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Abstract. The mobile ecosystem is witnessing an unprecedented in-
crease in the number of malware in the wild. To fight this threat, actors
from both research and industry are constantly innovating to bring con-
crete solutions to improve security and malware protection. Traditional
solutions such as signature-based anti viruses have shown their limits
in front of massive proliferation of new malware, which are most often
only variants specifically designed to bypass signature-based detection.
Accordingly, it paves the way to the emergence of new approaches based
on Machine Learning (ML) technics to boost the detection of unknown
malware variants. Unfortunately, these solutions are most often under-
exploited due to the time and resource costs required to adequately fine
tune machine learning algorithms. In reality, in the Android community,
state-of-the-art studies do not focus on model training, and most often go
through an empirical study with a manual process to choose the learning
strategy, and/or use default values as parameters to configure ML algo-
rithms. However, in the ML domain, it is well known admitted that to
solve efficiently a ML problem, the tunability of hyper-parameters is of
the utmost importance. Nevertheless, as soon as the targeted ML prob-
lem involves a massive amount of data, there is a strong tension between
feasibility of exploring all combinations and accuracy. This tension im-
poses to automate the search for optimal hyper-parameters applied to
ML algorithms, that is not anymore possible to achieve manually. To this
end, we propose a generic and scalable solution to automatically both
configure and evaluate ML algorithms to efficiently detect Android mal-
ware detection systems. Our approach is based on devOps principles and
a microservice architecture deployed over a set of nodes to scale and ex-
haustively test a large number of ML algorithms and hyper-parameters
combinations. With our approach, we are able to systematically find the
best fit to increase up to 11% the accuracy of two state-of-the-art An-
droid malware detection systems.

Keywords: Machine learning · Android · Malware · AutoML

1 Introduction

Smartphones are currently generating more than half of the global internet traf-
fic [1], and its related market surpasses by far computer sales. The Android
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operating system is one of the most important market players. It owns 70% of
market shares, and accounts for 2.5 billion active devices worldwide [6]. Unfor-
tunately, this boundless adoption opens a lucrative business for attackers and
ill-intentioned people. The number of Android malware peaks in 2020 [10]. Ma-
licious applications spread across the Android ecosystem at an alarming rate [7,
4, 3]. Attackers leverage on various techniques such as dynamic code loading, re-
flection and/or encryption to design ever more complex malwares [22, 48] that
systematically bypass existing scanners. To counter this phenomenon, Android
security actors, from both research and industry, massively adopt machine learn-
ing techniques to improve malware detection accuracy [39, 16, 15, 11]. Although
it is a first step towards improving detection, unfortunately, most of related
studies neglect the search for fine tuned learning algorithms.

We argue that there are still rooms for improvements unexplored. In particu-
lar, it is commonly admitted in the machine learning domain, that performances
of trained machine learning models depend strongly on several key aspects: (i)
training datasets [25], (ii) learning algorithms [20], and (iii) parameters (i.e.
hyper-parameters) used to tune learning algorithms [46, 23, 21, 19]. Accordingly,
the key underlying problem, usually referred as Automated Machine Learning
(AutoML) [29], is how to automate the process of finding the best suitable con-
figuration to solve a given machine learning problem. As far as our knowledge,
no attempts have been done towards improving Android malware detection sys-
tems based on machine learning algorithms. Whether one [16, 11] or several al-
gorithms [17, 50, 39] are evaluated, the evaluations are always carried out empir-
ically, implying a manual process with few and/or default hyper-parameter com-
binations. Testing various algorithms along with a large set of hyper-parameters
is a daunting task that costs a lot both in terms of time and resources [36].

In this paper, we present DroidAutoML, a new approach that automatically
performs an extensive and exhaustive search by training various learning al-
gorithms with thousand of hyper-parameter combinations to find the highest
possible malware detection rate given the incoming dataset. DroidAutoML is
both generic and scalable. Its genericity comes from its ability to be agnostic to
underlying machine learning algorithms used, and its scalability comes from its
ability to scale infinitely horizontally by adding as much as machines as required
to speed up the processing. To achieve this aim, and leveraging our expertise in
the field of Android malware detection, we have defined and deployed a dedicated
microservices architecture.

Our contributions are as follow:

– We propose the very first AutoML approach, named DroidAutoML, to im-
prove the accuracy of technics based on machine learning algorithms to de-
tect malware on Android. With DroidAutoML, there is no need anymore to
manually perform empirical study to configure machine learning algorithms.

– We provide a dedicated microservices architecture specifically designed to
fulfill the needs for genericity and flexibility as required by the Android
malware detection domain.



DroidAutoML 3

– We thoroughly evaluate our approach, and applied it to the state of the art
solutions such as Drebin [16] and MaMaDroid [39]. We demonstrated that
DroidAutoML enables to improve significantly their performances: detection
accuracy has been increased up to 11% for Drebin and 10% for MaMaDroid.

The remainder of this paper is organized as follows: Section 2 explains the
context of the study. Section 3 presents in details our microservices architecture,
and Section 4 details our thorough evaluation. We make a review of the state of
the art in Section 5, and finally conclude the paper in Section 6.

2 Background
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Fig. 1. Overview of the malware detection process on Android

2.1 Emergence of machine learning algorithms to detect Android
malware

Traditional anti-viruses heavily rely upon signatures to identify malware [9, 8]
(see Figure 1, ¶). As soon as new malware are discovered in the wild, antivirus
software companies put their hands on, and compute their related signatures.
The latter are added to the ground truth database (see Figure 1, ·) of the
antivirus software. In this way, anti-viruses calculate the signatures of files to be
analyzed (see Figure 1, ¸), and compare them with previously stored signatures
to perform the detection of malware. While signature based detection is efficient
to catch old and already seen malware, they struggle to deal with new malware
generations [22, 45]. Indeed, malware authors use various techniques, such as
polymorphism [31], to generate malware variants that inherently have unforeseen
signatures to bypass anti-viruses. These new attacks emphases the need for more
intelligent systems to detect proactively unseen malware variants, commonly
known as 0-day threats.

In this aforementioned perspective, the last decade, strong efforts have been
achieved to generalize the problem, and to develop new approaches based on
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machine learning (ML) [11, 16, 39, 50, 17] (see Figure 1, ¹). In contrast to sig-
nature based anti-viruses, ML anti-viruses rely on sets of meticulously chosen
heuristics, or features (see Figure 1, ¸) to train learning models from a ground
truth (see Figure 1, ·) dataset that includes both benign and malicious appli-
cations. Once trained, models are thereafter able to make predictions on unseen
files. They give either a confidence score [32] or take a binary decision to decide
whether a file is benign or potentially harmful.

2.2 Importance of features in ML malware classification problem

Feature extraction, selection and encoding are essential steps towards building
an efficient classification system based on ML. Features must be chosen in such
a way that they help ML algorithms to generalize the classification problem and
help them to adequately classify them. When badly chosen, algorithms may be
unable to generalize the problem or suffer from overfitting. More importantly,
the number of used features can drastically slow down model training time.

Feature selection. Feature selection is a widely studied area regarding ML mal-
ware detection in the Android ecosystem [11, 16, 39]. Mainly, we distinguish two

Type Features Static analysis Dynamic analysis Location

Basic

permissions 3 7 manifest
intent-filters 3 7 manifest
components 3 7 manifest
file signatures 3 7 apk level
protected method calls 3 3 bytecode
suspicious method calls 3 3 bytecode

Behavioural
call graph 3 3 bytecode
dynamic code loading 7 3 apk level
network traffic 7 3 OS level
intent messages 7 3 OS level

Table 1. Examples of basic and behavioral features that can be extracted from an
Android application

types of features: (i) basic, and (ii) behavioral features, as illustrated in Table 1.
Basic features qualify information inherent in an application, but by themselves
do not directly encode its corresponding behavior [16]. It is the correlation of
the features altogether that allows machine learning models to differentiate a be-
nign application from a malicious one. For instance, the basic permission feature
READ CONTACTS can be used by both benign and malicious applications. As such,
it does not give any information about intentions of the application. However,
when correlated with the basic method call feature url.openConnection(), it
may highlight the intentions of a malicious application to steal user’s contacts.
Contrariwise, behavioral features are information about an application that al-
lows to extract both intentions and actions of an application [39]. These features
can be extracted by statically extracting the call graph of an application or by
monitoring the application during its execution.

Feature extraction. Mainly two approaches can be used to extract features
from an Android application: (i) static, and (ii) dynamic analysis. A static anal-
ysis allows to quickly analyze binaries of Android applications without having
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to execute it. In the Android ecosystem, static analysis is a widely used ap-
proach [35, 28, 38, 47] as they allow to analyze applications at scale without hav-
ing an impact on resources, and in particular on the reactiveness of applications
being scanned. However, static analysis are limited to the analysis of the visible
part of the application’s bytecode. Malware authors may use advanced obfus-
cations techniques such as dynamic code loading or encryption to try to defeat
static analysis.

Due to the weaknesses of static analysis, dynamic analysis are often explored
as an alternative in Android malware detection systems [27, 51, 49]. Dynamic
analysis consists of executing malware to monitor their behaviors at runtime.
Most often, to make it scales and for isolation purposes, such analyses are typ-
ically executed in sandboxed environments. However, malware may implement
evasion techniques such as logic bombs, and time bombs, which allow them to
bypass runtime surveillance. A logic bomb is the ability of a malware to de-
tect its runtime environment (i.e. a sandboxed environment such as a virtual
machine), and to prevent itself to trigger its own malicious behavior in such con-
ditions [44]. A time bomb enables malware to trigger their malicious actions only
after a certain amount of time or periodically, at specific hours. Accordingly,
dynamic analysis suffer from scalability issues, and are rarely used due to their
inherent strong requirements in terms of both time and resources.

Feature encoding. Feature vectors are used to represent the characteristics
of studied items in a numerical way to simplify their analysis and comparison.
Most of ML classification algorithms such as neural networks, nearest neighbor
classification or statistical classification use feature vectors as input to train their
model. While it is easy to use pixels of an image as a numerical feature vector, it is
harder to numerically encode more complex features such as basic or behavioral
features of Android applications. For that reason, many studies [11, 39, 16, 26]
provide new alternatives for feature encoding. Authors of Drebin [16] embed
basic extracted features into a feature vector using one-hot encoding to code
the presence, or the absence of a given feature. Contrariwise, MaMaDroid [39]
encodes behavioral extracted features using a Markov chain algorithm, which
calculates the probability for a method to be called by another in a call graph.

2.3 Choosing and training the classification algorithm

While feature selection and encoding remain important in machine learning
based malware detection, the problem of training an accurate model also needs
to be addressed. On one side, Android application vendors must ensure that
no malicious applications bypass their security barriers. On the other side, dis-
carding too many applications, to stay conservative, may lead to profit losses,
as many benign applications can be flagged as false positive. Hence, training a
binary classifier with good performances in terms of precision and recall is essen-
tial. While features selection can be very helpful to solve this, choosing the best
classification algorithm with the best training parameters can greatly improve
classification.
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Classification algorithms. In machine learning, and especially on binary clas-
sification problems, it is admitted that choosing the right learning algorithm de-
pends on many factors such as the available resources, the algorithm complexity
or the input data. As there is no silver bullet to always find the best algorithm,
researchers often go through an empirical process to find a good fit. Regard-
ing the Android ecosystem, various algorithms to train models, mostly Random
Forest (RF), Support Vector Machine (SVM), and k-nearest neighbors (KNN),
have already been tested depending on type of data extracted from applications,
and the number of applications used for training ML models [50, 33, 16, 39]. Al-
though all these studies show good evaluation performances, all of them have
been empirically evaluated with a manual trial and error strategy. As it is a very
time consuming task, it is a safe bet to say that these studies did not found the
best learning algorithm to solve the classification problem. Therefore, we claim
that automating such a task would be a great help for the research community.

Hyperparameter optimization. Another important aspect are parameters
used to train chosen learning algorithms (most often set to default values). Usu-
ally, the number of hyper-parameters for a given algorithm is small (≤5), but
may take both continuous and discrete values leading to a very high number of
different values and so of combinations. For instance, common hyper-parameters
include the learning rate for a neural network, the C and sigma for SVM, or
the K parameter for KNN algorithms. The choice of hyper-parameters can have
a strong impact on performances, learning time and resource consumption. As
a result, Automated hyper-parameter search is a trending topic in the machine
learning community [37, 52]. Currently, grid search and brute force approaches
remain a widely used strategy for hyper-parameter optimization [18] but can
require time and computational resources to test all possibilities. To deal with
this issue, several frameworks are able to efficiently parallelize grid-searching
tasks on a single machine, but this does not scale with the ever growing search
space [41, 12].

3 A Microservice architecture for ML

DroidAutoML relies on a microservice architecture that separates concerns be-
tween data processing (feature selection, extraction and encoding) and training
optimization ML models. Such a design enables DroidAutoML to scale and stay
agnostic to the evaluated scanner.
Microservices dedicated to features operations. Feature extraction and encoding
are both operations specifics to each scanner. As such, each scanner has its
own dedicated microservice for performing these operations (Figure 2, n). We
define k as the number of applications to process for a given dataset. For n
different scanners, n ∗ k instances of n(i,j) microservices with i ∈ {1..n} ∧ j ∈
{1..k} will be deployed. Each n(i,j) instance takes as input an apk to generate its
corresponding features vector, interpretable by any machine learning algorithms.
The generated feature vector is then stored into the feature database microservice
(See figure 2,H).
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Fig. 2. Overview of DroidAutoML

Microservices dedicated to model training. ML model training operations are
specific to a classification algorithm and the set of hyper-parameter used to
parametrize it. Therefore, each algorithm has its own dedicated microservice to
perform the training and testing of a model for one hyper-parameter combination
(see Figure 2,s). For l different algorithms, l different kinds of m instances of
s(i,j) with i ∈ {1..l}∧j ∈ {1..m} will be deployed where m is equals to the num-
ber of hyper-parameter combinations to test for a given algorithm. This allows
to scale horizontally by spreading the workload across the available nodes in the
cluster. A s microservice takes two inputs: (i) a feature vector matrix from the
feature database H, and (ii) a set of hyper-parameter values. s microservices
leverage Scikit-learn to perform both training, and testing steps. Afterwards,
each s instance parametrizes its ML algorithm according to the input hyper-
parameter combination. All ML models are trained with a 10-cross fold valida-
tion process to avoid overfitting problems. The input data is split according to
machine learning ratio standards: 60% of the data is used to fit the model and
40% to test it. Performances of each model are assessed in terms of accuracy
and F1 score. Finally, trained models are stored within the database along with
the configured hyper-parameter settings so that they can further be used by the
end-user. The obtained results on the testing set are then communicated to score
aggregator microservices (see Figure 2,:).

Microservices dedicated to score aggregation. A third set of microservices are the
ones dedicated to the collecting of results from s mircroservices to identify the
pair {algorithm,hyper-parameters} that gives the best performances for a given
scanner. Each score aggregator microservice is dedicated to a couple {scanner,
algorithm} so that it collects only results related to it for all hyper-parameter
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combinations tested. Accordingly, for n scanners and l algorithms, there will be
at least n ∗ l instances of aggregators. Once the best predictive model have been
found for a given scanner, the corresponding algorithm and hyper-parameters
are communicated to the end-user.

Efficient microservice scheduling. DroidAutoML is a system designed to run
on top of a cluster of hardware machines. To optimize resources and efficiently
schedule tasks on such a cluster, DroidAutoML leverages on a bin packing algo-
rithm [24]. As such, by splitting scanner benchmarking operations into smaller
tasks, DroidAutoML can capitalize on properties offered by microservice archi-
tectures. Firstly, DroidAutoML fully takes advantage of multi node clusters as
each microservice can be scheduled independently on any node in the cluster.
Secondly, as scanner benchmarks are parallelized, s microservices can run side
by side with n microservices as long as they do not work for the same scanner.
Thirdly, if a microservice fails during its execution, only its workload is lost and
it can be automatically rescheduled.

4 Evaluation

4.1 Implementation

DroidAutoML is built on Nomad, an open-source workload orchestrator devel-
oped by HashiCorp [5], which provides a flexible environment to deploy applica-
tions on top of an abstracted infrastructure. More precisely our Nomad instance
federates a cluster of 6 nodes (see Figure 3, ¶) that accounts for 600GB of RAM
and 124 cores at 3.0Ghz. We use the bin packing algorithm implemented in No-
mad to schedule (see Figure 3, ·) DroidAutoML microservices instances across
available nodes in the cluster as schematized in Figure 3. Each microservice

Scheduler

User

- Scanner
- Dataset size
- Algorithms:
 * RF
 * KNN
 * …

2
1

Fig. 3. Overview of DroidAutoML implementation

instance is represented as a job managed by the Nomad scheduler. Hardware
resources allocated to each microservice depend on its type: scanner specific in-
stances take 2 cores and 4GB of RAM each, model training instances take 1
core and 2GB of RAM, and score aggregator instances take 1 CPU and 1 GB
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or RAM. The time required for a scanner instance to build a feature vector
depends on the size of the input apk as well as its operating time. It ranges
from 6 seconds for a 2MB application to 61 seconds for a 100MB application
on average. The apk database of DroidAutoML is currently composed of 11561
applications, 5285 malware and 6276 benign applications and the average size of
an application is 20.25 MB with a standard deviation of 21.48.

Given the resources required for one instance, our infrastructure can run 61
n microservice instances in parallel, therefore the entire apk database can be
processed in 24 minutes with our current cluster. The time required to train
and test a ML model depends on the algorithm, the set hyper-parameters used,
and the size of the input vector matrix. We provide in table 4 the minimum,
average and maximum time required to train and test a model according to an
algorithm. As we use a grid-search approach to perform hyper-parameter tuning,
the number of ML models train to evaluate a scanner depends on the number of
hyper-parameter combinations to test. The table 4 summarizes the values tested
for each hyper-parameter according to an algorithm as well as the number of
combinations to test them all. For example, given the resource constraints of
a ML model microservice, our cluster can run 123 s microservice instances in
parallel, thus testing all 3120 hyper-parameter combinations for the Random
Forest takes on average 9 minutes for an input feature vector matrix of 11561
items.

4.2 Evaluation of two state of the art scanners

To evaluate our approach, we propose to apply our microservice architecture to
two state-of-the-art machine learning based malware detection systems in order
to improve learning algorithm selection and training. More precisely, we conduct
our experiments on approaches proposed by Drebin [16] and MaMaDroid [39].
We benchmark our approach against the ground truth of the related work by
reusing the same ML algorithms used by the two approaches: Support Vector
Machine (SVM) for Drebin and Random Forest, SVM and K-Nearest Neighbors
for MaMaDroid.

We build a dataset of 11561 applications composed of 5285 benign and 6276
malware samples. Malicious samples are collected from three malware datasets:
the Drebin dataset [16], the Contagio dataset [2] and a dataset of 200 veri-
fied ransomware from Androzoo [13]. Concerning benign applications, we collect
samples from the top 200 of most downloaded applications for each app category
in the Google Play Store. To ensure that collected samples are really benigns,
we upload them to VirusTotal, an online platform that makes it possible to have
a file analyzed by more than 60 commercial antivirus products. According to
the literature [40], applications can be safely labeled as benign if less than 5 an-
tivirus detect it as malware, as several antivirus consider adwares as potentially
dangerous. Among the 6276 applications downloaded, 95, 04% (5965 samples)
have not been detected as malware at all and 99, 18% (6225 samples) by less
than 5 antivirus. To guarantee the overall dataset quality, we remove all samples
with a detection rate over this threshold.
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Accuracy F1-Score Precision Recall TP TN FP FN
Scanner Algorithm

Drebin SVM 88.91 88.23 84.43 92.39 1833 2087 338 151
MaMaDroid KNN 82.35 81.76 83.25 80.33 1744 1887 427 351

Random Forest 80.54 83.08 72.65 97.01 2106 1445 65 793
SVM 79.22 81.97 71.57 95.90 2082 1411 89 827

Table 2. Baseline results for Drebin and MaMaDroid models trained with original
hyper-parameters settings.

Ground truth results. As original experiments by Drebin and MaMaDroid au-
thors were made on older data, both approaches may suffer from temporal
bias [14, 43]. Temporal bias refers to inconsistent machine learning evaluations
with data that do not correctly represent the reality over time. To take this bias
into account, we start our experiment by measuring ground truth results for
both Drebin and MaMaDroid approaches using our own dataset. These results
will serve as a baseline to evaluate DroidAutoML performances and compare
further results against it. Authors from Drebin use a SVM algorithm to perform
the binary classification of malware and benign applications. As the original
source code of their approach is not available, we develop our own implemen-
tation of their solution using available information in the original paper. While
our implementation of Drebin may slightly differ from the original one, the ap-
proach and the algorithm used (SVM) remain conceptually the same. As no
details are given about hyper-parameters used to parametrize the algorithm,
we take common default values suggested by machine learning frameworks to
train the algorithm. Regarding MaMaDroid, authors tested three learning al-
gorithms: Random Forest, SVM and KNN. We calculate the baseline by using
the MaMadroid’s approach source code, and the same hyper-parameters set by
the authors. The table 3 reports the grid of hyper-parameter values used to

Parameters Mamadroid Drebin

Random Forest

n estimators
max depth
min samples split
min samples leaf
max features

101
32
2
1

auto

SVM

C
kernel
degree
gamma

1
rbf
3

auto

1
linear

3
auto

KNN

n neighbors
weights
leaf size
p

[ 1,3]
uniform

30
2

Table 3. Default hyper-parameters used to parametrize evaluated algorithms

train and test each learning models for both approaches. The table 2 reports
the baseline results for each trained model. We observe that the accuracy and
F1 scores for both approaches decrease compared to the original results. The
accuracy score for the Drebin SVM drops by 5.09% from 94% to 88.91%. Con-
sidering MaMaDroid, F1-Scores are below 84% for all studied algorithms, with
a false-positive rate over 5%, which is more than 15% lower than best results
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presented originally in terms of F1-Score. As samples in our dataset are more
recent than those used in original experiments, these results confirm that both
Drebin and MaMaDroid approaches are suffering from temporal bias.

Model evaluation with DroidAutoML. In the following of this experiment, we
aim at answering the following questions:

– RQ1: Is DroidAutoML able to find a learning algorithm that performs better
than default algorithms used for studied scanners?

– RQ2: Can DroidAutoML improve the prediction results of studied scanners
by finding an optimal set of hyper-parameters ?

We answer these questions by running DroidAutoML for each studied scanner
with a large grid of hyper-parameters (see Table 4) and 4 different learning
algorithms for each scanner: Random Forest, SVM, KNN, and a multi layer
perceptron (Neural Network).

Parameters Hyperparameters
# of combinations

to test

time for a single run
(in seconds for 11 238 apks)
min avg max

Random Forest

n estimators
max depth
min samples split
min samples leaf
max features

[200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000]
[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 500, 1000,None]

[2, 4, 6, 10]
[2,5,10,20]
[auto,sqrt]

10*13*3*4*2=3120 15 21 35

SVM
C
kernel
gamma

[0.0001,0.001,0.01,0.1,1,10,100,1000,10000]
[linear,rbf,sigmoid,poly]

[0.0001,0.001,0.01,0.1,1,auto,scale]
9*4*7=252 23 25 31

KNN

n neighbors
weights
leaf size
p

[1,3,4,5,6,7,8,9,10]
uniform,distance

[1,3,5,10,20,30,50,100]
[1,2]

9*2*8*2=288 23 42 56

MLP

hidden layer sizes
activation
solver
alpha
learning rate

[(50, 50, 50), (50, 100, 50), (100,)]
[tanh, relu]

[sgd, adam, lbfgs]
[0.0001, 0.05]

[constant, adaptative]

3*2*3*2*2=72 123 164 250

Table 4. Grid hyper-parameters used to train models with DroidAutoML

Accuracy F1-Score Precision Recall TP TN FP FN
Scanner Algorithm

Drebin KNN 98.82 98.82 99.91 97.75 2169 2188 2 50
Random Forest 98.57 98.56 99.63 97.52 2163 2183 8 55
SVM 99.50 99.50 99.86 99.13 2168 2219 3 19
MLP 99.61 99.60 99.68 99.54 2164 2228 7 10

MaMaDroid KNN 85.48 86.41 93.69 80.17 2034 1735 137 503
Random Forest 87.93 88.57 94.98 82.98 2062 1815 109 423
SVM 88.97 88.49 86.09 91.03 1869 2054 302 184
MLP 84.71 85.36 90.55 80.73 1966 1769 205 469

Table 5. Best results after model training on DroidAutoML

The table 5 reports the best results obtained for both Drebin and Ma-
MaDroid. For the Drebin approach, accuracy and F1 scores of the model trained
with SVM increase by 10.59% and 11.27% respectively compared to the baseline.
Moreover, we observe that the multi layer perceptron algorithm performs slightly
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better than the SVM algorithm with +0.11% in accuracy and +0.10% in F1-
Score, thus reducing the number of false negative from 19 to 10. DroidAutoML

Parameters Mamadroid Drebin

Random Forest

n estimators
max depth
min samples split
min samples leaf
max features

1600
50
2
2

sqrt

1500
30
4
10

auto

SVM

C
kernel
degree
gamma

1000
linear

3
auto

1000
rbf
3

scale

KNN

n neighbors
weights
leaf size
p

3
uniform

30
2

5
uniform

20
2

MLP

hidden layer sizes
activation
solver
alpha
learning rate

100
tanh
adam
0.05
adaptative

50,100,50
tanh
lbfgs

0,0001
constant

Table 6. Hyper-parameters found for best case performance

also succeeds to improve MaMaDroid baseline results for all three studied algo-
rithms. In details, DroidAutoML increases MaMaDroid’s SVM baseline accuracy
by 9.75%, KNN by 3.13% and RF by 7.39%. These accuracy improvements are
accompanied by a significant increase of F1-scores for all algorithms. It repre-
sents a significant decrease of the number of false positives and false negatives.
In their paper, MaMaDroid’s authors discard the SVM algorithm due to poor
performance compared to other algorithms tested. We show here that SVM is
actually better than other algorithms tested by authors when it is parametrized
with the adequate hyper-parameter values as shown in table 6. Notice that in
machine learning, optimal hyper-parameters values depends on the problem to
solve [23]. Therefore, as the feature vectors are encoded differently for Drebin
and MaMaDroid, optimal hyper-parameter values may slighlty differ from one
approach to the other.

We answer RQ1 by showing that DroidAutoML has been able to find a
ML algorithm that performs better than those tested empirically with studied
scanners. More precisely, the Multi Layer Perceptron outperforms the SVM algo-
rithm used by Drebin originally and the MaMaDroid SVM originally discarded
by the authors due to poor results performs better than other algorithms initially
retained (i.e. RF and KNN).

Furthermore, we answer RQ2 by showing that DroidAutoML has been able
to find a combination of hyper-parameters in a reasonable amount of time (less
than 30 minutes) that enables to significantly improve prediction results for all
machine learning models trained for studied scanners.

5 Related work

Machine learning based malware detection on Android. As of today, many stud-
ies [16, 39, 11, 42, 50, 53, 33] use machine learning to improve malware detection
in the Android ecosystem. Over time, trained models become more and more
accurate thanks to the heavy work on feature extraction and feature selection.
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Among studies published on the subject, several of them [11, 42, 16] use basic
semantic feature to model application’s behavior. Particularly, in 2014, authors
of Drebin [16] use various features such as permissions, application compo-
nents, calls to hardware components, intent filters, etc. to train a support vector
machine on more than 5000 malware and 123 000 benign applications. Other
studies [39, 53] model and encode the application control flow to increase the
robustness against adversarial attacks [22, 48] that modify the application’s byte
code without touching its behavior. Unfortunately, the great majority of these
studies do not focus on model training, and most often go through a manual
process to choose the learning strategy. Only a few studies [50, 39] are actually
testing more than one learning algorithms. However, the process is still done
manually and hyper-parameters are empirically chosen or left by default.

Automated machine learning frameworks. Several works already studied auto-
mated machine learning as a research problem [34, 30]. These works have mainly
paved the way to make machine learning available to non-experts from the do-
main. Frameworks such as Auto-Sklearn and Auto-WEKA related to these stud-
ies are actually responding to a demand for machine learning methods that au-
tomatically works without expert knowledge. With Auto-Sklearn [30], authors
leverage on Bayesian optimization and past performance on similar datasets to
automate classifier selection and increase trained model efficiency. However as
stated before, the quality of a model training depends on the input data. While
an AutoML framework may find an acceptable solution for a given problem, it is
not sufficient in many expert domains, especially Android security and malware
detection where the best possible efficiency is required. It is a big assumption
to trust an AutoML framework to choose the best fit for the problem to solve.
Especially in Android malware detection, input data can vary a lot depending
on the feature selection and encoding approach. Moreover, while Auto-Sklearn
can efficiently parallelize on a single machine, it is not designed to horizontally
scale on a multi-node cluster. For that reason, we consider frameworks such as
Auto-Sklearn as another option to test along with others classical classifiers such
as Random Forest or SVM in DroidAutoML.

6 Conclusion

We have identified that machine learning solutions are underexploited in the
Android ecosystem and proposed a novel approach to address this issue. We
have built DroidAutoML, a microservice architecture to test malware detection
scanners on a large number of machine learning algorithms and hyper-parameter
combinations. We have shown that DroidAutoML can significantly improve scan-
ners detection rate while optimizing used resources. DroidAutoML becomes a
cornerstone to correctly benchmark both existing and novel ML approaches on
existing ML algorithms.

As a future work we plan to integrate new machine learning algorithms in
our framework and potentially more efficient approaches to speed up the hyper-
parameter optimization process such as Bayesian optimization. We also plan
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to release DroidAutoML as an open-source framework, as the Android security
community could greatly benefit from it.
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