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Abstract. To address the limitations of current Radio Access Networks (RANs), 
centralized-RANs adopting the concept of flexible splits of the BBU functions 
between Radio Units (RUs) and the central unit (CU) have been proposed. This 
concept can be implemented combining both the Mobile Edge Computing model 
and relatively large-scale centralized Data Centers. This architecture requires 
high bandwidth/low latency optical transport networks interconnecting RUs and 
compute resources adopting SDN control. This paper proposes a novel mathe-
matical model based on Evolutionary Game Theory that allows to dynamically 
identify the optimal split option with the objective to unilaterally minimize the 
infrastructure operational costs in terms of power consumption. Optimal place-
ment of the SDN controllers is determined by a heuristic algorithm in such a way 
that guarantees the stability of the whole system. 

Keywords: Cloud, C-RAN, Evolutionary Game Theory, Functional Splits, 
MEC, Replicator Equation, SDN. 

1 Introduction 

The immense increase of network-connected devices and internet users, services and 
applications, creates huge bandwidth, mobility and speed demands, that cannot be ful-
filled by existing technologies, mainly due to capital and operational costs [1]. Thus, a 
transition from current closed, static and unagile networks to open infrastructures that 
focus on flexible and optimized service delivery is needed. However, to achieve this, 
multiple requirements (data rate, latency, energy efficiency, bandwidth and network 
capacity etc.) have to be met, as different applications may require different network 
capabilities, features and performance. 

In order to address the growth of traffic, network densification seems to be a prom-
ising solution. The main idea is to create very dense cells (Ultra Dense Networks - 
UDNs) by installing a large number of antennas with reduced range, achieving high 
bandwidth, and short delays [2]. Of course, this results in increased network capacity 
through the densification of the infrastructure. Although, we can solve the issue of in-
creased traffic in data transmission by applying the classical technique of network den-
sification, the economical and environmental impact of the investment in such an 



infrastructure should be taken into consideration. Beyond the increase in the associated 
capital expenditure significant increase in the overall energy consumption of the infra-
structure is expected as additional base stations required to support the dense antenna 
deployment would be also needed. This will have a direct impact not only in the CO2 
footprint of these solutions but also in the infrastructure operating costs directly asso-
ciated with the energy consumption of the infrastructure. 

Cloud Radio Access Networks (C-RANs) propose to overcome these limitations, by 
decoupling the BaseBand Units (BBUs) from the Base Stations (BSs) and place them 
in the Cloud, thus achieving a centralized manner of signal processing and manage-
ment. The connection of the RU, and the Central Unit (CU), where the baseband pro-
cessing is performed, is supported through an optical transport network. The combina-
tion of Cloud Computing with the centralized RAN architecture is ideal for planning 
shared network radio access, handling interference between nearby cells, and quickly 
and easily upgrading the network. Nevertheless, C-RAN suffers several limitations, the 
most important of which is the need for high capacity transport links to support fron-
thaul (FH) services, i.e. high bandwidth and very low latency connectivity between the 
RU and the CU [1]. Existing backhaul (BH) solutions are unable to offer the required 
capacity for the converged FH/BH transport network of future communication environ-
ments. In this manner, along with the adoption of advanced wireless and optical tech-
nologies (e.g. ub-6GHz and 60GHz bands, Wavelength Division Multiplexing (WDM) 
optical networks [1]), the concept of baseband processing split that allows some func-
tions of the 5G protocol stack to be processed at the RUs, while the remaining ones to 
be processed at the CU has been proposed [1].  Flexible Functional Splits (FFS) speci-
fied by both 3GPPP and eCPRI [10] can relax FH requirements in terms of transport 
network specifications, but they may be both economically and environmentally inef-
ficient. This is due to that, this architecture still requires the presence of computation 
and storage components at each RU in order to process the subset of BBU functions 
that will be dynamically decided to be performed locally at the RUs at different time 
instances. 

To address this architectural inefficiency, Mobile Edge Computing (MEC) can be 
combined with the notion of flexible functional splits for making the system as cost and 
energy efficient as possible. In such a system, a set of low or medium processing power 
servers is placed in the wireless access domain or close to the edge of the network [3]. 
The processing capabilities that are required for the adoption of the FFS approach, can 
be removed from each RU and be placed in the MEC to which they are connected. 
Hence, the FFS technique can be addressed by adopting an architecture able to assign 
BBU processing functions dynamically between MEC servers and large-scale DCs 
placed at the optical access and metro domains that are hosting general purpose servers. 

In general, 5G aims at incorporating many technologies, under the same infrastruc-
ture (FH/BH network).  Efficient management and operation of such a heterogeneous 
infrastructure can be achieved applying novel network designs that are aligned with the 
Software Defined Networking (SDN) open reference architecture [4]. SDN refers to the 
migration of the control level out of the switches and its placement externally in a log-
ical entity called a controller. The controller is in charge of populating the forwarding 
table of the switch. The communication between the two entities is carried out through 



a secure channel. This centralized structure makes the controller able to perform net-
work management functions, while allowing easy modification of the network behavior 
through the centralized control layer. However, in such infrastructures the end to end 
latency is augmented. Considering that latency is critical to many network applications, 
a subject of current research is the size of the SDN network (controller placement prob-
lem) in order to be able to cope with the timing requirements of network services and 
applications[5][6]. 

In this paper, we propose a next generation network solution that includes: a) the 
concept of FFS between a set of servers that can offer a range of processing capabilities 
and can be geographically distributed across the network infrastructure, b) the employ-
ment of the MEC  architecture in the form of specific purpose low processing power 
servers embedded in the wireless access network (also known as cloudlets)  and c) a 
FH/BH transport network with SDN control, connecting the MEC domains with me-
dium to large-scale DCs hosting general purpose servers placed at the optical access 
and metro domains.   In this environment, the controller placement problem is investi-
gated, under the scope of the stability of the whole system. To address this issue, we 
propose a novel mathematical model based on Evolutionary Game Theory (EGT) that 
allows network operators to dynamically adjust their FH split options with the objective 
to minimize their total operational expenditures. The stability of the proposed scheme 
depends on network latency, thus a metric for sizing the SDN FH/BH network is pro-
posed. 

The rest of the paper is organized as follows. After a brief overview of EGT in Sec-
tion 2 the problem under consideration is analyzed in Section 3. Then, its application 
to the proposed network model is presented in Section 4, where the optimal split is 
identified applying EGT and the controller placement problem is addressed. Finally, 
conclusions are drawn in Section 5. 

2 Evolutionary Game Theory: Basic Concepts 

Evolutionary Game Theory (EGT) studies the interactions of non-cooperative players 
that play repeatedly strategic games [7]. Contrary to classic Game Theory that examines 
the behavior of rational players, EGT focuses on how the strategies can "survive" 
through evolution and how they help the players who choose them to "strengthen" and 
better meet their needs.  

Evolutionary processes are described by three main components: the population, the 
game and the dynamical model that describe the processes. The most common dynam-
ics is called the Replicator Equation (RE) and can be expressed as: 

𝑥̇௜(𝑡) = 𝑥௜(𝑡) ቀ𝐹௜൫𝒙(𝑡)൯ − 𝐹ത൫𝒙(𝑡)൯ቁ , 𝑖 ∈ 𝑆 (1) 

where 𝑆 is the set of strategies that are available to the population, 𝒙(𝑡) =
[ 𝑥ଵ(𝑡)  𝑥ଶ(𝑡) …  𝑥௜(𝑡) … ]  ் is the population state at time 𝑡 with 𝑥௜(𝑡) symbolizing 
the proportion of the population that uses strategy 𝑖 at time 𝑡, and 𝐹௜൫𝒙(𝑡)൯ , 𝐹ത൫𝒙(𝑡)൯ 
are the expected payoff  of strategy 𝑖 and the mean payoff respectively [7]. According 



to this equation the percentage growth rate 𝑥̇௜
𝑥௜

ൗ  of the strategies that are currently used

is equal to the excess of the current payoff versus the average population’s payoff. This 
means that strategies employed at present will be spread or eliminated depending on 
whether their payoff is better or worse than the average. 

In the above, the interaction between individuals is assumed to be instant and their 
results immediate. However, this is not the case in most realistic scenarios. In commu-
nication networks especially, the impact of an action may be belated, due to network 
latency. Thus, it is more realistic to consider a system where the strategies evolve con-
sidering the payoff values perceived in a past moment. The adjusted RE is given below 
[8][9]: 

𝑥̇(𝑡) = 𝑥𝒊(𝑡) ∙ ൫𝑓௜൫𝒙(𝑡 − 𝜏)൯ − ∑ 𝑥௝(𝑡) ∙ 𝑓௝൫𝒙(𝑡 − 𝜏)൯௜∈ௌ ൯ (2) 

3 Application to 5G Networks 

Fig. 1. Network architecture. In the MEC, a decision about which functions should be processed 
locally is made for each RU. The remaining set of functions for each RU are transferred through 
a common network infrastructure with centralized control to a DC for further processing. 

We consider the 5G network topology shown in Fig. 1. In this scenario, the RUs are 
installed, managed and operated by coexisting Mobile Network Operators (MNOs). 
The RUs share a set of computational resources that are located both at the edge of the 
access network (in a MEC server) and at the metro/core network (in the Cloud). The 
interconnection between the MEC server and the central cloud servers is carried out by 
an SDN- controlled optical FH/BH transport network.  

The MNOs can decide where to perform the processing of the low layer functions of 
the LTE protocol stack. According to the eCPRI specification, three possible functional 
splits can be identified [10]. In split E (split 1 for simplicity) MEC is responsible for 
the RF processing of the received signals and the Cloud performs the entire baseband 
processing. In split IU (split 2), MEC handles the per cell processing (RF processing, 
cyclic prefix (CP) elimination, frequency domain transformation (FFT) and resource 
demapping), while the remaining functions are performed at the Cloud (Equalization, 



IDFT, QAM, multi-antenna processing, Forward Error Correction (FEC), higher level 
operations (MAC, RLC, PDCP). Finally, in split D (split 3) the entire lower layer func-
tion chain is performed at the MEC server, and the higher lever functions in the Cloud. 
One can conclude that as the split is placed lower in the 5G protocol stack, the required 
transport capacity increases [11].  

Each RU periodically selects one of the three possible functional splits with proba-
bility 𝑥௜, 𝑖 = 1, . . ,3. The decisions are sent to the SDN controller, who is responsible 
for the application of the policies. We consider the scenario in which all the necessary 
resources are available. When the policies have been applied, the payoffs are calculated 
and the RUs are reviewing their split option strategy. Specifically, if a better (lower) 
payoff is observed, then the probability of an RU to select the specific split option in-
creases (decreases). The new policies are sent to the controller and the same procedure 
is repeated. The time between each repetition is referred to as revision time. To address 
this scenario, EGT can provide a suitable optimization framework that can be used to 
support energy-aware FH service provisioning over a common infrastructure. 

Denote as 𝒙(𝑡) = [ 𝑥ଵ(𝑡)  𝑥ଶ(𝑡)  𝑥ଷ(𝑡)]  ் the state vector of the RU, where 𝑥௜(𝑡) 
refers to the RU’s probability of choosing split 𝑖. If the RU revises its strategy with a 
time rate 𝑟௜(𝒙), the change of the proportion of the probabilities is described by the 
following dynamical equation: 

𝑥̇௜(𝑡) = ∑ 𝑥௝(𝑡)𝑟௝൫𝒙(𝑡)൯𝑝௝
௜൫𝒙(𝑡)൯௝∈ௌ − ∑ 𝑥௜(𝑡)𝑟௜൫𝒙(𝑡)൯𝑝௜

௝
൫𝒙(𝑡)൯௝∈ௌ  (3) 

where 𝑆 is the set of strategies that consists of the three possible splits and 𝑝௜
௝
(𝒙) is the

rule of change in the probability of choosing split 𝑖 when the RU changes from split 𝑖 
to split 𝑗 and can be expressed as: 

𝑝௜
௝(𝒙(𝑡)) =  ቊ

𝑥௝(𝑡)(𝑢(𝑗, 𝑡) − 𝑢(𝑖, 𝑡))  𝑗 ≠ 𝑖

1 − ∑ 𝑥௝(𝑡)൫𝑢(𝑗, 𝑡) − 𝑢(𝑖, 𝑡)൯௝ஷ௜  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(4) 

with 𝑢(𝑖, 𝑡) symbolizing the payoff of split 𝑖 at time 𝑡. Constituting Eq. (4) to Eq. (3) 
and making the assumption that all time rates are constantly equal to one (𝑟௜(𝒙) ≡ 1), 
the following differential equation comes up: 

𝑥̇௜(𝑡) =  𝑥௜(𝑡)ൣ𝑢(𝑖, 𝑡) − ∑ 𝑥௝(𝑡)𝑢(𝑗, 𝑡௝∈ௌ )൧ (5) 

which satisfies the replicator dynamics model introduced in Section 2. 

3.1 Payoff Function 

The objective of the MNOs is to minimize their own service power consumption re-
quirements and, hence, the service operational costs. Thus, the payoff function per op-
erator is formed by summing up the power consumption of the network and compute 
elements required to support FH services. Table I summarizes the network and pro-
cessing demands of each functional split. 



Table 1. Network and Processing Demands of Each Functional Split 

Split Network Rate 
Processing Functions 

Local Remote 

1 (E) 𝑅ଵ = 𝑁௢ ∙ 𝑓௦ ∙ 𝑁ொ ∙ 𝑁ோ RF 
FFT, RE Demapping, 
 Rx Processing, DEC, 

MAC 

2 (IU) 𝑅ଶ = 𝑁௦௖ ∙ 𝑇௦
ିଵ ∙ 2 ∙ 𝑁ொ ∙ 𝑁ோ ∙ 𝜂 

RF, FFT, 
RE Demapping 

Rx Processing, DEC, 
MAC 

3 (D) 𝑅ଷ = 𝑁௦௖ ∙ 𝑇௦
ିଵ ∙ 𝜂 ∙ 𝑆 

RF, FFT,  
RE Demapping, 

Rx Processing, DEC 
MAC 

For this problem setting, the payoff of an RU operated by an MNO that chooses split 
𝑖 against another RU operated by a different MNO who chooses split 𝑗 is described by 
the payoff matrix 𝑨, with elements: 

𝑎௜௝ = − ቀ𝑃௉ோை஼ாௌௌூேீ ௜௝
+ 𝑃ோ் ௜௝

ቁ + 𝑏,    𝑖, 𝑗 ∈ 𝑆 (6) 

where 𝑃௉ோை஼ாௌௌூேீ  and 𝑃ோ்೔ೕ
 refer to the total compute and network energy consump-

tion respectively, when split 𝑖 competes with split 𝑗 and 𝑏 is a positive constant that 
guarantees the robustness of the system.  Technical parameters like the oversampling 
factor (𝑁௢), the sampling frequency (𝑓௦), the quantization bits per I/Q (𝑁ொ), the number 
of receiving antennas (𝑁ோ), the number of subcarriers used (𝑁௦௖),  the percentage of 
used resource elements (𝜂), and the spectral efficiency (𝑆) affect the required capacity 
and the power consumption of each processing function [11][12]. 

Due to the nature of the SDN transport network, the payoff values are provided to 
the MNOs through the SDN controller. It is evident, that this kind of procedure indi-
cates that the strategies will evolve based on information related to a past moment. This 
will be reflected to the expected payoff of the strategies. 

Network delay is mainly composed of propagation, serialization, switching/routing 
and queuing delay. Although propagation and switching/routing delays are constant, 
the rest are highly affected by the network traffic. Due to this, we expect that network 
delay is a random variable that is characterized by a probability density function. Spe-
cifically, if the payoff is received not instantly, but after a random delay 𝜏, with proba-
bility distribution 𝑃(𝑡) the expected payoff of an RU using strategy 𝑖 as well as the 
average payoff are determined by [13]:  

𝑢(𝑖, 𝑡) =  ∫ 𝑃(𝜏)(𝜜𝒙(𝑡 − 𝜏))௜
ஶ

଴
  &  𝑢ത = ∑ 𝑥௝(𝑡)𝑢(𝑗, 𝑡௝∈ௌ ) (7) 

3.2 Stability Analysis 

Substituting Eq. (7) in Eq. (5) we get a nonlinear system of differential equations. Since 
this system cannot be easily solved by analytical methods it is important to examine its 
qualitive behavior without actually solving it. We concentrate on finding the stability 



of a solution exploiting the Lyapunov stability theorem. This method is based on the 
expansion of the right part of the dynamical system as a Taylor series about an equilib-
rium point 𝒙଴. If the initial condition 𝒙(0) = 𝒙଴ is close enough to 𝒙଴, then 𝒙 will be a 
small perturbation for some time interval extending from zero. Thus, it is acceptable to 
neglect the higher-order terms, and approximate the nonlinear system by the linear sys-
tem [9]: 

𝒙̇(𝑡) = 𝑱𝒐𝒙(𝑡) + 𝑱𝟏𝒙(𝑡 − 𝜏) (8) 

where 𝑱௢ ∈ ℝଶ௫ଶ and 𝑱ଵ ∈ ℝଶ௫ଶ are respectively, the Jacobian matrix, and the delayed 
Jacobian matrix evaluated at equilibrium at 𝒙𝟎. 

The stability of the system requires that all roots of its characteristic equation have a 
negative real part. The characteristic equation can be expressed as: 

det(𝑰𝜆 − 𝑱ఖ − 𝑱ଵ𝑄) = 0 ⇒  𝜆ଶ + 𝐷𝜆 + 𝐸𝜆𝑄 + 𝐹𝑄ଶ + 𝐺𝑄 + 𝐻 = 0 (9) 

where 𝜆𝜖ℂ, 𝜤 is the 𝑁x𝑁 identity matrix, 𝑄 = ∫ 𝑃(𝜏)𝑒ିఒఛஶ

଴
 corresponds to the Laplace 

transform of the delayed term in Eq. (8) and the parameters depend on the Jacobian 
matrices’ elements. 

The system admits to seven equilibrium points: three corner points, one interior and 
three corner side points. The linearization about each of the three corner critical points 
produces an ordinary differential equation that is independent of the delayed variables 
as in the non-delayed three strategies game. 

At the interior critical point all the payoffs are equal. The differential system that 
emerges depends only on the delayed variables, thus one should anticipate that the dis-
tributed delay will affect its stability. The characteristic equation is formed as: 

𝑢ଶ + 𝐸 ∙ 𝑢 + 𝐹 = 0, 𝑢 =
ఒ

ொ
 (10) 

The last three critical points are equilibriums where only two of the three strategies 
survive (corner side points). Their characteristic equation can be written as: 

(𝜆 − 𝑙ଵ) ∙ (𝜆 − 𝑙ଶ𝑄) = 0 (11) 

where the parameters l_1 and l_2 depend on the corner side equilibrium point. 
As we can conclude from the above, our analysis can be restricted for finding the 

solution of the equation: 

𝜆 − 𝐶 ∫ 𝑃(𝜏)𝑒ିఒఛஶ

଴
= 0 (12) 

The above equation is the characteristic equation of the linear differential equation: 

𝑥̇(𝑡) = 𝐶 ∫ 𝑥(𝑡 − 𝜏)𝑓(𝑡)𝑑𝜏
ஶ

଴
 (13) 

Thus, the conclusions derived for the stability of Eq. (13) can be expanded to our case. 
From [14] we derive the following necessary and sufficient condition for the asymptotic 
stability of the equilibriums: 



Proposition: If 𝐶 < 0 and the expected value (𝐸) of the delay’s probability density 
satisfies the condition: 

𝐸(𝜏) <
గ

ఊ∙|஼|
(14) 

where 𝛾 = 2 when the pdf is symmetrical, or else 𝛾 = sup {𝛾| cos 𝑤 = 1 −
ఊ௪

గ
, 𝑤 > 0}, 

then the equilibrium point is stable (the proof  can be found in [14]). Last but not least, 
as far as the variance of the distribution is concerned, the stability of the system in-
creases as the variance grows [14]. 

3.3 SDN Controller Placement 

As it was mentioned earlier, the SDN controller is responsible for collecting and provid-
ing to the MNOs of the RUs the required information from all controlled devices. The 
maximum delay corresponds to the delay of the most distant node to the controller path 
plus the delay of the controller-MEC path. Thus, assuming that each controlled device 
may host a MEC, the stability of the system is achieved only when the round-trip time 
(RRT) of the controller’s path to the most remote device is less than the limit imposed 
by Eq (14). Based on this limit, we propose a heuristic algorithm that tries to identify 
the minimum number and associated position of SDN controllers with the aim to guar-
antee the stability of the 5G infrastructure. This is performed with low computational 
complexity. 

At first, the heuristic algorithm finds the maximum network radius, that is the num-
ber of hops of the longest end-to-end path. Then, for each node it calculates the maxi-
mum RRT to all the other nodes inside the network radius. If the result of all nodes is 
a number higher than the limit imposed in Eq (14), the network radius is reduced by 
one, and the same procedure is repeated, until a case is found where the RRT from a 
node to all other nodes within the network radius meets the condition of Eq (14). The 
nodes that meet this requirement, are marked as possible controller candidates. From 
this set, the algorithm chooses as the first controller the one that is connected to the 
largest number of devices within the network radius. These devices and the first con-
troller are removed from the network, and the whole procedure is repeated for the 
downscaled network. The algorithm ends when the downscaled network has no network 
nodes.   

4 Results and Discussion 

In order to see the effectiveness of our model we considered the system described in 
Fig. 1 with the system parameters shown in Table 2. The cost ratio (remote/central 
processing) was assumed to be equal to two. Furthermore, the relationship of the 
transport network’s energy consumption with the required capacity for the support of 
the FH services was assumed to be nonlinear, since the non-linear model is best to 
describe the technology advancements in terms of energy efficiency of network devices 
[12].  



Table 2. Parameters of the system configuration 

Symbol Quantity Value 
Β bandwidth 20 MHz 
Ant number of the rx antennas 2
M modulation 6 bits/symbol 
R coding rate 1/2 
dt time-domain duty-cycling 100% 
fs sampling frequency 30.72 MHz 
No oversampling factor 2 
Nsc number of used subcarriers 1200 
Ts symbol duration 66.6 μs 
NQ quantization bits per I/Q 10 
S spectral efficiency 3 bit/cu 
η assumed RB utilization 70% 

The stability analysis of system (5) indicates that the equilibrium point in such a 
scenario is 𝑥ଵ

∗ =  0.2957,  𝑥ଶ
∗ =  0.7043, 𝑥ଷ

∗ = 0. This means that in the non-delayed 
system the optimal split choice is split 2. However, as it was stated previously the SDN 
transport network introduces additional delay to the system. This delay can be divided 
to two main components, namely the processing delay of the SDN controller and the 
transport delay.  

The SDN controller chosen for the implementation is the Opendaylight controller 
(ODL), that is a scalable controller infrastructure that supports SDN implementations 
in modern heterogeneous networks of different vendors [17]. For measuring the pro-
cessing delay of the ODL controller, we developed an application that communicates 
externally with the controller. For evaluations, a linear network topology with Out of 
Band control plane was emulated in Mininet, a tool that can emulate and perform the 
functions of network devices in a single physical host or virtual machine (VM) [18]. 
Both Mininet and Opendaylight controller were implemented on the same machine (In-
tel® Core™ i5-7400U CPU @ 3.00GHZ (4 cores)) to overcome the Ethernet interface 
speed limitations. 7.7 GiB of memory was available.  The system was running Ubuntu 
16.04 LTS-64 bit. The application implements at first step a mechanism for collecting 
data on the network topology and at second step a mechanism for sending echo mes-
sages to all switches simultaneously, and measuring the maximum time elapsed for 
receiving a reply. The time response of ODL is measured by averaging the results of a 
hundred number of tests, in order to achieve higher accuracy. The results showed an 
exponential relation between the controller’s processing delay and the network devices. 

As far as the transport delay is concerned, we used monthly delay measurements 
extracted from GRNET [19], in order to find the dependence of the end to end transport 
delay on the end to end hops. Our analysis concluded that this relationship can be well 
approximated with a linear function. Furthermore, the best pdf that fitted the end to end 
delay was the generalized t-student distribution [20].  

Taking these into consideration, we expect that the total induced SDN network’s 
delay will be a random variable that is characterized by the generalized t-student distri- 
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Fig. 2. Assumed FH/BH transport network for the system described in Figure 1. The red circle 
represents the position of the SDN controller, after the implementation of the heuristic algorithm 
described in section 3.3. The red square represents the optimal position estimated according to 
the average propagation latency-case described in [5]. 

bution, with expected value that depends on the size of the transport network and the 
hops between two network nodes. Thus, the upper delay limit for our example is given 
by Eq (14) as: 𝐸௠௔௫ = 1.6449 time units.  

The assumed FH/BH transport network’s topology for our example is depicted in 
Figure 2. The figure also shows the possible controller placements after implementing 
the heuristic algorithm described in the previous section. In order to test the validity of 
the heuristic, we investigate the evolution of strategies in two cases: 1) when the con-
troller is placed in one of the proposed locations by the heuristic, 2) when the controller 
is placed in the location identified by the average propagation latency optimization 
technique described in [5]. Figure 3 illustrates the evolution of split option selection 
probability under the proposed EGT based approach and the average latency minimi-
zation scheme described above. As can be seen in the former case (Figure 3 a) after few 
sampling periods the scheme converges to a mixed solution where all antennas operate 
under a single split option mode that will be either split 1 or split 2. However, in the 
second case, the placement of the SDN controller at a node that does not satisfy the 
stability threshold imposed by equation (14) leading to an unstable operational mode 
for the 5G network. The reason behind this is that the increased control plane delay in 
this case introduces inaccurate information of the network status at the controller. 
Therefore, decision making is performed with outdated information that leads to an 
oscillation around the optimal operating point preventing it from converging to a stable 
solution. 

5 Conclusion 

To address the limitations of current RANs, centralized-RANs adopting the concept of 
flexible splits of the BBU functions between RUs and the CU have been proposed. To  



Fig. 3. Evolution of the probabilities of the three split options, with the parameters described in 
Table II,  when: (a) the controller is placed in the proposed location (red circle in Figure 2) by 
the heuristic, b) the controller is placed in the proposed location (red square in Figure 2) of the 
average propagation latency-case described in [5]. 

achieve further efficiency gains in terms of cost and energy consumption we proposed 
the implementation of this architectural model exploiting compute resources, required  
for the BBU function processing, located both at the MEC and relatively large-scale 
centralized DCs. This architecture adopts high bandwidth/low latency SDN controlled 
optical transport networks. In this scenario, and with the aim to dynamically identify 
the optimal split option that minimize infrastructure operational costs in terms of power 
consumption we have proposed a novel mathematical model based on EGT. In addition, 
optimal placement of the transport network SDN controllers is determined by a heuris-
tic algorithm with the objective to guarantee the stability of the whole system.  
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