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Abstract. Coping with failures in modern distributed storage systems
that handle massive volumes of heterogeneous and potentially rapidly
changing data, has become a very important challenge. A common prac-
tice is to utilize fault tolerance methods like Replication and Erasure
Coding for maximizing data availability. However, while erasure codes
provide better fault tolerance compared to replication with a more af-
fordable storage overhead, they frequently suffer from high reconstruc-
tion cost as they require to access all available nodes when a data block
needs to be repaired, and also can repair up to a limited number of
unavailable data blocks, depending on the number of the code’s parity
block capabilities. Furthermore, storing and placing the encoded data in
the federated storage system also remains a challenge. In this paper we
present Fed-DIC, a framework which combines Diagonally Interleaved
Coding on client devices at the edge of the network with organized stor-
age of encoded data in a federated cloud system comprised of multiple in-
dependent storage clusters. The erasure coding operations are performed
on client devices at the edge while they interact with the federated cloud
to store the encoded data. We describe how our solution integrates the
functionality of federated clouds alongside erasure coding implemented
on edge devices for maximizing data availability and we evaluate the
working and benefits of our approach in terms of read access cost, data
availability, storage overhead, load balancing and network bandwidth
rate compared to popular Replication and Erasure Coding schemes.

1 Introduction

In recent years, the management and preservation of big data has become a
vital challenge in distributed storage systems. Failures, unreliable nodes and
components are inevitable and such failures can lead to permanent data loss and
overall system slowdowns. To guarantee availability, distributed storage systems
typically rely on two fault tolerance methods: (1) Replication, where multiple
copies of the data are made, and (2) Erasure Coding, where data is stored in
the form of smaller data blocks which are distributed across a set of different
storage nodes.



Replication based algorithms as those utilized in Amazon Dynamo [1], Google
File System (GFS) [2, 3], Hadoop Distributed File System (HDFS) [4, 5] are
widely utilized. These can help tolerate a high permanent failure rate as they
provide the simplest form of redundancy by creating replicas from which systems
can retrieve the lost data blocks, but cannot easily cope with bursts of failures.
Furthermore, replication introduces a massive storage overhead as the size of the
created replicas is equal to the size of their original data e.g. 3-way replication
occupies 3 times the volume of the original data block in order to provide fault
tolerance.

On the other hand, Erasure Coding [6] can provide higher redundancy while
also offering a significant improvement in storage overhead compared to repli-
cation. For example, a 3-way replication creates 3 replicas of a data block and
causes a 3x storage overhead for providing fault tolerance, while an erasure code
can provide the same services for half the storage overhead or even lower by
creating smaller parity blocks that can retrieve lost data more efficiently than
full-sized replicas. Thus, Erasure codes are more storage affordable than replica-
tion but their reliability is limited to the number of parity blocks for repairing
erasures. For example, an erasure code that creates 3 parity chunks cannot fix a
data block with 4 or more unavailable or lost chunks.

Yet the most critical challenge with erasure coding is that it suffers from high
reconstruction cost as it needs to access multiple blocks stored across different
sets of storage nodes or racks (groups of nodes inside a distributed system) in
order to retrieve lost data [7], leading to high read access and network band-
width latency. The majority of the distributed file systems deploy random block
placement [8] and one block per rack policies [9, 10] to achieve optimized relia-
bility and load balancing for stored encoded data. However, storing data across
multiple nodes and/or racks can lead to higher read and network access costs
among nodes and racks during the repairing processes. For example, in the worst
case, repairing a corrupted or unavailable block in a node may require traversing
all nodes across different racks, causing a heavy amount of data traffic among
nodes and racks. Also, in a typical cross-rack storage, the user does not have any
control over the placement of the data blocks across different racks, limiting the
ability of the system to tolerate a higher average failure rate.

To reduce the cost of accessing multiple nodes or racks, file systems can keep
metadata records regarding the topology of the encoded data codewords (groups
that contain original data blocks alongside their parity blocks) in private nodes.
However, the placement of the metadata files among the system’s nodes is also
challenging. For example, storing a codeword in a small group of nodes while
keeping metadata about the data blocks scattered throughout the public clouds
instead of a specific storage node [11], will also require to traverse all nodes at
worst in order to recover any failed data inside the codeword. This problem leads
to high cross-node read and network access costs, despite the use of metadata.

In this paper we propose Fed-DIC (Federated cloud Diagonally Interleaved
Coding), a novel compression framework deployed on an edge-cloud infrastruc-
ture where client devices perform the coding operation and they interact with



the federated cloud to store the encoded data. Fed-DIC’s compression approach
is based on diagonal interleaved erasure coding that offers improved data avail-
ability while reducing read access costs in a federated cloud environment. It
employs a variation of diagonally interleaved codes on streaming data organized
as a grid of input records. Specifically, the grid content is interleaved into groups
that diagonally span across the grid, and then the interleaved groups of data are
encoded using a simple Reed-Solomon (RS) erasure code. Next, our framework
organizes the encoded data into batches based on the number of clusters in the
federated cloud and places each batch to a different cluster in the cloud, while
keeping a metadata index of the locations of each stored data stream. The benefit
is that Fed-DIC will only access the cluster with the requested data records and
retrieve the correspondent diagonals, enabling the system to efficiently extract
the corresponding records.

Fed-DIC has multiple benefits: it maximizes the availability of the encoded
data by ordering input data into smaller groups, based on diagonally interleaved
coding, and encoding each group using the erasure coding technique. Further-
more, it supports efficient archival and balances the load by storing each version
of the streaming data array in a rotational basis among the storage nodes, e.g.
if we have an infrastructure with 3 file clusters, for the first version of the data
array, the first batch of diagonals is stored on the first node cluster, the second
batch on the second node cluster and the third batch on the third cluster. For
the second version of the array, the first batch of diagonals is stored on the sec-
ond cluster, the second batch on the third cluster and the third batch on the
first cluster and so on. We present an approach how multiple storage usage can
optimize read access costs while keeping data availability and low bandwidth
cost for retrieving data by utilizing multiple storage clusters in the same cloud
environment instead of storing data in a single cluster. We illustrate the effec-
tiveness of our approach with an extended experimental evaluation in terms of
read access cost, data availability, storage overhead, load balancing and network
bandwidth rate compared to popular Replication and Erasure Coding schemes.

2 Background

In this section we provide some background material regarding the technologies
that we utilize at Fed-DIC: the Federated Cloud environment, Erasure Coding
and Diagonally Interleaved Coding.

2.1 Federated Storage Systems

Many large-scale distributed computing organizations that need to store and
maintain continuous amounts of data deploy distributed storage systems, such
as HDFS [4, 5], GFS [2, 3] (which were mentioned above), Ceph [12], Microsoft
Azure [13, 14], Amazon S3 [15], Alluxio [16] etc., which comprise multiple nodes,
often organized into groups called racks. Currently, most of these systems write
and store large data as blocks of fixed size, which are distributed almost evenly



among the system’s nodes using random block placement or load balancing poli-
cies. In each system, one of the nodes operates as the master node e.g. the
NameNode in HDFS, that keeps a record of the file directories and redirects
client requests toward the storage API for opening, copying or deleting a file.
However, these policies are limited as they depend on the size of the data stored
in the systems as well as the policies followed by the specific storage nodes (e.g.,
load balancing policies). Our framework assumes the deployment of multiple
HDFS clusters within the federated cloud environment, each comprising a dif-
ferent master node and storage layer. The client edge device can communicate
with each of the master nodes with a different interface in order to store different
groups of data into separate HDFS clusters.

2.2 Erasure Codes

Distributed systems deploy erasure codes as a storage-efficient alternative to
replication so as to guarantee fault tolerance and data availability for their stored
data. Erasure codes are a form of Forward Error Correction (FEC) codes that
can achieve fault tolerance in the communication between a sender and a receiver
by adding redundant information in a message; this enables the detection and
correction of errors without the need for re-transmission. For instance, a sender
node encodes a file with erasure coding and generates a data codeword or a
stripe containing original and redundant parity data. Next, the sender node
sends sequentially the blocks of the encoded stripe to a receiver node. In its
turn, the receiver node detects whether there is a sufficient number of available
blocks in order to decode them into their original content. If no original blocks
are received, the parity blocks can repair them up to a finite range.

The most commonly used erasure code algorithm is the Reed-Solomon (RS),
a maximum distance separable code (MDS) which is expressed as a pair of
parameters (b,k) (RS(b,k)) where b is the number of input chunks on a data
block and k is the number of parity chunks created by the erasure code. The
parity chunks are generated by utilizing Cauchy or Vandermonde matrices over
a GF (2m) Galois Field, where 2m is the number of elements in the field and m
is the word size of encoding. The code constructs a matrix of size k × d which
contains values from the GF (2m) field that correspond to the dimensions of
the matrix and represent the positions of the input chunks. Next, the RS code
derives an inverse k×k submatrix from the previous matrix. The original matrix
is multiplied by the inverse submatrix in order to convert the top square of the
former into a k × k identity matrix which will keep the content of the original
data chunks unaltered during the encoding and decoding processes. The result
is a stripe of length n = b + k, that contains the b chunks of the original data
and the k parity chunks generated by the code. RS is k-fault tolerant due to the
fact that the original data can be recovered for up to k lost chunks. In other
words, while replication needs to copy and store the original data n + 1 times,
erasure codes only require to store the data n−k

n times, which costs considerably
less compared to replication.



Fig. 1: A pictorial representation of diagonally interleaved coding for an input
message with (c, d, a) = (2, 5, 2). The data blocks are rearranged into diagonals
and each diagonal is encoded into stripes (D1...D4) by the systematic code. B
Symbols in time steps from -1 to 0 and from 3 to 6 are assumed to have zero,
null or non-positive values, and they are not part of the input message.

Reed-Solomon codes are also characterized by linearity [17]. In other words,
they perform linear coding operations based on the Galois field arithmetic. More
formally, given an (b,k) code, let B1, B2, ..., Bb be the b original data chunks
and P1, P2, ..., Pk be the k parity chunks. Each parity chunk Pj (0 < j < k) can

be expressed as Pj =
∑b

i=1(cji ·Bi), where cji ⊂ GF (2m) is a coding coefficient
specified by the RS code for computing Pj .

This technique is limited as the redundancy provided by simple RS codes
can repair up to k unavailable nodes. If there are more than k chunk erasures,
the code will not be able to fully repair their original data. Our framework tries
to deal with limited redundancy by deploying a more advanced erasure coding
technique based on Reed-Solomon and Diagonally Interleaved Coding, the latter
of which we describe in the next section.

2.3 Diagonally Interleaved Coding

Leong et al. have studied a burst erasure model in [18], where all erasure patterns
with limited-length burst erasures are admissible so that they can construct an
asymptotically optimal convolutional code that achieves maximum message size
for all available patterns. This code involves stripes derived from one or more
data messages interleaved in a diagonal order.

For a set of parameters (c, d, k), where c is the interval between input mes-
sages, d is the total number of symbols in the encoded message (original data
and parity symbols) and k is the number of generated parity symbols, an input
message is equally split into a vector of c columns and d− k rows. Next, tables
of blank or null symbols are placed around the message table that represent
non-existent messages before and after the input message. The symbols of the
entire table are interleaved in diagonal pattern, forming well-defined diagonals



containing at least one symbol from the input message. Finally, a systematic
block code is used to create k parity symbols for every diagonal, thus construct-
ing a convolutional code with d − 1 diagonal stripes that can repair up to k
lost symbols in each diagonal and span across d consecutive time steps. As a
result, diagonally interleaved codes are able to handle an extended number of
erasure bursts in one message and allow smaller erasures to be fixed without
accessing massive amounts of data. In figure 1 we illustrate with an example
how diagonally interleaved coding is applied for a single data block.

The process of splitting an input message into a vector can be applied only if
the input data is organized in single data stripes. To optimize data availability,
our framework uses a derived version of diagonally interleaved coding that takes
as input data organized in a grid and interleaves all content into diagonals before
encoding them with a Reed-Solomon code.

3 Challenges

In this section we present the challenges of existing schemes and how we propose
to address them in our Fed-DIC framework.

High read access and network bandwidth costs during data retrieval.
One major challenge in typical cloud environments is the lack of user-oriented
control in data distribution and storage. Most cloud systems store data blocks in
randomly chosen nodes and nodes within racks in their clusters without balanc-
ing the load. For example, a system that uses an RS(b, k) to encode its streamed
data, will distribute the d = b+k chunks of the generated codeword to d different
nodes in a random order. However, in cases of node failures, the system needs to
retrieve data from other nodes within the rack or even across racks to retrieve
parity data, leading to high read access costs and network overhead, which can
considerably slow down the repair process.

Fed-DIC deals with this problem by uploading and distributing the encoded
data to a federated cloud with multiple autonomous Hadoop clusters in the same
network, each with a unique NameNode. To retrieve a particular data record, the
framework keeps a metadata file containing the locations of the stored encoded
data. The metadata file is created and can be accessed by the edge device in
order to locate the requested data record and retrieve it faster with a significantly
reduced read access latency, limited to the cluster where the specific data record
is stored, without the need to traverse all nodes or maintain scattered metadata
among nodes or clusters. Fed-DIC’s topology in terms of the stored data among
the clusters of the federated cloud, combined with the reduced storage size of the
data chunks generated from its encoding process, provide significantly smaller
read access costs and transfer bandwidth overhead for nodes in the cloud.

Limited data availability. Distributed systems deploy erasure coding methods
to achieve higher redundancy than replication with more affordable storage cost.



However, the availability provided by simple erasure codes such as Reed-Solomon
codes for the encoded data is restricted to the number of parity chunks generated
by the code. More specifically, a Reed-Solomon code that creates k parity data
chunks from b original data chunks (RS(b, k)) can repair up to k failures between
the original or parity data. If there are more than k unavailable or failed chunks
in the stripe, the RS code will not be able to restore the data back to their
original state.

To deal with this challenge, several advanced erasure codes have been pre-
sented, including alpha entanglement codes [19] and diagonally interleaved codes
[18]. Fed-DIC uses a variation of diagonally interleaved coding on a group of
streaming data containing input records from multiple sensor groups (columns)
across multiple days (rows). The array data are interleaved diagonally and en-
coded with multiple parity chunks for each arranged diagonal pattern, achieving
higher data availability and greater repairing range than conventional erasure
coding methods.

Load balancing unreliability. Most large-scale distributed systems deploy
load balancing policies for node distribution or utilizing one-node-per-rack [9,
10, 8] to balance the storage load across the cluster. However, most load balanc-
ing policies require the use of sophisticated techniques which may lead to load
imbalances among nodes, especially when the number of the data chunks in a
stripe exceeds the number of nodes that comprise a cluster.

Fed-DIC groups the encoded data diagonals into batches before they are
stored to multiple node clusters in a non-random order. If the user decides to
upload a data array and store it over the old one, the framework rotates the
directions of the clusters in which the new batches will be stored in order to
achieve good load balancing.

4 Design of the Fed-DIC Framework

To deal with the above problems of conventional erasure coding on federated
clouds, we designed and developed Fed-DIC (Federated cloud Diagonally Inter-
leaved Coding), a framework that utilizes diagonal interleaving and erasure cod-
ing on streaming data records in a federated edge cloud environment. The goal of
our framework is to reduce the read access cost and network overhead caused by
accessing multiple nodes in a federated cloud while maximizing data availability
for the data stored in the federated cloud environment. Fed-DIC also supports
load balancing by storing multiple versions of the data records among clusters
in a rotational order, while keeping storage availability, using the techniques we
have developed and its API for distributing the data and balancing them across
the clusters. In cases of high load in a cluster due to data congestion or unavail-
able nodes, Fed-DIC can reconfigure the number of batches and the content size
of each batch in order to achieve load balancing by storing data to a smaller
number of clusters with more nodes and larger storage space.



Fig. 2: The architecture of Fed-DIC, which comprises the client devices, where
all operations are performed, the network hub, which connects the clients with
the cloud and the federated cloud, which contains multiple independent storage
clusters.

4.1 Framework Architecture

As illustrated in figure 2 Fed-DIC comprises three main components: the client
side (edge devices), a federated cloud comprising multiple independent clusters
where each cluster consists of multiple independent nodes, and a network hub
that connects the two other components through the network. The client devices
are operated by the user and provide six services: (1) The Interleaver module

which re-orders the input data set into a grid and interleaves them into diagonal
groups, (2) the Coder module which encodes all diagonal groups prior to the up-
loading process and decodes received diagonal stripes containing user-requested
data, (3) the Destination module which splits the encoded stripes into batches
and configures the order of destination clusters where the batches will be stored,
(4) the Hadoop Service which communicates with the NameNodes of each clus-
ter in order to upload the diagonal stripe batches, (5) the Metadata service

which creates a metadata index file during the upload process and provides a
query interface for the user during the retrieval process, and (6) the Extractor

module which searches through a received diagonal stripe in order to extract the
data record requested by the user and store it to a new file.

Our framework works as follows: A client takes as input a set of streaming
data records and organises them into a grid of D columns and G rows. The data
records in the grid are re-ordered into C = D+G−1 diagonal groups, which are
then encoded with Reed-Solomon, generating up to k parity chunks per diago-
nal using an 8-bit Galois Field. Next, Fed-DIC groups the diagonal stripes into
H batches and stores each batch into a different cluster in the federated cloud.
Simultaneously, the client creates a metadata file that contains information for
each stored data record: The day the record was created, the group of sensors
that generated the record and the diagonal stripe in which the record was inter-
leaved. To retrieve selected data records, the client receives user-created request
queries about data records and communicates with their correspondent clusters



to download the stripes that include the records so as to extract their contents
in output files. To upload a new version of the already stored data while archiv-
ing the older versions, the cluster destinations are rotated in a stack order by
setting the first cluster destination at the position of the last cluster destination
in a circular pattern. In that way, Fed-DIC achieves not only the maintenance
of multiple versions, but also load balancing throughout all clusters within the
federated cloud. If Fed-DIC kept uploading newer versions into the same clusters
each time, there could have been inconsistencies between the clusters. Especially,
the first and last clusters in the cloud would have smaller data load than the
other clusters.

4.2 Read Access Latency

The read access cost for a data query q from a group of Q queries, is given by the
sum of the access time a client needs to traverse l lines in the metadata file to
find the requested data, the latency needed to access any h clusters that contain
the data (h ≤ H) and the search delay caused by any missing d data chunks
in a cluster. The probability pi shows if a chunk is available for transferring.
If pi = 0, the chunk is missing. This is computed by the following formula:
Tq = l · rmd + h · rh +

∑d
i=1((1− pi) · tm)

where rmd is the time a client needs to read a line from the metadata file, rh is the
time to access a cluster in the federated cloud and tm is the search delay caused
by missing data chunks in the cloud. The read access latency Lq for downloading
and extracting a requested data query q is given by the access cost Tq which was
computed previously, plus the time required to download all available d chunks
in the diagonal stripe that includes the data using an internet connection of B
bandwidth and the computation time T dec

q a client needs to decode the diagonal
stripe so as to extract the result. The formula for the overall query storage

latency is given below: Lq = Tq +
∑d

i=1(pi·tp)
B + T dec

q

where tp is the elapsed time for an available data chunk to be transferred from
the federated cloud to a client device. Similarly, the total read access latency LQ

is the sum of the read access latency for all Q queries: LQ =
∑Q

q=1(Lq)
The read access latency for erasure coding is computed in a similar way to Lq,
with the only difference that the metadata access time is not taken into account.

4.3 Data Loss percentage

When stored chunks are missing or unavailable in the federated cloud due to
failures or nodes being disabled in the cloud’s clusters, erasure codes try to
utilize any available parity chunks in order to reconstruct the damaged encoded
file. However, if a decent amount of chunks are not available in a cluster, there
may be permanent loss of the original data, due to the number of available data
chunks being insufficient for use with erasure codes. The data loss percentage
DC of a fault tolerance method is measured by the fraction of the probability pi
of a data chunk ci being available with the total number of data chunks in the

entire cloud, subtracted from 1, as follows: DC = (1−
∑C

i (pi·ci)
C ) · 100



4.4 Framework API

Fed-DIC provides an API with the following four operations:
Encode() This operation interleaves the input data set into D diagonal data
groups of varied length. Then, it merges data in each group into new data blocks
so as to be encoded with a unique Reed-Solomon erasure code.
Store() This operation groups the encoded diagonal data stripes into H batches
containing an equal number of (D/H) codewords in each batch and communi-
cates with all the NameNodes of the federated cloud in order to upload and store
each batch in a different cluster, while keeping track of the data locations and
information in a metadata file stored in the client devices. The metadata file can
be shared and backed up in all clients in order to avoid any corruptions. If, for
any reason, the cloud changes the location of its clusters, the clients need to up-
date the metadata accordingly. However, a small non-significant access overhead
may occur in the case that the client device that performs the Store() process
becomes unavailable and the metadata have to be accessed from another client.
Due to the integrity of our private client nodes, the probability of this situation
is extremely rare, so it is not considered when measuring the read access latency.
Retrieve() This method provides an interface to the user for entering multiple
queries regarding a data record the user aims to retrieve. Once the user issues his
queries, the method searches for each requested data record the diagonal stripe
in which it is included and downloads it accessing immediately the corresponding
storage cluster.
Decode() Once the clients receive the diagonal stripes with the data requested
by the user, this operation decodes any available chunks in a stripe into its
original merged data block and extracts the requested result from the block
before deleting it.

4.5 Uploading and Downloading Algorithms

We describe the two main algorithms implemented by our framework:
Storing data to the federated cloud: A client takes as input the data records
to be uploaded, these correspond to G sensor data groups over a time period R
days, stored in .csv files. The client invokes the Encode() operation to organize
the content into a grid with dimensions G×R, where its elements are interleaved
into C dynamic diagonal arrays of varied length (as shown in Figure 1). Records
are inserted into the grid according to the day and sensor group indicated on the
record. Starting with the record of the last sensor group during the first day, the
client forms a diagonal line from bottom right to top left and inserts any existing
grid elements in the diagonal line, into a dynamic diagonal array. The diagonal
arrays span through the entire grid with the last one containing only the record of
the first sensor group during the last day. Next, in each diagonal array, the data
in the elements are merged into a single data object and encoded using a (b, k)
Reed-Solomon code. The encoding process splits each merged data object into
equally sized b chunks and generates k parity chunks, creating a stripe of length
d = b + k. Next, the client uses the operation Store() to group the diagonal



stripes into H batches containing an equal number of (C/H) stripes in each
batch and to upload the batches into the different clusters of the federated cloud
by communicating with every NameNode within the cloud. Once the NameNode
of a cluster receives the data, it distributes the chunks in random order to its
nodes. During the storage process, the clients write and store metadata records
about the stored data, their version, the date and sensor group as well as the
number of the diagonal stripes they belong to. The metadata file helps the edge
devices to access the stored data faster and more easily by reducing the access
costs among the HDFS clusters. The distribution of the batches is performed in
a sequential way. For example, in a federated cloud of F clusters, the first data
batch is stored into the first cluster and so on until the last batch is stored in the
F -th cluster. When the user wants to upload a new version of the data over the
already stored versions, the clients swap the order of the cluster destinations by
placing the first cluster destination right after the last cluster destination of the
older version in a Last In, First Out (LIFO) order. In our example, for the second
version of our data, the first batch will be uploaded into the F -th cluster, the
second one to the first cluster and so on with the last cluster being uploaded to
the (F -1)-th cluster. The way data records are stored in Fed-DIC enables us to
traverse 1-2 clusters at most to recover any data segment. Whereas, conventional
(b, k) Reed-Solomon would merge r1 with every other record in the input into
a single data block, split it into b original chunks and encode it using a Galois
Field matrix to generate k parity chunks which are distributed to the cloud via
Hadoop. Thus, even if a small part of data must be recovered, the data encoded
with RS need to be restored in their entirety, which may require traversing all
clusters in the cloud, incurring a heavy read access cost.
Retrieving data from the federated cloud: The clients provide an interface
to the user awaiting response queries. When the user issues a query, the clients
gather all entered queries into a list array and use Retrieve() to search through
the metadata file generated from the uploading process for the diagonal stripes
where the query data are stored. For every entry in the query list, the client
connects to the correspondent cluster to download the diagonal stripe with the
requested data. If the edge device fails to download sufficient amount of chunks
for restoring the stripe into its original data, it informs the user that the queried
data from that diagonal stripe cannot be recovered. If it receives enough chunks
from the stripe, it deploys Decode() to restore the diagonal stripe using RS(b, k)
back to its original content. Finally, the clients search through the recovered data
objects for the requested record entries and extract them as a result. When there
are multiple concurrent requests from users, the clients schedule the requests to
the hub in multiple rows according to the source cluster of the requested data
and return the result for the oldest request each time.

5 Experimental Evaluation

In this section we evaluate Fed-DIC in terms of data loss, maximum transfer net-
work rate and storage overhead, compared to the Replication and conventional



Fig. 3: Read access latency for Reed-
Solomon and Fed-DIC (multiple
queries)

Fig. 4: Data Loss rate among Repli-
cation, Erasure Coding and Fed-
DIC

Reed-Solomon Erasure Coding techniques. The client machines we used were
desktop computers with an Intel i7-7700 4-core CPU at 3.5 GHz per core, with
16GB RAM and a Western Digital WD10EZEX-08WN4A0 hard disk drive of
1TB. The machines run Microsoft Windows 10 and are connected to the network
using a Cisco RV320 Dual Gigabit WAN VPN Router with a data throughput
of 100 Mbps and support of 20,000 concurrent connections. The router operates
as our network hub and due to its specifications, the probability of a failure or
bottleneck is extremely small. Although there are several ways to deal with such
failures, this is outside the scope of our paper. For the experiments, we deploy
via Oracle VirtualBox 4 clusters each comprising 4 nodes, 16 virtual machines
(VMs) in total running Apache Hadoop 3.1.1 in Linux Lubuntu 16.04 for eval-
uating Fed-DIC against Replication and Reed-Solomon. For memory and disk
allocation reasons, the VMs are running across 2 real desktop machines: Our
client device and a second machine with the same hardware specifications as
the first, which is connected to the same network. 8 VMs are running on each
machine, connected to the same network as the client machines using a bridged
adapter. Our setup is restricted to the equipment and network availability in
our local computing and communication environment, however the algorithms
we have developed can adapt well to accommodate larger clusters with thou-
sands of nodes by modifying the number of batches in which the encoded data
will be grouped as well as the content size in each batch. Also, we can set the
batches to be stored in clusters with higher reliability within a large cloud. Our
data set for the experiments is a collection of transport values obtained from
SCATS sensors that are deployed in the Dublin Smart City [20]. This data set
contains a huge amount of records with information regarding the specific sensor
that captured the snapshot and its capture date; the data needs to be stored and
maintained in the cloud to be further analyzed by the human operators (i.e., to
identify congested streets and entire geographical areas over time). Fed-DIC is
responsible to store and recover this data to and from the cloud.

Our first experiment involves the total read latency of recovering data with
Fed-DIC(7,4) compared to Reed-Solomon(7,4). For RS(7,4) we merge the input



a. Single Chunk b. All data chunks

Fig. 5: Storage overhead for Replication, Erasure Coding, and Fed-DIC

files of the data grid used by Fed-DIC to a single .csv file. When the file is encoded
to a stripe of 11 chunks (7 original and 4 parity), we distribute 3 chunks to each
of the first 3 clusters, with the last 2 being stored in the last cluster. Note, that
Reed-Solomon could retrieve the encoded file traversing only 3 clusters instead of
going through all 4 clusters. In fact, Fed-DIC could also be easily configured (by
appropriately setting the number of batches where diagonal stripes are grouped)
to store and retrieve the data successfully utilizing only 3 clusters. However, in
order to take advantage of the entire experimental environment (4-cluster cloud
system with a total of 16 nodes) we utilize all 4 clusters for both techniques,
to avoid load imbalances (data distributed in 3 clusters, while the 4th cluster
is unused) and minimize the impact on the data loss percentage (in cases of
failures). Due to the data chunks spanning across all 4 clusters, a simple decoding
process with RS takes almost 20 seconds to complete, as seen in figure 3. This
happens due to the clients having to access all 4 clusters in order to download all
the chunks needed for recovering the stripe’s original data. Even if we request
a small portion of the encoded data, Reed-Solomon has no built-in features
that allow us to retrieve a specific part of data, so it will still have to retrieve
and decode the entire file content in order to give us an output. Our Fed-DIC
technique on the other hand, reduces the total access latency by returning only
requested parts of the stored data instead of the entire data content by accessing
1 to 2 clusters at most. For 1 to 4 queries for data inside the same cluster, Fed-
DIC achieves at least 60% lower read access latency compared to RS. Even in
the case that we request 2 data queries that are stored in two different clusters,
Fed-DIC still reads the data in a shorter time compared to RS.

Our second experiment evaluates the reliability between 3-way Replication,
RS(7,4) and Fed-DIC(7,4) in the data loss scenario. We performed 3 runs of
experiments. As figure 4 indicates, due to its organized multi-cluster storage
policies, Fed-DIC manages to achieve lower data loss rates than RS. Even when
only up to 40% of the nodes are available in the federated cloud, Fed-DIC may
be able to maintain a sufficient number of chunks in some diagonal stripes, which
allows it to restore a portion the original data.



Fig. 6: Comparing Replication, Erasure Coding and Fed-DIC in terms of maxi-
mum network transfer rate (single record retrieval and 1 diagonal retrieval)

The next experiment we evaluate the storage overhead and the maximum net-
work transfer rate between these fault tolerance methods. As figure 5a shows,
Replication stores the entire data content inside the cluster without splitting
it, causing a large storage overhead even for single blocks, compared to a chunk
produced by simple Erasure Coding and Fed-DIC. In figure 5b we present the to-
tal storage overhead for all three methods. 3-Way replication occupies a massive
portion of the storage with all 3 replicas combined, while all chunks generated
by Erasure Coding and Fed-DIC produce lower overheads, with the latter oc-
cupying slightly less storage than erasure coding due to the varied sizes of the
chunks. We also measured the rates during data transferring using performance
monitoring programs included with Lubuntu OS. As seen in figure 6 due to the
size of the replicas, Replication severely burdens the network with a high trans-
fer rate of 1.2 MBps, followed by Erasure Coding with a transfer rate of 900
KBps. Fed-DIC operates with smaller data transfers and thus provides smaller
and less burdening network data rates when transferring one or multiple queried
data records.

Finally, figure 7 shows the load balancing achieved in the three fault tolerance
methods between 4 4-node clusters, while uploading 4 different data streams
with similar sizes. Due to the random distribution of replicas and chunks in the
HDFS cloud, Replication and client-side Reed-Solomon erasure codes are very
inconsistent in terms of load balancing. Specifically, a majority of data may be
stored to one cluster, while other clusters store less data, even though Erasure
Coding seems more consistent than Replication. It is worth to note that we
do not consider HDFS server-side erasure coding since it requires a code with
higher parameters, which generates a number of chunks equal to the number
of nodes in a single cluster. Meanwhile, Fed-DIC, using the rotational stack
policy for cluster destinations described previously, it can store new streams
in the federated cloud’s clusters in a different order for every stream. Since our
framework stores data of different size in each cluster in every uploading process,
it can maintain an almost perfect load balance between H clusters for each H
uploaded streams. For example, in figure 7 for every 4 streams uploaded in the
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Fig. 7: Load balancing between 4 file clusters for all fault methods including
Fed-DIC

cloud, Fed-DIC can achieve storage consistency and good load balancing between
the 4 clusters.

6 Related Work

Several approaches over the last decade have been proposed for improving read
access costs and the reliability of erasure coding in cloud storage environments.
In particular, a method that drastically improves read access costs and data
reconstruction in erasure coded storage systems is Deterministic Data Distribu-
tion, or D3 for short [7]. D3 maximizes the reliability of a storage system and
reduces cross rack repair traffic by utilizing deterministic distribution of data
blocks across the storage system. D3 uses orthogonal arrays to define the data
layout in which the data will be distributed across multiple racks, ignoring the
one block per rack placement, while balancing the load among nodes across the
system’s racks. This implementation works on single HDFS clusters with multi-
ple racks but it does not seem to support federated clouds or other systems with
independent clusters, unlike our approach with Fed-DIC. Even if we modify D3

to support multiple clusters, the clusters need to contain a certain number of
nodes in order to apply server-side erasure coding, whereas in Fed-DIC, erasure
coding is performed by the client devices.

Simple erasure codes provide efficient fault tolerance but their reliability is
restricted to the parameters set by the user. Advanced erasure coding techniques
like Alpha entanglement codes by Estrada et al. [19], increase the reliability and
the integrity of a system compared to normal Reed-Solomon codes by entangling
old and new data blocks and creating robust, flexible meshes of interdependent
data with multiple redundancy paths. Also in the Ring framework for key-value
stores (KVS) [21], Taranov et al. introduce Stretched Reed-Solomon (SRS) codes
which support a single key-to-node mapping for multiple resilience levels. These
lead to higher and more expanded reliability compared to conventional Reed-
Solomon codes. However, this work is only restricted to key-value stores and
is not available to conventional databases for use. Also, unlike our work, the
reliability ranges of SRS are limited only to the parameters of specific key-to-
node mappings.



Hybris [11] by Dobre et al. is a hybrid cloud storage system that scatters
data across multiple unreliable or inconsistent public clouds, and it stores and
replicates metadata information within trusted private nodes. The metadata are
related to the data scattered across the public clouds, providing easier access
and strong consistency for the data, as well as improved system performance
and storage costs compared to existing multi-cloud storage systems. In our case,
Fed-DIC uses metadata containing information about the topology of data stored
in a federated cloud so that the client can connect immediately to the cluster
that contains a requested portion of the data, thus drastically reducing the read
access cost in these systems compared to simple erasure codes.

7 Conclusion

In this paper, we presented Fed-DIC, our framework that integrates Diagonal
Interleaved Coding with organized storage of the encoded data in a federated
cloud environment. Our framework takes as input data organized in a grid, inter-
leaves them into diagonal stripes that are encoded using a Reed-Solomon erasure
code. The encoded diagonal stripes are grouped into batches which are stored to
different clusters in the cloud. The user issues queries to retrieve portions of the
data without the need for the clients to access every cluster in the cloud, thus
reducing the access cost compared to other methods like Replication and simple
Erasure Codes. Our experimental evaluations illustrate the benefits of our frame-
work compared to other fault tolerance methods in terms of total read access
latency, data loss percentage, maximum network transfer rate, storage overhead
and load balancing. For future work, one direction we are following is to deploy
Fed-DIC in a federated environment with different hardware equipment where
we plan to evaluate the working and benefits as well as the corresponding costs
of our approach when different types of equipment are utilized.
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