
HAL Id: hal-03232345
https://inria.hal.science/hal-03232345

Submitted on 21 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Categorical Approach to Secure Compilation
Stelios Tsampas, Andreas Nuyts, Dominique Devriese, Frank Piessens

To cite this version:
Stelios Tsampas, Andreas Nuyts, Dominique Devriese, Frank Piessens. A Categorical Approach to
Secure Compilation. 15th International Workshop on Coalgebraic Methods in Computer Science
(CMCS), Apr 2020, Dublin, Ireland. pp.155-179, �10.1007/978-3-030-57201-3_9�. �hal-03232345�

https://inria.hal.science/hal-03232345
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A categorical approach to secure compilation

Stelios Tsampas1 , Andreas Nuyts1 , Dominique Devriese
(Corresponding)2 , and Frank Piessens1

1 KU Leuven, Leuven, Belgium name.surname@cs.kuleuven.be
2 Vrije Universiteit Brussel, Brussels, Belgium dominique.devriese@vub.be

Abstract. We introduce a novel approach to secure compilation based
on maps of distributive laws. We demonstrate through four examples that
the coherence criterion for maps of distributive laws can potentially be a
viable alternative for compiler security instead of full abstraction, which
is the preservation and reflection of contextual equivalence. To that end,
we also make use of the well-behavedness properties of distributive laws
to construct a categorical argument for the contextual connotations of
bisimilarity.

Keywords: Secure compilation · Distributive laws · Structural Oper-
ational Semantics

1 Introduction

As a field, secure compilation is the study of compilers that formally preserve
abstractions across languages. Its roots can be tracked back to the seminal obser-
vation made by Abadi [1], namely that compilers which do not protect high-level
abstractions against low-level contexts might introduce security vulnerabilities.
But it was the advent of secure architectures like the Intel SGX [15] and an ever-
increasing need for computer security that motivated researchers to eventually
work on formally proving compiler security.

The most prominent [16, 18, 49, 35, 37, 32, 45] formal criterion for compiler
security is full abstraction: A compiler is fully abstract if it preserves and reflects
Morris-style contextual equivalence [31], i.e. indistinguishability under all pro-
gram contexts, which are usually defined as programs with a hole. The intuition
is that contexts represent the ways an attacker can interact with programs and so
full abstraction ensures that such interactions are consistent between languages.

Full abstraction is arguably a strong and useful property but it is also notori-
ously hard to prove for realistic compilers, mainly due to the inherent challenge
of having to reason directly about program contexts [37, 18, 9, 24]. There is
thus a need for better formal methods, a view shared in the scientific commu-
nity [10, 33]. While recent work has proposed generalizing from full abstraction
towards the so-called robust properties [36, 2], the main challenge of quantifying
over program contexts remains, which manifests when directly translating target
contexts to the source (back-translation). Other techniques, such as trace seman-
tics [35] or logical relations [17], require complex correctness and completeness
proofs w.r.t. contextual equivalence in order to be applicable.

http://orcid.org/0000-0001-8981-2328
http://orcid.org/0000-0002-1571-5063
http://orcid.org/0000-0002-3862-6856
http://orcid.org/0000-0001-5438-153X

2 Tsampas et al.

In this paper we introduce a novel, categorical approach to secure compi-
lation. The approach has two main components: the elegant representation of
Structural Operational Semantics (SOS) [38] using category-theoretic distribu-
tive laws [48] 3 and also maps of distributive laws [40, 50, 27] as secure compilers
that preserve bisimilarity. Our method aims to be unifying, in that there is a
general, shared formalism for operational semantics, and simplifying, in that
the formal criterion for compiler security, the coherence criterion for maps of
distributive laws, is straightforward and relatively easy to prove.

The starting point of our contributions is an abstract proof on how coalge-
braic bisimilarity under distributive laws holds contextual meaning in a manner
similar to contextual equivalence (Section 4.3). We argue that this justifies the
use of the coherence criterion for testing compiler security as long as bisimilarity
adequately captures the underlying threat model. We then demonstrate the ef-
fectiveness of our approach by appeal to four examples of compiler (in)security.
The examples model classic, non-trivial problems in secure compilation:

– An example of an extra processor register in the target language that conveys
additional information about computations (Section 5).

– A datatype mismatch between the type of variable (Section 6).
– The introduction of illicit control flow in the target language (Section 7)
– A case of incorrect local state encapsulation (Section 8).

For each of these examples we present an insecure compiler that fails the co-
herence criterion, then introduce security primitives in the target language and
construct a secure compiler that respects it. We also examine how bisimilarity
can be both a blessing and a curse as its strictness and rigidity sometimes lead to
relatively contrived solutions. Finally, in Section 9, we discuss related work and
point out potential avenues for further development of the underlying theory.

On the structure and style of the paper This work is presented mainly
in the style of programming language semantics but its ideas are deeply rooted
in category theory. We follow an “on-demand” approach when it comes to im-
portant categorical concepts: we begin the first example by introducing the base
language used throughout the paper, While, and gradually present distributive
laws when required. From the second example in Section 6 and on, we relax the
categorical notation and mostly remain within the style of PL semantics.

2 The basic While language

2.1 Syntax and operational semantics

We begin by defining the set of arithmetic expressions.

〈expr〉 ::= lit N | var N | 〈expr〉 〈bin〉 〈expr〉 | 〈un〉 〈expr〉
3 The authors use the term “Mathematical Operational Semantics”. The term “Bial-

gebraic Semantics” is also used in the literature.

A categorical approach to secure compilation 3

The constructors are respectively literals, a dereference operator var, binary
arithmetic operations as well as unary operations. We let S be the set of lists
of natural numbers. The role of S is that of a run-time store whose entries are
referred by their index on the list using constructor var. We define function
eval : S × E → N inductively on the structure of expressions.

Definition 1 (Evaluation of expressions in While).

eval store (lit n) = n

eval store (var l) = get store l

eval store (e1 b e2) = (eval store e1) [[b]] (eval store e2)

eval store (u e) = [[u]] (eval store e)

Programs in While language are generated by the following grammar:

〈prog〉 ::= skip | N := 〈expr〉 | 〈prog〉 ; 〈prog〉 | while 〈expr〉 〈prog〉

The operational semantics of our While language are introduced in Figure 1.
We are using the notation s, x ⇓ s′ to denote that program x, when supplied
with s : S, terminates producing store s′. Similarly, s, x → s′, x′ means that
program x, supplied with s, evaluates to x′ and produces new store s′.

s, skip ⇓ s s, l := e ⇓ update s l (eval s e)

s, p ⇓ s′

s, p;q → s′, q

s, p → s′, p′

s, p;q → s′, p′;q
eval s e = 0

s, while e p → s, skip
eval s e ̸= 0

s, while e p → s, p; while e p

Fig. 1. Semantics of the While language.

2.2 While, categorically

The categorical representation of operational semantics has various forms of
incremental complexity but for our purposes we only need to use the most im-
portant one, that of GSOS laws [48].

Definition 2. Given a syntax functor Σ and a behavior functor B, a GSOS law
of Σ over B is a natural transformation ρ : Σ(Id×B) =⇒ BΣ∗, where (Σ∗, η, µ)
is the monad freely generated by Σ.

Example 1. Let E be the set of expressions of the While-language. Then the
syntax functor Σ : Set→ Set for While is given by ΣX = >] (N× E)] (X ×
X)] (E × X) where] denotes a disjoint (tagged) union. The elements could
be denoted as skip, l := e, x1;x2 and while e x respectively. The free monad

4 Tsampas et al.

Σ∗ satisfies Σ∗X ∼= X]ΣΣ∗X, i.e. its elements are programs featuring program
variables from X. Since While-programs run in interaction with a store and can
terminate, the behavior functor is BX = S → (S×Maybe X), where S is the set
of lists of natural numbers and X → Y denotes the exponential object (internal
Hom) Y X .

The GSOS specification of While determines ρ. A premise s, p→ s′, p′ denotes
an element (p, b) ∈ (Id× B)X where b(s) = (s′, just p′), and a premise s, p ⇓ s′

denotes an element (p, b) where b(s) = (s′,nothing). A conclusion s, p → s′, p′

(where p ∈ ΣX is further decorated above the line to p̄ ∈ Σ(Id×B)X) specifies
that ρ(p̄) ∈ BΣ∗X sends s to (s′, just p′), whereas a conclusion s, p ⇓ s′ specifies
that s is sent to (s′,nothing). Concretely, ρX : Σ(X × BX) → BΣ∗X is the
function (partially from [47]):

skip 7→ λ s.(s,nothing)
l := e 7→ λ s.(update s l (eval s e),nothing)

while e (x, f) 7→ λ s.

{
(s, just (x ; while e x)) if eval s e 6= 0

(s, just (skip)) if eval s e = 0

(x, f) ; (y, g) 7→ λ s.

{
(s′, just (x′ ; y)) if f(s) = (s′, just x′)

(s′, just y) if f(s) = (s′,nothing)
⌟

It has been shown by Lenisa et al. [28] that there is a one-to-one correspon-
dence between GSOS laws of Σ over B and distributive laws of the free monad
Σ∗ over the cofree copointed endofunctor [28] Id×B.4

Definition 3 (In [26]). A distributive law of a monad (T, η, µ) over a copointed
functor (H, ϵ) is a natural transformation λ : TH =⇒ HT subject to the following
laws: λ ◦ η = Hη, ϵ ◦ λ = Tϵ and λ ◦ µ = Hµ ◦ λ ◦ Tλ.

Given any GSOS law, it is straightforward to obtain the corresponding dis-
tributive law via structural induction (In [50], prop. 2.7 and 2.8). By convention,
we shall be using the notation ρ for GSOS laws and ρ∗ for the equivalent dis-
tributive laws unless stated otherwise.

A distributive law λ based on a GSOS law ρ gives a category λ-Bialg of λ-
bialgebras [48], which are pairs ΣX

h−→ X
k−→ BX subject to the pentagonal law

k◦h = Bh∗◦ρX ◦Σ[id, k], where h∗ is the inductive extension of h. Morphisms in
λ-Bialg are arrows X → Y that are both algebra and coalgebra homomorphisms
at the same time. The trivial initial B-coalgebra ⊥ → B⊥ lifts uniquely to the
initial λ-bialgebra ΣΣ∗⊥ a−→ Σ∗⊥ hλ−−→ BΣ∗⊥, while the trivial final Σ-algebra
Σ> → > lifts uniquely to the final λ-bialgebra ΣB∞> gλ−→ B∞> z−→ BB∞> 5.
Since Σ∗⊥ is the set of programs generated by Σ and B∞> the set of behaviors
cofreely generated by B, the unique bialgebra morphism f : Σ∗⊥ → B∞> is the
interpretation function induced by ρ.
4 A copointed endofunctor is an endofunctor F equipped with a natural transformation
F =⇒ Id.

5 We write B∞ for the cofree comonad over B, which satisfies B∞X ∼= X ×BB∞X.

A categorical approach to secure compilation 5

Remark 1. We write A for Σ∗⊥ and Z for B∞>, and refer to hλ : A → BA as
the operational model for λ and to gλ : ΣZ → Z as the denotational model [48].
Note also that a : ΣA ∼= A and z : Z ∼= BZ are invertible.

Example 2. Continuing Example 1, the initial bialgebra A is just the set of
all While-programs. Meanwhile, the final bialgebra Z, which has the meaning
of the set of behaviors, satisfies Z ∼= (S → S × Maybe Z). In other words,
our attacker model is that of an attacker who can count execution steps and
moreover, between any two steps, read out and modify the state. In Section 9,
we discuss how we hope to consider weaker attackers in the future.

3 An extra register (Part I)

Let us consider the scenario where a malicious party can observe more informa-
tion about the execution state of a program, either because information is being
leaked to the environment or the programs are run by a more powerful machine.
A typical example is the presence of an extra flags register that logs the result
of a computation [34, 8, 35]. This is the intuition behind the augmented version
of While with additional observational capabilities, While.

The main difference is in the behavior so the notation for transitions has to
slightly change. The two main transition types, s, x ⇓v s′ and s, x→v s′, x′ work
similarly to While except for the label v : N produced when evaluating expres-
sions. We also allow language terms to interact with the labels by introducing
the constructor obs N 〈prog〉. When terms evaluate inside an obs block, the
labels are sequentially placed in the run-time store. The rest of the constructors
are identical but the distinction between the two languages should be clear.

While the expressions are the same as before, the syntax functor is now
ΣX = ΣX]N×X, and the behavior functor is B = S → N×S×Maybe X.
The full semantics can be found in Figure 2. As for While, they specify a GSOS
law ρ : Σ(Id×B) =⇒ BΣ∗


.

s, skip ⇓0 s
v = eval s e

s, l := e ⇓v update s l v

v = eval s e v ̸= 0

s, while e p →v s, skip
s, p ⇓v s′

s, p; q →v s′, q

s, p ⇓v s′ s′′ = update s′ n v

s, obs n p →v s′′, skip
s, p →v s′, p′

s, p; q →v s′, p′; q

s, p →v s′, p′ s′′ = update s′ n v

s, obs n p →v s′′, obs (n+ 1) p′
v = eval s e v = 0

s, while e p →v s, p; while e p

Fig. 2. Semantics of While.

Traditionally, the (in)security of a compiler has been a matter of full ab-
straction; a compiler is fully abstract if it preserves and reflects Morris-style [31]

6 Tsampas et al.

contextual equivalence. For our threat model, where the attacker can directly
observe labels, it makes sense to define contextual equivalence in While as:

Definition 4. p ∼= q ⇐⇒ ∀c : C. c JpK ⇓⇐⇒ c JqK ⇓
Where C is the set of one-hole contexts, J_K : C × A → A denotes the

plugging function and we write p ⇓ when p eventually terminates. Contextual
equivalence for While is defined analogously. It is easy to show that the simple
“embedding” compiler from While to While is not fully abstract by examining
terms a ≜ while (var[0]) (0 := 0) and b ≜ while (var[0] ∗ 2) (0 := 0), for which
a ∼= b but a ≇ b. A context c ≜ (obs 1 _); while (var[1]− 1) skip will log
the result of the while condition in a and b in var[1] and then either diverge
or terminate depending on the value of var[1]. An initial var[0] value of 1 will
cause c JaK to terminate but c JbK to diverge.

Securely extending While To deter malicious contexts from exploiting the
extra information, we introduce sandboxing primitives to help hide it. We add
an additional constructor in While, *〈progr〉+, and the following inference rules
to form the secure version While of While.

s, p ⇓v s′

s, *p+ ⇓0 s′
s, p→v s′, p′

s, *p+→0 s′, *p′+
We now consider the compiler from While to While which, along with the

obvious embedding, wraps the the translated terms in sandboxes. This looks to
be effective as programs a and b are now contextually equivalent and the extra
information is adequately hidden. We will show that this compiler is indeed a
map of distributive laws between While and While but to do so we need a brief
introduction on the underlying theory.

4 Secure compilers, categorically

4.1 Maps of distributive laws

Assume two GSOS laws ρ1 : Σ1(Id × B1) =⇒ B1Σ
∗
1 and ρ2 : Σ2(Id × B2) =⇒

B2Σ
∗
2, where (Σ∗

1, η1, µ1) and (Σ∗
2, η2, µ2) are the monads freely generated by Σ1

and Σ2 respectively. We shall regard pairs of natural transformations (σ : Σ∗
1 =⇒

Σ∗
2, b : B1 =⇒ B2) as compilers between the two semantics, where σ acts as a

syntactic translation and b as a translation between behaviors.

Remark 2. If A1 and A2 are the sets of terms freely generated by Σ1 and Σ2,
we can get the compiler c : A1 → A2 from σ. On the other hand, b generates a
function d : Z1 → Z2 between behaviors via finality.

Remark 3. We shall be writing Bc for the cofree copointed endofunctor Id× B
over B and bc : Bc

1 =⇒ Bc
2 for id× b.

A categorical approach to secure compilation 7

Definition 5 (Adapted from [50]). A map of GSOS laws from ρ1 to ρ2
consists of a natural transformation σ : Σ∗

1 =⇒ Σ∗
2 subject to the monad laws

σ ◦ η1 = η2 and σ ◦ µ1 = µ2 ◦ Σ∗
2σ ◦ σ paired with a natural transformation

b : B1 =⇒ B2 that satisfies the following coherence criterion:

Σ∗
1B

c
1 Bc

1Σ
∗
1

Σ∗
2B

c
2 Bc

2Σ
∗
2

ρ∗
1

σ ◦ Σ∗
1b

c bc ◦ Bc
1σ

ρ∗
2

⌟

Remark 4. A natural transformation σ : Σ∗
1 =⇒ Σ∗

2 subject to the monad laws
is equivalent to a natural transformation t : Σ1 =⇒ Σ∗

2.

Theorem 1. If σ and b constitute a map of GSOS laws, then we get a compiler
c : A1 → A2 and behavior transformation d : Z1 → Z2 satisfying d ◦ f1 = f2 ◦ c :
A1 → Z2. As bisimilarity is exactly equality in the final coalgebra (i.e. equality
under fi : Ai → Zi), c preserves bisimilarity [50]. If d is a monomorphism
(which, under mild conditions, is the case in Set if every component of b is a
monomorphism), then c also reflects bisimilarity.

What is very important though, is that the well-behavedness properties of
the two GSOS laws bestow contextual meaning to bisimilarity. Recall that the
gold standard for secure compilation is contextual equivalence (Definition 4),
which is precisely what is observable through program contexts. Bisimilarity is
generally not the same as contextual equivalence, but we can instead show that
in the case of GSOS laws or other forms of distributive laws, bisimilarity defines
the upper bound (most fine-grained distinction) of observability up to program
contexts. We shall do so abstractly in the next subsections.

4.2 Abstract program contexts

The informal notion of a context in a programming language is that of a program
with a hole [31]. Thus contexts are a syntactic construct that models external
interactions with a program: a single context is an experiment whose outcome
is the evaluation of the subject program plugged in the context.

Naïvely, one may hope to represent contexts by a functor H sending a set
of variables X to the set HX of terms in ΣX that may have holes in them.
A complication is that contexts may have holes at any depth (i.e. any number
of operators may have been applied to a hole), whereas ΣX is the set of terms
that have exactly one operator in them, immediately applied to variables. One
solution is to think of Y in HY as a set of variables that do not stand for terms,
but for contexts. This approach is fine for multi-hole contexts, but if we also
want to consider single-hole contexts and a given single-hole context c is not the
hole itself, then precisely one variable in c should stand for a single-hole context,
and all other variables should stand for terms. Thus, in order to support both
single- and multi-hole contexts, we make H a two-argument functor, where HXY
is the set of contexts with term variables from X and context variables from Y .

8 Tsampas et al.

Definition 6. Let C be a distributive category [14] with products ×, coproducts
], initial object ⊥ and terminal object >, as is the case for Set. A context functor
for a syntax functor Σ : C → C, is a functor H : C × C → C (with application
to (X,Y) denoted as HXY) such that there exist natural transformations hole :
∀(X,Y).> → HXY and con : ∀X.X ×HXX → X] ΣX making the following
diagram commute for all X:

X ×> X

X ×HXX X] ΣX

π1

∼=
idX×hole(X,X) i1

conX

⌟
The idea of the transformation con is the following: it takes as input a variable

x ∈ X to be plugged into the hole, and a context c ∈ HXX with one layer of
syntax. The functor HX is applied again to X rather than Y because x is assumed
to have been recursively plugged into the context placeholders y ∈ Y already.
We then make a case distinction: if c is the hole itself, then i1 x is returned.
Otherwise, i2 c is returned.
Definition 7. Let C be a category as in Definition 6 and assume a syntax
functor Σ with context functor H. If Σ has an initial algebra (A, qA) (the set of
programs) and HA has a strong initial algebra (CA, qCA

) [23] (the set of contexts),
then we define the plugging function [[]] : A× CA → A as the “strong inductive
extension” [23] of the algebra structure [idA, qA] ◦ conA : A ×HAA → A on A,
i.e. as the unique morphism that makes the following diagram commute:

A×HACA A× CA

A×HA(A× CA)

A×HAA A] ΣA A

id×qCA

∼=
(π,st)

[[]]

id×HA[[]]

conA [id,qA]

⌟
The above definition of contextual functors is satisfied by both single-hole

and multi-hole contexts, the construction of which we discuss below.

Multi-hole contexts Given a syntax functor Σ, its multi-hole context functor
is simply HXY = >] ΣY . The contextual natural transformation con is the
obvious map that returns the pluggee if the given context is a hole, and otherwise
the context itself (which is then a program):

con : ∀X.X × (>] ΣX)→ X] ΣX

con ◦ (id× i1) = i1 ◦ π1 : ∀X.X ×> → X] ΣX

con ◦ (id× i2) = i2 ◦ π2 : ∀X.X × ΣX → X] ΣX

A categorical approach to secure compilation 9

The ‘pattern matching’ is justified by distributivity of C. For hole = i1 : > →
>]ΣX, we can see that con ◦ (id× hole) = i1 ◦ π1 as required by the definition
of a context functor.

Single-hole contexts It was observed by McBride [29] that for inductive types,
i.e. least fixpoints / initial algebras µF of certain endofunctors F called contain-
ers [4] or simply polynomials, their single-hole contexts are lists of ∂F (µF) where
∂F is the derivative of F 6. Derivatives for containers, which were developed by
Abbott et al. in [5], enable us to give a categorical interpretation of single-hole
contexts as long as the syntax functor Σ is a container.

It would be cumbersome to lay down the entire theory of containers and their
derivatives, so we shall instead focus on the more restricted set of Simple Polyno-
mial Functors [22] (or SPF), used to model both syntax and behavior. Crucially,
SPF’s are differentiable and hence compatible with McBride’s construction.

Definition 8 (Simple Polynomial Functors). The collection of SPF is the
least set of functors C→ C satisfying the following rules:

id Id ∈ SPF const
J ∈ Obj(C)
KJ ∈ SPF prod

F,G ∈ SPF
F ×G ∈ SPF

coprod
F,G ∈ SPF
F]G ∈ SPF comp

F,G ∈ SPF
F ◦G ∈ SPF

⌟
We can now define the differentiation action ∂ : SPF → SPF by structural

induction. Interestingly, it resembles simple derivatives for polynomial functions.

Definition 9 (SPF derivation rules).

∂Id = >, ∂KJ = ⊥, ∂(G]H) = ∂G] ∂H,

∂(G×H) = (∂G×H)] (G× ∂H), ∂(G ◦H) = (∂G ◦H)× ∂H.

⌟
Example 3. The definition of con for single-hole contexts might look a bit cryptic
at first sight so we shall use a small example from [29] to shed some light. In the
case of binary trees, locating a hole in a context can be thought of as traversing
through a series of nodes, choosing left or right according to the placement of the
hole until it is found. At the same time a record of the trees at the non-chosen
branches must be kept so that in the end the entire structure can be reproduced.

Now, considering that the set of binary trees is the least fixed point of functor
>] (Id × Id), then the type of “abstract” choice at each intersection is the
functor KBool × Id, where KBool stands for a choice of left or right and the Id
part represents the passed structure. Lists of (KBool × Id) BinTree are exactly
the sort of record we need to keep, i.e. they contain the same information as a
tree with a single hole. And indeed KBool × Id is (up to natural isomorphism)
the derivative of >] (Id× Id)! ⌟
6 The list operator itself arises from the derivative of the free monad operator.

10 Tsampas et al.

Using derivatives we can define the context functor HXY = >]((∂Σ X)×Y)
for syntax functor Σ. Then the initial algebra CA of HA is indeed List ((∂Σ) A),
the set of single-hole contexts for A ∼= ΣA.

Plugging Before defining con, we define an auxiliary function conStep : ∂Σ ×
Id =⇒ Σ. We defer the reader to [29] for the full definition of conStep, which is
inductive on the SPF Σ, and shall instead only define the case for coproducts.
So, for ∂(F]G) = ∂F] ∂G we have:

conStepF]G : (∂F] ∂G)× Id =⇒ F]G

conStepF]G ◦ (i1 × id) = i1 ◦ conStepF : ∂F × Id =⇒ F]G

conStepF]G ◦ (i2 × id) = i2 ◦ conStepG : ∂G× Id =⇒ F]G

We may now define con : X ×HXX → X] ΣX as follows:

con : ∀X.X × (>] (∂Σ X ×X))→ X] ΣX

con ◦ (id× i1) = i1 ◦ π1 : ∀X.X ×> → X] ΣX

con ◦ (id× i2) = i2 ◦ conStepΣ ◦ π2 : ∀X.X × (∂Σ X ×X)→ X] ΣX

By setting hole = i1 : > → >] (∂Σ X ×X) we can see that con ◦ (id× hole) =
i1 ◦ π1 as required by Definition 6.

4.3 Contextual coclosure

Having established a categorical notion of contexts, we can now move towards
formulating contextual categorical arguments about bisimilarity. We assume a
context functor H for Σ such that HA has strong initial algebra (CA, qCA

) (the
object containing all contexts).

First, since we prefer to work in more general categories than just Set, we
will encode relations R ⊆ X × Y as spans X

r1←− R
r2−→ Y . One may wish to

consider only spans for which (r1, r2) : R→ X × Y is a monomorphism, though
this is not necessary for our purposes.

We want to reason about contextually closed relations on the set of terms
A, which are relations such that a1 R a2 implies (c Ja1K) R (c Ja2K) for all
contexts c ∈ CA. Contextual equivalence will typically be defined as the co-
closure of equitermination: the greatest contextually closed relation that implies
equitermination. For spans, this becomes:

Definition 10. In a category as in Definition 6, a span A
r1←− R

r2−→ A is called
contextually closed if there is a morphism J K : CA×R→ R making the following
diagram commute:

CA ×A CA ×R CA ×A

A R A

J K
id×r1 id×r2

J K J K
r1 r2

A categorical approach to secure compilation 11

The contextual co-closure A
r̄1←− R̄

r̄2−→ A of an arbitrary span A
r1←− R

r2−→ A is
the final contextually closed span on A with a span morphism R̄→ R. ⌟

We call terms bisimilar if the operational semantics f : A→ Z assigns them
equal behaviors:

Definition 11. We define (strong) bisimilarity ∼bis as the pullback of the equal-
ity span (idZ , idZ) : Z → Z × Z along f × f : A×A→ Z × Z (if existent).

Theorem 2. Under the assumptions of 7, bisimilarity (if existent) is contextu-
ally closed.

Proof. We need to give a morphism of spans from CA × (∼bis) to (∼bis):

CA ×A CA × (∼bis) CA ×A

A (∼bis) A

Z Z Z.

J K
id×r1 id×r2

J K

f

r1 r2

w f

idZ idZ

By definition of (∼bis), it suffices to give a morphism of spans to the equality
span on Z, i.e. to prove that f ◦ J K ◦ (id× r1) = f ◦ J K ◦ (id× r2). To this end,
consider the following diagram (parameterized by i ∈ {1, 2}), in which every
polygon is easily seen to commute:

(∼bis)×HACA (∼bis)× CA

A×HACA A× CA

(∼bis)×HA(A× CA) A×HA(A× CA)

(∼bis)×HAA A×HAA A] ΣA A

(∼bis)×HAZ

(∼bis)×HZZ Z ×HZZ Z] ΣZ Z

id×qCA

∼=

ri×id(π1,HA(ri×id)◦st)

ri×id
id×qCA

∼=
(π1,st)

J K
ri×id

id×HAJ K id×HAJ K
ri×id

id×HAf

conA

f×Hff

[id,qA]

f]Σf f

id×Hf idZ

w×id conZ [id,qZ]

The bottom-right square stems from the underlying GSOS law: it is the algebra
homomorphism part of the bialgebra morphism between the initial and the final
bialgebras. Commutativity of the outer diagram reveals that f ◦ J K ◦ (ri× id) is,
regardless of i, the strong inductive extension of [idZ , qZ] ◦ conZ ◦ (w×Hf idZ) :
(∼bis)×HAZ → Z. Thus, it is independent of i. ut

12 Tsampas et al.

Corollary 1. In Set, bisimilarity is its own contextual coclosure: a ∼bis b⇐⇒
∀ c ∈ CA. c JaK ∼bis c JbK
Corollary 2. In Set, bisimilarity implies contextual equivalence.7

Proof. Bisimilarity implies equitermination. This yields an implication between
their coclosures. ut

Comparing Corollary 1 to contextual equivalence in Definition 4 reveals their
key difference. Contextual equivalence makes minimal assumptions on the un-
derlying observables, which are simply divergence and termination. On the other
hand, the contextual coclosure of bisimilarity assumes maximum observability
(as dictated by the behavior functor) and in that sense it represents the upper
bound of what can be observed through contexts. Consequently, this criterion
is useful if the observables adequately capture the threat model, which is true
for the examples that follow.

This theorem echoes similar results in the broader study of coalgebraic bisim-
ulation [11, 41]. There are, however, two differences. The first is that our theorem
allows for extra flexibility in the definition of contexts as the theorem is paramet-
ric on the context functor. Second, by making the context construction explicit
we can directly connect (the contextual coclosure of) bisimilarity to contextual
equivalence (Corollary 2) and so have a more convincing argument for using
maps of distributive laws as secure compilers.

5 An extra register (Part II)

The next step is to define the syntax and behavior natural transformations. The
first compiler, σ : Σ =⇒ Σ, is a very simple mapping of constructors in While
to their While counterparts. The second natural transformation, σ : Σ =⇒
Σ∗


, is more complex as it involves an additional layer of syntax in While.

Definition 12 (Sandboxing natural transformation). Consider the nat-
ural transformation e : Σ =⇒ Σ which embeds Σ in Σ. Using PL notation,
we define σ : ΣX → Σ∗


X : p 7→ *e(p)+. This yields a monad morphism

σ∗


: Σ∗ → Σ∗


(Remark 4).

Defining the natural translation between behaviors is a matter of choosing a
designated value for the added observable label. The only constraint is that the
chosen value has to coincide with the label that the sandbox produces. B and
B are identical so we need a single natural transformation b : B =⇒ B/:

b : ∀X. (S → S ×Maybe X)→ S → N× S ×Maybe X

b f = λ(s : S)→ (0, f(s))

7 Note that we can not conclude that preservation of bisimilarity would imply preser-
vation of contextual equivalence.

A categorical approach to secure compilation 13

While to While We now have the natural translation pairs (σ, b) and
(σ, b), which allows us to check the coherence criterion from Section 4.1. We
shall be using a graphical notation that provides for a good intuition as to what
failure or success of the criterion means. For example, Fig. 3 shows failure of the
coherence criterion for the first pair.

l := e
v = eval s e

s ⇓ update s l v

l := e
v = eval s e

s ⇓v/0 update s l v

ρ∗

σ∗

◦ Σ∗bc bc ◦Bcσ∗



ρ∗


Fig. 3. Failure of the criterion for (σ, b).

The horizontal arrows in the di-
agram represent the two semantics,
ρ∗ and ρ∗


, while the vertical ar-

rows are the two horizontal com-
positions of the natural translation
pair. The top-left node holds an el-
ement of Σ∗(Id × B), which in this
case is an assignment operation. The
two rightmost nodes represent be-
haviors, so the syntactic element is missing from the left side of the transition
arrows.

In the upper path, the term is first applied to the GSOS law ρ∗ and the
result is then passed to the translation pair, thus producing the designated label
0, typeset in blue for convenience. In the lower path, the term is first applied to
the translation and then goes through the target semantics, ρ∗


, where the label

v is produced. It is easy to find such an s so that v 6= 0.

l := e
v = eval s e

s ⇓ update s l v

*l := e+ v = eval s e
s, l := e ⇓v update s l v

s ⇓0 update s l v

ρ∗

σ∗

◦ Σ∗bc bc ◦Bcσ∗



ρ∗


Fig. 4. The coherence criterion for (σ, b).

While to While The same ex-
ample is investigated for the sec-
ond translation pair (σ, b). Fig-
ure 4 shows what happens when
we test the same case as before.
Applying ρ∗


to *l := e+ is simi-

lar to ρ acting twice. The inner-
most transition is the intermedi-
ate step and as it only appears in
the bottom path it is typeset in
red. This time the diagram commutes as the label produced in the inner layer,
v, is effectively erased by the sandboxing rules of While.

An endo-compiler for While If A is the set of closed terms for While,
the compiler u : A → A, which “escapes” While terms from their sandboxes
can be elegantly modeled using category theory. As before, it is not possible to
express it using a simple natural transformation Σ =⇒ Σ. We can, however,
use the free pointed endofunctor [28] over Σ, Id] Σ. What we want is to
map non-sandboxed terms to themselves and lift the extra layer of syntax from
sandboxed terms. Intuitively, for a set of variables X, ΣX is one layer of syntax
“populated” with elements of X. If X]ΣX is the union of ΣX with the set
of variables X, lifting the sandboxing layer is mapping the X in *X+ to the left
of X] ΣX and the rest to themselves at the right.

14 Tsampas et al.

s, p →v s′, q*p+ s →0 s′, *q+
s, p →v s′, q

p
s →v/0 s′, q

ρ∗

σ∗
u Bcσ∗

u

ρ∗

Fig. 5. Failure of the criterion for σu.

This is obviously not a secure compiler as it allows discerning previously
indistinguishable programs. As we can see in Figure 5, the coherence criterion
fails in the expected manner.

6 State mismatch
Having established our categorical foundations, we shall henceforth focus on
examples. The first one involves a compiler where the target machine is not nec-
essarily more powerful than the source machine, but the target value primitives
are not isomorphic to the ones used in the source. This is a well-documented
problem [37], which has led to failure of full abstraction before [8, 18, 25].

For example, we can repeat the development of While except we substitute
natural numbers with integers. We call this new version WhileZ.
〈expr〉 ::= lit Z | var N | 〈expr〉 〈bin〉 〈expr〉 | 〈un〉 〈expr〉
The behavior functor also differs in that the store type S is substituted with SZ,
the set of lists of integers. We can define the behavioral natural transformation
bZ : B =⇒ BZ as the best “approximation” between the two behaviors. In Set:

bZ : ∀X. (S → S × (>]X))→ SZ → SZ × (>]X)

bZ f = [toZ, id] ◦ f ◦ toN

0 := min(var[0],0) [n] ⇓ [0]

0 := min(var[0],0) [−1] ⇓ [−1/0]

ρ∗

Σ∗bcZ bcZ
ρ∗Z

Fig. 6. Failure of the criterion for (id, bZ).

Where toN replaces all negative
numbers in the store with 0 and
toZ typecasts S to SZ. It is easy to
see that the identity compiler from
While to WhileZ is not fully abstract.
For example, the expressions 0 and
min(var[0], 0) are identical in While
but can be distinguished in WhileZ (if
var[0] is negative). This is reflected in the coherence criterion diagram for the
identity compiler in Figure 6, when initiating the store with a negative integer.

The solution is to create a special environment where WhileZ forgets about
negative integers, in essence copying what bZ does on the store. This is a special
kind of sandbox, written 〈_〉, for which we introduce the following rules:

toN(s), p ⇓ s′

s, 〈p〉 ⇓ s′
toN(s), p→ s′, p′

s, 〈p〉 → s′, 〈p′〉

A categorical approach to secure compilation 15

0 := min(var[0],0) [n] ⇓ [0]

⟨0 := min(var[0],0)⟩ [−1] ⇓ [0]

ρ∗

σ∗
Z ◦ Σ∗bcZ bcZ ◦Bcσ∗

Z

ρ∗Z

Fig. 7. The coherence criterion for (σZ, bZ).

We may now repeat the construction from Definition 12 to define the compiler
σZ. We can easily verify that the pair (σZ, bZ) constitutes a map of distributive
laws. For instance, Figure 7 demonstrates how the previous failing case now
works under (σZ, bZ).

7 Control Flow

Many low-level languages support unrestricted control flow in the form of jump-
ing or branching to an address. On the other hand, control flow in high-level
languages is usually restricted (think if-statements or function calls). A compiler
from the high-level to the low-level might be insecure as it exposes source-level
programs to illicit control flow. This is another important and well-documented
example of failure of full abstraction [8, 37, 3, 33].

s, 0, stop [;; x] ⇓ s, 0

v = eval s e s′ = update s n v

s, 0, assign n v [;; x] → s′, 1, assign n v [;; x]

PC ≥ 0 s, PC, x ⇓ s′, PC′

s, PC + 1, i ;; x ⇓ s′, PC′ + 1

v = eval s e v = 0
s, 0, br e z [;; x] → s, 1, br e z [;; x]

v = eval s e v ̸= 0

s, 0, br e z [;; x] → s, z, br e z [;; x]

PC < 0
s, PC, i ;; x ⇓ s, PC

p = nop [;; x]

s, 0, p → s, 1, p

PC ≥ 0 s, PC, x → s′, PC′, x′

s, PC + 1, i ;; x → s′, PC′ + 1, i ;; x′
PC ̸= 0

s, PC, i ⇓ s, PC

Fig. 8. Semantics of the Low language. Elements in square brackets are optional.

We introduce low-level language Low, the programs of which are non-empty
lists of instructions. Low differs significantly from While and its derivatives in
both syntax and semantics. For the syntax, we define the set of instructions
〈inst〉 and set of programs 〈asm〉.

〈inst〉 ::= nop | stop | assign N 〈expr〉 | br 〈expr〉 Z

〈asm〉 ::= 〈inst〉 | 〈inst〉 ;; 〈asm〉

16 Tsampas et al.

Instruction nop is the no-operation, stop halts execution and assign is anal-
ogous to the assignment operation in While. The br instruction is what really
defines Low, as it stands for bidirectional relative branching.

Semantics of Low Figure 8 shows the operational semantics of Low. The exe-
cution state of a running program consists of a run-time store and the program
counter register PC ∈ Z that points at the instruction being processed. If the pro-
gram counter is zero, the leftmost instruction is executed. If the program counter
is greater than zero, then the current instruction is further to the right. Other-
wise, the program counter is out-of-bounds and execution stops. The categorical
interpretation suggests a GSOS law ρL of syntax functor ΣLX = inst](inst×X)
over behavior functor BLX = S × Z→ S × Z×Maybe X.

An insecure compiler This time we start with the behavioral translation,
which is less obvious as we have to go from BX = S → S × Maybe X to
BLX = S × Z → S × Z × Maybe X. The increased arity in BL poses an
interesting question as to what the program counter should mean in While. It
makes sense to consider the program counter in While as zero since a program
in While is treated uniformly as a single statement.

bL : ∀X. (S → S ×Maybe X)→ S × Z→ S × Z×Maybe X

bL f (s, 0) =

{
(s′, 1,nothing) if f s = (s′,nothing)
(s′, 0, just y) if f s = (s′, just y)

bL f (s, n 6= 0) = (s, n, nothing)

When it comes to translating terms, a typical compiler from While to Low would
untangle the tree-like structure of While and convert it to a list of Low in-
structions. For while statements, the compiler would use branching to simulate
looping in the low-level.

Example 4. Let us look at a simple case of a loop. The While program
while (var 0 < 2) (1 := var 1 + 1) is compiled to
br !(var 0 < 2) 3 ;; assign 1 (var 1 + 1) ;; br (lit 1) -2 ⌟

while (lit 0) (0 := lit 0) s→ s, skip

br !(lit 0) 3 ;;
assign 0 lit 0 ;;

br (lit 1) − 2

s, 1 ⇓ s, 1
s, 1→ s[07→0], 2...

h

cL BLcL ◦ bA

hL

Fig. 9. cL is not a coalgebra homomorphism.

This compiler, called cL,
cannot be defined in terms of
a natural transformation Σ =⇒
Σ∗

L as per Remark 4, but it is
inductive on the terms of the
source language. In this case we
can directly compare the two op-
erational models bA ◦ h : A →
BLA (where h : A → BA) and
hL : AL → BLAL and notice
that cL : A → AL is not a coalgebra homomorphism (Figure 9). The key is

A categorical approach to secure compilation 17

that the program counter in Low allows for finer observations on programs.
Take for example the case for while (lit 0) (0 := lit 0), where the loop is
always skipped. In Low, we can still access the loop body by simply pointing
the program counter to it. This is a realistic attack scenario because Low allows
manipulation of the program counter via the br instruction.

Solution By comparing the semantics between While in Figure 1 and Low
in Figure 8 we find major differences. The first one is the reliance of Low to a
program counter which keeps track of execution, whereas While executes state-
ments from left to right. Second, the sequencing rule in While dictates that
statements are removed from the program state8 upon completion. On the other
hand, Low keeps the program state intact at all times. Finally, there is a stark
contrast between the two languages in the way they handle while loops.

To address the above issues we introduce a new sequencing primitive ;;c

and a new looping primitive loop for Low, which prohibit illicit control flow and
properly propagate the internal state. Furthermore, we change the semantics of
the singleton assign instruction so that it mirrors the peculiarity of its While
counterpart. The additions can be found in Figure 10.

PC ̸= 0

s, PC, x ;;c y ⇓ s′, PC
s, 0, x ⇓ s′, z

s, 0, x ;;c y → s′, 0, y

s, 0, x → s′, z, x′

s, 0, x ;;c y → s′, 0, x′ ;;c y

PC ̸= 0

s, PC, loop e x ⇓ s, PC
v = eval s e v = 0

s, 0, loop e x → s, 0, stop
v = eval s e v ̸= 0

s, 0, loop e x → s, 0, x ;;c loop e x

v = eval s e s′ = update s n v

s, 0, assign n v ⇓ s′, 0

Fig. 10. Secure primitives for the Low language.

We may now define the simple “embedding” natural transformation σE :
Σ =⇒ ΣL, which maps skip to stop, assignments to assign, sequencing to ;;c

and while to loop.

while (lit 0) p s→ s, skip

loop (lit 0) p s, 1 ⇓ s, 1

ρ∗

σ∗
E ◦ Σ∗bcL bcL ◦Bcσ∗

E

ρ∗L

Fig. 11. The coherence criterion for (σE , bL).

Figure 11 shows success of the
coherence criterion for the while
case. Since the diagram commutes
for all cases, (σE , bE) is a map
of GSOS laws between While and
the secure version of Low. This
guarantees that, remarkably, de-
spite the presence of branching, a
low-level attacker cannot illicitly
access code that is unreachable on
8 We are not referring to the store, but to the internal, algebraic state.

18 Tsampas et al.

the high-level. Regardless, the solution is a bit contrived in that the new Low
primitives essentially copy what While does. This is partly because the above are
complex issues involving radically different languages but also due to the current
limitations of the underlying theory. We elaborate further on said limitations,
as well as advantages and future improvements, at Section 9.

8 Local state encapsulation

High-level programming language abstractions often involve some sort of private
state space that is protected from other objects. Basic examples include func-
tions with local variables and objects with private members. Low-level languages
do not offer such abstractions but when it comes to secure architectures, there is
some type of hardware sandboxing 9 to facilitate the need for local state encap-
sulation. Compilation schemes that respect confidentiality properties have been
a central subject in secure compilation work [37, 8, 18, 46], dating all the way
back to Abadi’s seminal paper [1].

In this example we will explore how local state encapsulation fails due to
lack of stack clearing [46, 44]. We begin by extending While to support blocks
which have their own private state, thus introducing WhileB . More precisely, we
add the frame and return commands that denote the beginning and end of a
new block. We also have to modify the original behavior functor B to act on a
stack of stores by simply specifying BBX = [S] → [S] ×Maybe X, where [S]
denotes a list of stores. For reasons that will become apparent later on, we shall
henceforth consider stores of a certain length, say L.

m, skip ⇓ m

v = eval' m e m′ = update' m l v

m, l := e ⇓ m′
m, p ⇓ m′

m, p; q → m′, q

m, p → m′, p′

m, p; q → m′, p′; q

eval' m e = 0
m, while e p → m, skip

eval' m e ̸= 0

m, while e p → m, p; while e p

s0 = [0, 0, . . . , 0]

m, frame ⇓ s0 :: m s :: m, return ⇓ m

Fig. 12. Semantics of the WhileB language.

The semantics for WhileB can be found in Figure 12. Command frame allo-
cates a new private store by appending one to the stack of stores while return
pops the top frame from the stack. This built-in, automatic (de)allocation of
frames guarantees that there are no traces of activity, in the form of stored
values, of past blocks. The rest of the semantics are similar to While, only now
evaluating an expression and updating the state acts on a stack of stores instead
of a single, infinite store and var expressions act on the active, topmost frame.
9 Examples of this are enclaves in Intel SGX [15] and object capabilities in CHERI [51].

A categorical approach to secure compilation 19

m′ = update m (l + L ∗ sp) (evalSP m sp e)

(m, sp), l := e ⇓ (m′, sp)

sp > 0

(m, sp), return ⇓ (m, sp− 1)

(m, sp), p ⇓ (m′, sp)

(m, sp), p; q → (m′, sp), q

(m, sp), p → (m′, sp), p′

(m, sp), p; q → (m′, sp), p′; q

(m, sp), skip ⇓ (m, sp)

evalSP m sp e = 0

(m, sp), while e p → (m, sp), skip
evalSP m sp e ̸= 0

(m, sp), while e p → (m, sp), p; while e p (m, sp), frame ⇓ (m, sp+ 1)

Fig. 13. Semantics of the Stack language.

Low-level stack In typical low-level instruction sets like the Intel x86 [21] or
MIPS [30] there is a single, continuous memory which is partitioned in frames via
processor registers. Figure 13 shows the semantics of Stack, a variant of WhileB
with the same syntax that incorporates a simple low-level stack. The difference
is that the stack frames are all sized L, the same size as each individual store in
WhileB , so at each frame and return we need only increment and decrement the
stack pointer. The presence of the stack pointer, which is essentially a natural
number, means that the behavior of Stack is BSX = S×N→ S×N×Maybe X.
The new evaluation function, evalSP, works similarly to eval in Definition 1,
except for var l expressions that dereference values at offset l + L ∗ sp.

An insecure compiler WhileB and Stack share the same syntax so we only
need a behavioral translation, which is all about relating the two different notions
of stack. We thus define natural transformation bB : BB =⇒ BS :

bB : ∀X. ([SL]→ [SL]×Maybe X)→ S → N→ S × N×Maybe X

bB f s sp = (override (join m) s, len m, y) where (m, y) = f (div s sp)

div s sp = (take L s) :: (div (drop L s) (sp− 1))

override s′ s = s′ ++ drop (len s′) s

We “divide” an infinite list by the number of stack frames, feed the result to
the behavior function f and join (“flatten”) it back together while keeping the
original part of the infinite list which extends beyond the active stack intact.
Note that in the case of the frame command f adds a new frame to the list
of stores. The problem is that in WhileB the new frame is initialized to 0 in
contrast to Stack where frame does not initialize new frames. This leads to a
failure of the coherence criterion for (id, bB) as we can see in Figure 14.

Failure of the criterion is meaningful in that it underlines key problems of
this compiler which can be exploited by a low-level attacker. First, the low-level
calling convention indirectly allows terms to access expired stack frames. Second,
violating the assumption in WhileB that new frames are properly initialized
breaks behavioral equivalence. For example, programs a ≜ frame ; 0 := var[0]+1
and b ≜ frame ; 0 := 1 behave identically in WhileB but not in Stack.

20 Tsampas et al.

frame [] ⇓ [s0]

frame
s′ = override s0 s

(s, 0) ⇓ (s/s′, 1)

ρ∗B

Σ∗
Bb

c
B

bcB

ρ∗St

Fig. 14. Failure of the criterion for (id, bB).

Solution It is clear that the lack of stack frame initialization in Stack is the
lead cause of failure so we introduce the following fix in the frame rule.

m′ = (take (L ∗ sp) m) ++ s0 ++ (drop ((L + 1)‘ ∗ sp) m)

(m, sp), frame ⇓ (m′, sp+ 1)

The idea behind the new frame rule is that the L-sized block in position sp,
which is going to be the new stack frame, has all its values replaced by zeroes. As
we can see in Figure 15, the coherence criterion is now satisfied and the example
described earlier no longer works.

frame [] ⇓ [s0]

frame
s′ = s0 ++ (drop L s)

(s, 0) ⇓ (s′, 1)

ρ∗B

Σ∗
Bb

c
B

bcB

ρ∗St

Fig. 15. The coherence criterion for (id, bB) under the new frame rule.

9 Discussion and future work

On Mathematical Operational Semantics The cases we covered in this
paper are presented using Plotkin’s Structural Operational Semantics [38], yet
their foundations are deeply categorical [48]. Consequently, for one to use the
methods presented in this paper, the semantics involved must fall within the
framework of distributive laws, the generality of which has been explored in the
past [47, 50], albeit not exhaustively. To the best of our knowledge, Section 7
and Section 8 show the first instances of distributive laws as low-level machines.

Bialgebraic semantics are well-behaved in that bisimilarity is a congruence [19].
We used that to show that two bisimilar programs will remain bisimilar irrespec-
tive of the context they are plugged into, which is not the same as contextual
equivalence. However, full abstraction is but one of a set of proposed characteri-
zations of secure compilation [36, 2] and the key intuition is that our framework

A categorical approach to secure compilation 21

is suitable as long as bisimilarity adequately captures the threat model. While
this is the case in the examples, we can imagine situations where the threat
model is weaker than the one implied by bisimilarity.

For example, language While in Section 3 includes labels in its transition
structure and the underlying model is accurate in that While terms can ma-
nipulate said labels. However, if we were to remove obs statements from the
syntax, the threat model becomes weaker than the one implied by bisimilarity.
Similarly in Section 7 and Low, we could remove the implicit assumption that
the program counter can be manipulated by a low-level attacker.

This issue can be classified as part of the broader effort towards coalgebraic
weak bisimilarity, a hard problem which has been an object of intense, ongoing
scientific research [42, 39, 20, 13, 43, 42, 12]. Of particular interest is the work
by Abou-Saleh and Pattinson [7, 6] about bialgebraic semantics, where they use
techniques introduced in [20] to obtain a more appropriate semantic domain for
effectful languages as a final coalgebra in the Kleisli category of a suitable monad.
This method is thus a promising avenue towards exploring weaker equivalences
in bialgebraic semantics, as long as these can be described by a monad.

On Maps of Distributive Laws Maps of distributive laws were first men-
tioned by Power and Watanabe [40], then elaborated as Well-behaved transla-
tions by Watanabe [50] and more recently by Klin and Nachyla [27]. Despite the
few examples presented in [50, 27], this paper is the first major attempt towards
applying the theory behind maps of distributive laws in a concrete problem, let
alone in secure compilation.

From a theoretical standpoint, maps of distributive laws have remained largely
the same since their introduction. This comes despite the interesting develop-
ments discussed in Section 9 regarding distributive laws, which of course are
the subjects of maps of distributive laws. We speculate the existence of Kleisli
maps of distributive laws that guarantee preservation of equivalences weaker
than bisimilarity. We plan to develop this notion and explore its applicability in
future work.

Conclusion It is evident that the systematic approach presented in this work
may markedly streamline proofs for compiler security as it involves a single, sim-
ple coherence criterion. Explicit reasoning about program contexts is no longer
necessary, but that does not mean that contexts are irrelevant. On the contrary,
the guarantees are implicitly contextual due to the well-behavedness of the se-
mantics. Finally, while the overall usability and eventual success of our method
remains a question mark as it depends on the expressiveness of the threat model,
the body of work in coalgebraic weak bisimilarity and distributive laws in Kleisli
categories suggests that there are many promising avenues for further progress.

Acknowledgements. This work was partially supported by the Research Fund
KU Leuven. Andreas Nuyts holds a PhD fellowship from the Research Founda-
tion - Flanders (FWO).

22 Tsampas et al.

References

[1] Martín Abadi. “Protection in Programming-Language Translations”. In:
Secure Internet Programming, Security Issues for Mobile and Distributed
Objects. 1999, pp. 19–34. doi: 10.1007/3-540-48749-2_2. url: https:
//doi.org/10.1007/3-540-48749-2_2.

[2] Carmine Abate et al. Journey Beyond Full Abstraction: Exploring Robust
Property Preservation for Secure Compilation. 2018. arXiv: 1807 .04603
[cs.PL].

[3] Carmine Abate et al. “When Good Components Go Bad: Formally Secure
Compilation Despite Dynamic Compromise”. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018. Ed. by David Lie
et al. ACM, 2018, pp. 1351–1368. isbn: 978-1-4503-5693-0. doi: 10.1145/
3243734.3243745. url: https://doi.org/10.1145/3243734.3243745.

[4] Michael Gordon Abbott, Thorsten Altenkirch, and Neil Ghani. “Contain-
ers: Constructing strictly positive types”. In: Theor. Comput. Sci. 342.1
(2005), pp. 3–27. doi: 10.1016/j.tcs.2005.06.002. url: https://doi.org/10.
1016/j.tcs.2005.06.002.

[5] Michael Gordon Abbott et al. “for Data: Differentiating Data Structures”.
In: Fundam. Inform. 65.1-2 (2005), pp. 1–28. url: http://content.iospress.
com/articles/fundamenta-informaticae/fi65-1-2-02.

[6] Faris Abou-Saleh. “A coalgebraic semantics for imperative programming
languages”. PhD thesis. Imperial College London, UK, 2014. url: http:
//hdl.handle.net/10044/1/13693.

[7] Faris Abou-Saleh and Dirk Pattinson. “Towards Effects in Mathematical
Operational Semantics”. In: Electr. Notes Theor. Comput. Sci. 276 (2011),
pp. 81–104. doi: 10.1016/j.entcs.2011.09.016. url: https://doi.org/10.
1016/j.entcs.2011.09.016.

[8] Pieter Agten et al. “Secure Compilation to Modern Processors”. In: 25th
IEEE Computer Security Foundations Symposium, CSF 2012, Cambridge,
MA, USA, June 25-27, 2012. Ed. by Stephen Chong. IEEE Computer
Society, 2012, pp. 171–185. isbn: 978-1-4673-1918-8. doi: 10.1109/CSF.
2012.12. url: https://doi.org/10.1109/CSF.2012.12.

[9] Amal Ahmed and Matthias Blume. “An equivalence-preserving CPS trans-
lation via multi-language semantics”. In: Proceeding of the 16th ACM SIG-
PLAN international conference on Functional Programming, ICFP 2011,
Tokyo, Japan, September 19-21, 2011. Ed. by Manuel M. T. Chakravarty,
Zhenjiang Hu, and Olivier Danvy. ACM, 2011, pp. 431–444. isbn: 978-1-
4503-0865-6. doi: 10.1145/2034773.2034830. url: https://doi.org/10.
1145/2034773.2034830.

[10] Amal Ahmed et al. “Secure Compilation (Dagstuhl Seminar 18201)”. In:
Dagstuhl Reports 8.5 (2018). Ed. by Amal Ahmed et al., pp. 1–30. issn:
2192-5283. doi: 10.4230/DagRep.8.5.1. url: http://drops.dagstuhl.de/
opus/volltexte/2018/9891.

https://doi.org/10.1007/3-540-48749-2_2
https://doi.org/10.1007/3-540-48749-2_2
https://doi.org/10.1007/3-540-48749-2_2
https://arxiv.org/abs/1807.04603
https://arxiv.org/abs/1807.04603
https://doi.org/10.1145/3243734.3243745
https://doi.org/10.1145/3243734.3243745
https://doi.org/10.1145/3243734.3243745
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002
http://content.iospress.com/articles/fundamenta-informaticae/fi65-1-2-02
http://content.iospress.com/articles/fundamenta-informaticae/fi65-1-2-02
http://hdl.handle.net/10044/1/13693
http://hdl.handle.net/10044/1/13693
https://doi.org/10.1016/j.entcs.2011.09.016
https://doi.org/10.1016/j.entcs.2011.09.016
https://doi.org/10.1016/j.entcs.2011.09.016
https://doi.org/10.1109/CSF.2012.12
https://doi.org/10.1109/CSF.2012.12
https://doi.org/10.1109/CSF.2012.12
https://doi.org/10.1145/2034773.2034830
https://doi.org/10.1145/2034773.2034830
https://doi.org/10.1145/2034773.2034830
https://doi.org/10.4230/DagRep.8.5.1
http://drops.dagstuhl.de/opus/volltexte/2018/9891
http://drops.dagstuhl.de/opus/volltexte/2018/9891

A categorical approach to secure compilation 23

[11] Falk Bartels. On Generalised Coinduction and Probabilistic Specification
Formats: Distributive Laws in Coalgebraic Modelling. 2004.

[12] Filippo Bonchi et al. “Lax Bialgebras and Up-To Techniques for Weak
Bisimulations”. In: 26th International Conference on Concurrency Theory,
CONCUR 2015, Madrid, Spain, September 1.4, 2015. Ed. by Luca Aceto
and David de Frutos-Escrig. Vol. 42. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015, pp. 240–253. isbn: 978-3-939897-91-0. doi:
10.4230/LIPIcs.CONCUR.2015.240. url: https://doi.org/10.4230/LIPIcs.
CONCUR.2015.240.

[13] Tomasz Brengos. “Weak bisimulation for coalgebras over order enriched
monads”. In: Logical Methods in Computer Science 11.2 (2015). doi: 10.
2168/LMCS-11(2:14)2015. url: https://doi.org/10.2168/LMCS-11(2:
14)2015.

[14] J. Robin B. Cockett. “Introduction to Distributive Categories”. In: Math-
ematical Structures in Computer Science 3.3 (1993), pp. 277–307. doi: 10.
1017/S0960129500000232. url: https://doi.org/10.1017/S0960129500000232.

[15] Victor Costan and Srinivas Devadas. “Intel SGX Explained”. In: IACR
Cryptology ePrint Archive 2016 (2016), p. 86. url: http://eprint.iacr.org/
2016/086.

[16] Dominique Devriese, Marco Patrignani, and Frank Piessens. “Fully-abstract
compilation by approximate back-translation”. In: Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016. 2016, pp. 164–177. doi: 10.1145/2837614.2837618. url: https:
//doi.org/10.1145/2837614.2837618.

[17] Derek Dreyer, Amal Ahmed, and Lars Birkedal. “Logical Step-Indexed
Logical Relations”. In: Logical Methods in Computer Science 7.2 (2011).
doi: 10.2168/LMCS-7(2:16)2011. url: https://doi.org/10.2168/LMCS-
7(2:16)2011.

[18] Cédric Fournet et al. “Fully abstract compilation to JavaScript”. In: The
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013.
2013, pp. 371–384. doi: 10.1145/2429069.2429114. url: https://doi.org/
10.1145/2429069.2429114.

[19] Jan Friso Groote and Frits W. Vaandrager. “Structured Operational Se-
mantics and Bisimulation as a Congruence”. In: Inf. Comput. 100.2 (1992),
pp. 202–260. doi: 10.1016/0890-5401(92)90013-6. url: https://doi.org/
10.1016/0890-5401(92)90013-6.

[20] Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. “Generic Trace Semantics
via Coinduction”. In: Logical Methods in Computer Science 3.4 (2007). doi:
10.2168/LMCS-3(4:11)2007. url: https://doi.org/10.2168/LMCS-3(4:
11)2007.

[21] Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel Cor-
poration. 2016. url: https://www.intel.com/content/dam/www/public/

https://doi.org/10.4230/LIPIcs.CONCUR.2015.240
https://doi.org/10.4230/LIPIcs.CONCUR.2015.240
https://doi.org/10.4230/LIPIcs.CONCUR.2015.240
https://doi.org/10.2168/LMCS-11(2:14)2015
https://doi.org/10.2168/LMCS-11(2:14)2015
https://doi.org/10.2168/LMCS-11(2:14)2015
https://doi.org/10.2168/LMCS-11(2:14)2015
https://doi.org/10.1017/S0960129500000232
https://doi.org/10.1017/S0960129500000232
https://doi.org/10.1017/S0960129500000232
http://eprint.iacr.org/2016/086
http://eprint.iacr.org/2016/086
https://doi.org/10.1145/2837614.2837618
https://doi.org/10.1145/2837614.2837618
https://doi.org/10.1145/2837614.2837618
https://doi.org/10.2168/LMCS-7(2:16)2011
https://doi.org/10.2168/LMCS-7(2:16)2011
https://doi.org/10.2168/LMCS-7(2:16)2011
https://doi.org/10.1145/2429069.2429114
https://doi.org/10.1145/2429069.2429114
https://doi.org/10.1145/2429069.2429114
https://doi.org/10.1016/0890-5401(92)90013-6
https://doi.org/10.1016/0890-5401(92)90013-6
https://doi.org/10.1016/0890-5401(92)90013-6
https://doi.org/10.2168/LMCS-3(4:11)2007
https://doi.org/10.2168/LMCS-3(4:11)2007
https://doi.org/10.2168/LMCS-3(4:11)2007
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf

24 Tsampas et al.

us/en/documents/manuals/64- ia-32-architectures- software-developer-
instruction-set-reference-manual-325383.pdf.

[22] Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and
Observation. Vol. 59. Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2016. isbn: 9781316823187. doi: 10 .1017/
CBO9781316823187. url: https://doi.org/10.1017/CBO9781316823187.

[23] Bart Jacobs. “Parameters and Parametrization in Specification, Using Dis-
tributive Categories”. In: Fundam. Inform. 24.3 (1995), pp. 209–250. doi:
10.3233/FI-1995-2431. url: https://doi.org/10.3233/FI-1995-2431.

[24] Radha Jagadeesan et al. “Local Memory via Layout Randomization”. In:
Proceedings of the 24th IEEE Computer Security Foundations Symposium,
CSF 2011, Cernay-la-Ville, France, 27-29 June, 2011. IEEE Computer
Society, 2011, pp. 161–174. isbn: 978-1-61284-644-6. doi: 10.1109/CSF.
2011.18. url: https://doi.org/10.1109/CSF.2011.18.

[25] Andrew Kennedy. “Securing the .NET programming model”. In: Theor.
Comput. Sci. 364.3 (2006), pp. 311–317. doi: 10.1016/j.tcs.2006.08.014.
url: https://doi.org/10.1016/j.tcs.2006.08.014.

[26] Bartek Klin. “Bialgebras for structural operational semantics: An intro-
duction”. In: Theor. Comput. Sci. 412.38 (2011), pp. 5043–5069. doi: 10.
1016/j.tcs.2011.03.023. url: https://doi.org/10.1016/j.tcs.2011.03.023.

[27] Bartek Klin and Beata Nachyla. “Presenting Morphisms of Distributive
Laws”. In: 6th Conference on Algebra and Coalgebra in Computer Sci-
ence, CALCO 2015, June 24-26, 2015, Nijmegen, The Netherlands. 2015,
pp. 190–204. doi: 10.4230/LIPIcs.CALCO.2015.190. url: https://doi.
org/10.4230/LIPIcs.CALCO.2015.190.

[28] Marina Lenisa, John Power, and Hiroshi Watanabe. “Distributivity for
endofunctors, pointed and co-pointed endofunctors, monads and comon-
ads”. In: Electr. Notes Theor. Comput. Sci. 33 (2000), pp. 230–260. doi:
10.1016/S1571-0661(05)80350-0. url: https://doi.org/10.1016/S1571-
0661(05)80350-0.

[29] Conor Mcbride. The Derivative of a Regular Type is its Type of One-Hole
Contexts (Extended Abstract). 2001.

[30] MIPS Architecture for Programmers Volume II-A: The MIPS32 Instruc-
tion Set Manual. MIPS Technologies. 2016. url: https://s3-eu-west-1.
amazonaws.com/downloads-mips/documents/MD00086-2B-MIPS32BIS-
AFP-6.06.pdf.

[31] James H. Morris. “Lambda-Calculus Models of Programming Languages”.
PhD thesis. Massachusetts Institute of Technology, 1968.

[32] Max S. New, William J. Bowman, and Amal Ahmed. “Fully abstract com-
pilation via universal embedding”. In: Proceedings of the 21st ACM SIG-
PLAN International Conference on Functional Programming, ICFP 2016,
Nara, Japan, September 18-22, 2016. Ed. by Jacques Garrigue, Gabriele
Keller, and Eijiro Sumii. ACM, 2016, pp. 103–116. isbn: 978-1-4503-4219-
3. doi: 10.1145/2951913.2951941. url: https://doi.org/10.1145/2951913.
2951941.

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.3233/FI-1995-2431
https://doi.org/10.3233/FI-1995-2431
https://doi.org/10.1109/CSF.2011.18
https://doi.org/10.1109/CSF.2011.18
https://doi.org/10.1109/CSF.2011.18
https://doi.org/10.1016/j.tcs.2006.08.014
https://doi.org/10.1016/j.tcs.2006.08.014
https://doi.org/10.1016/j.tcs.2011.03.023
https://doi.org/10.1016/j.tcs.2011.03.023
https://doi.org/10.1016/j.tcs.2011.03.023
https://doi.org/10.4230/LIPIcs.CALCO.2015.190
https://doi.org/10.4230/LIPIcs.CALCO.2015.190
https://doi.org/10.4230/LIPIcs.CALCO.2015.190
https://doi.org/10.1016/S1571-0661(05)80350-0
https://doi.org/10.1016/S1571-0661(05)80350-0
https://doi.org/10.1016/S1571-0661(05)80350-0
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00086-2B-MIPS32BIS-AFP-6.06.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00086-2B-MIPS32BIS-AFP-6.06.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00086-2B-MIPS32BIS-AFP-6.06.pdf
https://doi.org/10.1145/2951913.2951941
https://doi.org/10.1145/2951913.2951941
https://doi.org/10.1145/2951913.2951941

A categorical approach to secure compilation 25

[33] Marco Patrignani, Amal Ahmed, and Dave Clarke. “Formal Approaches to
Secure Compilation: A Survey of Fully Abstract Compilation and Related
Work”. In: ACM Comput. Surv. 51.6 (Feb. 2019), 125:1–125:36. issn: 0360-
0300. doi: 10.1145/3280984.

[34] Marco Patrignani, Dave Clarke, and Frank Piessens. “Secure Compilation
of Object-Oriented Components to Protected Module Architectures”. In:
Programming Languages and Systems - 11th Asian Symposium, APLAS
2013, Melbourne, VIC, Australia, December 9-11, 2013. Proceedings. Ed.
by Chung-chieh Shan. Vol. 8301. Lecture Notes in Computer Science.
Springer, 2013, pp. 176–191. isbn: 978-3-319-03541-3. doi: 10.1007/978-3-
319-03542-0_13. url: https://doi.org/10.1007/978-3-319-03542-0_13.

[35] Marco Patrignani, Dominique Devriese, and Frank Piessens. “On Modular
and Fully-Abstract Compilation”. In: IEEE 29th Computer Security Foun-
dations Symposium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016.
IEEE Computer Society, 2016, pp. 17–30. isbn: 978-1-5090-2607-4. doi:
10.1109/CSF.2016.9. url: https://doi.org/10.1109/CSF.2016.9.

[36] Marco Patrignani and Deepak Garg. “Robustly Safe Compilation”. In: Pro-
gramming Languages and Systems - 28th European Symposium on Pro-
gramming, ESOP 2019, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2019, Prague, Czech Repub-
lic, April 6-11, 2019, Proceedings. 2019, pp. 469–498. doi: 10.1007/978-3-
030-17184-1_17. url: https://doi.org/10.1007/978-3-030-17184-1_17.

[37] Marco Patrignani et al. “Secure Compilation to Protected Module Archi-
tectures”. In: ACM Trans. Program. Lang. Syst. 37.2 (2015), 6:1–6:50. doi:
10.1145/2699503. url: https://doi.org/10.1145/2699503.

[38] Gordon D. Plotkin. “A structural approach to operational semantics”. In:
J. Log. Algebr. Program. 60-61 (2004), pp. 17–139.

[39] Andrei Popescu. “Weak Bisimilarity Coalgebraically”. In: Algebra and Coal-
gebra in Computer Science, Third International Conference, CALCO 2009,
Udine, Italy, September 7-10, 2009. Proceedings. 2009, pp. 157–172. doi:
10.1007/978-3-642-03741-2_12. url: https://doi.org/10.1007/978-3-
642-03741-2_12.

[40] John Power and Hiroshi Watanabe. “Distributivity for a monad and a
comonad”. In: Electr. Notes Theor. Comput. Sci. 19 (1999), p. 102. doi:
10.1016/S1571-0661(05)80271-3. url: https://doi.org/10.1016/S1571-
0661(05)80271-3.

[41] Jurriaan Rot et al. “Enhanced coalgebraic bisimulation”. In: Mathematical
Structures in Computer Science 27.7 (2017), pp. 1236–1264. doi: 10.1017/
S0960129515000523. url: https://doi.org/10.1017/S0960129515000523.

[42] Jan Rothe and Dragan Masulovic. “Towards Weak Bisimulation For Coal-
gebras”. In: Electr. Notes Theor. Comput. Sci. 68.1 (2002), pp. 32–46. doi:
10.1016/S1571-0661(04)80499-7. url: https://doi.org/10.1016/S1571-
0661(04)80499-7.

https://doi.org/10.1145/3280984
https://doi.org/10.1007/978-3-319-03542-0_13
https://doi.org/10.1007/978-3-319-03542-0_13
https://doi.org/10.1007/978-3-319-03542-0_13
https://doi.org/10.1109/CSF.2016.9
https://doi.org/10.1109/CSF.2016.9
https://doi.org/10.1007/978-3-030-17184-1_17
https://doi.org/10.1007/978-3-030-17184-1_17
https://doi.org/10.1007/978-3-030-17184-1_17
https://doi.org/10.1145/2699503
https://doi.org/10.1145/2699503
https://doi.org/10.1007/978-3-642-03741-2_12
https://doi.org/10.1007/978-3-642-03741-2_12
https://doi.org/10.1007/978-3-642-03741-2_12
https://doi.org/10.1016/S1571-0661(05)80271-3
https://doi.org/10.1016/S1571-0661(05)80271-3
https://doi.org/10.1016/S1571-0661(05)80271-3
https://doi.org/10.1017/S0960129515000523
https://doi.org/10.1017/S0960129515000523
https://doi.org/10.1017/S0960129515000523
https://doi.org/10.1016/S1571-0661(04)80499-7
https://doi.org/10.1016/S1571-0661(04)80499-7
https://doi.org/10.1016/S1571-0661(04)80499-7

26 Tsampas et al.

[43] Jan J. M. M. Rutten. “A note on coinduction and weak bisimilarity for
while programs”. In: ITA 33.4/5 (1999), pp. 393–400. doi: 10.1051/ita:
1999125. url: https://doi.org/10.1051/ita:1999125.

[44] Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. “Reasoning
About a Machine with Local Capabilities - Provably Safe Stack and Return
Pointer Management”. In: Programming Languages and Systems - 27th
European Symposium on Programming, ESOP 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings. Ed. by Amal
Ahmed. Vol. 10801. Lecture Notes in Computer Science. Springer, 2018,
pp. 475–501. isbn: 978-3-319-89883-4. doi: 10 .1007/978- 3- 319- 89884-
1_17. url: https://doi.org/10.1007/978-3-319-89884-1_17.

[45] Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. “StkTokens:
Enforcing Well-Bracketed Control Flow and Stack Encapsulation Using
Linear Capabilities”. In: Proc. ACM Program. Lang. 3.POPL (Jan. 2019),
19:1–19:28. issn: 2475-1421. doi: 10.1145/3290332.

[46] Stelios Tsampas, Dominique Devriese, and Frank Piessens. “Temporal Safety
for Stack Allocated Memory on Capability Machines”. In: 32nd IEEE Com-
puter Security Foundations Symposium, CSF 2019, Hoboken, NJ, USA,
June 25-28, 2019. IEEE, 2019, pp. 243–255. isbn: 978-1-7281-1407-1. doi:
10.1109/CSF.2019.00024. url: https://doi.org/10.1109/CSF.2019.00024.

[47] Daniele Turi. “Categorical Modelling of Structural Operational Rules: Case
Studies”. In: Category Theory and Computer Science, 7th International
Conference, CTCS ’97, Santa Margherita Ligure, Italy, September 4-6,
1997, Proceedings. 1997, pp. 127–146. doi: 10 .1007/BFb0026985. url:
https://doi.org/10.1007/BFb0026985.

[48] Daniele Turi and Gordon D. Plotkin. “Towards a Mathematical Opera-
tional Semantics”. In: Proceedings, 12th Annual IEEE Symposium on Logic
in Computer Science, Warsaw, Poland, June 29 - July 2, 1997. 1997,
pp. 280–291. doi: 10.1109/LICS.1997.614955. url: https://doi.org/10.
1109/LICS.1997.614955.

[49] Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. “Linear
Capabilities for Fully Abstract Compilation of Separation-Logic-Verified
Code”. In: Proc. ACM Program. Lang. ICFP (2019). accepted.

[50] Hiroshi Watanabe. “Well-behaved Translations between Structural Oper-
ational Semantics”. In: Electr. Notes Theor. Comput. Sci. 65.1 (2002),
pp. 337–357. doi: 10.1016/S1571-0661(04)80372-4. url: https://doi.org/
10.1016/S1571-0661(04)80372-4.

[51] Robert N. M. Watson et al. “CHERI: A Hybrid Capability-System Ar-
chitecture for Scalable Software Compartmentalization”. In: 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May
17-21, 2015. IEEE Computer Society, 2015, pp. 20–37. isbn: 978-1-4673-
6949-7. doi: 10.1109/SP.2015.9. url: https://doi.org/10.1109/SP.2015.9.

https://doi.org/10.1051/ita:1999125
https://doi.org/10.1051/ita:1999125
https://doi.org/10.1051/ita:1999125
https://doi.org/10.1007/978-3-319-89884-1_17
https://doi.org/10.1007/978-3-319-89884-1_17
https://doi.org/10.1007/978-3-319-89884-1_17
https://doi.org/10.1145/3290332
https://doi.org/10.1109/CSF.2019.00024
https://doi.org/10.1109/CSF.2019.00024
https://doi.org/10.1007/BFb0026985
https://doi.org/10.1007/BFb0026985
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1016/S1571-0661(04)80372-4
https://doi.org/10.1016/S1571-0661(04)80372-4
https://doi.org/10.1016/S1571-0661(04)80372-4
https://doi.org/10.1109/SP.2015.9
https://doi.org/10.1109/SP.2015.9

	A categorical approach to secure compilation

