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Abstract.Irony detection is a difficult task because the intended meaning of a 
sentence differs from the literal meaning or sentiment of that sentence. Most ex-
isting work on this subject has focused on irony detection in the English lan-
guage. Since no public dataset is available for this task in the Bengali domain, 
we have created a Bengali irony detection dataset that contains a total of 1500 
labeled Bengali tweets. This paper presents the description of the Bengali irony 
detection dataset developed by us and reports some results obtained on our 
Bengali irony dataset using several widely used machine learning algorithms 
such as Naïve Bayes, Support Vector Machine, K-Nearest Neighbor and Ran-
dom Forest. 
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1 Introduction  

There has been a tremendous surge of data on the internet after the social media 
boom. Since the advent of the Social Web in 2006, the amount of textual content on 
the internet has exponentially grown and provides a great deal of potential for analy-
sis. Since millions of tweets are generated every day, machine learning provides the 
necessary platform for adequate data analytics to better understand the activities of 
the average social media user as well as the users’ feedback on various social and 
political issues. So, to understand the users’ activities and comments on social media, 
understanding of varied features of language is needed. When the automatic system is 
used to manipulate and process a large amount of social media texts, the system 
should have the ability to understand the intricate features of language. Ironic texts 
are more difficult to understand than the general non-ironic texts. 

Irony is popularly defined as a literary device wherein the literal meaning of a sen-
tence differs from the figurative meaning the sentence is trying to portray [1]. This 
paper focuses on comprehending the most common forms of irony by enlisting certain 
characteristic features of each type of irony to develop a system to classify tweets 



correctly. Automatic irony detection provides a more fine-grained understanding of 
sarcasm detection [2] and sentiment analysis [3] and the multiclass analysis stream-
lines the Bengali user’s propensity for the usage of the language. Irony detection and 
analysis is important for the development of sociolinguistics and analysis the uses of 
language constructs by specific communities. Automatic irony detection also has 
many other applications, for example, online harassment detection, ironic speech 
understanding and more importantly, sentiment analysis. It was observed that senti-
ment analysis system shows relatively poor performance on ironic texts compared to 
non-ironic texts. Hence, an added analysis of irony in the tweets propels such tasks 
towards more effectiveness.  

The most common approaches to Irony detection in English Twitter use machine 
learning algorithms [4, 5]. But a huge stride in automatic irony detection in English 
language was made by Hee et al. [6-8] as a part of a shared task, SemEval-2018 Task 
3 on Irony detection in English tweets [9]. Some of the most notable results of the 
irony detection tasks for English tweets [10-14] have been obtained using various 
techniques that are based on machine learning algorithms. 

The Bengali language is the 7th most spoken language in the world, with approx-
imately 215 million speakers all over the world. Bengali is a primary language in 
Bangladesh, and in India - West Bengal, Tripura and Assam. In the past few years, 
South Asian nations like India and Bangladesh have witnessed a data revolution, 
which was prompted by greatly diminished costs of mobile data in both countries, 
resulting in a massive boom in the number of active internet users in the countries. 
The latest reports on the number of active internet users in India 604.21 million1 and 
that of Bangladesh being 91.421 million2.  These staggering numbers provide a para-
meter to apprehend the activity of most of the Bengali speaking population in the 
countries. 

Twitter has been the platform for posting opinions and comments on various social 
and political issues. With the evolution of a script-based keyboard and the advent of 
the smartphone, Twitter sees plenty of users’ opinions written in several languages 
and scripts the people from various corners of the world are using this platform and 
posting opinions and comments in their own languages. 

The focus of this work is on developing a corpus for Bengali irony detection and 
developing baseline systems for irony detection in Bengali. Section 2 describes the 
Bengali irony dataset created by us. In Section 3, we have provided a detailed descrip-
tion of the various types of irony we have considered for our experiments and the 
distinction factors among the four types of irony considered in implementing our 
classification model. Section 4 is where we have discussed the feature extraction 
process. The four widely used baseline classification algorithms have been used to 
implement our models-Naïve Bayes, Support Vector Machine, K-Nearest Neighbors 
and Random Forest which have been described in Section 5. Section 6 provides the 
results of our models on our dataset and finally, in conclusion section, we describe 
future scope and the importance of study in the field of Indian languages.  

                                                           
1https://main.trai.gov.in/sites/default/files/PIR_04042019_0.pdf 
2http://www.btrc.gov.bd/content/internet-subscribers-bangladesh-january-2019 



2 Corpus Development   

It is to be noted that there is a difference between sentiment, satire and irony when it 
comes to a linguistic definition and scope. While there is research in sentiment analy-
sis in Bengali in [3], research is lacking in a fine-grained model for irony in Bengali. 
In that regard, a major obstacle faced in the development of irony analysis system for 
Bengali tweets was the lack of any publicly available dataset for Bengali Irony Detec-
tion. To that end, a total of 1500 tweets were collected from Twitter and manually 
annotated by us for corpus development. Due to the low number of tweets available in 
the Bengali language as compared to English, the tweets have been collected within 
the time period spanning from 17/10/2010 to 4/1/2019. The tweets that have been 
collected and annotated contain the bare textual content and does not contain traces of 
metadata, which include twitter handle, display name, timestamps, user ids, locations, 
etc. All mentions, tags, URLs and punctuation were removed too as they are not sig-
nificant for irony classification. Finally, all English letters were converted to lower-
case to prevent duplication in the vocabulary list.  

The entire corpus was created in a text file with UTF-8 (Unicode Transformation 
Format) encoding.  In this way, the .txt file could support all the Bengali script 
characters. In our case, the comma separates the tweet from its type of irony label.  

Table 1.Code and the CLDR Short Names for common emojis. 

Emoji  Code CLDR Short Name 

���� U+1F600 grinning_face 

���� U+1F602 face_with_tears_of_joy 

���� U+1F47B ghost 

 
For irony detection, there are some stark differences from standard sentiment anal-

ysis. Firstly, for irony classification, we did not consider stop word removal as this 
may tamper the overall meaning of the tweets. Next, every emoji was replaced by a 
universal code as determined by the Unicode Common Locale Data Repository 
(CLDR), which supports all Unicode characters. Every emoji also has a CLDR short 
name3, which is a suitable substitute for the emoji itself for Natural Language 
Processing applications. Table 1 shows some examples of the representation of emojis 
in Unicode. 

3 Irony Types 

We have annotated the tweets at the two level: (1) coarse level and (2) fine-grained 
level. At coarse level, a tweet is annotated as ironic and non-ironic whereas at the 
fine-grained level, ironic tweets are further classified into four types of irony. We 
                                                           

3https://unicode.org/emoji/charts/full-emoji-list.html 



have implemented document classification as a method of manual annotation, where 
based on a given set of rules that are used to define a class or label and a defined set 
of parameters to cause a distinction among the four classes, we have managed to label 
each input tweet based on the given task (coarse-grained annotation or fine-grained 
annotation).  

Four types of irony were considered for our multi-class irony classification- (1) 
irony-clash, (2) verbal irony, (3) situational irony and (4) non-irony.  The distribution 
of each type of label in our developed irony corpus is shown in Table 2. 

Table 2.Distribution of irony types in the corpus. 

Irony Type Number of Tweets 

Verbal_Irony 281 

Irony_Clash 258 

Situational_Irony 254 

No_Irony 707 

 
Our developed Bengali irony dataset contains 707 non-ironic tweets and 793 ironic 

tweets. Since our research primarily focuses with fine-grained irony analysis, the 
dataset was limited to 1500 tweets due to the lack of adequate number of ironic tweets 
present at the aforementioned timeframe and to prevent classification bias for the non-
ironic tweets.  

Since irony analysis is extremely subjective, the annotation process has been made 
as objective as possible. Based on objective criteria, at first, a fundamental distinction 
was made between an ironic statement and an ironic narrative. Then, the ironic state-
ment is divided into three types-Verbal_Irony and Irony_Clash and Situational_Irony. 
The detailed descriptions of the different types of irony with sample examples are 
given in the subsequent subsections.  

3.1  Verbal Irony  

Verbal irony is widely used and well-defined form of irony [15]. According to the 
core premise of irony, verbal irony describes a statement that has an implicit 
sentiment of irony. Burgers [16] describes the four aspects of verbal irony: implicit, 
evaluative, differentiable from a non-ironic statement, and the comprehension of an 
opposing sentiment. Keeping these aspects in mind, a statement that contains verbal 
irony should: 

• have a detectable sentiment in the literal composition of the tweet 
• have the opposite sentiment in the intended meaning of the tweet 
• have only one sentiment in the words used in the tweet and the opposite in its 

intention. For example, the words of a tweet should have a positive 



sentiment literally and a negative sentiment intentionally and vice versa 
• not have neutral sentiment attached to either the literal composition or the 

intended meaning of the tweet 
• have emojis of the same sentiment as that of the overall literal sentiment of 

the tweet, if present in the tweet. 
A few examples of verbal irony are given below: 

1. “আপনার�দয়িশিরষ-কাগজএরমতনমসণৃ” (Your heart is as smooth as 
sandpaper). Here, the overall sentiment of the tweet is positive with the use 
of the word মসণৃ (smooth). But the intended meaning uses the িশিরষ-
কাগজ (sandpaper) and infers a contradiction, since sandpaper is rough, the-
reby providing an opposite, negative sentiment to the meaning behind the 
tweet. The tweet does not have a neutral sentiment. Therefore, since the 
tweet fulfils 4 out of 5 criteria for verbal irony, we annotate the above tweet 
as Verbal_Irony. 

2. “�খলা �দেখ অেনক মজা পাইতািছ । �খলা �তা নয় মেন হয় কেমিড 
হইতােছ।।।: face_with_tears_of_joy: #LOL #BANvAFG” (Watching the 
game, I am having a lot of fun. The match feels like a comedy show, not a 
cricket game: face with tears of joy: #LOL #BANvAFG). This tweet has 
positive sentiment, including emojis. The tweet has only one sentiment and 
an opposing intention and hence fulfils almost all the criteria for verbal 
irony. 

3.2  Irony by Clash  

This category describes an expressive statement where there exists a literal and 
opposite intended meaning of the tweet and where the positive polarity and the 
negative polarity that defines the inversion between the literal and intended meanings 
are present in the tweet itself, as opposed to verbal irony, where the intended meaning 
has to be inferred by the reader. Therefore, tweets with the Irony_Clash label have 
some distinctive features. These kinds of tweets should: 

• have both sentiments of positive and negative polarities in the literal 
meaning of the tweet, providing a literal distinction from verbal irony 

• have either of the two sentiments in the intended meaning of the tweet 
• not have an overall neutral sentiment just because words of opposite 

polarities are clashing 
• may or may not depend on emojis to provide the opposing sentiment. 

A few examples of irony-clash are given below. 
1. “৬০,০০০টাকারেমাবাইলেফান Bluetooth নাই!! 

তাহেলেসইআেপলহােতনােরেখখাওয়াটাইভােলা।” (A 60,000 rupees phone 
doesn’t even have Bluetooth in it!! Then, it’s better if I ate that apple rather 
than keep it in my hand.)  In this tweet, the sentiment clash occurs between 
‘doesn’t’ and ‘better’. The tweet is ironic due to the similarities made be-
tween a costly phone and an everyday fruit and the intended meaning of the 
tweet has a negative sentiment as well, without having a neutral overall sen-



timent. Hence, it is classified as Irony_Clash. 

3.3  Situational Irony  

While verbal irony and irony by clash described irony existent in statements, situa-
tional irony is evident in the narratives of situations in text. The irony is evident when 
the outcome of the narrative defies the standard expectation of the same. In literary 
texts, situational irony arises when the readers were aware of the outcome of the ac-
tions of the characters when the characters themselves did not. According to Shelley 
[17], situational irony is derived from the schema-recognition system of human cog-
nizance where we script a narrative for a situation, failing to comply with which is 
deemed ironic. The situational ironic tweets have the following characteristics. The 
tweets should: 

• be in the form of a narrative of situation, with an identifiable flow of events 
• exist in a particular time frame, from start to finish 
• refer to a subject of the narrative, living or non-living, whose actions are 

deemed as ironic 
• must operate on a distinction between what is being claimed in the text and 

what is being inferred by the reader 
• invoke a sense of higher understanding that is not implicit to the tweet, 

which is the burden of the reader to comprehend 
• may or may not depend on emojis to add to the narrative. 
An example of Situational irony is given below. 
1. “এক'টঅ(া)ুেল+রা,ায়এক'টেলাকেকচাপািদল |” (The ambulance ran over 

a man on the street). This tweet depicts the narrative of an ambulance on the 
street, which had run over a man, where we see the beginning and end of the 
narrative. The irony is denoted by the contrast between ambulance, the 
vehicles which are associated with hospitals and, by extension, life and 
“�লাকেকচাপািদল” (ran over the man) which signifies death. Hence, the 
tweet can be classified as Situational_Irony. 

3.4  No Irony  

The easiest to understand, a tweet is non-ironic if the statement or narrative does not 
have an inversion between its literal meaning and its intended meaning. Such tweets 
require no added analysis and are much easier to create and annotate. Most of the 
tweets on Twitter are non-ironic, in all languages. For example: 

1. “মানুেষর জীবেন /শশব হল সবেচেয় 012পূণ 4 ।”(Childhood is the most 
important part of human life.) This tweet has no implicit meaning, is not a 
narrative or situation, does not have a clash in the statement and does not 
have an inverted intended sentiment. Hence the tweet is non-ironic.   



4 Feature Extraction 

For any machine learning algorithm to be applied on irony detection, it is important to 
design features that can discriminate among tweets.Since it is preferred not to use text 
as input for normal machine learning models. Hence it is necessary to implement 
word embedding, which is a methodology where words, after tokenization, are 
defined by real-valued vectors in a vector space. For our classification task, we have 
used a Term Frequency-Inverse Document Frequency (TFIDF) based model, which is 
a frequency-based word embedding technique, that involves representing each tweet 
in a vector space where a feature corresponds to a distinct term of the corpus. This 
was implemented after the tokenisation of the entire corpus and the subsequent 
development of a vocabulary list for the same. Here the feature is a distinct term and 
feature value is the TFIDF weight of the term calculated as the product of term 
frequency (number of times a term occurs in a tweet) and inverse document frequency 
calculated based on corpus statistics [18].  

The TFIDF model is a mechanism for information retrieval that highlights the 
importance of a word in a corpus [19]. By using this model, we give less importance 
to terms that are present throughout the corpus since they have poor discriminating 
power. Using TFIDF model, the entire corpus is converted to tweet-term matrix 
wherein each row of the matrix corresponds to the vector representation of a tweet. 
The formula which calculates the TFIDF of a term in a tweet d is: 

 t�idf(d, t)   =   tf(d, t)  ∗  idf(d, t) (1) 

where tf(d, t) indicates the frequency of the term t in the tweet d.  
The inverse document frequency, for ndocuments in the corpus is defined as: 

 idf(d, t) = log � �
��(�,�)��� +  1 (2) 

where the document frequency function df(d, t) returns the value of how many tweets 
of the corpus contain the term t at least once.  

There may exist many terms (for example, articles and preposition), in an extreme 
case, which exist in all the documents in a corpus. Mathematically, the idf of these 
terms should be 0. To prevent the TFIDF to be 0, there is a 1 added to the end of the 
formula. A smoothing factor has been incorporated into our system to prevent zero 
divisions. This is done by adding 1 to the numerator and denominator of the idf for-
mula, which is now defined as follows: 

 idf(d, t) = log � ���
��(�,�)��� +  1 (3) 

We have considered the above-mentioned smoothing factor while computing the 
tweet-term matrix.  

Finally, we obtain the tweet-term matrix where each row corresponds to a tweet 
and each column corresponds to each distinct term in the corpus and each value in the 
row is the TFIDF weight of the corresponding column term if the term is present in 



the corresponding tweet. This value is set to 0 if the term is not present in the tweet. 
Each row is labeled with the label of corresponding tweet.  

Using the TFIDF weight criterion in the irony classification task provides valuable 
insight into how effective the irony classification corpus is to identify patterns and 
distribution of features across the corpus, which effectively helps us determine how 
these features are more likely to express which type of irony. 

5 Model Development  

After developing the tweet-term matrix for our entire corpus, we have divided the 
dataset into training and testing set. Each model is developed using the machine learn-
ing algorithm trained with the training set. For the irony classification, we have consi-
dered several machine learning algorithms, such as Naïve Bayes, Support Vector 
Machine, K-Nearest Neighbor and Random Forest. Each of the four algorithms and 
the rationale behind using them to test our corpus have been described below. 

5.1  Naïve Bayes 

Naïve Bayes (NB) Classifier finds probability of a tweet t being in the class C based 
on the following equation: 

�(�|�) = �(w�w�. . w |C) = �(�) ∏ �(#$%$&� |�)     (4) 

where: 

• Tweet t is represented as vector, [w1 w2------wk] and wi is the TFIDF weight 
of the term corresponding to the i-th column of tweet-term matrix described 
in the earlier sections, 

• P(wi|C), the probability that i-th feature of the  tweet t with value wi belongs 
to class C, is calculated based on the assumption that the values of the feature 
are normally distributed in the class C. So, the observation value wiof the i-th 
feature of the tweet, its expected value in class C and the variance of the 
values of the feature in class C are plugged into the equation of normal 
(Gaussian) distribution to compute the probability P(wi|C).  

• P(t|C) is called posterior distribution [20] and P(C) is called prior probability 
calculated as ratio of size of C and the sum of sizes of all classes considered 
in developing the model. 

Given a test tweet, the probability of the tweet being in each class is computed and 
its label is decided by comparing those probabilities. 

Smoothing is applied to deal with data sparseness problem. In our model, we have 
used a smoothing parameter α, for which we have used Laplace smoothing (α=1) [21]. 
The Naïve Bayes classifier will converge more quickly than discriminative statistical 
models and algorithms like logistic regression, which is a significant rationale for 
using this algorithm for testing on the dataset. 



5.2  Support Vector Machine 

Vapnik introduced the utility of the Support Vector Machine (SVM) for classification 
in 1995 [22] and why this method of supervised learning is so robust to overfitting. 
The SVM algorithm finds the maximum margin hyperplane in the feature space sepa-
rating one class from another, defined as             

 wx + b = 0 (5) 

x being the input vector used for classification and w and b are vectors are learned 
through the process of implementing the SVM algorithm.  

To ensure a globally optimal solution, SVM is used to solve linearly constrained 
problems like Eq. (6), defined as 

 min,
�
� ||#||� + C ∑ .//  (6) 

C being the penalty parameter of error terms or the parameter used to control toler-
ance of outliers of the feature vector set and ξ is the slack variable used to relax linear 
separability. 

Since we have implemented irony analysis with 4 labels, we have used multi-class 
SVM that uses one vs. all strategy to develop a group of  binary classifiers whose 
predictions are combined to find the label of the test instance though the alternative 
method of solving multiclass SVM problems in one step by solving a much larger 
optimization problem is also used in [23]. In text classification problems, high dimen-
sional spaces and feature vectors are the norm and the SVM algorithm is popular in 
handling such spaces. 

5.3 K-Nearest Neighbor 

Fix and Hodges [24] describes the K-Nearest Neighbor (KNN) method as an algo-
rithm that takes an unclassified sample as input and determines the class of the sample 
by finding the mode of the labels of the K nearest neighbors of the input sample. The 
K nearest neighbors of the input sample is selected from the training set by computing 
Euclidean distance between the input sample and the training samples. Based on the 
value of K, the vector space of inputs is divided accordingly [25]. Euclidian distance 
between two points x and y in the Euclidian space is calculated as follows: 

 0(1, 2) = 3∑ 41$— 2$6�7$&�  (7) 

This method employs lazy learning, by not learning feature association with the 
classes during the training phase, rather makes use of the abstraction of data samples 
during testing. Since there is no training phase, this classifier parses through the entire 
training set for each prediction. The KNN algorithm was implemented especially to 
analyse the model’s performance on lazy learning.  



5.4 Random Forest 

Random forest [26] is a kind of ensembleclassifier which combines the predictions of 
many decision trees using majority voting to determine the class for a test instance. 
Each decision tree participated in ensembling process is built based on a subset of 
features chosen randomly from the featureset. The method integrates the idea of "bag-
ging" [27] and the random selection of features.  

This algorithm implements multiple decision trees to create subsamples of the data 
and uses averaging to improve accuracy and stop the occurrence of over-fitting. We 
use this algorithm for our irony classification task for several reasons - for many data-
sets, it is proven to be a highly accurate classifier, it runs efficiently on large and high 
dimensional datasets as the algorithm works by creating subsets of the input data and 
the process can be split to multiple processors or machines to run parallelly.   

6 Experiments and Results 

For implementing and testing our models, we have used a manually annotated corpus 
of 1500 tweets, which resulted in the generation of 1500*20721 feature vector (that is, 
each tweet is represented as a vector of 20721 dimensions). After splitting the dataset 
into the training set and the testing set, the machine learning algorithms were trained 
on the training set to develop the models. Due to the dependence of each term in a 
document with its neighboring terms, a major feature of the corpus prioritized for the 
irony classification task was the distinctive manner of expression. This feature was 
captured and fed into each machine learning model by implementing the word n-gram 
sequence model the given samples of text used in training.   

We have judged the performances of these models for our defined two tasks-(1) 
irony detection at the coarse-grained level (classification of tweets as ironic or non-
ironic) and (2) irony detection at the fine-grained (classification of tweets into one of 
four classes: Verbal_Irony, Irony_Clash, Situational_Irony and No_Irony). 

We have used the standard 10-fold cross-validation [28] which divides the data in-
to equal 10 parts and considers one part consisting of 150 unique tweets as the test set 
and the remaining 9 parts consisting of 1350 tweets as the training set for each fold. 
The accuracy on the test set for each fold is recorded and the overall accuracy is com-
puted by averaging the results obtained for 10 folds. To obtain optimal results, we 
have tuned the parameters of each algorithm to best fit our dataset. The details of 
parameter tuning have been described in the following section. 

For implementation of our models, we have used Google Colaboratory, a Google 
Cloud Service variant of the Jupyter Notebook, which supports Python 2 and Python 
3. The Pandas library was used to simplify and organize the structure of the dataset 
into dataframes, which is a useful data structure for our text classification task. The 
library used for the implementation of the machine learning algorithms is scikit-learn. 
The metric used to assess the quality of the dataset and models for the corpus is accu-
racy as it is a good metric for the comparison of the four algorithms used and is a 
relevant metric to check how the model works on unseen data. 



6.1  Naïve Bayes 

For this model, we did appropriate parameter tuning by setting smoothing parameter, 
alpha to 1 for Laplace smoothing. The parameter fit_prior [29] was also set. This 
model achieves the 10-fold cross validated accuracy of 46.53 % for fine-grained task 
and 56.67% for coarse-grained task. 

6.2  Support Vector Machine 

Due to its inherent ability to deal with high dimensional data, the Support Vector 
Machine is one of the best models for text classification We have used multi-class 
SVM for the multiclass irony analysis of Bengali tweets. 

We have implemented a Support Vector Classification (SVC) model with several 
kernels [30] for obtaining the optimized results. We have also varied the value of 
penalty parameter C for obtaining the best results. We have shown in Table 3 and 
Table 4 how the performance of Support Vector Classifier on our Bengali irony data-
set is affected when the choices of kernel and the cost parameter are varied. 

Table 3.Accuracy of Support Vector Machine Classifier for fine-grained irony detection task 
when the choices of kernel and the cost parameter are varied.  

SVC Kernels C=1 C=10 C=100 C=1000 

Linear 47.20 45.93 45.86 44.27 

Polynomial 47.13 46.93 43.40 43.27 

RBF 47.33 47.13 44.33 43.06 

Table 4.Results of Support Vector Classifier algorithm for coarse-grained irony detection task 
when the cost parameter C is varied. 

 
As we can see from Table 3 and Table 4, the SVM algorithm achieves the best per-

formance for the fine-grained irony classification task using the RBF kernel and C 
being set to 1 whereas, for coarse-grained irony classification, SVM achieves the best 
performance when the polynomial kernel is chosen, and C is set to 1. 

SVC Kernels C=1 C=10 C=100 C=1000 

Linear 64.53 65.67 65.07 63.67 

Polynomial 67.47 66.47 63.87 62.60 

RBF 66.67 66.27 63.80 63.20 



6.3 K-Nearest Neighbor 

Since the value of K affects the performance of K-nearest neighbor algorithm [31], 
we have varied the values of k from 1 to 99 and the ten-fold cross validation accuracy 
is calculated for each case. Only odd values of K were considered to avoid the ties 
among the classes. The optimum value of accuracy was found at k=79 for fine-
grained classification and at k=7 and 15 for the coarse-grained classification task. 
Weights of vote cast by each nearest neighbor is set to the inverse of their Euclidian 
distance.  

Since the Euclidian distance method was considered, the power parameter for the 
Minkowski metric [32] was set as 2. The performances of the KNN model for both 
the coarse- grained and the fine-grained Bengali irony tweet classification tasks with 
varyingvalues of K are shown in Table 5 and Table 6. 

Table 5. Fine-grained Bengali irony classification performance of K-Nearest Neighbor Algo-
rithm when the value of K is varied. 

KNN Model Accuracy (%) 

K=79 47.93 

K=85 47.67 

K=81,99 47.60 

K=73 47.53 

K=71, 77, 97 47.47 

Table 6.Coarse-grained Bengali irony classification performance of K-Nearest Neighbor Algo-
rithm when the value of K is varied. 

KNN Model Accuracy (%) 

K=7, 15 62.87 

K=17 62.73 

K=9 62.67 

K=27 62.53 

K=5, 13, 25 62.40 



6.4 Random Forest 

To obtain the best performance with Random forest, we have varied the number of 
trees from 2 to 256, at intervals of 2i, where i is taken from 1 to 8. Values after 256 
are not taken as, [34] the model accuracy value stagnates as more trees are used. For 
the Random Forest Classifier, we have not specified a maximum depth of a tree and 
kept the minimum value of leaves fixed to 1. The accuracy of the Random Forest 
model for both the Bengali irony tweet classification tasks with varying number of 
trees in Table 7 and Table 8. As we can see from Table 7 and Table 8, Random Forest 
with number of trees set to 128 performs the best for the fine-grained Bengali irony 
tweet classification task and Random Forest with number of trees set to 256 performs 
the best for the coarse-grained Bengali irony tweet classification task. 

Table 7.Fine-grained Bengali irony classification performance of the Random Forest algorithm 
when the number of trees is varied. 

Table 8.Coarse-grained Bengali irony classification performance of the Random Forest algo-
rithm when the number of trees is varied. 

6.5  Comparisons of Models and Discussion 

By comparing the results of all the machine learning algorithms, we can observe that 
the Random Forest algorithm with 128 trees performed the best for our fine-grained 
Bengali irony tweet classification task and  showed 48.13% accuracy though the KNN 
algorithm also achieves a very close results with the value of k set to 79, which is 
surprising considering the fact that K-Nearest Neighbor algorithm is relatively simple 
and is implemented by lazy learning principle.  

But, for coarse-grained Bengali irony tweet classification task, SVM with poly-
nomial kernel and the cost parameter C set to1 performed the best among all of our 
developed machine learning models. For this task, we also observe that Random For-

Random 
Forest 
Model 

Number of Trees 

2 4 8 16 32 64 128 256 

Accuracy 
(%) 

36.33 39.80 43.53 45.80 46.67 47.67 48.13 47.60 

Random 
Forest 
Model 

Number of Trees 

2 4 8 16 32 64 128 256 

Accuracy 
(%) 

55.27 57.93 59.99 61.73 63.13 64.53 65.93 66.99 



est model with 256 trees achieved the performance very close to the SVM based 
model. The SVM model achieves 67.47% accuracy whereas the Random Forest mod-
el achieves 66.99% accuracy. Since the coarse-grained Bengali irony tweet classifica-
tion task is basically a binary classification task, SVM performs the best for this task. 
Our experimental results reveal that the Random Forest model performs consistently 
well for both the tasks. 

We conclude that the correct classification and detection of irony is linguistically 
difficult, by the low accuracy results of the fine-grained approach. This may be boiled 
down to the low number of ironic tweets available right now, which caused a class 
imbalance problem in the fine-grained corpus. This resulted in the predictions ranging 
in the 40-50% cross-validated accuracy bracket, while the coarse-grained binary clas-
sification for irony yielded better results, ranging in the 60-70% cross-validated accu-
racy bracket. This is because the corpus was far more balanced for tweets that were 
classified as simply ironic or not ironic. We discuss solutions for the above problem 
in section 7.  

7 Conclusion 

In our research, we created a new dataset for irony classification in the Bengali lan-
guage. This was done due to the discernable lack of any relevant corpus for our spe-
cific research, even though such corpuses are well developed in several other lan-
guages. For any new corpus created for natural language processing task, it needs to 
be tested on several machine learning algorithms to report the baseline results on the 
dataset. Our paper provides valuable insight into the linguistic analysis required to 
identify and annotate irony as well as gives an understanding of methods and prob-
lems in implementing multi-class irony analysis of Bengali tweets.  Though we have 
used four widely used machine learning techniques for implementing our models, our 
best models achieve 47.93% accuracy for fine-grained Bengali irony tweet classifica-
tion task and 67.47% for coarse-grained Bengali irony tweet classification tasks. It 
shows that classification of Bengali irony tweets is not an easy task.  

The major problem we have faced while completing this work is the class imbal-
ance problem. The number of tweets that were not ironic are far greater in number 
than the rest in the fine-grained dataset. A consequence of the above may be the low 
separability between the majority class, non-ironic tweets, with the minority classes, 
which is something which has resulted in the classification accuracy reported in this 
paper.  

The amount of analysis done for this corpus, being the first Bengali corpus for iro-
ny classification, should set precedence for other researchers in the field of irony clas-
sification of Bengali tweets. On a positive note, the recent surge in activity in the 
usage of the Bengali script on Twitter will make possible in future to develop the 
larger corpus and increase it beyond the current 1500 tweet dataset, thus enabling the 
creation of better feature vectors. We hope that the current corpus will be improved 
with time with more ironic tweets to handle the class imbalance problem. Further 
work on irony classification in Bengali will involve word-embedding with Long 



Short-Term Memory (LSTM) to establish semantic relationships in the corpus and 
latent semantic analysis for further dimensionality reduction, which may improve the 
accuracy as well as other performance metrics of the irony classification task. 
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