
HAL Id: hal-03283229
https://inria.hal.science/hal-03283229

Submitted on 9 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On Implementable Timed Automata
Sergio Feo-Arenis, Milan Vujinović, Bernd Westphal

To cite this version:
Sergio Feo-Arenis, Milan Vujinović, Bernd Westphal. On Implementable Timed Automata. 40th
International Conference on Formal Techniques for Distributed Objects, Components, and Systems
(FORTE), Jun 2020, Valletta, Malta. pp.78-95, �10.1007/978-3-030-50086-3_5�. �hal-03283229�

https://inria.hal.science/hal-03283229
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

On Implementable Timed Automata⋆

Sergio Feo-Arenis1, Milan Vujinović2, and Bernd Westphal2

1 Airbus Central R&T
2 Albert-Ludwigs-Universität Freiburg, Germany

Abstract. Generating code from networks of timed automata is a well-
researched topic with many proposed approaches, which have in common
that they not only generate code for the processes in the network, but
necessarily generate additional code for a global scheduler which imple-
ments the timed automata semantics. For distributed systems without
shared memory, this additional component is, in general, undesired.
In this work, we present a new approach to the generation of correct
code (without global scheduler) for distributed systems without shared
memory yet with (almost) synchronous clocks if the source model does
not depend on a global scheduler. We characterise a set of implementable
timed automata models and provide a translation to a timed while lan-
guage. We show that each computation of the generated program has a
network computation path with the same observable behaviour.

1 Introduction

Automatic code generation from real-time system models promises to avoid hu-
man implementation errors and to be cost and time efficient, so there is a need to
automatically derive (at least parts of) an implementation from a model. In this
work, we consider a particular class of distributed real-time systems consisting of
multiple components with (almost) synchronous clocks, yet without shared mem-
ory, a shared clock, or a global scheduler. Prominent examples of such systems
are distributed data acquisition systems such as data aggregation in satellite
constellations [18, 16], the wireless fire alarm system [15], IoT sensors [30], or
distributed database systems (e.g. [12]). For these systems, a common notion
of time is important (to meet real-time requirements or for energy efficiency)
and is maintained up to a certain precision by clock synchronisation protocols,
e.g., [17, 23, 24]. Global scheduling is undesirable because schedulers are expen-
sive in terms of network bandwidth and computational power and the number
of components in the system may change dynamically, thus keeping track of all
components requires large computational resources.

Timed automata, in particular in the flavour of Uppaal [7], are widely used
to model real-time systems (see, for example, [14, 32]) and to reason about the
correctness of systems as the ones named above. Modelling assumptions of timed
automata such as instantaneous updates of variables and zero-time message ex-
change are often convenient for the analysis of timed system models, yet they, in

⋆ Partly supported by the German Research Council (DFG) under grant WE 6198/1-1.

2 Feo-Arenis, Vujinović, Westphal

general, inhibit direct implementations of model behaviour on real-world plat-
forms where, e.g., updating variables take time.

In this work, we aim for the generation of distributed code from networks
of timed automata with exactly one program per network component (and no
other programs, in particular no implicit global scheduler), where all execution
times are considered and modelled (including the selection of subsequent edges),
and that comes with a comprehensible notion of correctness. Our work can be
seen as the first of two steps towards bridging the gap between timed automata
models and code. We propose to firstly consider a simple, iterative programming
language with an exact real-time semantics (cf. Section 4) as the target for code
generation. In this step, which we consider to be the harder one of the two,
we deal with the discrepancy between the atomicity of the timed automaton
semantics and the non-atomic execution on real platforms. The second step will
then be to deal with imprecise timing on real-world platforms.

Our approach is based on the following ideas. We define a short-hand nota-
tion (called implementable timed automata) for a sub-language of the well-known
timed automata (cf. Section 3). We assume independency from a global sched-
uler [5] as a sufficient criterion for the existence of a distributed implementation.
For the timing aspect, we propose not to use platform clocks directly in, e.g.,
edge guards (see related work below) but to turn model clocks into program
variables and to assume a “sleep” operation with absolute deadlines on the tar-
get platform (cf. Section 4). In Section 5, we establish the strong and concrete
notion of correctness that for each time-safe computation of a program obtained
by our translation scheme there is a computation path in the network with the
same observable behaviour. Section 6 shows that our short-hand notation is suffi-
ciently expressive to support industrial case studies and discusses the remaining
gap towards real-world programming languages like C, and Section 7 concludes.

Generating code for timed systems from timed automata models has been
approached before [3, 4, 20, 25, 29]. All these works also generate code for a sched-
uler (as an additional, explicit component) that corresponds to the implicit,
global scheduler introduced by the timed automata semantics [5]. Thus, these
approaches do not yield the distributed programs that we aim for. A different
approach in the context of timed automata is to investigate discrete sampling
of the behaviour [28] and so-called robust semantics [28, 33]. A timed automa-
ton model is then called implementable wrt. to certain robustness parameters.
Bouyer et al. [11] have shown that each timed automaton (not a network, as in
our case) can be sampled and made implementable at the price of a potentially
exponential increase in size. A different line of work is [1, 2, 31]. They use timed
automata (in the form of RT-BIP components [6]) as abstract model of the
scheduling of tasks. Considering execution times for tasks, a so-called physical
model (in a slightly different formalism) is obtained for which an interpreter has
been implemented (the real-time execution engine) that then realises a schedul-
ing of the tasks. The computation time necessary to choose the subsequent task
(including the evaluation of guards) is “hidden” in the execution engine (which

On Implementable Timed Automata 3

at least warns if the available time is exceeded), and they state the unfortunate
observation that time-safety does not imply time-robustness with their approach.

There is an enormous amount of work on so-called synchronous languages
like Esterel [10], SIGNAL [8], Lustre [19] and time triggered architectures such as
Giotto/HTL [21]. These approaches provide an abstract programming or mod-
elling language such that for each program, a deployable implementation, in
particular for signal processing applications, can be generated.

2 Preliminaries

As modelling formalism (and input to code generation), we consider timed au-
tomata as introduced in [7]. In the following, we recall the definition of timed
automata for self-containedness. Our presentation follows [26] and is standard
with the single exception that we exclude strict inequalities in clock constraints.

A timed automaton A = (L,A,X, V, I, E, ℓini) consists of a finite set of loca-
tions (including the initial location ℓini), sets A, X , and V of channels, clocks,
and (data) variables. A location invariant I : L → Φ(X) assigns a clock con-
straint over X from Φ(X) to a location. Finitely many edges in E are of the
form (ℓ, α, ϕ,~r, ℓ′) ∈ L × A!? × Φ(X,V) × R(X,V)∗ × L where A!? consists of
input and output actions on channels and the internal action τ , Φ(X,V) are
conjunctions of clock constraints from Φ(X) and data constraints from Φ(V),
and R(X,V)∗ are finite sequences of updates, an update either resets a clock or
updates a data variable. For clock constraints, we exclude strict inequalities as
we do not yet support their semantics (of reaching the upper or lower bound
arbitrarily close but not inclusive) in the code generation. In the following, we
may write ℓ(e) etc. to denote the source location of edge e.

The operational semantics of a network N = A1‖ . . . ‖An of timed automata
as components – and with pairwise disjoint sets of clocks and variables – is

the (labelled) transition system T (N) = (C,Λ, {
λ
−→| λ ∈ Λ}, Cini) over con-

figurations. A configuration c ∈ C = {〈~ℓ, ν〉 | ν |= I(~ℓ)} consists of location

vector ~ℓ (an n-tuple whose i-th component is a location of Ai) and a valuation
ν : X(N) ∪ V (N) → R

+
0 ∪ D of clocks and variables. The location vector has

invariant I(~ℓ) =
∧n

i=1 I(ℓi), and we assume a satisfaction relation between val-
uations and clock and data constraints as usual. Labels are Λ = {τ} ∪R

+
0 , and

the set of initial configurations is Cini = {〈(ℓini,1, . . . , ℓini,n), 0〉} ∩C. There is a

delay transition 〈~ℓ, ν〉
t
−→ 〈~ℓ, ν + t〉, t ∈ R

+
0 , if and only if ν + t′ |= I(~ℓ) for all

t′ ∈ [0, t]. There is an internal transition 〈~ℓ, ν〉
τ
−→ 〈~ℓ′, ν′〉, if and only if there is

an edge e = (ℓ, τ, ϕ,~r, ℓ′) enabled in 〈~ℓ, ν〉 and ν′ is the result of applying e’s

update vector to ν. An edge is enabled in 〈~ℓ, ν〉 if and only if its source location
occurs in the location vector, its guard is satisfied by ν, and ν′ satisfies the des-
tination location’s invariant. There is a rendezvous transition 〈~ℓ, ν〉

τ
−→ 〈~ℓ′, ν′〉, if

and only if there are edges e0 = (ℓ0, a!, ϕ0, ~r0, ℓ
′
0) and e1 = (ℓ1, a?, ϕ1, ~r1, ℓ

′
1) in

two different automata enabled in 〈~ℓ, ν〉 and ν′ is the result of first applying e0’s
and then e1’s update vector to ν.

4 Feo-Arenis, Vujinović, Westphal

A transition sequence of N is any finite or infinite, initial and consecutive

sequence of the form 〈~ℓ0, ν0〉
λ1−→ 〈~ℓ1, ν1〉

λ2−→ · · · . N is called deadlock-free if no
transition sequence of N ends in a configuration c such that there are no c′, c′′

such that c
t
−→ c′

λ
−→ c′′ with t ∈ R

+
0 , λ /∈ R

+
0 . A computation path of N is a

time stamped transition sequence 〈~ℓ0, ν0〉, t0
λ1−→ 〈~ℓ1, ν1〉, t1

λ2−→ · · · s.t. t0 = 0,
ti+1 = ti + λi+1 if λi+1 ∈ R

+
0 and ti+1 = ti if λi+1 = τ .

Next, Deadline, Boundary. Given an edge e with source location ℓ and clock
constraint ϕclk , and a configuration c = 〈~ℓ, ν〉, we define next(c, ϕclk) = min{d ∈
R

+
0 | ν+d |= I(ℓ)∧ϕclk} and deadline(c, ϕclk) = max{d ∈ R

+
0 | ν+next(c, ϕclk)+

d |= I(ℓ)∧ϕclk} if minimum/maximum exist and∞ otherwise. That is, next gives
the smallest delay after which e is enabled from c and deadline gives the largest
delay for which e is enabled after next . The boundary of a location invariant ϕclk

is a clock constraint ∂ϕclk s.t. ν + d |= ∂ϕclk if and only if d = next(c, ϕclk) +
deadline(c, ϕclk). A simple sufficient criterion to ensure existence of boundaries
is to use location invariants of the form ϕclk = x ≤ q, then ∂ϕclk = x ≥ q.

3 Implementable Timed Automata

In the following, we introduce implementable timed automata that can be seen
as a definition of a sub-language of timed automata as recalled in Section 2. As
briefly discussed in the introduction, a major obstacle with implementing timed
automata models is the assumption that actions are instantaneous. The goal
of considering the sub-language defined below is to make the execution time of
resets and the duration of message transmissions explicit. Other works like, e.g.,
[13], propose higher-dimensional timed automata where actions take time. We
propose to make action times explicit within the timed automata formalism.

Definition 1. An implementable timed automaton I = (L, ℓini , A,X, V, I, E)
consists of locations, initial location, channels, clocks, variables like timed au-
tomata, a location invariant I : L → Φ(X) s.t. each I(ℓ) has a boundary ∂I(ℓ),
and a finite set E = Eτ ∪ E! ∪E? of edges consisting of

– internal edges (ℓ, ϕ,~rdat , ~rclk , ℓ
′) ∈ Eτ ⊆ L× Φ(X,V)×R(V)×R(X)× L,

– send edges (ℓ, ϕ, a!, ~rclk , ℓ
′) ∈ E! ⊆ L× Φ(X,V)×A! ×R(X)× L,

– receive edges (ℓ, ϕclk , {(a1?, ℓ′1), . . . , (an?, ℓ
′
n)}, ~rclk , ℓ

′) n ≥ 0,
in E? ⊆ L× Φ(X)× 2A?×L ×R(X)× L. ♦

Implementable timed automata distinguish internal, send, and receive edges
by action and update in contrast to timed automata. An internal edge models
(only) updates of data variables or sleeping idle (which takes time on the plat-
form), a send edge models (only) the sending of a message (which takes time),
and a receive edge (only) models the ability to receive a message with a timeout.
All kinds of edges may reset clocks. Figure 1 shows an example implementable
timed automaton using double-outline edges to distinguish the graphical repre-
sentation from timed automata. The edge from ℓ0 to ℓ1, for example, models that

On Implementable Timed Automata 5

ℓ6 ℓ0

x ≤ s0
+ g +m

ℓ1

x ≤ s1

ℓ2

x ≤ s1
+ g +m

ℓ3

x ≤ s2

ℓ4

x ≤ s2
+ g +m

ℓ5x ≥ s0 + g

LZ[id]!

ACK?
x ≥ s0 + g +m+ nl1

x ≥ s1 + g

LZ[id]!

ACK?
x ≥ s1 + g +m+ nl3

x ≥ s2 + g

LZ[id]!

ACK?
x ≥ s2 + g +m+ nl5

x := 0

x ≥ c− nl0

x ≤ s3x ≤ c

Fig. 1: The LZ-protocol of sensors [15] as implementable timed automaton.

ℓ

I(ℓ)

ℓ′

I(ℓ′)

ϕ τ

~rdat ;~rclk

ℓ

I(ℓ)

ℓ×

I(ℓ)

ℓ′

I(ℓ′)

ϕ τ

~rdat

∂I(ℓ) τ

~rclk

(a) Internal edge (ℓ, ϕ, ~rdat , ~rclk , ℓ
′).

ℓ

I(ℓ)

ℓ′

I(ℓ′)

ϕ a!

~rclk

ℓ

I(ℓ)

ℓ×

I(ℓ)

ℓ′

I(ℓ′)

ϕ a! ∂I(ℓ) τ

~rclk

(b) Send edge (ℓ, ϕ, a!, ~rclk , ℓ
′).

ℓ

I(ℓ)

ℓ′

I(ℓ′1)

ϕclk a1?
ℓ′

I(ℓ′)

~rclk

ℓ′n

I(ℓ′n)

ϕclk an?

ℓ

I(ℓ)

ℓ×

I(ℓ)

ℓ′

I(ℓ′1)

ϕclk a1? ∂I(ℓ) τ

~rclk

ℓ′

I(ℓ′)
τ ∂I(ℓ)

~rclk

ℓ×n

I(ℓ)

ℓ′n

I(ℓ′n)

∂I(ℓ) τ

~rclk

ϕclk an?

(c) Receive edge (ℓ, ϕclk , {(a1?, ℓ
′

1), . . . , (an?, ℓ
′

n)}, ~rclk , ℓ
′).

Fig. 2: Edges of the timed automaton of an implementable timed automaton.

message ‘LZ[id]’ may be transmitted between time s0 + g (including guard time
g and operating time) and s0 + g +m, i.e., the maximal transmission duration
here is m. The time nl1 would be the operating time budgeted for location ℓ1.

The semantics of the implementable network N consisting of implementable
timed automata I1, . . . , In is the labelled transition system T (AI1

‖ . . . ‖AIn
).

The timed automataAIi
are obtained from Ii by applying the translation scheme

in Figure 2 edge-wise. The construction introduces fresh ℓ×-locations. Intuitively,
a discrete transition to an ℓ×-location marks the completion of a data update
or message transmission in I that started at the next time of the considered
configuration. After completion of the update or transmission, implementable
timed automata always wait up to the deadline. If the update or transmission
has a certain time budget, then we need to expect that the time budget may be
completely used in some cases. Using the time budget, possibly with a subsequent
wait, yields a certain independence from platform speed: if one platform is fast
enough to execute the update or transmission in the time budget, then all faster
platforms are. Note that the duration of an action may be zero in implementable
timed automata (exactly as in timed automata), yet then there will be no time-
safe execution of any corresponding program on a real-world platform.

6 Feo-Arenis, Vujinović, Westphal

ℓ1,0

x ≤ s1,0 + w1

ℓ1,1

x ≤ s1,1 +m

ℓ1,1
x ≥ s1,0

~rdat,1

a!
‖

ℓ2,0

y ≤ s2,0 + w2

ℓ2,1

y ≤ s2,2

ℓ2,1
y ≥ s2,0

~rdat,2

y ≥ s2,1 a?

Fig. 3: Artificial example of a non-implementable network if s2,0+w2 > s1,0+w1.

In [5], the concept of not to depend on a global scheduler is introduced.
Intuitively, independency requires that sending edges are never blocked because
no matching receive edge is enabled or because another send edge in a different
component is enabled. That is, the schedule of the network behaviour ensures
that at each point in time at most one automaton is ready to send, and that
each automaton that is ready to send finds an automaton that is ready for the
matching receive. Similar restrictions have been imposed on timed automaton
models in [9] to verify the ZeroConf protocol. Whether a network depends on a
global scheduler is decidable; for details, we refer the reader to [5].

Figure 3 shows an artificial network of implementable timed automata whose
independency from a global scheduler depends on the parameters s1,0 +w1 and
s2,0 + w2. If the location ℓ1,1 is reached, then the standard semantics of timed
automata would (using the implicit global scheduler) block the sending edge until
ℓ2,1 is reached. Yet in a distributed system, the sender should not be assumed to
know the current location of the receiver. By choosing the parameters accordingly
(i.e., by protocol design), we can ensure that the receiver is always ready before
the sender so that the sender is never blocked. In this case, we can offer a
distributed implementation.

In the following sections, we only consider networks of implementable timed
automata that are deadlock-free, closed component (no shared clocks or vari-
ables, no committed locations (cf. [7])), and do not depend on a global scheduler.

4 Timed While Programs

In this section, we introduce a timed programming language that provides the
necessary expressions and statements to implement networks of implementable
timed automata as detailed in Section 5. The semantics is defined as a structural
operational semantics (SOS) [27] that is tailored towards proving the correct-
ness of the implementations obtained by our translation scheme from Section 5.
We use a dedicated time component in configurations of a program to track
the execution times of statements and support a snapshot operator to measure
the time that passed since the execution of a particular statement. Due to lack
of space, we introduce expressions on a strict as-needed basis, including mes-
sage, location, edge, and time expressions. In a general purpose programming
language, the former kinds of expressions can usually be realised using integers
(or enumerations), and time expressions can be realised using platform-specific
representations of the current system time.

Syntax. Expressions of our programming language are defined wrt. given network
variables V and X . We assume that each constraint from Φ(X,V) or expression

On Implementable Timed Automata 7

S ::= v← expr | t← texpr | m← mexpr | l← lexpr | sleepto(texpr)

| send(mexpr) | m← receive(expr) | e, v1, v2 ← nextedge
I
([mexpr])

| if2 e = eexpr 1 : S1 . . .2 e = eexprn : Snfi | while expr do S od

S ::= ǫ | S | S⊳ | S;S | S⊳;S (ǫ;S ≡ S ; ǫ ≡ S), P ::= S1‖ · · · ‖Sn.

Table 1: Statements S, statement sequences S, and programs P .

from Ψ(V) over V and X has a corresponding (basic type) program expression
and thus that each variable v ∈ V and each clock x ∈ X have corresponding
(basic type) program variables vv, vx ∈ Vb. In addition, we assume typed vari-
ables for locations, edges, and messages, and for times (on the target platform).
We additionally consider location variables Vl to store the current location, edge
variables Ve to store the edge currently worked on, message variables Vm to
store the outcome of a receive operation, and time variables Vt to store plat-
form time. Message expressions are of the form mexpr ::= m | a, m ∈ Vm, a ∈ A,
location expressions are of the form lexpr ::= l | ℓ | nextlocI(mexpr), l ∈ Vl,
ℓ ∈ L, and edge expressions are of the form eexpr ::= e | e, e ∈ Ve, e ∈ E. A
time expression has the form texpr ::= � | t | t + expr , where � is the current
platform time and t ∈ Vt. Note that time variables are different from clock
variables. The values of clock variable vx are used to compute a new next time,
which is then stored in a time variable, which can be compared to the platform
time. Clock variables can be represented by platform integers (given their range
is sufficient for the model) while time variables will be represented by platform
specific data types like timespec with C [22] and POSIX. In this way, model
clocks are only indirectly connected (and compared) to the platform clock.

The set of statements, statement sequences, and timed programs are given
by the grammar in Table 1. The term nextedgeI([mexpr]) represents an imple-
mentation of the edge selection in an implementable timed automaton that can
optionally be called with a message expression. We denote the empty statement
sequence by ǫ and introduce ⊳ as an artificial snapshot operator on statements
(see below). The particular syntax with snapshot and non-snapshot statements
allows us to simplify the semantics definition below. We use StmSeq to denote
the set of all statement sequences.

Component Configurations and Interpretation of Expressions. A component con-
figuration is a tuple π = 〈S, (β, γ, w, u), σ〉 consisting of a statement sequence
S ∈ StmSeq, the operating time of the current statement β ∈ R

+
0 (i.e., the time

passed since starting to work on the current statement), the time to completion
of the current statement γ ∈ R

+
0 ∪ {∞} (i.e., the time it will take to complete

the work on the current statement), the snapshot time w ∈ R
+
0 (i.e., the time

since the last snapshot), the platform clock value3 u ∈ R
+
0 , and a type-consistent

3 Using a real, unbounded value for the platform clock avoids the issue of overflows
in executions of programs as defined here. When refining the programs of imple-

8 Feo-Arenis, Vujinović, Westphal

(R1)
〈v← expr ;S , (β, 0, w, u), σ〉

〈S , (0, γ′, w′, u), σ[v := σ(expr)]〉
(R5)

〈sleepto(texpr);S , (σ(texpr), 0, w, u), σ〉

〈S , (0, γ′, w′, u), σ〉

(R6)

〈send(mexpr);S,
(β, 0, w, u), σ〉

〈S , (0, γ′, w′, u), σ〉
(R7)

〈m← receive(expr);S,
(β, γ, w, u), σ〉

〈S , (0, γ′, w′, u), σ[m := a]〉
,
a ∈ A, if β ≤ σ(expr),
a = ⊥, if β ≥ σ(expr),

(R8)
〈e, v1, v2 ← nextedge

I
([mexpr]);S , (β, 0, w, u), σ〉

〈S , (0, γ′, w′, u), σ[e, v1, v2 := Jnextedge
I
([mexpr])K(σ)]〉

(R9a)
〈if · · ·2 e = eexpr i : Si · · ·fi;S , (β, 0, w, u), σ〉

〈Si;S , (0, γ′, w′, u), σ〉
, σ(e) = σ(eexpr i)

(R9b)

〈if 2 e = eexpr1 : S1 . . . 2 e = eexprn : Sn fi;S,
(β, 0, w, u), σ〉

〈S , (0, γ′, w′, u), σ〉
,
∀ 0 ≤ i ≤ n •

σ(e) 6= σ(eexpr i)

(R10a)
〈while expr do S od;S , (β, 0, w, u), σ〉

〈S;while expr do S od;S , (0, γ′, w′, u), σ〉
, σ(expr) = true

(R10b)
〈while expr do S od;S , (β, 0, w, u), σ〉

〈S , (0, γ′, w′, u), σ〉
, σ(expr) = false

Table 2: Discrete reductions of the timed programming language. Rules (R2),
(R3), and (R4) for time, message, and location assignment are similar to (R1).

valuation σ of the program variables. We will use operating time and time to
completion to define computations of timed while programs (with discrete tran-
sitions when the time to completion is 0), and we will use the snapshot time
w as an auxiliary variable in the construction of predicates by which we relate
program and network computations. The valuation σ maps basic type variables
from Vb to values from a domain that includes all values of data variables from
D as used in the implementable timed automaton and all values needed to eval-
uate clock constraints (see below), i.e. σ(Vb) ⊆ Db. Time variables from Vt are
mapped to non-negative real numbers, i.e., σ(Vt) ⊆ R

+
0 , message variables from

Vm are mapped to channels, i.e., σ(Vm) ⊆ A ∪ {⊥} or the dedicated value ⊥
representing ‘no message’, location variables from Vl are mapped to locations,
i.e., σ(Vl) ⊆ L, and edge variables from Ve are mapped to edges, i.e., σ(Ve) ⊆ E.

For the interpretation of expressions in a component configuration we assume
that, if the valuation σ of the program variables corresponds to the valuation of
data variables ν, then the interpretation Jexpr K(π) of basic type expression expr
corresponds to the value of expr under ν. Other variables obtain their values
from σ, too, i.e. JtK(π) = σ(t), JmK(π) = σ(m), JlK(π) = σ(l), and JeK(π) = σ(e);
constant symbols are interpreted by their corresponding value, i.e. JaK(π) = a,
JℓK(π) = ℓ, and JeK(π) = e, and we have Jt + exprK(π) = JtK(π) + JexprK(π).

mentable timed automata to programs on realistic platforms, we need to handle
possible overflows in the finitely represented current platform time.

On Implementable Timed Automata 9

There are two non-standard cases. The �-symbol denotes the platform clock
value of π, i.e.. J�K(π) = u, and we assume that JnextlocI([mexpr])K(π) yields
the destination location of the edge that is currently processed (as given by
e), possibly depending on a message name given by mexpr . If JeK(π) denotes
an internal action or send edge e, this is just the destination location ℓ′(e), for
receive edges it is ℓ′(e) if mexpr evaluates to the special value ⊥, and an ℓi from
a (ai?, ℓi) pair in the edge otherwise. If the receive edge is non-deterministic, we
assume that the semantics of nextlocI resolves the non-determinism.

Program Computations. Table 2 gives an SOS-style semantics with discrete re-
duction steps of a statement sequence (or component). Note that the rules in
Table 2 (with the exception of receive) apply when the time to completion is 0,
that is, at the point in time where the current statement completes. Each rule
then yields a configuration with the operating time γ′ for the new current state-
ment. The new snapshot time w′ is 0 if the first statement in S is a snapshot
statement S⊳, and w otherwise. Rule (R7) updates m to a, which is a channel or,
in case of timeout, the ‘no message’ indicator ‘⊥’. Rule (R8) is special in that
it is supposed to represent the transition relation of an implementable timed
automaton. Depending on the program valuation σ, (R8) is supposed to yield a
triple of the next edge to work on, this edge’s next and deadline. For simplicity,
we assume that the interpretation of nextedgeI([mexpr]) is deterministic for a
given valuation of program variables.

A configuration of program P = S1‖ · · · ‖Sn is an n-tuple

Π = (〈S1, (β1, γ1, w1, u1), σ1〉, . . . , 〈Sn, (βn, γn, wn, un), σn〉)

of component configurations; C(P) denotes the set of all configurations of P .
The operational semantics of a program P is the labelled transition system

on system configurations defined as follows. There is a delay transition

(〈S1, (β1, γ1, w1, u1), σ1〉, . . .)
δ
−→

(〈S1, (β1 + δ, γ1 − δ, w1 + δ, u1 + δ), σ1〉, . . .)

(by delay δ ∈ R
+
0) if, for all i, 1 ≤ i ≤ n, δ ≤ γi, i.e. if no current statement

completes strictly before δ. There is an internal transition

(. . . , 〈Si, (βi, 0, wi, ui), σi〉, . . .)
τ
−→ (. . . , 〈S ′

i, (0, γ′
i, w

′
i, ui), σ′

i〉, . . .)

if for some i, 1 ≤ i ≤ n, a discrete reduction rule from Table 2 applies, i.e. if

〈Si, (βi, 0, wi, ui), σi〉 ⊢ 〈S ′
i, (0, γ′

i, w
′
i, ui), σ′

i〉.

There is a synchronisation transition

(. . . , 〈Si, (βi, 0, wi, ui), σi〉, . . . 〈Sj , (βj , γj , wj , uj), σj〉, . . .)
JmexprK(σi)
−−−−−−−−→

(. . . , 〈S ′
i, (0, γ′

i, w
′
i, ui), σi〉, . . . 〈S

′
j , (0, γ′

j, w
′
j , uj), σ′

j〉, . . .)

10 Feo-Arenis, Vujinović, Westphal

ti−1 ti
ne

ti−1,0

ti+1
de

ti,0

ti+2
ne′

(a)

(b)

(c)

Fig. 4: Scheduling of work and operating time.

if 〈Si, (βi, 0, wi, ui), σi〉 ⊢ 〈S ′
i, (0, γ′

i, w
′
i, ui), σi〉 by (R6), and 〈Sj , (βj , γj , wj ,

uj), σj〉 ⊢ 〈S ′
j , (0, γ′

j , w
′
j , uj), σ′

j〉 by (R7), and βj ≥ βi, i.e. if component j has
been listening at least as long as component i has been sending.

Note that this definition of synchronisation allows multiple components to
send at the same time (which may cause message collision on a shared medium)
and that, similar to the rendezvous communication of timed automata, out of
multiple receivers, only one takes the message. In our application domain these
cases do not happen because we assume that implementable networks do not
depend on a global scheduler. That is, the program of an implementable network
never exhibits any of these two behaviours.

A program configuration is called initial if and only if the k-th component
configuration, 1 ≤ k ≤ n, is at Sk, with any βk, γk = 0, wk = 0, uk = 0, and
any σk with σk(Vb) = 0. We use Cini(P) to denote the set of initial configura-
tions of program P . A computation of P is an initial and consecutive sequence
of program configurations ζ = Π0, Π1, . . . , i.e. Π0 ∈ Cini(P) and for all i ∈ N0

exists λ ∈ R
+
0 ∪ {τ} such that Πi

λ
−→ Πi+1 as defined above. We need not con-

sider terminating computations of programs here because we assume networks
of implementable timed automata without deadlocks.

5 Correct Implementation of Implementable Networks

The program of the network of implementable timed automata N = I1‖ . . . ‖In
is P (N) = S(I1)‖ . . . ‖S(In) (cf. Table 3c). The edges’ work is implemented in
the corresponding Line 2 of the statement sequences in Tables 3a and 3b. The
remaining Lines 3 to 8 include the evaluation of guards to choose the edge to be
executed next. The result of choosing the edge is stored in program variable e

which (by the while loop and the if-statement) moves to Line 1 of the implemen-
tation of that edge. The program’s timing behaviour is controlled by variable t
and is thus decoupled from clocks in the timed automata model. After Line 8,
the value of t denotes the absolute time where the execution of the next edge is
due. That is, clocks in the program are not directly compared to the platform
time (which would raise issues with the precision of platform clocks) but are
used to determine points in time that the target platform is supposed to sleep
to. By doing so, we also lower the risk of accumulating imprecisions in the sleep
operation of the target platform when sleeping for many relative durations.

On Implementable Timed Automata 11

1: sleepto(t)⊳; // sleep to current next at ti, then snapshot
2: (~rdat | send(a)); // from ti to ti,0, work on τ - or a!-edge
3: l← ℓ′0; // now fictionally at ti+1 in destination location
4: x← (x+ n+ d)[~rclk]; // fictionally delay to ti+1, reset clocks
5: t← t+ d; // new sleep goal (1/2, see below): to ti+1 (old deadline)
6: e, n, d← nextedge

I
(); // choose next edge e based on current component con-

7: // figuration, get next and deadline of e
8: t← t+ n // new sleep goal (2/2): and then to ti+2 (new next)

(a) Implementation S(e,I) of internal or send edge e in I. Line 2 is the update vector
~rdat if e ∈ Eτ (internal edge) and the send action send(a) if e ∈ E! (send edge).

2: m← receive(d); // from ti to ti,0, work on receive edge, i.e. read message
3: l← nextlocI(m); // at ti,0, if no m-match: treat like timeout
6: e, n, d← nextedge

I
(m); // choose next edge e based on current component confi-

7: // guration and message (!), get next and deadline of e

(b) Implementation S(e,I) of receive edge e in I; Lines 1, 4-5, and 8 are as in Figure 3a.

1: t← �; // get beginning of time; assume basic type variables are 0
2: l← ℓini ; // initialise location
3: e, n, d← nextedge

I
(); // choose next edge e based on component configuration

4: t← t+ n; // new sleep goal: beginning of time plus next of e
5: while true do if 2 e = e0 : S(e0, I) · · · 2 e = en : S(en, I) fi od

(c) Implementation S(I) of implementable timed automaton I.

Table 3: Implementation scheme for implementable timed automaton.

The idea of scheduling work and operating time is illustrated by the timing
diagram in Figure 4. Row (a) shows a näıve schedule for comparison: From time
ti−1, decide on the next edge to execute and determine this edge’s next time at
ti (light grey phase: operating time, must complete within the next edge’s next
time ne), then sleep up to the next time (dashed grey line), then execute the
edge(s) actions (dark grey phase: work time, must complete within the edge’s
deadline de), then sleep up to the edge’s deadline at ti+1, and start over. The
program obtained by our translation scheme implements the schedule shown
in Row (b). The program begins with determining the next edge right after
the work phase and then has only one sleep phase up to, e.g., ti+2 where the
next work phase begins. In this manner, we require only one interaction with
the execution platform that implements the sleep phases. Row (c) illustrates a
possible extension of our approach where operating time is needed right before
the work phase, e.g., to prepare the platform’s transceiver for sending a message.

We call the program P (N) a correct implementation of network N if and
only if for each observable behaviour of a time-safe execution of P (N) there is a
corresponding computation path of N . In the following, we provide our notion of
time-safety and then elaborate on the above mentioned correspondence between
program and network computations.

12 Feo-Arenis, Vujinović, Westphal

Intuitively, a computation of P (N) is not time-safe if either the execution of
an edge’s statement sequence takes longer than the admitted deadline or if the
next time of the subsequent edge is missed, e.g., by an execution platform that
is too slow. Note that in a given program computation, the performance of the
platform is visible in the operation time β and time to completion γ.

We write Πk:Le
n to denote that the program counter of component k is at

Line n of the statement sequence of edge e. We use σ|X∪V to denote the (network)
configuration encoded by the values of the corresponding program variables. We
assume4 that for each program variable v, the old value, i.e., the value before
the last assignment in the computation is available as @v.

Definition 2. A computation Π0, Π1, . . . of P (N) is time-safe if and only if,
for each component k, 0 ≤ k ≤ n and all i ∈ N0,

1. Πk
i :L

e
2 ∧ γi,k = 0 =⇒ wk ≤ deadline(〈σi,k(l), σi,k|X∪V 〉, σi,k(e)), i.e., if

the i-th configuration completes (γi,k = 0) Line 2 of an edge’s statement
sequence, not more time than admitted by its deadline has been used (wk),

2. Πk
i :L

e
1 ∧ γi,k = 0 =⇒ wk = σi,k(@d) + next(〈σi,k(l), σi,k|X∪V 〉, σi,k(e)),

i.e., the sleepto statement in Line 1 completes exactly after the deadline of
the previously worked on edge plus the current edge’s next time. ♦

Note that, by Definition 2, operating times may be larger than the subsequent
edge’s next time in a time-safe computation (if the execution of the current edge
completes before its deadline). Stronger notions of time-safety are possible.

For correctness of P (N), recall that we introduced Timed While Programs to
consider the computation time that is needed to compute the transition relation
of an implementable network on the fly. In addition, program computations have
a finer granularity than network computations: In network computations, the
current location and the valuation of clocks and variables are updated atomically
in a transition. In the program P (N), these updates are spread over three lines.

We show that, for each time-safe computation ζ of program P (N), there is a
computation of networkN that is related to ζ in a well-defined way. The relation
between program and network configurations decouples both computations in
the sense that at some times (given by the respective timestamp) the, e.g., clock
values in the program configuration are “behind” network clocks (i.e., correspond
to an earlier network configuration), at some times they are “ahead”, and there
are points where they coincide.

Figure 5 illustrates the relation for one edge e. The top row of Figure 5 gives
a timing diagram of the execution of the program for edge e of one component.
The rows below show the values over time for each program variable v up to e,
n, and d. For example, the value of l will denote the source location ℓ of e until
Line 3 is completed, and then denotes the destination location ℓ′. Similarly, v′

and x′ denote the effects of the update vector of e on data variables and clocks.
Note that, during the execution of Line 3, we may observe combinations of values

4 Without loss of generality, since the program could be augmented by an auxiliary
variable @v for each variable v that provides the old value of v.

On Implementable Timed Automata 13

Le
1 Le

2 Le
3 Le

4 Le
5 Le

6 Le
8 Le′

1

de + ne′

w

v v′v:

ℓ ℓ′l:

x x′
x:

t0 t0 + d t7t:

e, ne, de e′, ne′ , de′e, n, d:

〈ℓ, ν〉, t0 〈ℓ×, ν1〉, t1

〈ℓ′, ν1〉, t1

〈ℓ×, ν2〉, t2

〈ℓ′, ν2〉, t2

〈ℓ×, ν3〉, t3

〈ℓ′, ν3〉, t3

〈ℓ×, ν4〉, t4

〈ℓ′, ν4〉, t4

〈ℓ×, ν5〉, t5

〈ℓ′, ν5〉t5

〈ℓ×, ν6〉, t6

〈ℓ′, ν6〉, t6 〈ℓ′, ν7〉, t7

Fig. 5: Relating program and network computations for one component.

ℓ ℓ×

ℓ′ ℓ′

(a) At deadline.

ℓ ℓ× ℓ×

ℓ′ ℓ′

(b) During operating time.

ℓ ℓ× ℓ×

ℓ′ ℓ′

(c) During sleep time.

Fig. 6: Cases of changing from intermediate location to destination location.

for v and l that are never observed in a network computation due to the atomic
semantics of networks.

The two bottom lines of Figure 5 show related network configurations aligned
with their corresponding program lines. Note that the execution of each line ex-
cept for Line 1 may be related to two network configurations depending on
whether the program timestamp is before or after the current edge’s deadline.
Figure 6 illustrates the three possible cases: The execution of program Line 2
(work time, dark gray) is related to network configurations with the source lo-
cation ℓ of the current edge. Right after the work time, the network location
ℓ× is related and at the current edge’s deadline the destination location ℓ′ is
related. In the related network computation, the transition from ℓ× to ℓ′ always
takes place at the current edge’s deadline. This point in time may, in the pro-
gram computation, be right after work time (Figure 6a, no delay in ℓ×), in the
operating time (Figure 6b), or in the sleep time (Figure 6c).

The relation between program and network configurations as illustrated in
Figure 5 can be formalised by predicates over program and network configura-
tions, one predicate per edge and program line.5 The following lemma states the
described existence of a network computation for each time-safe program com-
putation. The relation gives a precise, component-wise and phase-wise relation
of program computations to network computations. In other words, we obtain
a precise accounting of which phases of a time-safe program computation cor-

5 Details on these predicates and a detailed proof of Lemma 1 are provided in a
corresponding technical report.

14 Feo-Arenis, Vujinović, Westphal

respond to a network computation and how. We can argue component-wise by
the closed component-assumption from Section 3.

Lemma 1. For each time-safe computation ζ = Π0, Π1, . . . of P (N), there
exists a computation path ξ = c0,0, . . . , c0,m0

, c1,0, . . . of N s.t. each network
configuration ci,j is properly related to program configuration Πi. ♦

Proof (sketch). The proof is a technical check of the predicates mentioned above
during an inductive construction of computation path ξ. For the base case, we
show that the initialisation statements in Lines 1 to 4 of Table 3c reach the
Line 2 of a send or receive edge (cf. Table 3a and 3b) and establish a related
network configuration. For the induction step, we need to consider delays and
discrete steps of the program. From time-safety of ζ we can conclude to possible
delays in N for the related configurations with a case-split wrt. the deadline
(cf. Figure 6). When the program time is at the current edge’s deadline, the
network may delay up to the deadline in an intermediate location ℓ×, take a
transition to the successor location ℓ′, and possibly delay further. For discrete
program steps, we can verify that N has enabled discrete transitions that reach
a network configuration that is related to the next program line. Here, we use
our assumptions from the program semantics that update vectors have the same
effect in the program and the network. And we use the convenient property of
our program semantics that the effects of statements only become visible with
the discrete transitions. For synchronisation transitions of the program, we use
the assumption that the considered network of implementable timed automata
does not depend on a global scheduler, in particular that send actions are never
blocked, or, in other words, that whenever a component has a send edge locally
enabled, then there is a receiving edge enabled on the same channel. ⊓⊔

Our main result in Theorem 1 is obtained from Lemma 1 by a projection onto
observable behaviour (cf. Definition 3). Intuitively, the theorem states that at
each point in time with a discrete transition to Line 2, the program configuration
exactly encodes a configuration of network P (N) right before taking an internal,
send, or receive edge.

Definition 3. Let ξk = 〈ℓk0,0, ν
k
0,0〉

λ0,1

−−→ . . .
λ0,m0−−−−→ 〈ℓk1,0, ν

k
1,0〉 . . . be the projec-

tion of a computation path ξ of the implementable network N onto component
k, 1 ≤ k ≤ n, labelled such that each configuration 〈ℓki,0, ν

k
i,0〉 is initial or reached

by a discrete transition to a source location of an internal, send, or receive edge.
The sequence ξkobs = 〈ℓk0,i0 , ν

k
0,i0

+ d0〉, 〈ℓk1,i1 , ν
k
1,i1

+ d1〉, . . . , dj ≥ 0, where

(j, ij) is the largest index such that between c := 〈ℓkj,0, ν
k
j,0〉 and 〈ℓkj,ij , ν

k
j,ij

+ dj〉

exactly next(c) time units have passed, is called the observable behaviour of
component k in ξ. ♦

Theorem 1. Let N be an implementable network and ζk = π0,0, . . . , π0,n0
, π1,0, . . .

the projection onto the k-th component of a time-safe computation ζ of P (N)
labelled such that πi,ni

, πi+1,0 are exactly those transitions in ζ from a Line 1
to the subsequent Line 2. Then (〈σi,0(l), σi,0|X∪V 〉, ui,0)i∈N0

is an observable
behaviour of component k on some computation path of N . ♦

On Implementable Timed Automata 15

Fig. 7: Timed automaton of the implementable timed automaton (after applying
the scheme from Figure 2) for the LZ-protocol of sensors [15].

6 Evaluation and Discussion

The work presented here was motivated by a project to support the development
of a new communication protocol for a distributed wireless fire alarm system [15],
without shared memory, only assuming clock synchronisation and message ex-
change. We provided modelling and analysis of the protocol a priori, that is,
before the first line of code had been written. In the project, the engineers man-
ually implemented the model and appreciated how the model indicates exactly
which action is due in which situation. Later, we were able to study the handwrit-
ten code and observed (with little surprise) striking regularities and similarities
to the model. So we conjectured that there exists a significant sub-language of
timed automata that is implementable. In our previous work [5], we identified
independency from a global scheduler as a useful precondition for the existence
of a distributed implementation (cf. Section 2).

For this work, we have modelled the LZ-protocol of sensors in the wireless
fire alarm system from [15] as an implementable timed automaton (cf. Figure 1;
Figure 7 shows the timed automaton obtained by applying the scheme from Fig-
ure 2). Hence our modelling language supports real-world, industry case-studies.
Implementable timed automata also subsume some models of time-triggered,
periodic tasks that we would model by internal edges only.

From the program obtained by the translation scheme given in Table 3, we
have derived an implementation of the protocol in C. Clock, data, location,
edge, and message variables become enumerations or integers, time variables
use the POSIX data-structure timespec. The implementation runs timely for
multiple days. Although our approach with sleeping to absolute times reduces
the risk of drift, there is jitter on real-world platforms. The impact of timing
imprecision needs to be investigated per application and platform when refining
the program of a network to code, e.g., following [11]. In our case study, jitter is
much smaller than the model’s time unit. Another strong assumption that we use
is synchrony of the platform clocks and synchronised starting times of programs
which can in general not be achieved on real-world platforms. In the wireless

16 Feo-Arenis, Vujinović, Westphal

fire alarm system, component clocks are synchronised in an initialisation phase
and kept (sufficiently) synchronised using system time information in messages.
Robustness against limited clock drift is obtained by including so-called guard
times [23, 24] in the protocol design. In the model, this is constant g: Components
are ready to receive g time units before message transmission starts in another
component.

Note that Theorem 1 only applies to time-safe computations. Whether an
implementation is time-safe needs to be analysed separately, e.g., by conducting
worst-case execution time (WCET) analyses of the work code and the code
that implements the timed automata semantics. The C code for the LZ-model
mentioned above actually implements a sleepto function that issues a warning
if the target time has already passed (thus indicating non-time-safety). The
translation scheme could easily be extended by a statement between Lines 2
and 3 that checks whether the deadline was kept and issues a warning if not.
Then, Theorem 1 would strengthen to the statement that all computations of
P (I) either correspond to observable behaviour of I or issue a warning. Note
that, in contrast to [1, 2, 31], our approach has the practically important property
that time-safety implies time-robustness, i.e., if a program is time-safe on one
platform then it is time-safe on any ‘faster’ platform. Furthermore, we have
assumed a deterministic choice of the next edge to be executed for simplicity
and brevity of the presentation. Non-deterministic models can be supported
by providing a non-deterministic semantics to the nextedgeI function in the
programming language and the correctness proof.

7 Conclusion

We have presented a shorthand notation that defines a subset of timed automata
that we call implementable. For networks of implementable timed automata that
do not depend on a global scheduler, we have given a translation scheme to a sim-
ple, exact-time programming language. We obtain a distributed implementation
with one program for each network component, the programs are supposed to be
executed concurrently, possibly on different computers. We propose to not sub-
stitute (imprecise) platform clocks for (model) clocks in guards and invariants,
but to rely on a sleep function with absolute deadlines. The generated programs
do not include any “hidden” execution times, but all updates, actions, and the
time needed to select subsequent edges are taken into account. For the gener-
ated programs, we have established a notion of correctness that closely relates
program computations to computation paths of the network. The close relation
lowers the mental burden for developers that is induced by other approaches
that switch to a slightly different, e.g., robust semantics for the implementation.

Our work decomposes the translation from timed automata models to code
into a first step that deals with the discrepancy between atomicity of the timed
automaton semantics and the non-atomic execution on real platforms. The sec-
ond step, to relate the exact-time program to real platforms with imprecise
timing is the subject of future work.

On Implementable Timed Automata 17

References

1. Abdellatif, T., Combaz, J., Sifakis, J.: Model-based implementation of real-time
applications. In: Carloni, L.P., Tripakis, S. (eds.) EMSOFT. pp. 229–238. ACM
(2010), https://doi.org/10.1145/1879021.1879052

2. Abdellatif, T., Combaz, J., Sifakis, J.: Rigorous implementation of real-time sys-
tems - from theory to application. Math. Struct. Comput. Sci. 23(4), 882–914
(2013), https://doi.org/10.1017/S096012951200028X

3. Abdullah, J., Mohaqeqi, M., Yi, W.: Synthesis of Ada code from graph-based task
models. In: Seffah, A., Penzenstadler, B., Alves, C., Peng, X. (eds.) SAC. pp.
1467–1472. ACM (2017), https://doi.org/10.1145/3019612.3019681

4. Amnell, T., Fersman, E., Pettersson, P., Sun, H., Yi, W.: Code synthesis for timed
automata. Nord. J. Comput. 9(4), 269–300 (2002)

5. Arenis, S.F., Vujinovic, M., Westphal, B.: On global scheduling independency in
networks of timed automata. In: Abate, A., Geeraerts, G. (eds.) FORMATS. LNCS,
vol. 10419, pp. 42–57. Springer (2017), https://doi.org/10.1007/978-3-319-65765-
3 3

6. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: SEFM. pp. 3–12. IEEE (2006), https://doi.org/10.1109/SEFM.2006.27

7. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT. LNCS, vol. 3185, pp. 200–236. Springer (2004),
https://doi.org/10.1007/978-3-540-30080-9 7

8. Benveniste, A., Le Guernic, P., Jacquemot, C.: Synchronous programming with
events and relations: the SIGNAL language and its semantics. Sci. Comput. Pro-
gram. 16(2), 103–149 (1991), https://doi.org/10.1016/0167-6423(91)90001-E

9. Berendsen, J., Vaandrager, F.W.: Compositional abstraction in real-time model
checking. In: Cassez, F., Jard, C. (eds.) FORMATS. LNCS, vol. 5215, pp. 233–
249. Springer (2008), https://doi.org/10.1007/978-3-540-85778-5 17

10. Berry, G., Gonthier, G.: The Esterel synchronous programming language: De-
sign, semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992),
https://doi.org/10.1016/0167-6423(92)90005-V

11. Bouyer, P., Larsen, K.G., Markey, N., Sankur, O., Thrane, C.R.: Timed automata
can always be made implementable. In: Katoen, J., König, B. (eds.) CONCUR.
LNCS, vol. 6901, pp. 76–91. Springer (2011), https://doi.org/10.1007/978-3-642-
23217-6 6

12. Corbett, J.C., Dean, J., Epstein, M., et al.: Spanner: Google’s globally
distributed database. ACM Trans. Comput. Syst. 31(3), 8:1–8:22 (2013),
https://dl.acm.org/citation.cfm?id=2491245

13. Fahrenberg, U.: Higher-dimensional timed automata 51(16), 109–114 (2018),
https://doi.org/10.1016/j.ifacol.2018.08.019

14. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A., Portmann, M.,
Tan, W.L.: Automated analysis of AODV using UPPAAL. In: Flanagan, C.,
König, B. (eds.) TACAS. LNCS, vol. 7214, pp. 173–187. Springer (2012),
https://doi.org/10.1007/978-3-642-28756-5 13

15. Feo-Arenis, S., Westphal, B., Dietsch, D., Muñiz, M., Andisha, A.S., Podelski, A.:
Ready for testing: ensuring conformance to industrial standards through formal
verification. Formal Asp. Comput. 28(3), 499–527 (2016)

16. Feo-Arenis, S., Westphal, B.: Parameterized verification of track topology aggre-
gation protocols. In: Beyer, D., Boreale, M. (eds.) FORTE. LNCS, vol. 7892, pp.
35–49. Springer (2013), https://doi.org/10.1007/978-3-642-38592-6 4

18 Feo-Arenis, Vujinović, Westphal

17. Flammini, A., Ferrari, P.: Clock synchronization of distributed, real-time, indus-
trial data acquisition systems. In: Vadursi, M. (ed.) Data Acquisition, chap. 3.
IntechOpen, Rijeka (2010), https://doi.org/10.5772/10458

18. Gobriel, S., Khattab, S.M., Mossé, D., Brustoloni, J.C., Melhem, R.G.: Rideshar-
ing: Fault tolerant aggregation in sensor networks using corrective actions. In:
SECON. pp. 595–604. IEEE (2006), https://doi.org/10.1109/SAHCN.2006.288516

19. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language LUSTRE. Proceedings of the IEEE 79(9), 1305–1320 (1991)

20. Hendriks, M.: Translating Uppaal to not quite C (2001), http://repository.
ubn.ru.nl/bitstream/handle/2066/19058/19058.pdf?sequence=1

21. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: a time-triggered language for
embedded programming. Proceedings of the IEEE 91(1), 84–99 (2003)

22. ISO/IEC: 9899:2018, Programming Languages – C, 4th edn. (2018)
23. Jubran, O., Westphal, B.: Formal approach to guard time optimization for TDMA.

In: Auguin, M., de Simone, R., Davis, R.I., Grolleau, E. (eds.) RTNS. pp. 223–233.
ACM (2013), https://doi.org/10.1145/2516821.2516849

24. Jubran, O., Westphal, B.: Optimizing guard time for TDMA in a wireless sen-
sor network - case study. In: LCN. pp. 597–601. IEEE Computer Society (2014),
https://doi.org/10.1109/LCNW.2014.6927708

25. Kristensen, J., Mejlholm, A., Pedersen, S.: Automatic translation from Uppaal to
C (2005), http://mejlholm.org/uni/pdfs/dat4.pdf

26. Olderog, E.R., Dierks, H.: Real-time systems - formal specification and automatic
verification. Cambridge University Press (2008)

27. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61, 17–139 (2004)

28. Puri, A.: Dynamical properties of timed automata. Discrete Event Dynamic Sys-
tems 10(1-2), 87–113 (2000), https://doi.org/10.1023/A:1008387132377

29. Senthooran, I., Watanabe, T.: On generating soft real-time programs for non-real-
time environments. In: Nishizaki, S.y., Numao, M., Caro, J., Suarez, M.T. (eds.)
Theory and Practice of Computation, pp. 1–12. Springer Japan, Tokyo (2013)

30. Tirado-Andrés, F., Rozas, A., Araujo, Á.: A methodology for choosing time syn-
chronization strategies for wireless IoT networks. Sensors 19(16), 3476 (2019),
https://doi.org/10.3390/s19163476

31. Triki, A., Combaz, J., Bensalem, S., Sifakis, J.: Model-based implementation of
parallel real-time systems. In: Cortellessa, V., Varró, D. (eds.) FASE. LNCS, vol.
7793, pp. 235–249. Springer (2013), https://doi.org/10.1007/978-3-642-37057-1 18

32. Wibling, O., Parrow, J., Pears, A.N.: Ad hoc routing protocol verification through
broadcast abstraction. In: Wang, F. (ed.) FORTE. LNCS, vol. 3731, pp. 128–142.
Springer (2005), https://doi.org/10.1007/11562436 11

33. Wulf, M.D., Doyen, L., Raskin, J.: Almost ASAP semantics: from timed mod-
els to timed implementations. Formal Asp. Comput. 17(3), 319–341 (2005),
https://doi.org/10.1007/s00165-005-0067-8

