

duction process flexibility and to enable formal specification of production processes

that will allow automatic generation of program code aimed at automation of process

execution.

3 Application of the DSML in an Assembly Use Case

In our previous work [5], we discussed a DSML usage for modeling production pro-

cesses in Industry 4.0. We also identified concepts that must be supported by a DSML

for production processes modeling that will enable automatic code generation and exe-

cution from such models. In this section, we present a use case to demonstrate the ap-

plication of the developed DSML. For each DSML concept we provide an example of

its use in the presented use case. The language is created by using Ecore meta-meta-

model, while the graphical syntax and the modeling tool are created by using Eclipse

Sirius. Concepts of the graphical syntax are presented on the left side of Fig. 2.

The presented use case describes an assembly process of a custom LEGO flag. The

process is modeled by our DSML and the model is then passed for code generation

which is executed both in the simulation and on the shop floor. Bricks of various colors

are stored in a smart shelf while a human worker and an industrial mobile robot pick

different bricks in parallel and assemble the flag on a brick pedestal at an assembly

table. A human worker is using a tablet or a smart watch in order to receive instructions

and to send feedback when an activity is finished.

Our DSML supports modeling at two levels of abstraction in order to make the mod-

eling easier for process designers. They are creating higher-level abstraction models,

i.e. ML models. An ML model can be extended with additional specifications of exe-

cution details. In that way a DL model, at a lower level of abstraction, is created. Exe-

cution details can be added to an ML model manually or automatically by means of

Orchestrator, as it is illustrated in Fig. 1. Based on these two abstraction levels, we have

classified the language elements into two groups: (i) elements that are needed to model

ML production processes and (ii) elements that are needed to be added into existing

ML models to create DL models. The ML model of our LEGO use case is presented in

the central part of Fig. 2, while the DL model is presented on the right side of Fig. 2.

At the higher level of abstraction, process designers model process steps that denote

either an operation or an inspection activity. A process step can include (i) an input

product, that can be e.g. raw material or component, and that can be picked from a

storage or is a result of the previous process step, (ii) a capability, i.e. skill required to

execute the step and (iii) an output product, which is a result of executed capability on

the input product and is either placed in a storage or transferred to the next process step.

Every product and capability can have constraints, e.g. width, height, color, which are

considered by Orchestrator when it decides which resources are able to perform a pro-

cess step. Some capabilities require parameters to be specified e.g. position must be

specified in order to place a brick on a brick pedestal. Also, a material flow can be

5

specified by defining if a product needs to be picked from a storage, placed to a storage,

or it is a result of the previous process step. As specified process steps need to be con-

nected using relationships – links between process steps, the language has a concept to

model a workflow. Process steps can be connected so as to form a sequence or a set of

parallel workflow branches. Additionally, selection and iteration patterns can be also

added to the workflow. For this purpose, we are using a gate concept – a modeling

concept that is used to connect multiple workflow branches. The language also supports

a message flow, i.e. collaboration of resources. This concept is used if two or more

process steps need to be executed in parallel, but one process step must not finish its

activity or start the next one before it gets a message that another process step finished

its activity. Using described concepts, a process designer can be focused only on pro-

cess steps that must be executed and need not to worry about production logistic and

resources that will execute the process steps.

Fig. 2. A production process model example

6

In our LEGO use case, the ML model has: (i) the start process step, (ii) parallelism

gates (PAR) and between them parallel assembly process steps, (iii) the inspection pro-

cess step, (iv) decision gates (DEC), which have two branches that leads to product

discard or packaging, (v) collaboration gates (COL) with packaging process steps and

(vi) the end process step. An assembly process step is an operation process step, which

is denoted by a circle on the left side of a process step name. Flow Process Chart (FPC)

is broadly used to specify the production process flow and process designers are famil-

iar with its graphical and symbolic representation. That is why we have decided to take

over some common symbols from FPC for corresponding concepts in the DSML, like

circle symbol for an operation process step. An operation process step needs to have

input and output products and a capability. Products and a capability are graphically

represented by rectangles of different color connected to a process step. They can be

hidden from a diagram using a +/- button at the top left corner of a process step, so a

process model could be more or less complex depending on the designer needs. Due to

length limitations, these detailed specifications are depicted just for one process step in

the central part of Fig. 2, while for the rest they are specified, but not shown. In the

depicted ML model, the input product can be seen – a blue brick that is gathered from

a storage. A storage is presented by a triangle icon, same as in FPC, on the left side of

a product name, representing that a product must be picked from a storage. The assem-

bly capability needs to be executed on the input product, and the output product is the

assembled blue brick on the brick pedestal, basically the partially assembled flag with

this brick in it. After assembly process steps, the inspection process step is needed,

which notation is presented by a rectangle icon, same as in FPC. If assembled bricks

have not passed the inspection, they are discarded. Otherwise, packaging of assembled

bricks is required. This should be done by doing two activities in parallel. One activity

is to hold assembled bricks and another one is to bring a box beneath them. The first

activity should not be finished before the message arrives that the box is brought under

assembled bricks. This message flow is presented by a dashed arrow between these two

process steps. After the message arrives, assembled bricks need to be placed in the box.

At the lower level of abstraction, all concepts from the higher level of abstraction

exist, but the language also has additional concepts like resources, specific storages and

new process step representations. Orchestrator uses these concepts to fill existing ML

models with production logistics and smart resources. At this level, process steps can

also represent activities like transportation, configuration, i.e. calibration of machines,

or delay, i.e. necessary waiting. A specific storage must be defined for every input

product that must be gathered from a storage and for every output product that must be

placed in a storage. Process steps additionally have a resource that will execute a capa-

bility on input products. A resource can be a human worker or a machine. This is im-

portant information especially for code generation. For every process step human-read-

able or machine-readable instructions will be generated, depending on the provided in-

formation. Using all presented concepts, production process models are ready for code

generation and consequently for an execution.

In the LEGO use case, we present in detail only one “pick” and one “assemble”

process step of the DL model. Other process steps are expanded in a similar way. One

7

assembly process step is assigned to a human worker, and another is assigned to a mo-

bile robot. Both human worker and mobile robot must execute additional transportation

process steps in order to pick a brick from the smart shelf and place it on the assembly

table. In contrast to the human worker, the mobile robot in this use case needs to execute

additional configuration process steps after transportation. The mobile robot is not

equipped with the machine vision modules and therefore it must be calibrated after each

movement to determine its position. Transportation and configuration process step no-

tations are presented by an arrow, same as in FPC, and a gear wheel icon respectively.

These process steps only include a capability, without products. The input product of

the “pick” process step has the specific storage, i.e. the smart shelf, added by Orches-

trator. Its output product is the same picked product. The input product of the “assem-

ble” process step is the output product from the “pick” process step, which means it

does not have to be gathered from a storage. Its output product is the brick, which will

be assembled at the specific storage, i.e. the assembly table.

Using the DL model, it is possible to generate instructions to both mobile robot and

human worker. The executor sends instructions to the mobile robot or the human

worker and waits for their response. Once a resource completes an activity, the next

one is sent. The process is finished after the execution reaches the end process step.

4 Conclusions and Future Work

In this paper we presented an application of the developed DSML for modeling pro-

duction processes in an assembly use case and described its basic concepts. This lan-

guage is used as one of the main elements of the MDSD approach that aims to improve

the flexibility and the automation level of production. The DSML can be used to (i)

make faster and more precise process designs, (ii) make less faults during process de-

sign, (iii) enable faster changes of production process models in the era of Industry 4.0

and (iv) model a human-machine interaction. Also, the DSML models are used by Or-

chestrator to manage the production, as it is important to plan process activities and

integrate processes within the industrial system [14].

The language has been evaluated by process designers on the shop floor within a

small-scale industrial production setup. We plan to further evaluate the language in

additional industrial use cases and also by independent researches and process design-

ers in order to improve the domain concept coverage and the tooling stability. Also, we

plan to further investigate related research and provide a systematic literature review

on production process modeling and execution.

Although a lot of concepts identified in [5] were already implemented in the pre-

sented DSML, there are additional concepts that can be added in order to improve the

language domain coverage, like: (i) unordered sets of process steps, (ii) quality assur-

ance with completion and acceptance criteria, (iii) error handling flows, (iv) process

variations and (v) sub-processes. Also, we plan to implement a new modeling tool fea-

ture to monitor execution of every process step and thus enable detection of delays or

badly modeled process steps. Finally, ML and DL models could be generated from

existing product specification formats, like Computer Aided Design (CAD) models.

8

Acknowledgment

The research in this paper is supported by KEBA AG Linz.

References

1. Lu, Y.: Industry 4.0: A survey on technologies, applications and open research issues. J. Ind.

Inf. Integr. 6, 1–10 (2017). https://doi.org/10.1016/j.jii.2017.04.005.

2. Crnjac, M., Veža, I., Banduka, N.: From Concept to the Introduction of Industry 4.0. Int. J.

Ind. Eng. Manag. 8, 21–30 (2017).

3. Dorofeev, K., Profanter, S., Cabral, J., Ferreira, P., Zoitl, A.: Agile Operational Behavior for

the Control-Level Devices in Plug&Produce Production Environments. In: Proceedings of

24th IEEE International Conference on Emerging Technologies and Factory Automation

(ETFA). pp. 49–56. IEEE, Zaragoza, Spain (2019).

4. Zhao, H., McLoughlin, L., Adzhiev, V., Pasko, A.: “Why do we not buy mass customised

products?” – An investigation of consumer purchase intention of mass customised products.

Int. J. Ind. Eng. Manag. 10, 181–190 (2019). https://doi.org/10.24867/IJIEM-2019-2-238.

5. Vještica, M., Dimitrieski, V., Pisarić, M., Kordić, S., Ristić, S., Luković, I.: Towards a formal

description and automatic execution of production processes. In: Proceedings of 2019 IEEE

15th International Scientific Conference on Informatics. pp. 463–468. IEEE, Poprad, Slo-

vakia (2019). https://doi.org/10.1109/Informatics47936.2019.9119314.

6. Keddis, N.: Capability-Based System-Aware Planning and Scheduling of Workflows for

Adaptable Manufacturing Systems, (2016).

7. Pisarić, M., Dimitrieski, V., Babić, M., Veselinović, S., Dušić, F.: Towards a Plug-and-Play

Architecture in Industry 4.0. In: Proceedings of 17th International Scientific Conference on

Industrial Systems (IS’17). pp. 136–141., Novi Sad, Serbia (2017).

8. Xu, L.D.: Enterprise Systems: State-of-the-Art and Future Trends. IEEE Trans. Ind. Inform.

7, 630–640 (2011). https://doi.org/10.1109/TII.2011.2167156.

9. Xu, L.D., Xu, E.L., Li, L.: Industry 4.0: state of the art and future trends. Int. J. Prod. Res.

56, 2941–2962 (2018). https://doi.org/10.1080/00207543.2018.1444806.

10. Korean Standards Service Network (KSSN): KS A 3002 Standard, https://www.kssn.net/en/,

last accessed 2020/04/05.

11. Ahn, H., Chang, T.-W.: Measuring Similarity for Manufacturing Process Models. In: Moon,

I., Lee, G.M., Park, J., Kiritsis, D., and von Cieminski, G. (eds.) Advances in Production

Management Systems. Smart Manufacturing for Industry 4.0. pp. 223–231. Springer Interna-

tional Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-99707-0_28.

12. Zor, S., Schumm, D., Leymann, F.: A Proposal of BPMN Extensions for the Manufacturing

Domain. In: Proceedings of the 44th CIRP International Conference on Manufacturing Sys-

tems. pp. 1–7., Madison, Wisconsin, USA (2011).

13. Lütjen, M., Rippel, D.: GRAMOSA framework for graphical modelling and simulation-based

analysis of complex production processes. Int. J. Adv. Manuf. Technol. 81, 171–181 (2015).

https://doi.org/10.1007/s00170-015-7037-y.

14. Stevanov, B., Gračanin, D., Kesić, I., Ristić, S.: An Application of Period Batch Control Prin-

ciples and Computational Independent Models for Supporting the Overhaul Process of the

Railway Braking Devices. Int. J. Ind. Eng. Manag. 4, 95–101 (2013).

