
HAL Id: hal-03434643
https://inria.hal.science/hal-03434643

Submitted on 18 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Uncertain Enterprise: Achieving Adaptation
Through Digital Twins and Machine Learning Extended

Abstract
Tony Clark

To cite this version:
Tony Clark. The Uncertain Enterprise: Achieving Adaptation Through Digital Twins and Machine
Learning Extended Abstract. 13th IFIP WG 8.1 Working Conference on the Practice of Enter-
prise Modeling (PoEM 2020), Nov 2020, Riga, Latvia. pp.3-7, �10.1007/978-3-030-63479-7_1�. �hal-
03434643�

https://inria.hal.science/hal-03434643
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


The Uncertain Enterprise:
Achieving Adaptation through Digital Twins

and Machine Learning
Extended Abstract

Tony Clark

Aston University, UK
tony.clark@aston.ac.uk

1 Introduction

Systems, such as production plants, logistics networks, IT service companies, and
international financial companies, are complex systems operating in highly dy-
namic environments that need to respond quickly to a variety of change drivers.
The characteristic features of such systems include scale, complex interactions,
knowledge of behaviour limited to localised contexts, and inherent uncertainty.

Knowing how to analyse, design, implement, control and adapt such systems
is a difficult problem that lacks suitable mainstream engineering methodologies
and technologies. Grand challenges such as Smart Cities, large-scale integration
of information systems such as national medical records, and Industry 4.0 can
only be achieved through the deployment and integration of information systems
with existing systems.

The increasing connectedness of businesses and their reliance on software
is leading to large-scale, networked, semi-autonomous interdependent system of
systems. As a result, it is increasingly difficult to consider software systems in
isolation, instead, they form a dynamically connected ecosystem characterised
by a variety of interactions between them.

Any new system is thus deployed into a connected world and must be resilient
in order to continue to deliver the stated goals by learning to suitably adapt to
situations that may not be known a priori. Moreover, even system goals may
change over time.

Traditional Software Engineering techniques tend to view the required sys-
tem as having a fixed behaviour and being deployed into a well-understood op-
erating environment. A typical development process expresses what the system
must achieve in the form of a specification, how the system achieves the speci-
fied behaviour in the form of a design, and how the design is realised in terms of
system implementation making appropriate use of underlying technology plat-
forms. This works well when the characteristics of the system allows the design
to be complete and when the environment into which the system is deployed is
completely understood.

Enterprise systems must dynamically adapt. In the first instance such a sys-
tem must adapt in order to achieve its goals within an environment that can



2 Tony Clark

only be partially understood because of its complexity. Once the deployed sys-
tem reaches a steady state, changes may occur in its environment or to its goals
that require further dynamic adaptation. Approaches to adaptation include the
following:

Product Line Engineering: This is an approach that aims to identify and
include variability points into the design of a system [2]. The key SPLE
techniques are not appropriate for addressing the Uncertain Enterprise since
the variations must be known in advance.

Control Theory: Various forms of control theory have been developed in order
to adapt physical systems. Generally these techniques measure the difference
between observed behaviour and desired behaviour and translate these into
a collection of control parameters that nudge the system into the right di-
rection. A typical example of this approach is Model Reference Adaptive
Control (MRAC) [1]. Traditionally these approaches use a collection of nu-
merical equations to control real-time aspects of machinery; however, the
architecture of the approach is appropriate for information systems provid-
ing there is an appropriate technology that can calculate the controls based
on information system behaviour.

Rule Based: Rules of the form if condition then adapt-action can be used
to encode knowledge about adaptation actions that are required when cer-
tain system conditions arise [3,4]. Like SPLE, this approach requires the
conditions and actions for adaptation to be known beforehand, which is
challenging in many cases of complex systems.

Architecture Based: An architecture-based approach organises a system as
a collection of components that are co-ordinated via a manager. The man-
ager can then change the way the components are co-ordinated depending
on adaptation conditions. An example of this is the Monitoring, Analysis,
Planning and Execution (MAPE) loop [5]. A key feature of this approach
is to organise a complex system as a collection of decentralised components
that can be co-ordinated in order to adapt.

Model Driven Development: Model Driven Software Engineering aims to
generate systems from an abstract representation. Models can be used during
run-time to allow a system to reason about itself and to adapt to changes in
its goals or environment [7].

Most of these approaches rely on understanding the range of variability that is
required and using an appropriate technology to encode the variability. Software
has two significant dimensions of ambiguity that requires adaptation:

1. The behaviour of the system that must adapt may only be partially un-
derstood. Generally, it is the case that the required behaviour of a system
is known, the components of the system are known together with their lo-
calised data and behaviour, however the algorithm required to co-ordinate
the components in order to achieve the desired outcomes is vague, leading to
the observation of emergent behaviour. The components must adapt in order
to achieve the overall system behaviour.



The Uncertain Enterprise 3

2. When the environment changes or the goals of a system change it is often
ambiguous as to how to modify the system components in order to continue
operating. The system must be able to adapt in such a situation.

Dealing with both these kinds of ambiguity leads to a requirement for an ap-
proach that supports adaptation in the original system design so that it can be
deployed and immediately adapt to its operating environment and then subse-
quently adapt to changes that occur. In all cases the behaviour of the system is
driven by both its goals and the need to interact with its environment.

Given the requirement on information system adaptation, the key feature
from existing approaches seem to be: organising information systems in terms of
decentralised control (Architecture Based) together with an ability to com-
pare the current execution history against the desired outcome in order to gen-
erate control parameter values (Control Theory).

The use of decentralised components (actors or agents) organised using an
MRAC-style architecture that uses some form of machine learning to dynami-
cally calculate the control parameter values produces the idea of Digital Twin
that runs along side a complex system and dynamically adapts it to changes in
the goals and its environment. Various forms of machine learning can be used
depending on the circumstances, but a fully dynamic digital twin might benefit
from the use of Reinforcement Learning [6] which is model-free and does not rely
on previous execution histories of the system.

The importance and timeliness of applying Digital Twins to software and
systems development is highlighted in the number of recent industry thought
leadership editorials that describe the huge breadth and potential of this ap-
proach including Deloitte1 , Simio2 , Forbes3 and Gartner4.

Digital Twins can be applied in many different scenarios. Twins of physical
systems can be used to provide a cost-effective way of exploring the design space
for new products or optimisations. Twins of information systems can be used to
achieve adaptation in complex ecosystems. Twins of populations (such as those
modelled in the current Covid-19 pandemic) can be used to perform scenario
playing where behaviour is inherently emergent.

It is desirable to envisage a situation where digital twins are used in a variety
of modes for complex system analysis and development:

Analysis: A key requirement is to ascertain that a complex system is achieving
its goals. A digital twin can provide a cost-effective solution through exe-
cution in a simulation environment producing traces that can be examined
for occurrence of the desired (and undesired) behavioural patterns. A digital
twin can also support what-if and if-what scenario playing to explore the
system state space.

Adaptation: An existing system may expose a control interface that can be
used for dynamic adaptation. A digital twin can be used to address the

1
deloitte.com/us/en/insights/focus/tech-trends/2020/digital-twin-applications-bridging-the-physical-and-digital.html

2
simio.com/blog/2019/11/14/top-trends-in-simulation-and-digital-twins-technology-for-2020/

3
forbes.com/sites/bernardmarr/2019/04/23/7-amazing-examples-of-digital-twin-technology-in-practice/#4cd0672d6443

4
https://www.gartner.com/en/documents/3957042/market-trends-software-providers-ramp-up-to-serve-the-em

deloitte.com/us/en/insights/focus/tech-trends/2020/digital-twin-applications-bridging-the-physical-and-digital.html 
simio.com/blog/2019/11/14/top-trends-in-simulation-and-digital-twins-technology-for-2020/ 
forbes.com/sites/bernardmarr/2019/04/23/7-amazing-examples-of-digital-twin-technology-in-practice/#4cd0672d6443
https://www.gartner.com/en/documents/3957042/market-trends-software-providers-ramp-up-to-serve-the-em


4 Tony Clark

problem of constructing the desired control inputs by running alongside the
real-system and producing control commands based on a comparison of the
observed and desired behaviour. This leads to the idea of a digital twin being
used for continuous improvement of complex system behaviour through a
variety of classical control theory and AI based techniques.

Maintenance: This is the single most expensive activity in a system lifecycle
and can be responsible for over 60% of the overall costs. This is largely due to
the present inability to explore the solution space effectively and efficiently. A
digital twin can overcome this hurdle through what-if and if-what scenario
playing to help arrive at a feasible transformation path from the “as is’
state to the desired “to be” state in silico. Once the transformation path is
vindicated, the necessary changes can be introduced into the real system in
the right order thus providing assurances of correctness.

Design: A new complex system can start life as a digital twin that is used as
a blueprint. The twin provides a specification of the behaviour for the real
system and can be integrated with existing systems in the target ecosystem
by observing their outputs. The design can then use adaptation to tailor its
behaviour with respect to real ecosystem data.

This leads to a vision for future enterprise information systems based on Digital
Twins that are used to address the various forms of uncertainty encountered
in modern enterprise systems including: the behaviour of the system, the envi-
ronment into which it is deployed and the goals against which it operates. Such
digital twins are based on decentralised agents whose individual behaviours are
controlled via levers and which expose execution histories to a reinforcement
learning algorithm producing controls that satisfy dynamically changing goals
and environments. In order to achieve this vision we require technologies that
support the design, verification and run-time environments for such systems.

References

1. Itzhak Barkana. Simple adaptive control–a stable direct model reference adaptive
control methodology–brief survey. International Journal of Adaptive Control and
Signal Processing, 28(7-8):567–603, 2014.

2. Ana Eva Chacón-Luna, Antonio Manuel Gutierrez, José A Galindo, and David
Benavides. Empirical software product line engineering: A systematic literature
review. Information and Software Technology, page 106389, 2020.

3. Lauma Jokste. Comparative evaluation of the rule based approach to representation
of adaptation logics. In Proceedings of the 12th International Scientific and Practical
Conference. Volume II, volume 65, page 69, 2019.

4. Lauma Jokste and Janis Grabis. Rule based adaptation: literature review. In
Proceedings of the 11th International Scientific and Practical Conference. Volume
II, volume 42, page 46, 2017.

5. Nabor C Mendonça, David Garlan, Bradley Schmerl, and Javier Cámara. Gener-
ality vs. reusability in architecture-based self-adaptation: the case for self-adaptive
microservices. In Proceedings of the 12th European Conference on Software Archi-
tecture: Companion Proceedings, pages 1–6, 2018.



The Uncertain Enterprise 5

6. Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

7. Thomas Vogel and Holger Giese. Model-driven engineering of adaptation engines
for self-adaptive software: Executable runtime megamodels. Number 66. Univer-
sitätsverlag Potsdam, 2013.


	The Uncertain Enterprise: Achieving Adaptation through Digital Twins and Machine Learning
	Introduction


