
HAL Id: hal-03440839
https://inria.hal.science/hal-03440839

Submitted on 22 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

RouAlign: Cross-Version Function Alignment and
Routine Recovery with Graphlet Edge Embedding

Can Yang, Jian Liu, Mengxia Luo, Xiaorui Gong, Baoxu Liu

To cite this version:
Can Yang, Jian Liu, Mengxia Luo, Xiaorui Gong, Baoxu Liu. RouAlign: Cross-Version Function
Alignment and Routine Recovery with Graphlet Edge Embedding. 35th IFIP International Conference
on ICT Systems Security and Privacy Protection (SEC), Sep 2020, Maribor, Slovenia. pp.155-170,
�10.1007/978-3-030-58201-2_11�. �hal-03440839�

https://inria.hal.science/hal-03440839
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


RouAlign: Cross-Version Function Alignment
and Routine Recovery with Graphlet Edge

Embedding

Can Yang1,2, Jian Liu1,2, Mengxia Luo1,2, Xiaorui Gong1,2, and Baoxu Liu1,2

1 Institute of Information Engineering, Chinese Academy of Sciences, China
2 School of Cyber Security, University of Chinese Academy of Sciences, China

{yangcan,liujian6}@iie.ac.cn

Abstract. Reverse engineering is labor-intensive work to understand
the inner implementation of a program, and is necessary for malware
analysis, vulnerability hunting, etc. Cross-version function identification
and subroutine matching would greatly release manpower by indicating
the known parts coming from different binary programs. Existing ap-
proaches mainly focus on function recognition ignoring the recovery of
the relationships between functions, which makes the researchers hard
to locate the calling routine they are interested in.
In this paper, we propose a method using graphlet edge embedding to
abstract high-level topology features of function call graphs and recover
the relationships between functions. With the recovery of function re-
lationships, we reconstruct the calling routine of the program and then
infer the specific functions in it. We implement a prototype model called
RouAlign, which can automatically align the trunk routine of assembly
codes. We evaluated RouAlign on 65 groups of real-world programs, with
over two million functions. RouAlign outperforms state-of-the-art binary
comparing solutions by over 35% with a high precision of 92% on average
in pairwise function recognition.

Keywords: Edge Embedding · Calling Routine Recovery.

1 Introduction

An essential purpose of reverse engineering is to pick out known calling
routines from a new binary program. This analyzing task is generally used in
malware family classification, reused component detection, patch comparison,
and so on. But it could be a tedious job to find out every mutation of a program,
especially when the main functionality stays the same but some calling routines
added or removed. What’s more, it would encounter plenty of difficulties in cross-
architecture, cross-OS, cross-compiler, and cross-optimization programs routine
cognition. This problem has now become more crucial while Internet-of-Things
(IoTs) become massive and fragmentated.

For instance, Figure.1.A shows a message processing routine of a printer
with CVE-2017-2741. Now, if we have obtained the function call graph (Fig-
ure.1.B) of another printer (with different architecture here), analyzing is needed
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to verify the vulnerability. In this case, traditional tools [9] could hardly help.
A common way in practice is to locate the context functions by cross-references
firstly. Then trace the calling routine to see whether a similar function exists
in Figure.1.B. We note that only a subset of functions in the routine are con-
cerned by researchers, and the connectivity between functions is important in
the analysis.

Func_A Func_B Func_C

Func_A' Func_B' Func_C'

recv() string "@PJL" fopen() & fwrite()

Mass of Functions
in Routine

Vul_func

Other Functions

A) Knowledge:

B) Target:

（model A Arm_v7）

（model B x86）

Easy to Locate by Cross-Refs
Easy to Locate

? Whether & Where
Vulnerable?

Fig. 1: Motivation: Reuse Knowledge of (A) to Search Vulnerabilities in (B)

Actually, the same vulnerability might be shared by dozens of binaries from
different products. But automatically analyzing these cross-version binaries is
complicated for many reasons. Generally speaking, difficulties are: 1) Different
compilers prefer difference memory arrangements and inline hobbits. 2) Differ-
ent compiler optimizations and obfuscators would greatly change the control
flow [11,19]. 3) Library and system functions vary a lot within different operat-
ing systems. 4) A software might change a lot after years of development, even
if its main features were hardly modified.

Existing state-of-the-art solutions for cross-version binary analysis are not
routine-sensitive. Approaches [7,14,15,21,26] are mainly trying hard to under-
stand the semantics of functions for identification. These methods tend to iden-
tify functions directly, but isolated. Approaches [8,17,20,24] take the Function
Call Graphs (FCG) into consideration. But these methods only utilize intuitive
features like degrees of nodes, as assistance to the function internal features.
However, considering in case cross-version analysis, internal features are not
stable and reliable. We design a method to better utilize FCG than ever. By ab-
stracting higher-order structural features into vectors and then modeling them
via neural networks, we show that the FCG could play an important role in
routine recovery and function alignment.

Our Approach: Alignment. In this paper, we aim at finding a way to recog-
nize a common calling routine between cross-version binaries, and then identify
functions in it. For the purpose of recognizing the calling routine, we must have
abilities to recover the relationships between functions (mainly caller-callee re-
lationship). With the recognized relationships, reverse engineers can pick out a
calling routine from the FCG of an unknown program. Once the calling routine
is aligned with a known routine, the functions in the same position can be viewed
as functional equal. This method is what we called Alignment method because
it infers a function by its position in a routine rather than investigate the inner
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implementation of the function. This method should be robust enough against
variations such as function inline and addition function calls.

For relationships recovery, we propose a new algorithm based on Graphlet
Edge Embedding (described in Section 3.3). This is inspired by the ideas of
Graphlet Degree Signatures [22], which is a famous alignment algorithm in bioin-
formatics. Our method starts from a simple assumption that the similar func-
tions in program have similar graph structures in the function call routine, and
reasonable modifications (function inline, additional calls, etc., which could be
introduced by programmers or compilers) to the graph structure is recognizable.
For instance, a distributor function usually follows the input routines and has
many subroutines for special tasks. In short, we used edge embeddings to ab-
stract high-level features of functions in function call graphs, and then recover
the caller-callee relationships between functions to reconstruct the function call-
ing routine. With this method, we can tell a known routine from a new binary,
thus functions in the routine can be recognized and an overall knowledge of the
program can be achieved.

We have implemented a prototype tool called RouAlign. RouAlign uti-
lized graphlet edge embeddings to align two calling routines automatically and
then identified functions by the aligned positions in the routines. We evaluated
RouAlign in 65 groups of cross-version binaries with over 200,000 functions.
And we compared the function recognition results of RouAlign with the results
of BinDiff and the results of Gemini. RouAlign performed better than both and
showed a great potential of function call graphs in function recognition.

In summary, our contributions are as follows.

– Routine Recovery. We present a multistage approach to align FCGs where
the calling routines are preserved as much as possible.

– Edge Embedding Algorithm. We propose a method to embedding edges
in FCGs, and an algorithm to recover caller-callee relationships between
functions with abilities to distinguish modifications like function inline.

– Scalable Design. Compared to existing algorithms, our algorithm is par-
allelable (the procedure can be speeded up via multi-processing) and in-
crementable (the results would be expanded when given extra knowledge)
besides high precision.

– Better Performance. Compared to popular commercial binary diffing
tools, our prototype can perform 35% better precision and 25% better recall
on average within cross-version binaries.

2 Problems and Challenges

In this section, we address the problem to study, challenges facing, and
reasonable ways to solve them. Some important symbols are defined as well.

2.1 Function Alignment

Existing function matching methods can be roughly classified into two cat-
egories. One is pairwise matching, which searches common functions in a pair
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of programs. The other is library matching, which represents functions in brief
forms (i.e., embedding) and searches a new function from a pre-built representa-
tion library. Function alignment is a kind of pairwise matching, but differs from
function matching methods. Function matching methods aim to find two func-
tions exactly the same. In contrast, function alignment tries to find functions of
the same use (namely, functionally equal).

Definition 1. Functional Equal: If function Fa and Fb take the same respon-
sibility in their individual calling routines, they are functional equal. Ideally,
functional equal means Fa and Fb can be substituted with each other in their
calling routines.

Considering an example of algorithmic upgrade, suppose an old program A
has a routine: “Input → Encrypt → MD5 → Output”. And a new program
B has a routine: “Input → Encrypt → SHA1 → Output”. In both program A
and B, the Input, Output and Encrypt are exactly the same. Usually, Function
matching methods [7,15] will mark the SHA1 and MD5 as different and the
relationships with both Input and Output are ignored. But function alignment
should mark that SHA1 and MD5 are of the same use (both are hash functions)
and the calling routine stays successive. This makes alignment methods robust
when figuring out the main routine of a program, especially when some compo-
nents were changed. We regard alignment as a relationships-defined procedure,
and formally define the function alignment as follows.

Definition 2. Function Alignment: given a target program Ptrgt and a template
program Ptmpl, function alignment aims to find a function mapping A(Ftmpl)→
Ftrgt between FCGs from Ptmpl to Ptrgt, where Ftrgt are functional equal to
Ftmpl.

In case the functions in Ptmpl were known, the function alignment proce-
dure could be viewed as knowledge reasoning from Ptmpl to Ptrgt. In Biological
Network Alignments, it has been shown that aligned networks are functional sim-
ilar [18]. Our experiments show that rule also worked for Function Call Graph
Alignments.

2.2 Challenges

Directed Heterogeneous Network. Network alignment and graph alignment
are also hot but tough topics in literature. In reverse engineering, FCG provides
limited information. Data refers, syscalls and many attributes of function are
not negligible. Taking this into consideration, the FCG becomes a heteroge-
neous network. This means, for reliable and convincing performance, our func-
tion alignment problem might be equivalent to heterogeneous network alignment
problems. Although heterogeneous networks preserve richer information than ho-
mogeneous networks, they face more challenges [4]. In addition, the development
of algorithms on heterogeneous networks is not mature enough now.
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Low Recognizability of Sparse network. The network alignment algorithms
used in other fields, such as bioinformatics and graph theory, are usually designed
for denser networks. However, in function call graphs, most functions only relate
to other few functions. This means if we naively represent a function as its
surrounding topologic, many functions might not be distinguishable. This is
one of main reasons why embedding methods, like structure2vec [1,16], leave
branch of functions as “similar”. Low precision at one will significantly make
the alignment methods not reliable because the mistakes would propagate via
relationships.

Brief Solution. To overcome these challenges, we adapt two novel methods.
Firstly, we separated the heterogeneous network into two layers. One contains
the relationship between functions and other attributes; the other is a directed
homogeneous network where nodes are functions. Secondly, instead of recogniz-
ing the nodes directly, we take a detour to recover edges among nodes, and design
a new method to evaluate the similarity of these edges.

3 Function Alignment Method

In this section, we first show the overall workflow of RouAlign, which recover
two informative structures from binary codes as necessary data. Then we intro-
duce the core process of graphlet edge embedding method to extract higher-order
graphic features. And finally, we describe the approach to aligning functions and
recovering calling routines.

Target
Binary

Template
Binary

Binary Pair Feature Extraction

Static Data Usage

Call Graph Extraction

Alignment

Data Alignment Anchor Nodes

GEE Alignment Expansion 

Anchoring:

Expanding:

Alignment
Results

Known
Aligments
(optional)

Fig. 2: Overview of RouAlign

3.1 Overview

The RouAlign is designed to align calling routines from the target binary to
the template binary. Figure.2 shows the whole process of the tool. The first step
is extracting necessary information from binaries, including static data references
and function call graph. Static data includes string constants, numeric constants,
etc. In experiments [12,13,14], they are proved to be reliable across versions. The
function call graph preserves function nodes as well as caller-callee relationships
between them. Thus, after extraction, our heterogeneous relation network has
two layers with two different node types, one is func-data layer, the other is
func-func layer.
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The alignment stage can be separated into two phases — anchoring and ex-
panding — for different layers of the relation network. The anchoring procedure
tries to find some function nodes that are highly similar in the func-data layer.
The expanding procedure trys to align more nodes from the anchored nodes in
the func-func layer. They would be discussed later in section 3.2 and 3.3 . The
basic idea of this method is to find some reliable nodes and then propagate the
confidence as much as we can. This refers to the “seed and expand” idea of
BLAST [3], and is also sort of simulation of the human analyzing procedure.

3.2 Anchor Nodes Searching

Many human researchers start to analyze a binary from limited entries, such
as main functions, special library functions, functions with special and unique
constants, etc. So inspired RouAlign. The reason behind is that, these features
are the most likely to stay constant in the mutations [13]. These functions are
naturally aligned and we call them anchor nodes.

We defined two kinds of anchor nodes. One comes from the running mech-
anism of executable binaries. In most situations, library calls and syscalls are
explicit. For instance, Windows PE files use IAT to locate the library functions,
and Linux ELF files use PLT. Many modern disassemble tools like IDA PRO can
automatically indicate these calls in the binary. For this kind of anchor nodes,
we directly take and use them. The other kind comes from human experiences.
There are some unique constants in programs, such as s-Boxes in cryptography,
magic bytes of protocols. Uses of unique constants can determine a function with
high probability. Searching is needed for the second kind of anchor nodes.

Firstly, we match data nodes from different binaries, in order to find the
constant data used by both two binaries. We extract some additional attributes
for the data nodes, listing in the Table.1. We adapted SimHash [27] to resist
slight changes to the constants. And then, we give these features to a linear
classifier to tell whether two data are the same.

Table 1: Attributes for Data Nodes
Attribute Name Weights

Length of Data 0.25
MD5 of Data 0.48
SimHash of Data 0.25
Offset in The Segment 0.02

*Weights referred to [14]

Secondly, after the data nodes from different binaries are matched, we
use the TF-IDF (Term Frequency-Inverse Document Frequency) model to tell
whether the function nodes related to the matched data nodes should be an-
chored. The TF-IDF model, which is a well-studied algorithm, can reflect how
important the data is to a function. We pick out the function nodes with high
weights and calculate the cosine similarity between them. The function nodes
with high similarity are the anchor nodes that we want.
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3.3 Expanding with Graphlet Edge Embedding

Nodes anchoring can align very limited part of the program, in most case.
The expanding stage starts from the anchor nodes and expands the alignment
alone edges. We introduced a heuristic method to evaluate the similarity be-
tween different edges. With the ability to match edges, we could find out the
relationships between functions, and the calling routine could be recovered.

Graphlet Edge Signature. Respectfully, we name our new design “Graphlet
Edge Signature”, a method to characterize edges in directed graphs. Our design
refers to the Graphlet Degree Signature [22] (a.k.a. GSV), which has been proven
to be a successful design to extract topology structure in bioinformatics [18].
However, GSV was designed for node identification in an undirected graph. The
Function Call Graph is a directed graph, which means the GSV should be re-
designed. In practice, a reverse engineer can easily infer the unknown functions
near a known one by FCG, especially by caller-callee relationships. Thus, it’s
reasonable to pay attention to edges recovery than directly node identification.

Firstly, we use a node pair 〈Nc, Nt〉 to represent a directed edge between
center node (Nc) and target node (Nt). Then, we pick out all 2nd order neighbors
of Nc and Nt. A graphlet is then defined by these nodes. In our design, we only
concern about the motifs that related to 1st order similarity and 2nd order
similarity. Motifs are recurrent and statistically significant subgraphs [23]. Using
motifs makes us can focus on specific commonality once in a time. In our design,
we only concern about the motifs that related to 1st order similarity and 2nd
order similarity. We pick out 45 basic motifs, denoted as m1,m2, . . . ,m45 in
Figure.3. After that, we can count the motifs the target edge touches and get a
vector V . Each dimension in the V stands for the number of times the motif mi

appearing in the graphlet. This vector is what we call the signature of the edge
in the chosen graphlet (Graphlet Edge Signature, GES).

The policy of selecting these motifs in Figure.3 is not to enumerate all
isomorphism subgraphs in the extracted graphlet, but to focus on the special
relationships between the center edge and its surrounding edges. In addition,
the chosen motifs should be able to compose any other complex graphlets. We
view the in-and-out edges pair between two nodes as a bi-directed edge. These bi-
directed edges stand for some highly recognizable relationships between functions
like iterations and loops. And when counting rings, we do not distinguish the
source point and the destination point to reduce the complexity. We focus on
surrounding nodes no more than 2nd order, although the edge signature vector
will be defined more precisely with higher-order neighbors. This is because the
complexity and time consumption will increase sharply while going into higher-
order relationships [24].

Distance Measurement. Now we have managed to represent a directed edge
into the numeric format. A measuring system is needed for further usage. For dis-
tance measurement, there is a simplified, intuitive mathematical solution adapt-
ing from GSV. We define the distance D between the target edge Etrgt and
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1st order
degree

m0 ... m2

2nd order degree

m3 ... m11

1st order ring

m12 ... m14

2nd order ring

m15 ... m18

1st order aside ring

m19 ... m22

2nd order
aside square

m23 ... m33

2nd order aside triangle

m34 ... m45

Fig. 3: Chosen Basic Motifs, in which central nodes, target nodes, and surround-
ing nodes are depicted as “black”, “white” and “gray” vertexes respectively.

template edge Etmpl as below. The Di is the distance at the ith motifs. The Ei

is the ith member of the signature vector, meaning the number of times edge E
touches motif mi.

D =

45∑
i=0

Di(Etrgt, Etmpl) =

45∑
i=0

|log(Eitrgt + 1)− log(Eitmpl + 1)|
log(max{Eitrgt, Eitmpl}+ 2)

(1)

Obviously, the distance D results within range [0, 1). A smaller distance
indicates there is more similarity between two edges. However, in most FCGs,
the induced graphlet is usually not dense enough to contain most motifs above,
leaving a lot of zeroes in the signature vector and leading to the distribution
of distances close to 0. We can remove the part that has no value to revise
the weights and remap the distribution of distances into [0, 1) — to ignore the
similarity comes from common deficiencies. The distance can be now defined as:

D =

∑45
i=0Di∑45
i=0Bi

(2)

Bi =

{
1,Eitrgt 6= 0 and Eitmpl 6= 0

0,others
(3)



Function Alignment with Graphlet Edge Embedding 9

Embedding. The method introduced above is experience-based and only suit-
able for distance measurement. Additionally, we introduce an embedding rep-
resentation not only suitable for similarity measurement but also semantic pre-
served. We use a neural network encoder with the Siamese architecture [2] to
generate the embedding of an edge.

The Siamese architecture uses two identical embedding neural networks. In
our case, a 3-layer neural network was used. Each embedding network takes a
GES vector V as input and outputs what we call Graphlet Edge Embeddings
(GEE). GES vector V is a 45-dimensional vector as mentioned above. The final
output of the Siamese architecture is the Euclidean distance of the two embed-
dings. While training, distances of similar input pairs were set to 0, and distances
of dissimilar input pairs were set to 1. We formulate the Siamese network output
distance D′ for each input pair as:

D′ = ‖Embed(V1)− Embed(V2)‖ (4)

3.4 Inline Recognition
Our method is naturally suitable for inline recognition. Showing in Fig-

ure.4, the function ingroup was inlined into check suid due to compiled differ-
ences. However, in the origin FCG (at left), if we connect a virtual edge from
the caller of the inlined function directly to the callee of the inlined function
(depicted as two dotted lines from check suid to bb internal get grgid and
bb internal getpwnam in the figure), the signature vector V of the virtual edges
would be quite similar to those edges in the inlined FCG. An addition of a func-
tion can be detected in a similar way. With this trick, expanding procedure can
step over slight reasonable changes and perform more robust in calling routine
alignment.

check_suid
(ingroup	inlined)

bb_internal
_getgrgid

bb_internal
_getpwnam

check_suid

bb_internal
_getgrgid

bb_internal
_getpwnam

ingroup

other part
 of FCG

other part
 of FCG

other part
 of FCG

other part
 of FCG

busybox
(GCC, O0)

busybox
(Clang, Os)

Fig. 4: Inline Recognition

The expanding procedure is now easy to explain: 1st choose an aligned node
pair 〈Ntrgt, Ntmpl〉. 2nd enumerate then embed edges of each node to obtain two
sets of embeddings Stgrt and Stmpl. 3rd align edges pairwisely between the two
sets by calculating the distances D (the average of both distances mentioned
above). We leave edges “far from” any other edges alone, and then perform



10 C. Yang, J. Liu, et al.

Algorithm 1 Expanding Routine

Require: Aligned pair: 〈Ntrgt, Ntmpl〉
Stgrt ← GES(Edge), for all Edge connected to Ntrgt

Stmpl ← GES(Edge), for all Edge connected to Ntmpl

repeat
for all V1 in Stgrt, V2 in Stmpl do

if D(V1, V2) < Threshold then
mark the another two endpoints of the two edges as Aligned

end if
end for
for all V1 in Stgrt, V2 in Stmpl without alignment do

Perform inline search
end for

until All aligned nodes have been expanded.

inline recognition on these isolated edges. The overall algorithm for expanding
stage is summarized in Algorithm.1. Due to the space limit, we omit some details
here, such as judgement of the closest distance and removal of duplications.

4 Evaluation
4.1 Implementation and Datasets

We had implemented a prototype of RouAlign. We used the IDA PRO
as the tool to extract the necessary information (i.e., constant data, library
functions, and the FCG) to construct the relation networks. We implemented
the whole alignment stage with python, including isomorphic judgment and GEE
algorithm. For embedding network training, we undersampled about 20 million
edge pairs from the datasets. The embedding size was set to 20 empirically. Our
experiments were conducted on a laptop with 8 GB memories and 4 cores at 2.6
GHz.

Our evaluation was base on two datasets: The first one was called the hor-
izontal dataset where the binaries were compiled from the same source code
but with different compilers and optimizations. This dataset contained 50 groups
of binaries from 5 different programs. The second one was called the longitudi-
nal dataset where the binaries were compiled from different source codes, and
these source codes were referred to different versions during the development of
the same software. This dataset contained 15 groups of binaries from 3 different
generations of OpenSSL.

Each group needs at least 4 binaries: a tripped target, a stripped template,
an unstripped target, and an unstripped template. The two unstripped bina-
ries were used for ground truth extraction. With the debug symbols, the easiest
way to get the ground truth of similar function pairs is comparing the function
name. Some function name might change due to compiling definitions and devel-
opments. For example, The OPENSSL_strlcpy in OpenSSL 1.1.1 has a different
name BUF_strlcpy in OpenSSL 0.9.8. We manually corrected these functions as
a complement to the ground truth.

We use the Precision and the Recall metric. For every aligned function pair,
if the pair is not in the ground truth, we count the precision as zero. For every
function pair in the ground truth, if the pair is not in alignment results, we count
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the recall as zero. Therefore, the precision captures the ratio of function pairs
that are correctly found, and the recall captures the ratio of function pairs that
are supposed to be found.

4.2 Horizontal Comparison: same source, different compilation

Horizontal experiments were designed to simulate the circumstances where
the same source code was reused in different environments. We implemented
the horizontal experiment on 5 frequent-used real-world program projects. Each
program was compiled into 5 different versions with different compile options.
The compiler we used is GCC and clang. The options we used is O0 (without
optimizations) Os (size-first optimization) and O3 (speed-first optimization).
Binaries were aligned with each other by both RouAlign and BinDiff. BinDiff
was used as the benchmark in our experiments. Table.2 shows the results of
one-fifth of our horizontal experiments.

Table 2: Horizontal Comparing Result of BusyBox.

Binary Pairs
Precision Recall

RouAlign BinDiff RouAlign BinDiff

G@O0 - G@O3 0.928 0.651 0.770 0.229

G@O0 - G@Os 0.946 0.546 0.792 0.456

G@O0 - C@O0 0.990 0.765 0.874 0.623

G@O0 - C@Os 0.913 0.452 0.703 0.344

G@O3 - G@Os 0.991 0.945 0.926 0.336

G@O3 - C@O0 0.918 0.617 0.707 0.217

G@O3 - C@Os 0.953 0.653 0.755 0.245

G@Os - C@O0 0.937 0.506 0.723 0.419

G@Os - C@Os 0.961 0.593 0.775 0.459

C@O0 - C@Os 0.933 0.524 0.756 0.404

G stands for the GCC compiler and C stands for Clang.
@* indicates the compiler optimizations.
For instance, G@O0 means a binary compiled using GCC with option “-O0”.

A case study on results in Table.2 shows that the precision of RouAlign is
much higher than that of BinDiff, and the performance is very stable. Generally,
the O0-Os and O0-O3 shows the lowest performance, because the compiler would
introduce a lot changes to the original FCG on specific purpose. An interesting
phenomenon is that, the more the version varies from each other, the better
RouAlign performs than BinDiff. This is because traditional matching methods
rely much on internal function features, which change a lot during compiling
procedures.

We made statistics on all results of 5 different binary sets, and cited some
results of other state-of-art solutions, showing in Table.3. In the first part of
the table, we presented some average numbers of some important indicators to
describe the datasets. The number of functions and the number of ground truth
showed the scale of the binary. The number of anchor nodes showed how efficient
the expanding procedure was. It’s easy to summarize from Table.3 that the
RouAlign could perform better on larger and more complex binaries, where the
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Table 3: Horizontal Comparing Results Statistics.
minigzip BusyBox ImageMagickOpenSSL Sqlite3

Average Numbers

Ground Truth 162.5 4711.6 4571.8 8105.2 2657.4
Total Functions 211.8 5200.0 5591.0 9054.6 3151.0
Extracted Datas 75.2 7946.2 16407.8 12822.4 3491.8
Symbolic Func. 26.3 29.0 455.0 135.1 117.6
Anchor Nodes 35.7 913.2 1254.7 546.3 346.0

Precision

RouAlign 0.939 0.946 0.900 0.941 0.788
BinDiff 0.733 0.625 0.433 0.336 0.434
Gemini1 0.750 0.828 0.397 0.546 0.454
asm2vec2 - 0.856 0.837 0.792 0.776
αDiff3 0.546 0.546 0.546 0.546 0.546

Recall

RouAlign 0.448 0.778 0.593 0.624 0.593
BinDiff 0.522 0.373 0.320 0.218 0.320
Gemini1 0.017 0.106 0.012 0.156 0.142

1: Gemini1 here is a optimized version for the original program couldn’t be accomplished in a
16GB memory machine. Gemini* was only tested on binary pair Clang-Os to GCC-O0)
2: Results of Asm2Vec2 were cited (pairwise comparison on GCC-O0 and GCC-O3).
3: Results of αDiff is cited and then averaged of all their x86 64 results.

FCGs are more tremendous and the graphlet features are more representative.
All these horizontal comparing results proved that relationships are useful and
our method could handle the problem correctly.

4.3 Longitudinal Comparison: same software, different versions

The longitudinal comparison was designed to simulate the circumstances
where the same program itself varies a lot from version to version. We chose 3
different source code versions of OpenSSL, among which time spans nearly 10
years and 3 big generations, and then compiled them with 5 different options.

As shown in Table.4, RouAlign performed much more stable among different
compiler optimizations with high precision. The recall was improved a little over
that of BinDiff, because the calling routine did change quite a lot during long-
term iterations. It should be noted that the results of RouAlign are continuous
with high precision, providing more powerful assistant to human researchers.
All these longitudinal comparing results proved that our methods are usable in
detecting long-term changes to binary and can still recognize calling routines in
a high precision.

5 Limitations

Major limitation of alignment methods is the missing of many internal func-
tion features. We designed so in order to show that the FCGs could provide much
information for understanding binaries. A better way we advised in the future is
to combine RouAlign with some function embedding methods that could nicely
represent internal function feature cross-versions.
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Table 4: Longitudinal Comparing for Cross-Version OpenSSL.

Versions
Precision

— Ver.100 to Ver.098 Ver.111 to Ver.100 Ver.111 to Ver.098
RouAlign BinDiff RouAlign BinDiff RouAlign BinDiff

GCC-O0 0.953 0.843 0.789 0.493 0.692 0.436

GCC-O3 0.944 0.794 0.602 0.332 0.501 0.296

GCC-Os 0.950 0.824 0.781 0.439 0.674 0.377

Clang-O0 0.959 0.822 0.775 0.496 0.697 0.423

Clang-Os 0.956 0.796 0.779 0.432 0.669 0.366

Recall
Ver.100 to Ver.098 Ver.111 to Ver.100 Ver.111 to Ver.098

RouAlign BinDiff RouAlign BinDiff RouAlign BinDiff

GCC-O0 0.675 0.676 0.401 0.406 0.311 0.352

GCC-O3 0.618 0.544 0.231 0.228 0.185 0.200

GCC-Os 0.650 0.605 0.422 0.326 0.309 0.278

Clang-O0 0.671 0.584 0.385 0.357 0.304 0.305

Clang-Os 0.636 0.497 0.398 0.273 0.301 0.229

(Ver.111 Ver.100 and Ver.098 stand for OpenSSL Version 1.1.1, Version 1.0.0 and Version 0.9.8)

Another limitation is that the detection rate might be low in library-like
binaries (.so files, etc.). This is unavoidable because functions in library binaries
tend to be independent without caller-callee relationships to recover. But we
wont regard this as a critical problem, because the original intention of RouAlign
is an auxiliary tool to help researchers trace out the calling routine from a
specified function node.

6 Related Works.

Function alignment by FCGs is a long proposed topic, but poorly studied.
[17] is about the first to introduce the Hungarian algorithm into binary analy-
sis, e.g., malware classification. Further studies [25] use FCG merely on binary
similarity discrimination rather than more detail analysis. Bindiff [9] introduces
a MD index [8] to represent the topologic of function in FCG. But the MD
index only counts the 1st order features like in-out degrees and could perform
“medium” good in practice [10]. Recently, αdiff [20] uses FCG with DNN to
detect cross-version binary code similarity and achieves some better results than
Bindiff.

Cross-version function recognition is a hot topic recently. Dynamic analyzing
methods assume that similar functions perform similar runtime behaviors. For
example, Bingo [6], etc., capture behaviors of a function with various contexts.
However, coverage and contexts generating are still problems for dynamic meth-
ods. Static methods utilize instructions and raw bytes to calculate the similarity
between functions. They are not good at cross-version scenarios, and many re-
searchers are trying to resolve this problem. For cross-platform problems, Gemini
etc. [15,21], extract structure features and basic block features to calculate the
similarity. For cross-optimization problems, Asm2vec [7] and InnerEye [26] map
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instructions and opcodes into high dimensional vector space, and then value the
similarity by these mathematical representations.

7 Conclusion

In this paper, starting from the requirement of recognizing a calling rou-
tine from cross-version binaries, we proposed a novel method to learn high-level
features of function call graphs to recover the caller-callee relationships between
functions. We design a model to align routine and functions called RouAlign and
series experiments to compare RouAlign with popular tools in real world. The
evaluation results show that RouAlign outperforms the widely used commercial
tools by over 35 percentages on average precision. We successfully reveal the
great potential of function call graphs in function recognition and our Graphlet
Edge Embedding method indicates a possible direction in the future.
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