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PREFACE 

Publication of this volume represents a major step in. making accessible to 
the international computing community the operational. content of the 
"Revised Report on the Algorithmic LanguageALGOL 68". The Report itself 
is, of course, an unparalleled accomplishment in. the literature of programming 
languages as a defining document. The complexity of the topic, however, 
necessarily disqualifies such a completely rigorous treatment from considera­
tion as a general pedagogical device; hence the present volume. 

As noted by the authors, this book "is not - and is not intended to be -
a primer for the programming novice". This is as it should be·. The Revised 
Report addresses those who must unde.rstand every nuance of the language; 
primarily limguage designers and compiler implementers. If implementations 
of ALGOL 68 are. to be other than academic exercises, there is a pressing 
need to acquaint the set of people who write computer programs as a routine 
part of their daily lives with the essential elements of the language. This book 
can do just that. 

The algorithmic language, ALGOL 68, stands as a major product of the 
International Federation for Information Processing, an organization now in 
its second decade, counting among its members the national information 
processing societies from thirty-four countries spread over all six of the 
world's inhabited continents. Among the principal activities of the Federa-

. tion is the work of Technical Committee 2, Programming Languages,and its 
Working Group 2.1, ALGOL. The initial effort ofWG 2.1 stemmed from the 
development of the algorithmic language ALGOL 60, and since 1964 under 
the Chairmanships of Prof. Dr. W.L. van der. Poel, Prof. Dr~ M. Paul and current­
ly Prof. J .E.L. Peck, this group of international experts, including the authors 
of the present work, has been engaged in the design apd development of 
ALGOL 68. 

While the present book is wholly the work of the two authors, it has been 
extensively reviewed in manuscript by the Working Group and has the status 
of a working paper within the group. Jt follows that the accuracy with Which 
it represents ALGOL 68 is far higher than might be apparent from its cover. 
Every effort has been made to ensure that the book contains a comprehensive, 
accurate andreadable introduction to the language. Having had the oppor­
tunity to observe this effort closely from my position as Chairman of TC-2, 
I can assure the reader that the authors have been successful in this endeavor. 

T.B. Steel, Jr. 
New York,May 20,1976 



FOREWORD 

The algorithmic language ALGOL 68 was designed by Working Group 2.1 
of the International Federation for Information Processing, and formally 
defined ina Report * published early in 1969. The first edition orthe present 
text was a companion volume to that Report. 

Since that time the language, in whole or in part, has been implemented 
on a variety of computers and substantial experience has been gained of its 
use. One leading computer manufacturer has released an implementation in 
virtual complete agreement with the current official definition, and it should 
only bea matter of time before others follow. 

The experience of implementation and use led to many proposals for 
changes to the language and these were incorporated in the text of a Revised 
Report approved at the Los Angeles meeting of the Working Group in 1973. 
The "Revised Report on the Algorithmic Language ALGOL 68"t (hereafter 
referred to as simply "the Report") is now the official, rigorous and final 
definition of the machine-independent programming language ALGOL 68. 

This "Informal Introduction to ALGOL 68" seeks to describe, rather than 
to define,the revised language. If you have some difficulty in understanding 
the Report, it is our hope that you will find our informal treatment more 
pafatable, even though this may have been achieved at the expense of rigour. 
It is the companion volume referred to in Section R.O.I.l of the Report. (We 
shall always precede Qur references to the Report with such an R. All other 
references are to the present text.) 

This introduction, however, is not - and is not intended to be - a primer 
for the programming novice. The "user" to whom we address ourselves is 
assumed to be a "programmer", i.e. someone who is able to write, or at 
least to read, a text in: some machine-independent programming language 
which is on a level not too much below, for instance, ALGOL 60. Our aim 
has been to describe the whole of ALGOL 68, and tltis Introduction may 
alsb therefore have 'some merit as a work of reference - provided it is always 
understood that the official Report is the final arbiter in all cases of doubt. 

* A. van Wijngaarden (ed.), B.l. Mailloux, 1.E.L. Peck, C.B.A. Koster, Report on the 
algorithmic language ALGOL 68, Numer. Math. 14 (1969) 79-218; also in Kibenietika 
6 (1969) and 7 (1970) .. 

t A. van Wijngaarden, B.l. Mailloux, 1.E.L. Peck, C.B.A. Koster, M: Sintzoff, C.B. 
Lindsey, L.G.L. T. Meertens and R.G. Fisker, Revised report on the algorithmic language 
ALGOL 68, Acta Informat. 5 (1975) parts 1-3 (reprints published by Springer, Berlin, 
and also as Mathematical Centre Tract 50 by the Mathematisch Centrum, Amsterdam); 
also in SIGPLAN Notices 12 (5) (1977). 
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0.0. Aims and methods 

Ch.O.O 

Since ALGOL 68 is a highly recursively structured language, it is quite 
impossible to describe it until it has been described. So that you can read this 
Introduction without tying your own mental processes into a recursive knot, 
it has been laid out to a certain pattern, which we ask you to follow. Please, 
therefore, start by reading once or twice "Very Informal Introduction", in 
which we try to give a broad survey of what is in this language - mainly by 
the way of small examples and plain explanations. Aft~r that, we shall tell you 
what to do next. 

if you think you know it all already . 
then read (what to do next) comment Section 0.14 comment 

fi 
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0.1. A simple program 

(EI) begin loc real x , y , z ; 
read (x) ; read (y) ; 

end 

z := ( x + y ) / 2 - sqrt ( x x y ) ; 
print (z) 

This piece of text represents a program, and as such it defines a sequence 
of actions to be performed by a computer. This sequence of actions is termed 
"the elaboration of the program". We shall briefly outline the elaboration of 
EI : 

1. Three identifiers x ,y and z for real variables are declared. That is to say 
that somewhere in the memory of our computer, in the "stack", three 
locations for real values are reserved. These values are referred to by the 
names x, y and z (Le. by their "addresses") which are also entities (values) in 
the computer. It thus appears that a 'variable' consists of a value associated 
with the name which refers to it. You may consider the identifiers x , y and z 
as the representatives in the programtext of the names x , y and z. 

loc real 

Y i 

The addresses x , y and z 
in the machine are ascribed 
to the identifiers x , y and z 
in the program text 

real 

~D 
real 

"----D 
real 

1--.----0 

three 
real values are 
generated 
on the stack 

The names x , y and z "refer to" real values (see also Section 0.8). 
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2. Next, from a punched tape, or punched card or some other medium, two 
numbers are read in and assigned to x and y. That is to say, these numbers are 
converted into the proper bit-patterns in the private internal number-system 
of the computer, which subsequently are stored in the locations 
corresponding to the names x and y : 

read (rll) 
real 

< x ) ~ first number read 

read (rfl) ; real 

< y ) ·1 ~second number read 

3. Then, the difference between the arithmetic and geometric mean of these 
values is calculated and assigned to z, so that we find this difference in the 
location corresponding to z: 

i+---,-. 

real 

( x + y ) / 2 - sqrt (x X y ) 

We say: 
the formula yields 
a real value which is assigned 

'-------' to z 
real 

4. Finally, this value, referred to by z , is reconverted into humanly 
recognizable graphics and is'printed by some device: 

real 

< i -)r--. L __ ~--' number printed 

Summing up we have: 

1. Three variable-declarations. 

2. Two input statements. 
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3. An assignation. To the left of the becomes-symbol := we find the 
destination Z, and to the right a 'formula' whose value is to be assigned to 
that destination. 

4. An output statement. 

The three variable-declarations in the first line are separated by 
and-also-symbols, represented by commas. This means that they are 
elaborated "collaterally", which is a technical term stating that the order of 
their elaboration is not prescribed. 

5 

The collateral declaration in the first line, the input statements in the 
second, the assignation in the third, and the output statement in the last line 
are separated by go-on-symbols (represented by semicolons). This means that 
they are elaborated "serially". This again is a technical term stating that the 
order in which these phrases are elaborated is explicitly prescribed to be the 
textual order: one after the other. They form a 'serial-clause'. 

The piece of text El might very well be part of a larger program. The 
meaning of the identifiers x, y and Z (and consequently the existence of the 
names x , y and z and of the real values referred to by them) is, however, 
local: i.e. the "reach" of their declarations is limited to the serial-clause 
between begin and end, which delimit a 'closed-clause'. If outside this 
closed-clause (or inside another closed-clause contained within it) other 
identifiers x, y and z should be declared, then these have nothing to do with 
those declared in example El. We say, therefore, that the original meaning of 
x , y and z applies only to that part of the program text. 

The standard input procedure read accepts as actual parameter not only 
the name of a real value, but also (amongst many others) a 'row-display' like 
(x,y). 

Consequently, line 2may be replaced by: 

read ( (x,Y) ) .. Observe that we again give precisely one actual­
parameter to read; instead of one name, one 
row-display of names. 

Instead of the two phrases 3 and 4 we might write, in one statement: 

print ( z := (x +y)/2-sqrt (x xy)) 

Instead of the begin and end we may write ( and). Thus EI * below is, at 
least in its effect, completely equivalent to EI: 

(EI *). ( loe real x, y , z .. read ( (x,Y) ) .. 
. print (z := (x + y)/2 - sqrt (x x y) ) 

) 
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And now we discover that zbecame superfluous, so that we can write: 

(E1 **) ( loc real x, y ; read ( (x,y) ) ; . 
print ((x+y)/2 - sqrt (x xy)) 

) 

0.2. The primitive modes, denotations 

The real in El specifies a mode (i.e. it spe~ifies that x , y and z will refer to 
values which belong to a certain class). An infinite number of distinct modes 
(disjoint classes of values) is provided in this language. They are, however, 
derived from the primitive modes (which form the basis of the entire mode 
system): boolean (bool), integral (int), real (real), character (char) and a few 
others (see 0.11). 

For these primitive modes we have 'denotations': symbols or sequences of 
symbols yielding a specific value in such a mode. 

0.2.1. boo I 

There are two boolean values, denoted by the symbols true and false. 
If (in E2 below) C is a piece of program yielding a boolean value, then this 

value is either true or false. In a 'conditional-clause' like: 

(E2) if C then Ctrue else ClaIse fi 

first of all C is elaborated, being the condition between if and then. The 
then-part Ctrue between then and else is elaborated only if the condition 
yielded true. The else-part ClaIse between else and fi is elaborated only if the 
condition yielded false. 

The symbols if and then, then and else, else and fi enclose clauses in which 
new identifiers of local reach may be declared as in a closed-clause (they form 
pairs of brackets, so to speak). Observe that the whole conditional-clause is 
enclosed between if and fi. The else-part may be absent, in which case the 
then-part is closed by fi; the then-clause must always be there. 

For E2 we may also write: 

(E2*) ( C I Ctrue I ClaIse ) 

which may be a fine notation to use in a formula, where either the value of 
Ctrue or the value of ClaIse is to be yielded (see 0.5.2). 
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0.2.2. int 

There will be many integral values, denoted by: 

o 1 2345 6 78 9 10 11 12 --- ---,2147483647 

How far can we go? The Report does not answer this question. It depends 
entirely on the implementation. It is, however, prescribed that we can always 
know the largest integral value by an "environment enquiry" max int , which 
is a standard identifier yielding the largest integral value in a specific 
implementation (see also 0.11.2). 

Observe that there is no sign preceding an integral-denotation. Of course 
you may write: 

+1 '-37 -1000 +534711 -513617 etc. 
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but then the + and the - are monadic-operators applied to the value denoted. 
Let (in E3 below) I be a piece of program yielding an integral value and let 

S be another piece of program; let Il, 12, 13, - - - - ,Ik be certain phrases. In a 
'case-clause'like: 

(E3) case I in Il, 12, 13, - - - -, Ik 
outS 

esac 

first ofallIis elaborated. Ifits yield is less than 1 (Le. 0 or -lor -'2 etc) or 
greater than k (i.e. k + 1 etc), then the out-part S will be elaborated; if, to the 
contrary, the yield of I is one of the values 1 or 2 or 3 or - - - " or k, then the 
corresponding phrase in the in-part will be elaborated. 

The symbols case and in and also out and esac enclose clauses in which 
new identifiers of local reach may be declared as in a closed-clause or 
conditional-clause. The whole case-clause is enclosed between case and esac. 
The out-part (in E3 out S) may be absent, in which case the in-part is closed 
by esac; the in-part must always be there containing at least two phrases. 

For E3 we may also write: 

(E3*) ( I Ill, 12, 13, - - - - ,/k IS) 

0.2.3. real 

There are many real values, which can be denoted in many styles: 

3.1415927 or 3141592710 -7 or 0.3141592710 +1 or .31415927101 
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instead of the symbol 10 you may also use e : 31415927e-7 

O. 9 . 9 9. 0 100. 0 O. 0 110 2 1 010 1 0 110 ,-1 0 110 0 --

The class of real values in the finite memory of a concrete computer is 
finite by necessity; it is an implementation dependent image of the 
mathematical concept "real number system". The largest real value in a 
certain implementation can be obtained by the environmental enquiry max 
real and the smallest real value which can be usefully compared with 1.0 from 
small real. (See also 0.11). 

Observe again that there is no sign preceding a real-denotation. Of course 
you may write: 

+1.0 -3710-4 -3141592710-7 etc. 

but then the + and - preceding the real-denotation are monadic-operators 
applied to the value denoted. 

0.2.4. char 

There is a prescribed minimal set of graphics in which we find all (small) 
letters, the digits and some other tokens. The class of character values is at 
least this minimal set; specific implementations, however, may extend it. 

A character-denotation consists of the character denoted between two 
quote-symbols: 

" " "b" " " " " " " " " a c x y z 
"0" "1" "2" "3" "4" "5" "6" "1' "8" "9" 

" " " " " " "(" ")" "+" " " 10 -

Specific character-denotations are: 

" " or 
";,,, " 

" " .:. representing the space-symbol 
representing the quote-symbol itself 

(see 0.4.3) 
(see 5.1.1.1) 

0.2.5. bool, int, real and char 

(01) loc bool p , q ; bool p,q; 
loc int i,j,k,m,n; int i,j,k,m,n; 
loc real a,b,x,y; 

or 
real a,b,x,y; 

loc char c; char c; 

In these declarations boolean variables are "ascribed" to the identifiers p 
and q; correspondingly integral variables are ascribed to i, j , k, m and n, 
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real variables to a, b, x and y and a character variable to c. That is to say 
these identifiers are made to yield the names p , q , I, j , k , fu , fi , a , 1) , x , 
Y , and c referring to boolean- , integral- , real- or character-values 
respectively. loc bool , loc int , loc real and loc char are "local generators" 
and signify that the lifetime of the values generated is restricted. However, 
since loc is the default situation, this symbol may be omitted here thus 
preserving some similarity to ALGOL60. 

In this Informal Introduction, identifiers will occasionally occur out of 
context from their declarations. Unless otherwise specified, these identifiers 
will be assumed to have been declared as listed in Dl (or D2, D3, - -
hereafter). The complete set is listed in Appendix 2. 
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For boolean values operators are defined: V or or, 1\ or and, ""1 or not, 
yielding boolean values. Boolean values can be compared =, :j: or /=; the result 
of a comparison is also a boolean value. The monadic-operator abs, however, 
when applied to a boolean value, yields an int : abs p is 1 if P is true, abs pis 
a if p is false. This can be expressed concisely as the conditional-clause 
(pilla). 

Many operators are defined for integral and real values: + , - , x or * , / , -:­
or % or over (implying integral division), mod or -:-x (for the modulo 
operation), t or ** (for raising to the power) , etc. The result is an integral 
value when both operands are integral (except division which always yields a 
real value); in all other cases the result is real. 

Integral and real values can be- compared: < ,,,;;; or <= , = , :j: or /= ,~ or 
>= ,> ; the result is a boolean value. 

The monadic operator abs , when applied to an int or a real ir , yields 
( ir < a r -ir I ir ) . 

The monadic operators round and entier (integral part of) serve to transfer 
a real into an int. The transfer of an int into a real is implicit in the language 
(no operator is needed to control this transfer); you may write: 

x:=i 

but you must write: 

i := round x or i:= en tier x 

Each character value corresponds to an integral value; no two different 
characters correspond to the same int; the actual correspondence is to be 
defined by the implementation. The int corresponding to a char is obtained 
by applying the monadic operator abs ( abs c yields the integral value 
corresponding to c ), and the converse operation by repro 

---- --------------------
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Character values can be compared as if they were integral values and by 
the same operators; in fact their abs values are then compared. 

Character values are the materials from which strings are composed (see 
Section 0.4.3). 

0.3. Loops 

Suppose we want to input many pairs of numbers x and y and we want to 
do the algorithm El that many times. Let the input start with an integral 
number greater than zero, which fixes the number of pairs following. 
Then-in a very old-fashioned way-the program might be: 

(E4) begin loc int n ," read (n) ," loc int count := n ," 
loe real x , y ," 

again: read ( (x,y) ) ," 

end 

print ((x+y)/2 - sqrt (x xy)); 
count := count -1 ," 
ifcount > 0 then goto again fi 

1. The reason we declared n was to hold the number of pairs; it is quite 
natural to read this n immediately after its declaration. In this language it is 
allowable to put statements between declarations. The counting will be done 
via the identifier count; the counter is initialized at its very declaration. 
3. The identifier again defines a 'label' sign posting a point in the program 
where we want to go to from elsewhere. Labels are only allowed beyond the 
declarations (i.e. it is not allowed to write a label in a serial-clause where a 
declaration follows). 

5. The counter is decreased by 1. Operations of this kind occur so often in 
the practice of programming that we have got special operators for them; 

. they combine subtraction (or addition, multiplication, division etc.) with 
assignation. We thus may write: 

count minusab 1 or count -:= 1 

6. We may combine the phrases 5 and 6 into one, also omitting the 
redundant go-to-symbol goto: 

if ( count -:= 1 ) > 0 then again fi 

which can be abbreviated into: 

((count -:= 1 ) > 0 I again) 
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The use of labels and gotos leads in many cases to badly structured 
programs and should be avoided wherever it is possible. In this language we 
have alternative constructs to structure the program in such cases, avoiding 
the goto entirely. 

In particular, a cycle like E4 can be put in a more concise form in which 
the counting will be done behind the screens. The result is a much safer and 
also more transparent program: 

(E4*) begin loc int n ; read (n) ; 
to n 

end 

do loc real x, y ; read ( (x, y) ) ; 
print ( (x+y)!2-sqrt(x xy)) 

od 
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1. Where the countingis done behind the screens we do not have to declare a 
count. 
2. The serial-clause following, between do and od, will be repeated n times. 
3,4,5. Between do and od we find a serial-clause, establishing a reach in 
which, consequently, variables oflocal scope can be generated (here ascribed 
to x and y). This construct to n do - - - - od is a particular case of a much 
more general construction (see 0.6). 

0.4. The creation of new modes.' multiples 

One of the interesting features of this language is the possibility of deriving 
new modes from the primitive ones, as many as you need. The method 
whereby new modes are created is such that they can, in their turn, be used 
to create further modes in a perfectly systematic manner. Some of these 
derived modes, such as string and compl (complex) are standard in the 
language (i.e. being declared in the standard-prelude, they are permanently 
built in). 

In this section, we shall briefly outline the construction of multiple values 
(multiples). Other constructions (procedures, structures, references, unions 
and further derived modes) will be outlined in following sections. You will 
fmd a more systematic treatment in Chapters 1 and 2. 

0.4.1. Multiples 

Suppose you want to use a row of n reals named u , then you may declare, 
for instance: 
(E5) loc [1 : n] real u ; The lower -bound of the row is 1 , 

the upper-bound of the row is the value of n. 



12 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.0.4.1 

Now you haveat your disposal n real values on the stack: 

u [1] , u [2], - - - , u [n] 

In fact you have got more than this, yClj have got n "subnames": 

u[1], u[2], - - -, u[n] 

to which you can assign new values as in the case of simple variables: 

u [i] := u [i] + x 
u[i] :=u[n-i]/u[j] etc. 

If you want to use a square matrix of n x n reals (a row-row-of-real) named 
a , then you may declare, for instance: 

(E6) loc [1: n,1: n] real a; 

Now you have at your disposal n x n real values on the stack: 

a[1,1]' a[1,2], - - -, a[1,n], a [2,1], a [2,2], - - -, - - - - - -, a[n,n] 

In fact you have got n xn subnames to which you can assign new real 
values: 

(D2) 

a[i,j] := a [i,k] x a [k,j] 
a[i,j] := aU,i] / (i+j) etc. 

[1:n] realx1 ,y1; 
[1:m,1:n] realx2; 
[1: n,1: n] realy2 ; 

[1: n] int il ; 
[1: m,1: n] inti2 ; 

Observe how the optional 
loc has been omitted as 
we shall often do in the 
sequel 

By E4 and ES we declared the identifiers u and a to yield the names u and 
a respectively (see also 0.1). The name u refers' to a [ ] real, a row-of-real, the 
name a refers to a [ , ] real, a row-row-of-real. That is to say that u yields a 
[ ] real, variable and a yields a [ , ] real variable in much the same way as, for 
instance, x yields a real variable and p a bool variable. 
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[l:n] real [ 1 : n, 1 : n] real a ; 

il 

Now the question arises as to whether we may assign, for instance: 

u :=xl 
a := y2 

the answer is yes, and it does exactly what you should expect it to do: 

u[l] :=xl[l],u[2] :=xl[2]'---,u[n] :=xl[n] 

and: 
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a[J,I] :=y2[1,I],a[J,2] :=y2[J,2],---,--- ---,a[n,n] :=y2[n,n] 

provided, of course, that the bounds to the left and to the right of the 
becomes-symbol are equal. Also an input-statement like: 

read (y2) 

does what you would expect: 

read ((y2[1,I],y2[1,2], - - - ,y2[I,nJ, - - -, - - - - - - ,y2[n,n] )) 
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Where u is a name referring to the whole of the multiple value: 

u[l], u[2], - - -, u[n] 

Ch.OA.1 

the 'slice' u [2:5] yields a subname referring to a part (a slice) of that multiple 
value, namely: 

( u [2], u [3], u [4], u [5]) 

In much the same way a [i, ] yields a sub name referring to the multiple 
value: 

(a[i,1],a[i,2]' - - -, a[i,n]) 

Therefore, even assignations like: 
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u[2:5] :=x1[n-3:n]; 
a [i, ] := u ; 
ali, ] := y2[ ,j) 

etc. do exactly what they suggest. For further discussion see 1.5.1 and 
5.5.l.3. 

Moreover, operators acting upon multiple values and slices may also be 
defined (see, for example, 8.5), so that we can then write clauses like: 

u :=x1 + y1 ; 
a := y2 x a 

0.4.2. New mode indications 

IS 

Once you have decided to create a new mode, you may wanUo give this 
new class of values a distinguishing mark (we do not say "name", because 
that is a technical term in this language with a very specific meaning, see 0.1 
and 0.8). You may define a new 'mode-indication' by declaring: 

(E7) mode vector = [1: n] real; 
mode matrix = [1: n,1 : n] real; 

And now, in the context of these mode-declarations: 

(E5*) loc vector u; is equivalent to E5 : loc [1: n] real u ,. 

(E6*) loc matrix a,. is equivalent to E6 : loc [1: n,1: n] real a ,. 

0.4.3. Multiples with flexible bounds, strings 

In E5 and E6 the bounds of the variables (the lower-bounds 1, and the 
upper -bounds n) are fixed at the elaboration of the declaration and cannot be 
changed afterwards, but on some occasions you might wish to do just that, 
although this may be expensive in some implementations (the storage 
allocation at run time is more complicated than in the case of fixed bounds). 

Variables whose bounds may be changed after the declaration of the 
multiple are termed "flexible" (flex): 

(E8) loc flex [m : n] real fu ; the bounds of fu are initially 
[m : n] but may be changed later. 

Flexible bounds are particularly useful in the case of strings, which are 
built into the standard-declarations of the language (which is why one may 
expect a reasonably efficient implementation of, in particular, this flexible 
bound application). A string is a row-df-character with flexible bounds: 

(D3) mode string = flex [1: 0] char,. 
loc string s ,. 
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The variable-declaration loc string s (which is equivalent to loc flex [1 :0] 
char s) declares s to yield a flexible name s referring to a row-of-character, 
which is empty to begin with. As soon as you assign to s, the bounds get the 
new values required: 

(E9) s := "the upper-bound becomes 26"; 
s := "the flexible upper-bound now becomes 39" ; 
s := " " the string is empty again 

. By the way, you have just met three string-denotations, the lower-bound 
of a string-denotation is always 1. Observe that the denotation for the empty 
string is ,/II ,and for the space is " " (or may also be " .:.. IT). 

For string, being a built-in mode, several operators are defined, such as < , 
.;;; , = , :j: ,;> ,> (to compare them) and + and x(to concatenate them). 

If the value of s is 11 this is the begin", then the outcome of the assignation: 

(ElO) s:= s + " and this is the end." 

or (which is the same): 

(EIO*) s +:= " and this is the end. " 

may speak for itself. 

0.5. The value of a unit 

So far we have met identifiers and denotations as the objects in this 
language that yield a value of some mode. They are, however, only specific 
cases of a 'unit'. In this section we shall show you over some units and pay 
some attention to the values they may yield. The complete and systematic 
treatment will be found in Chapter 5. 

0.5.1. The value of a formula 

A formula is a unit. For example: 

x+y, (x+y)/2, (x+y)/2-sqrt(xxy) 

A formula defines a (more or less compound) computation, which usually 
yields (i.e. delivers on the stack) a value of some mode. We then say: "the 
formula yields (upon elaboration) the value". 

In the example above, we met: 

identifiers x and y, units yielding variables, 
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a denotation 2, a unit yielding a constant; , 
and another kind of unit sqrt (x x y) , which is the 'call' of a procedure 

returning a value: the square root of the value of the formula x x y (for 
procedure calls see Section 0:7). 

Different operators may have different priorities. The implied bracketing 
in the example above is: 

( x + y ) / 2 - sqrt ( x x y ) 

left-operand right-operand 
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The 'left-operand' and the 'right-operand' of the subtraction are elaborated 
collatera~ly. That is to say that there is no prescribed order for getting the 
value of the left-operand and getting the value of the right-operand (see also, 
0.1). The same applies again to the elaboration of the left-and the 
right-operand in the formula (x + y) / 2 . 

Hence, an implementor is perfectly entitled to optimize the elaboration of 
formulae. For example: 

y1 [round sqrt(a x b)] + ii [round sqrt(a x b)] x xl [round sqrt(a x b)] 

The implementor may elaborate round sqrt (a x b) only once (for reasons 
explained in 3.7.1), and elaborate the multiplication i1 [k] x xl [k] before 
accessing y 1 [k] ; that is to say that there is no prescribed order of elaboration 
"from left to right". 

0.5.2. The value of a conditional clause 

A conditional-clause is a unit: 

if p then 3141592710-7 else 27182818 10-7 fi 

yields upon elaboration the real value of its then-part or of its else-part, 
depending upon the value of its condition. You may assign it to a real 
variable, or use it in a formula: 

x:= 1 / (p 13141592710 -712718281810-7) 

If a conditional~clause yields a variable then you are perfectly entitled to 
use it in a destination (to the left of a becomes-symbol): 

if p then x elsey fi := 3.1415927 

or: 
(p 1 x Iy):= 3.1415927 
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0.5.3. The value of a serial clause 

A serial-clause (see 0.1) may also yield a value, although it is not (yet) a 
unit. It may be used, however; to make a unit. For example, a closed-clause, 
which is a unit (see 0.5.4), contains a serial-clause, and a conditional-clause 
(another unit) may contain several of them. 

The value of a serial-clause, then, is the value of its final (completing) unit. 
The serial-clause: 

read (x) .. x :j: 0 

(see Ell below) yields the value of its final unit x :j: 0, which is a bool value. 
Now consider the program: .. 

(Ell) begin 
int num := 0 ,pos := 0, neg:= 0, realabsum := 0, x .. 
while read (x) .. x :j: 0 

do absum plusab if num +:= 1 ," x> 0 

od ," 

thenpos +:= 1 ," +x 
else neg +:= 1 .. -x 

fi 

print ( (num, pos, neg, absum ) ) 
end 

Here we meet another form of a loop-clause (see 0.3 E4). In a loop of the 
form: 

while C do S od 

first of all the condition Cwill be elaborated, yielding a bool value; as long as 
this condition yields true, the serial-clause S between do and od will be 
elaborated, followed by a new elaboration of C. That is to say: depending on 
the boollastly yielded by C. the elaboration of while C do S od results in 

C or C," S .. C or C," S .. C," S ," C or C," S ," C," S ; c .. S .. C etc. 

3. Now, in Ell above, the construct after while is the serial-clause 

read (x),"x:j: 0 

yielding the bool value yielded by its last unit x :j: O. Hence, if the first 
number read is 0, the clause between do and od will never be elaborated; if, 
on the contrary, this number is unequal to 0, then the formula 
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4-7. absum plusab if num +:= 1 ; x> a 

will be elaborated. 

then pas +:= 1 ; +x 
else neg +:= 1 ; -x 

fi 
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The right operand of plusab is a conditional-clause, the condition of which 
is a serial-clause increasing the counter num by 1 and yielding the bool value 
x > O. Depending on this condition the then-part pas +:= 1 ; +x or the 
else-part neg +:= 1 ; -x will be elaborated, yielding either +x or -x after 
having increased either pas or neg by 1. That is to say; the serial-clause 
between do and od (here a formula) results in adding abs x to absum. 
3. After that the serial-clause after while is revisited, repeating the story 
(looping the clause) as long as the number read is found to be unequal to O. 

It may happen that a serial-clause does not yield a value, because its fmal 
unit does not leave a value on the stack (the root of this will be shown in 
0.7). We then say: "this serial-clause yields void". For example: 

real x ,y, z; read ((x,y)); print ( z := (x + y)/2 -sqrt (x xy)) 

yields void, because the output statement print (although it delivers humanly 
recognizable graphics on some printing device) does not leave a value on the 
stack. If, however, we want this serial-clause to yield, for example, the name 
of the value printed (from which that value may then be obtained), then we 
simply make z its final unit: 

real x , y , z ; read ((x,y) ) ; print ( z := (x + y}f 2 - sqrt (x x y) ) ; z 

0.5.4. The value of a closed clause 

A closed-clause (see 0.1) is a unit and as such it may be used in formulae 
and in assignations. The value of a closed-clause is that of its constituent 
serial-clause: . 

x2[i,il:= (realx, y, z; read ((x,y)); 
. print ( z := (x + y)/2 -sqrt(x xy)); 

z) 
\ 

The value of a closed-clause may also be a name, and then you are entitled 
to use it in a destination (see also 0.5.2); provided, of course, that the name 
yielded does not happen to be local to the clause: 

( real x, y , z ; read ( (x,y) ) ; 
print ( z := (x + y)/2 - sqrt (x xy) ) ; 
if z > 1 then m else n fi) +:= 1 

-----_ .. _------------- ------
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\Juder certain circumstances it may be annoying to have to arrange a 
cl6sJt-clause in such a way as to deliver the value required, because there may 
be ~6re than one candidate for the final unit. In such cases a 'completer' may 
help. A completer is the symbol exit; the unit preceding a completer is (by 
definition) a completing (final) unit of the closed-clause. You may take a 
completer as a suppositious close-symbol. 

For example, suppose you want a closed-clause to read a block of n pairs 
of real numbers and to deliver false if there is no pair in the block in which 
the difference between the arithmetic and geometric mean is greater than 1, 
but to deliver true and to print the first such pair if this is the case. This may 
be programmed as follows: 

(El2) p:=(realx,y,z," 
to n do read ((x,y))," Z := (x + y)/2-sqrt (x xy)," 

if Z > 1 then finish fi 
od ," 

false exit 
finish: print ( (x,y) ) ," 
true) 

(For another example in which a completer is used, see E28* in 0.7.3). 

0.5.5. The value of a constant 

To conclude this bird's-eye view, we consider an extremely simple kind of 
unit, the constant. You may declare: 

(El3) real pi = 3.1415927 

The thus declared identifier pi yields a real value (and not a real variable), in 
much the same way as the denotation 3.1415927 yields that value. You 
cannot assign to pi (it not being a variable): pi := 2. 7182818 would be as 
nonsensical as is 3.1415927 := 2. 7182818. Beware of the slight notational 
distinction between E12 and: 

(E13*) realpivar:= 3.1415927 

This distinction would have been clearer if we had written: 

(E13**) loe realpivar:= 3.1415927 

To pivar you may assign any other real value (pivar being a real variable). For 
the notational matter, see 0.8. 
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Declarations of constants enable the programmer to enforce efficient 
compilation, for example in accessing the elements of multiple values. 
Compare El4 and E14* below: 

(EI4) sw 
swx 
swx2 
swx3 

+:= w[i] ; 

+:= w[i] xx[i] .. 
+:= w[i] xx[i] xx[i] ; 
+:= w[i] xx[i] xx[i] xx[i] ) 

In El4 an element such as w [i] and x [i] has to be pulled many times out 
of a multiple value, which may be rather time consuming. 
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(EI4*) (real wi= w[i], xi=x[i] ; real wixi= wix xi .. real wixi2 = wixix xi .. 
sw· 
swx 
swx2 
swx3 

+:= wi; 
+:= wixi; 
+:= wixi2; 
+:= wixi2 x xi ) (see also E15) 

In EI4*, an element is never taken out of a multiple more than once. Of 
course, you could have achieved most of this efficiency equallywell by 
declaring the proper local variables: real wi := w [i] ,xi := x [i]; etc, but then 
you would still have to go via the names when getting the values referred to 
(which may take longer iIi some implementations). In the form of a constant, 
you have the desired values most readily at hand. 

The importance of the declaration of constants, however, is to be found at 
another level; in Chapter· 1 , we shall see that in all identity-declarations a 
constant is declared (see also 0.7 and 0.8), and this mechanism is nothing 
more nor less than the life-line of the formal - actual correspondence. 

0.6. A more involved program 

Before embarking upon routines and other new modes that actually make 
the new language, it is worthwhile to dwell on the subject of primitive 
declarations and multiple values for just one section more. Many of the (until 
now only) newly dressed features of the language will be found in full swing 
in the more involved example E15 below. Although it is the program that 
matters here, it may acquire a not too artificial setting in the following 
context: 

Suppose the input starts with an integral number n, which fixes the 
number of pairs of measurements following. The first real f of each pair is a 
factor, accounting for environmental influences on the target measurement, 
which is the second real x of the pair. There may be other (not measured) 
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influences on x, which is why we are not particularly interested in the 
correlation of the two. We therefore confine ourselves to the computation of 
the mean, dispersion and momental skewness of the x's, weighted by the 
(more or less normal) distribution of the fs. Preceding the If,x )-couples, but 
following n, we input another pair of reals eps and ups; all x's below eps or 
above ups are to be discarded as being certainly out of range (as a result of 
punching errors, for instance). 

We briefly survey the program E15 (the numbers in the margin refer, as 
usual, to the linenumbers in the program text): 

1- - - . In any place in a program text (except within identifiers and 
denotations) comments may be inserted. A comment begins and ends with 
the comment-symbol comment. Alternatively co, ~ or # can be used in 
matched pairs: 

~ this was the beginning of a comment and this is the end:¢ 

3,9,24-25 for ito n do (as well as for ito n while C do etc.)are specific cases 
of the general construction of a loop-clause: 

for i from start by step to finish while. condition do doclause od 

The integral counter i is impliCitly local to the construction (it has nothing 
to do with a possibly declared other i). If the counter i does not occur in the 
do clause or in the condition, then you may omit for i. If start is 1, you may 
omit from start: If step is 1, you may omit by step. If you do not want to 
fmish at a certain value of i, you may omit to finish (see also Ell *). If it is 
true, you may omit while condition. 

11-13 The construction : 

if Cl then Cl true 
elif C2 then C2true 
elif C3 then C3true 

else C3false 
fi 

or, in the abbreviated notation: 

( Cli Cltrue 
I: C2 I C2trile 
I: C31 C3true 

I C3false 
) 

is shorthand for the nested conditional-clauses: . 

if Cl then Cl true 

fi 

else if C2 then C2true 

fi 

else if C3 then C3true 
else C3false 

fi 
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38-46. The statement print is a very accommodating output carrier_It 
accepts almost everything you may invent to output, 

be it a lay-out procedure like: 
or a string denotation like: 
or a variable like: 
or a unit like: 
or a row-display of them all. 

new line 
"number of measurements: " 
n , below, above 
sqrt (varf) 
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1-46. In the example E1S we are very strict about the use of variables and 
constants: we never use a variable when a constant suffices (Le. when we do 
not assign to it). Of course, you could declare all identifiers to yield variables; 
in some implementations, however, a constant might be slightly more 
efficient. Pay also some attention to the use of and-also-symbols (collateral 
elaboration of declaration and row-displays) and go-on-symbols (serial elabo­
ration). 

(E1S) begin 
1) int n ; read (n) ; 4' number of measurements 4' 
2) 
3) 
4) 
5) 
6) 
7) 
8) 
9) 

10) 
11) 
12) 
13) 
14) 
15) 
16) 
17) 
18) 
19) 
20) 
21) 
22) 
23) 

real eps,ups; read((eps,ups)); 4'eps';:;;;x[i]';:;;;ups4' 
[J: n] real f, x; for i to n 

do read ( (4'factor4' f[i] , 4'measurementr: x [i]) ) od ; 
int below := 0, 4' number of measurements rejected: too small 4' 

above := 0, 4' number ofmeasurements rejected: too large 4' 
real sf := 0, 4' sum factors accepted 4' 

s/2 := 0; 4' sum squared factors accepted 4' 
for i to n 
do realxi=x[i]; 

od; 
int 
real 

real 

sf +:= if xi < eps 
elif xi';:;;; ups 

fi; 
s/2 +:= f[i] t 2 

then below +:= 1 ; f [i] := ° 
then f[i] 
else above +:= 1 .. f[i] := ° 

in = n ~ below - above; 
af = sflm , 4' mean factor 4' 
varf = s/2lm - af x af; 4' variance of the factors 4' 
sw := 0, 4' total weight 4' 
swx := 0, 4'sum weighted measurements 4' 
swx2 := 0, 4' sum squared weighted measurements 4' 
swx3 := 0; If sum cubed weighted measurements 4' 

---------------
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24) for i to n 
25) while real fi = f[i] ; fi :1= 0 
26) do realxi=x[i],wi=exp(-((fi--af)t2)j(2xvarf)); 
27) real wixi , wixi2 ; 
28) sw +:= wi; 
29) swx +:= (wixi := wi x xi) ; 
30) swx2+:= (wixi2 := wixi x xi) ; 
31) swx3+:=wixi2xxi 
32) od; . 
33) ¢ first , second , third moment about 0 4' 
34) real ax = swx/w , ax2 = swx2/w , ax3 = swx3/w ; 
35) real varx = ax2-axt 2; 
36) real sdx = sqrt (varx) ; 
37) reill skx = (ax3 - 3 x ax x ax2 + 2 x ax t 3)/(2 x vane x sdx); 
38) print ( ( newline, 
39) "number of measurements: " , n, "below: " , below, "above: " , above, 
40) newline, . 

. 41) newline, . 
42) "mean factor: " , af, "dispersion: " , sqrt (varf), 
43) newline, 
44) newline, 
45) "normal mean:'/ , ax , "dispersion: " , sdx , "skewness: " , skx 
46) )) 

end 

0.7. Routines and procedures 

A concept of fundamental impo.rtance in programming is the "routine", a 
unit that can be activated from different. places in the program, under 
different circumstances and in different incarnations when elaborated 
recursively. Moreover, routines may have a provision for formal-paraJ;neters, 
to which the actual-parameters are then supplied· when the routine is 
activated. 

Routines, and also their names, may be ascribed to identifiers; we then 
speak about 'procedures'. In this language, a routine may also be ascribed to 
an operator. Proceduresandoperatorsare to be distinguished in that they are 
activated differently. Procedures are activated by "calling" them, and 
operators by applying them in formulae.In this section we sha11consider 
procedures; for operators see 0.10. . 
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0.7.1. Procedures without parameters 

With the aid of the symbol proc we can derive new modes from already 
defined ones (as we did with the aid of the symbols [and] in 0.4). We thus 
obtain one of many possible proc modes, the simplest of which is the proc 
void (without parameters, not returning any value). 
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Suppose we want to turn the algorithm EI * into a procedure. This 
algorithm is defined by a unit (a closed~clause); we declare it as a proc void in 
the following way: 

(EI6) procp = void: (realx. y, z; read ((x, y)); 
print ( z := (x + y) / 2 -sqrt (x x y) ) 

); 

The right hand side of this identity-declaration is a routine-text. It yields a 
corresponding routine - a value of mode proc void - which is now ascribed 
to the identifier p. The unit to the right of void: is not, of course, elaborated 
at this stage. 

The procedure p does something for you: it reads two numbers, does some 
computation with them and finally prints the result. However, it does not , 
and it cannot, return any value; p is declared to be a procedure returning 
void. 

For those who are accustomed to the "procedure body" (a well known 
concept in some other programming languages), the alternative writing: 

(EI6*) proc p = void: begin real x , y , z ; 
read ((x, y) ) ; 
print ( z := (x + y) / 2-sqrt(x xy)) 

end; 

may be more familiar. 
Within the context of the declaration E16, we can call this procedure. 

Consider: 

(EI7) begin int n ; read (n) ; to n do p od end 

Between do and od we find p. By virtue of its declaration, p is a unit of 
the mode proc void. The elaboration of a unit of the mode proc void is (in 
this syntactic position) the elaboration of its unit. Therefore, the piece of 
program above is, at least in its effect, equivalent to E4 (see 0.3). 

We often want a procedu;e to return a value. For example, p could do just 
a little more an.d return the value printed. Inside the closed-clause this value is 
referred to by z. We already know how to get a closed-clause to yield a 

1.1.A.-2 
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specific value (O.S.4). Now, by prefacing it with real: , we arrive at the 
declaration of a proc real: 

(EI8) procpz = real: (realx, y, z; read ((x, y)); 
print ( z := (x + y) /2 -sqrt (x x y) ) ; 
z ); 

Ch.O.7.2 

The mode proc real is derived from real as, for instance, was [1:n] real. 
Within the context of El9, it is not difficult to understand the effect of 

the following piece of program: 

(E19) begin int n ; read (n) ; 

end 

int less := 0, morequal := 0 ; 
to n do ( print ( newline) ; pz < 1 I less I morequal) +:= 1 od; 
pn'nt ( ( newline, newline, less, morequal) ) 

The pz in the formula pz < 1 is a unit of the mode proc real. The 
elaboration of a proc real unit is (in this syntactic position) the elaboration of 
the routine it yields; that routine returns a real value, and consequently pz 
yields that real value. 

0.7.2. Procedures with parameters 

Even more important than procedures without, are procedures with 
formal-parameters. The actual-parameters are.then supplied when the 
procedure is called, as we have already done on several occasions when calling 
the standard procedures read, print and sqrt . 

We now declare a procedure d with two real parameters returning a real 
value, a proc ( real, real) real: 

(E20) proc d = (real a, b) real: (a + b)/2-sqrt (a x b) ; 

I 1 II 2 I I 
l_-_-_-_-_-_-_-_-_-_-_-_-_-_~ _________________ _ 

1. These are the formal-parameters a and b which are both specified to be of 
mode real. The actual-parameters have to match this mode. There are, 
however, certain facilities in this respect. If, for instance, a ref real is supplied, 
then its real value will be taken; if an int is supplied, then it will be 
"widened" into a real. 
2. The prefix real:. requires that the routine is to return a real value, when 
called. 
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3. The whole sequence of symbols to the right of the = is a 'routine-text'. It 
yields a routine, which requires two real parameters. The elaboration of a call 
in which actual-parameters are then supplied to match these formal­
parameters, is the subject matter of 1.2.3 and 4.2.2.2. It will suffice, here, to 
state that a and b, as formally declared in our example E20, will be real 
constants in the routine (when, for instance, x andy are supplied as 
actual-parameters, then the identity-declarations real a = x , b = y ; will be 
elaborated). That is to say, the actual-parameters are elaborated once, to 
supply their real values. In other programming languages this phenomenon 
may be known as "call by value" (see also 0.8.2 and 0.8.3). 

Within the context of the declaration E20, the algorithm E 1, for example, 
could be programmed in the following way: 

(E21) begin real x , y , Z ; read ( (x, y) ); 
print(z :=d(x,y)) 

end 

The assignation El2 (see 0.5.4) could look like: 

(EI2*) p:=(realx,y,z; 

) 

to n do read ( (x, y) ) ; 
if d(x, y) > 1 then finish fi 

od; 
false exit 
finish: print ( (x, y) ) ; 
true 

An example of a procedure with a parameter but not returning a value is: 

(E22) proc skip = (int n) void: 
(realx," to n do read (x) od)," 

which skips n numbers on the input tape. 

0.7.:? Examples of procedure declarations 

We have four kinds of procedures: 

1) without parameters, not returning any value; 
2) without parameters, returning a value; 
3) with parameters, not returning any value; 
4) with parameters, returning a value. 
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Examples: 

proc skiptozero = void: (loc real x :=; 1 ; 
while x =1= 0 do read (x) od) 

4' which was a proc void 4' ; 
proc nexttozero = real: (skiptozero; 

loc real x; read (x) ; x) 
4' which was a proc real ¢ ; 

procskipto =(reala) void: (locrealx:=a-1 .. 
while x =1= a do read (x) od) 

¢ which was a proc ( real) void ¢ ; 
proc nextto = (real a) real: (skipto (a) .. 

loc real x .. read (x) ; x) 
¢ which was a proc(real) real ¢ .. 

In the standard prelude of the language, we find declarations for the proc 
( real) reals sqrt , exp, In (the natural logarithm) , cos, arccos, sin, arcsin, 
tan, arctan. Moreover there is a proc real random, which returns the next 
pseudo-random real value from a uniformly distributed sequence on the 
interval [0,1) (Le. 0 ~ random < 1). Finally we find in the standard prelude 
an1dentity-declaration real pi =ca real value close to 'IT c. (See 1.3.2 for the 
significance of the special comment-symbol c). 

To these we subjoin: 

(D4) proc ncos = (int i) real: cos ( 2 x pi x i/n ) ; ¢ a proc ( int) real if 
proc nsin = (int i) real: sin ( 2 x pi x i/n ) ; ¢ a proc ( int) real ¢ 
real e = c a real value close to the base of natural logarithms, 

i.e. 2.718281828459045 c .. 

Another example of a proc(int)real declaration is: 

(E23) procfac = (int n) real: 
if n > nmaxfac 

then faclarge (n) 
else intf:= 1 .. 

for i from 2 to n dofx:= i od; f 
fi; . 

where nmaxfac is an implementation dependent integral constant which is' 
related to maxint in the following way: 

(E23*) int nmaxfac = (int n ,f:= 1 ; 
for i whilef~ maxint+ i d9 n := i .. fx := nod .. n); 

and faclarge is another proc(int)real: 
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(E23**) procfaclarge = (int n) real: 
c depending on nmaxfac : 

stirlings formula with correction factor, 
sqrt (2 x pi x n ) x ( n/e ) t n x carr (nj 
or some series expansion for l/gamma (n) ; 
see "Handbook of Mathematical Functions" 
edited by Milton Abramowitz and I. E. Stegun 
Sections 6.1.37/38 and 6.1.34 c; 

The proc(intjreal fac , as declared in E23, attempts to return the exact 
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real equivalent of n! as long as this value remains ~ maxint (the critical value of n 
is yielded by the constant nmaxfac ); otherwise, a proc(int)realfaclalge is 
called to give a reasonable approximation. 

Formal-parameters may be of any mode and procedures may return a 
value of any mode. The time has not yet collie for the more arresting 
examples, which is why we confine ourselves to two simple ones. Both of 
them will put in another appearance in 0.8.2, because their efficiency can be 
improved. The starred example numbers refer to the unstarred numbers in 
Section 0.8.2. 
(E27*) proc maxindex = ([ ] real a) int: 

(intj:= lwb a 
for i fromj + 1 to upb a 
do if a[i] > a[j] thenj := i fi od; j j; 

In E27* we see the declaration ofa procedure with a 'row of real' 
parameter, returning an int, a proc( [ ] real)int ; maxindex returns the index 
of the maximal element in a given row (if there are more "maximal 
elements", then the lowest of their indices is returned). 

The monadic-operators upb and lwb return the values of the upper-bound 
and lower-bound respectively; being declared in the standard-prelude of the 
language, they are permanently built in and are applicable to all kinds of 
multiples. If the multiple has several subscripts, they are dyadic-operators (so 
that, for instance, 2 upb x2 returns the second upper-bound of the row-row­
of-real x2 ). 

The proc( char,stringjbool match, declared below , returns true if the 
character ascribed to the formal-parameter c occurs in the given string; if not, 
then the value returned by match will be false. In this procedure we make use 
of a completer (see 0.5 A): 
(E28*) proc match = ( char c, string s) bool: 

( for i from lwb s to upb s 
do if c = s [i] then yes fi od ; no: faIse exit 

yes: true j; 

-------------------_._----_._---_. 
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0.8. The creation of new modes, names and values referred to 

0.8.1. Variable declarations revisited 

It is time to reconsider the variable-declaration: 

(E24) loc real x ; 

because it is not so innocent as it looks. 

Ch.0.8 

You might already have suspected this, knowing what its elaboration 
achieves (see 0.1): 

a location for a real value is reserved in the memory 
of our computer (on the stack); 
this real value is referred to by a name x (Le. its address); 
this name x is now ascribed to the identifier x. 

In the program text, the identifier x thus represents a real variable, which 
is a real value associated with the name referring to it. What is "variable", of 
course, is not the name (the location, the address) but the value referred to. 
The name cannot be changed by the program, it has been ascribed to x and 
this relation is an indissoluble alliance. Nevertheless, a "name" is a value as 
wen, and consequently it must have a mode. The mode, then, of the name x 
is ref real ('reference to rea1'). 

The symbol ref plays a role in declarations as do the symbols [and] and 
proc (and some others which we shall meet soon): they assist in the creation 
of new modes. We now come to the unmasking of E24. Consider the 
identity -declaration: 

(E24*) ref real x = loc real; 

which expresses more precisely what happens during the elaboration of E24: 

1) loc real is a loc generator which yields a ref real 
2) this ref real value is ascribed to the identifier x. 

Thus the effect of E24* is the same as that of E24 and, indeed, every 
variable-declaration has an equivalent identity-declaration hiding behind it. 

The point to remember is the hidden fact that, on declaring a real variable, 
two values are involved: 

1) a real which is variable. 
2) a ref real which is constantly yielded by the identifier, 

Getting ahead of Section 1.2.2.3 we may depict a variable-declaration 
happening as follows: 
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a new real 
value is generated 
on the stack 

ref real 

real 

which is the same as the situation depicted in 0.1. For a more systematic 
treatment see Chapter I. 
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The result of the declarations EI3 and E13* (see 0.5.5) can be depicted as 
follows: 

pi 

real 

To pi no other value can 
be assigned, pi being a 
constant. 

pivor 

ref real 

13.14159271 

real 

To pivor any other value can 
be assigned, pivor being a 
variable. 

Finally, we give some declarations in their three equivalent forms. The first 
indicates most clearly what is actually happening, although in practice one 
will always use one of the others (which are also more similar to declarations 
in other programming languages). 

identity-declaration: 

ref bool 
ref int 

p = loc bool; 
n = loc int; 

ref real x = loc real, 
y = loc real; 

ref char c = loc char; 
ref [ ] real xl = loc [1: n] real; 

variable-declaration : 

loc bool p; 
loc int n ; 
loc real x ,y; 

loc char c; 
loc [1: n] real xl ; 

boot p; 
int n; 
realx,y; 

char c; 
[1: nJ real xl ; 

------------------.-~--~----~~--~.-. -
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0.8.2. Procedures, values and references 

One of the implications of the extremely fruitful concept of a reference 
("name") as a value in this language is that we have been given a quite natural 
way of declaring (amongst many other very useful constructions): 

I variable procedures, 
II formal-parameters which refer to, rather than yield, the values 

which are topical ("actual") when the procedure will be called, 
III procedures returning a name (a reference to a value). 

We discuss briefly these three applications of the concept of a name by 
giving some examples. 

I) 
By declaring: 

(E2S) mode fun = proc ( real) real; 
loc funf; 

the identifier f is declared to be a variable fun (to yield the name referring to 
a routine of the mode proc(real)real). 

Within the context of this declaration, we may assign any fun routine to 
this fun variable. For example: 

f:= In 

Now the call: 

y := f(x) is the call y := In(x) 

while after the assignation: 

f:= (real a) real: a x In(a)-a 

the same call becomes: 

y := x x In(x)-x 

II) 
Even more important is the specification of a formal-parameter to be a . 

name: 

(E26) proc read fun = (ref real a) real: (read(a); a := f(a) ); 

E26 declares the formal-parameter to be a ref real (the name of a real) to 
which, consequently, a real value can be assigned. This happens two times in 
the procedure: first the value of the number read is assigned to a (by the call 
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of the procedure read), and then the f of that value is assigned to a. If we now 
call this procedure, for example: 

y:=readfun(x)--y 

then the formal - actual correspondence results in: 

ref real a = x ; 

i.e. the formal name Ii is made to refer to the same real value as the actual 
name x. The call read fun (x) thus results in assigning to x the f of the value 
read. Which fun is then applied depends (in the context of E2S) on the fun 
assigned to f 

In other programming languages, a'ref parameter may be known as an 
"output parameter". In contradistinction to the more or less domesticated 
term "call by value" in ALGOL 60 (see 0.7.2), this could be termed "call by 
reference". For an equivalent of the ALGOL 60 term "call by name" see 
0.8.3. 

We are now in a position to improve on the examples at the end of 0.7.3. 
There, the value parameters imply that a copy 9f the actual rows is to be 
passed to the routine. Unfortunately, not all implementors have been able to 
avoid actually making this copy. We now show how to avoid the problem 
altogether. 

(E27) proc maxindex = ( ref [ ] real a) int : 
(intj:= Iwba; 

for i fromj + I to upb a 
do if ali] > a[j] thenj := Hi od; 
j); 

Now, in the call maxindex(xl), only the name xl is given to the 
procedure: ref [] real a = xl. The access to the [ ] real referred to by x I thus 
runs via the formal name Ii to that very [ ] real and not (as was the cas~ in 
0.7.3) to a copy of it. 

(E28) proc match = ( char c , ref string s ) bool: 
( for i from Iwb s to upb s 

do if c = s [i] then yes fi ; no : false exit 
yes: true); 

Now, in the call match(" ?", text) , in the context of the declaration string 
text, the character /I?" is copied onto the stack, but the name text is given to 

'the procedure instead of a copy of its value. 

-----------------------------------
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III) 

An example of a procedure returning a name is: 

(05) proc xory = ref real: if random < 0.5 then x else y fi; 

If we now assign: 

xory := 3.1415927 

then it depends on the value returned by random to what destination we 
actually assigned. 

A more substantial example is: 

(E29) proc maxelmnt = (ref [ ] real a) ref real: 
( intj := lwb a ; 

for i fromj + 1 to upb a 
do if a[i] > a[j] thenj := i fi od; 
a [j] ) ; 

Compare E29 with E27. In E29, a [j] is a name referring to a maximal 
element of the actual row, when the procedure is called. If you want to assign 
a new value to the maximal element of, for instance, the row xl, then you 
could do it by a call of maxindex : 

xl [maxindex(x1)] :=y 

but also, and more directly, by a call of maxelmnt : 

maxelmnt (xl) := y 

0.8.3. Procedures as formal parameters 

Compare: 

(E30) 

with: 

(E3l) 

proc choice1 = ( real a) void: ( a < 0;5 I x I y ) +:= a ; 
choice1 (random) ; 

proc choice2 = ( proc real a) void: ( a < 0.5 I x I y ) +:= a ; 
choice2 (random) ; 

In the call choice 1 (random), the identity-declaration real a = random will 
be elaborated. Hence, the proc real random is called only once and its value 
( <0.5 or ):0.5 ) is added to x or to y. 
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In the call choice2 (random), the identity-declaration proc real a = random 
will be elaborated. Hence, the proc real random is ascribed to a inside the 
routine and will be called once in the conditional-clause and again as the right 
operand of the +:= (i.e. random will be called twice in E31). 

The construction E31 is similar to what in ALGOL 60 is known as "call by 
name"; it has, nevertheless, nothing to do with the concept of a name in 
ALGOL 68 (in which it is an application of the principle that any mode may 
occur in a formal-parameter, in particular also a proc real). 

Compare also: 

(E30*) choice1 (x-y + ncos(k)) 

and: 

(E31 *) choice2 (real: x-y + ncos(k)) ¢ see D4 in 0.7.3 ¢ 

In E30*, the formula x - y + ncos(k) will be elaborated once in the 
elaboration of the identity-declaration real a = x - y + ncos(kj. Depending on 
the condition, this value (inside the routine ascribed to a) will be added to x 
or to y, so that the result of the call will be: . 

x +:=a i.e. x +:= ¢ the value of ¢ x - y + ncos(k) 

or 

y +:=a i.e.y +:= ¢ the value of ¢x-y + ncos(k) 

In E31 *, on the contrary, the formula x - y + ncos(k) appears in a 
routine-text (the mode of which is proc real) and it is the routine yielded by 
real: x - y + ncos(k) which is ascribed to the proc real identifier a at the 
elaboration of the procedure-call. Hence, the formula will be elaborated twice 
(once in the conditional-clause and again as the right operand of the +:=). The 
two successive elaborations, however, yield the same value, which is why the 
two calls E30* and E31 * have the same result (though E30* is the more 
efficient one). 

However, compare now: 

(E30**) choice1 (x - y + ncos(k +:= 1) j 

and: 

(E31 **) choice2 ( real: x - y + ncos (k +:= 1 ) ) 

Each elaboration of the formula x - y + ncos(k +:= 1) has a side effect on 
k (k := k + 1) and therefore the two calls will not have the same result; in 
E30** the formula being elaborated once, and in E31 ** twice. 
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Another construction in which we find a procedure as formal-parameter 
(in ALGOL 60 circles known as "Jensen's device") is: 

(E32) proe sigma = (int a , b , proe(int)real fun) real : 
(r~al value:= 0 ; 

for i from a to b do value+:= fun (i) od; 
value) ; 

calls of which may be: 

y := sigma ( I , n, (intj) real: xl [j) ) ; 
y := sigma ( -m, +m , ncos ) 

It is worth your while to find out why we have to give the proe(int)real 
routine-text (int j)real: xlii] as actual-parameter in the first call, and why 
ncos would do in the second call. 

0.8.4. Pointers (variable names) 

Until now, names have always appeared as being constantly yielded by 
identifiers. By: 

loe real x ; 

or: 

refreal x = loe real.; 

we declared x to yield constantly a tef real (the name of a real). Only the real 
value referred to· could be changed and never the name x. 

You may, however, also want to declare identifiers to yield variable names, 
i.e. references to names. Itinay be clear immediately that such an identifier 
will then· yield a reference-to-reference. We thus declare: 

, (D6) ref real xx , yy ; 

or equivalently 

(D6*) ref ref real xx = loe ref real , 
yy = loe ref real ; 

This collateral-declaration generates on the stack two ref reals (two 
locations for names of reals), which simply means that via such values on the 
stack you can refer to other values (reals): 
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I toe ref real I yy 

ref ref real ref ref real 

Consider now: 

(E33) xx :=y 

After this assignation, the value of xx (Le. the ref real referred to by xx) is 
the name Y (Le. the ref real yielded by y): 

xx y 

ref ref real 

ref real ref real 

~D 
real 

Observe that an assignation always takes place at the highest level possible. 
Now the call: 

y := sqrt(xx) 

results in: y := sqrt(y) • while after the assignation: 

(E33*) x-x :=x 

- -_ ....... _-----.---_ ... _--

37 
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the same call results in 

y := sqrt(x) 

In computer oriented programming this is known as "indirect addressing" 
(in a certain location in the memory one finds the address of another value). 
In some other programming languages (in particular in assembly languages) a 
ref ref may be known as a "pointer" (i.e. by D6, xx and yy yield "pointers" 
to real variables, addresses of addresses of real values). 

0.8.5. Identity relators, the cast, coercion 

Where names are values in this language and may be manipulated as all 
other values (see 0.8.4), you may want to ask whether two names of the same 
mode are the same name. Neither the equals-symbol =, nor its negation :\: can 
serve this purpose, because they are operators defined to compare valu,es of 
certain modes only (and these values are mostly not names). To compare 
names, we have the identity-relators :=: (or is) and ::\:: (or :/=: or isnt). For 

, example, after the assignation: 

y:=x 

it is Inost certainly true that 

y=x 

but it is also true that nevertheless: 

(E34) y isntx or y::\::x 

because y and x yield different names (references to different locations on 
the stack). 

(E35) Y isxory or y :=: xory 

however, is true or false depending on the value lastly yielded by random (see 
D5 in 0.8.2) and independently of whether y = x or y :\: x . 

Observe also that after the assignations: 

xx:= y ;yy :=xx 

or, in one phrase: 

yy :=xx:= y 

nevertheless: 

yy ::\:: xx or yy isntxx 
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because yy and xx yield different names (the mode of which is ref ref real); 
reconsider E34 and its motivation. 

One might now be disappointed that after the assignation yy := xx := y, 
nevertheless yy isnt xx. In the nature of things it must be possible to get an 
answer to whether names assigned to different pointers are the same. But 
then the right question must be asked, and this question lies one level of 
reference below the question yy :=: xx. 

We could go down one level in reference by declaring, for instance, the 
proc(ref ref real)ref real 

proc the name assigned to = (ref ref real aa) ref real: aa; 

and then we get undoubtedly the proper answer when we call this procedure 
to the left 'and to the right of the identity-relator: 

the name assigned to (xx) : =: the name assigned to (yy ) 
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The ref real: in front of the reference-to-reference-to-real-unit aa "coerces" 
this unit to yield its reference-to-real value. Fortunately, it is not necessary to 
declare such a monstrosity of a procedure. You may write: 

(E36) ref real (xx) :=: refreal(yy) 

The technical term for ref real (xx) is 'cast'. A cast, in general, coerces its 
body to yield a value of the mode it dictates (if possible). 

The cast may also be used to assign a value to the name assigned to a 
pointer: 

(E37) refreal (xx) := y 

comes, in the context of E33*, to the same as: 

x :=y 

You might ask now why we did not meet the cast at a much earlier stage; 
why, for example, we did not have to write: 

a : = real (b) , which, by the way, is correct ALGOL 68 

The answer is that in all current situations where it is clear from the context 
what you want, your computer will be so kind as to coerce your units to your 
will. As a matter of fact, "coercion" is the technical term for the provision 
that: 

when no ambiguities make trouble, 
your units will be impliCitly coerced to the mode you 
apparently require. 
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The time has not yet come to discuss all the slings and arrows of coercion. 
Here we set a pointer to 1.1.6 and another one to 5.1.0. 

0.9. Structures and other new modes 

Besides the multiple, you. will find in this language another system that 
gives you control of a collection of values, and that is in the form of a 
structured value (or "structure" for short). The individual values in a multiple 
are its "elements", the individual values in a structure are its "fields". The 
elements in a multiple are all of the same mode, [J:n] real, [1 :80] char, 
[1 :5] proc void etc.; the fields of a structure on the contrary may be of 
different modes, although there are very useful (even standard) applications 
where the field modes are the same. 

0.9.1. complex values, vectors etc. 

By declaring: 

(D7) mode compl = struct ( real re , real im ) ; 
4' another built in mode like string 4' 

or 

mode compl = struct ( real re , im ) ; 
. If an obvious contraction 4' 

a new mode compl (complex) is defined consisting of two real values; one of 
them is selected by the field-selector re, the other by im. Although field­
selectors look the same as identifiers, you must not confuse them. 

Now the variable-declarations: 

(D8) compl w , z ; 

ascribe to wand z the names wand z which refer to structures as defined in 
D7 (i.e. wand z are compl variables). 

The fields of wand z (the real and imaginary part of these complex 
variables) may be selected as follows: 

(E38) x := re of z ; y := im of z ; 

The re of and im of select the field in much the same way as, for instance, 
[i] , [i,j] etc. select the element in a multiple. There is, however, an 
important distinction: the selection of a field may be done at compile time, 
whilst the selection of an element in a multiple usually involves computation 
and, consequently, can then only be done at run time. 
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After the declarations D8, the identifiers wand z yield ref compls; the 
situation may be depicted as follows: 

w z 

ref compl ref compl 

compl compl 

real real 

0 0 
real real 

0 0 
The result of the assignation: 

z:= w 

should be obvious. You may, however, also assign: 

(E39) z := ( x, y ) 

which amounts to: 

re of z := x, im of z := y 

The ( x, y ) in this context is a structure-display, the counterpart of a 
row-display. 

The mode compl is built into the standard declarations of the language, 
and operators = , ":j: , + , - , x , I , t , and a monadic operator conj are 
declared for it with the meanings to be expected. Moreover, we have 
(monadic) operators re , im , abs and arg which return a real when applied to 
a compl, and an operator 1 (or i or +x), which may be pronounced as 
plus-i-times, which makes a compl of two real operands: 

z :=x ly or z :=x +xy 

41 
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amounts to: 

z := (X, y ) 

(see also 0.10.4). 
As from int to real, there is automatic widening from real to compi (and 

via real, from int to compI). The assignation: 

z :=x := i:= 1 

results in i = 1 , x = 1.0 , z = ( 1.0 , 0.0 ) 
Other examples of new modes defined by structures with fields of the 

same mode might be: 

(D9) mode vec = struct ( real xcoord , ycoord , zcoord ) ; 
mode rational = struct ( int numerator, denominator) ; 
vec v1 , v2, v3 ; 
rational r 1 , r2 , r3 ; 

These modes, however, are not built into the standard declarations. If you 
want to use them for new kinds of operands, then you have to declare 
operators for them; this can easily be done (see 0.10.7,8.4.1 and 8.4.2). 

0.9.2. Structures with mixed mode fields, chains etc. 

The really interesting feature of struct ured modes is, however, that you 
can collect values of different modes into them. For example: 

(E40) mode book = struct ( string text, int index) ; 
book revised report on the algorithmic language algol 68; 

Now the field: 

text of revised report on the algorithmic language algol 68 

contains the string: "may be difficult for the uninitiated reader" [see 
R 0.1.1 }, and: 

index of revised report on the algorithmic language algol 68 

might be the point where you really got stuck. 
There is, however, another 

book informal introduction to algol 68 revised edition 

which also contains the string denoted, but tn quite another context. May this 
other book help you to proceed at the index of referred to above. 
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An important implication of the concept of mixed mode fields is that you 
can make a field refer to another structure of that same mode. In this way 
chains (lists, queues, etc.) can be defined in a most natural manner. For 
example: 

(E41) mode volume = struct ( string text, int index, 
ref volume companion, next) ; 

volume report, informal introduction, 
revised report, informal introduction revised; 

The assignations: 

(E42) companion of report := informal introduction; 
companion of revised report := informal introduction revised; 

have been made. Moreover we can report that: 

(E43) next of report := revised report; 
next of informal introduction := informal introduction revised; 

There will be no next of revised report, neither a companion of informal 
introduction nor of informal introduction revised nor a next of informal 
introduction revised. To express this, we assign: 

(E44) next of revised report := 
companion of informal introduction := 
companion of informal introduction revised := 
next of informal introduction revised := nil ; 

where nil is the same as "a reference to no value at all". 
We may speak about: 

text of companion of revised report 

which is the text under your very eyes at this moment. 
It is important to comprehend the mode of the companion and next fields 

of, for example, revised report and informal introduction revised. To these 
identifiers volume variables have been ascribed and their mode is, 
consequently, ref volume. Likewise, and this is the important point, 
companion of revised report yields a ref volume variable, and so its mode is 
ref ref volume; hence, companion of revised report is a "pointer" as are 
companion of report, next of report and next of informal introduction. 

From this it follows that in E42 and E43 names have been assigned to 
pointers rather than (non ref) values - you will not find the text of informal 
introduction revised in the revised report, but via the pointer companion of 
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revised report you find a reference to that text. A more complete discussion 
of this rather delicate matter will be found in Sections 1.4.3 and 5.4.2. 

To conclude, we consider an example in which names will be assigned to 
ref fields. 

(E45) mode card = struct ( int value, string colour, picture, 
ref card nex t ) ; 

mode deck= struct ( int number, ref card one) ; 
[0:51] card card; 
deck myhand, yourhand ; 

In E45 we declared 52 cards and two decks, each of which may refer to a 
certain card by its field one of myhand (one of yourhand). Which cards you 
and I then have in our hands may now follow from the fields next of card [i] ; 
number of yourhand may be the number of cards you have in your hand. 

Leaving the value, colour and picture of the cards for what they are, we 
may assign: 

(E46) for i from 0 to 51 do next of card[i] := card [(i + 1) mod 52] od; 
yourhand := ( 52, card [0] ) ; myhand := ( 0 , nil ) 

where mod is the standard operator yielding the value of the left-operand 
modulo the right-operand. We thus arranged our 52 cards in a circular chain 
and you have them all in your hand. 

You may now remove a card, say card [37] ,by: 

next of card [36] := card [38] 

and give it to me: 

one of myhand := card [37] ; 
next of card [37] := card [37] 

which you could have done in one statement: 

¢ we made card [37] 
selfreferring ¢ 

one of my hand := next of card [37] := card [37] 

You may give me another card: 

next of card [28] := card [30] ; 
next of card [37] := card [29] ; 
next of card [29] := card [37] 

We may administer these two events by: 

number of your hand -:= 2; 
number of my hand +:= 2 
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0.10. Routines and operators 

A routine may be ascdbed to an operator (see 0.7). An operator is 
represented by a symbol, such as: 

+-x/7ttVAll«=*~> 

<= >= +x Ix 
+:= -:= x:= j:= etc. 

or by a bold word (representing a symbol), such as: 

over up down or and not i It Ie eq ne ge gt 

Ch.O.lO 

plusab minusab timesab divab upb lwb re im etc. 

You can make as many operators as you need: 

plus minus times div pow 
nor impl pari perp abc m n 0 p 

We have to distinguish between two kinds of operators: 

1) monadic: the routine has one formal-parameter; 

etc. 

a monadic-operator is always applied to the operand to its 
right (prefix notation) , 

2) dyadic: the routine has two formal-parameters; 
a dyadic-operator is always applied to the operand to its 
left (the left-operand) and to its right (the right-operand), 
(infix notation). 

The monadic operators always have a higher priority than all the dyadic 
ones; for the latter nine priority levels are provided_ The priority of a newly 
defined operator is declared by a priority-declaration: 

prio 0 = 3 ; 

An operator will normally be used to return a value. The natural use of 
operators is in formulae. Routines yielded by operators are therefore always 
routines with either one or two formal-parameters, usually returning a value. 
Operation-declarations look like procedure-declarations; the only difference 
lies in the use of op instead of proc. 

In this section we shall confine ourselves to taking over some of the 
operation-declarations from the standard-prelude [R 10.2] . They may speak 
for themselves and reading them is one of the ways of learning the language. 
At this point (or at a point a little further on in this section), you might 
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decide to try some close reading in R 10.2.3. Anyhow, the examples we give 
here illustrate how to declare and use your own operators. 

0.10.1. Operations on boolean operands 

R 10.2.3.2 

opabs 
opi 
op V 

op 1\ 

op= 
op :j: 

= (bool a) int: 
= (bool a) bool: 
= (bool a, b) bool: 
= (bool a, b) bool: 
= (bool a, b) bool: 
= (bool a, b) bool: 

if a then 1 else 0 fi ; 
if a then false else true fi .. 
if a then true else b fi .. 
if 'a then b else false fi .. 
( a 1\ b) v (ia 1\ ib ) .. 
i( a = b) .. 

These declarations express neither more nor less than the fundamental 
truth tables of elementary boolean algebra. You might subjoin in your own 
library (it is not in the standard-prelude): 

prio impl = 5 .. 
op impl = (bool a, b) bool: i( a 1\ ib ) .. 

Pay some attention to the definition of equality of two boolean operands: 
the first occurrence of the symbol = is the operator to be defined; the second 
occurrence is the is-defmed-as-symbol which is part of all identity- and 
operation-declarations. 

0.10.2. Formulae 

Routines ascribed to operators are activated by the formulae in which 
those operators occur. Compare, for instance: 

(E47) op V = (bool a, b) bool: if a then true else b fi .. 
proc or = (bool a, b) bool: if a then true else b fi .. 

Both v and or yield (different instances of) the same routine. Therefore, the 
formula p v q returns the same value as the call orr p,q) . 

There is, however, a very important distinction between the elaboration of 
a formula and that of a call. In a procedure-call it is the procedure-identifier 
(irrespective of the actual-parameters) which appoints the routine to be 
activated. In a formula, the mode of the operands, as well as the operator 
itself, is taken into account. In a procedure-call your computer will be so 
kind. as to coerce (if possible) your actual-parameters until they match the· 
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modes required by the formal-parameters (ints may be widened into reals and 
reals into compls etc.). In formulae this kindness is restricted. There may be 
many different occurrences of the same operator token, yielding different 
routines depending on the (then necessarily different) modes of the 
formal-parameters. Therefore, the modes of the actual operands have a firm 
vote in the election of one of the routines nominated under the same 
operator. 

Moreover, the same symbol may occur as a monadic- as well as a dyadic­
operator, even in the same formula. It is always immediately clear from the 
context whIch of these two possibilities applies. 

Let there be declared: 

proceq = (compla, b)bool: absa=absb; 
op = (compl a, b) bool: (re of a = re of b) A(im of a = im of b); 
op = (real a, b) bool: a ~ b A a ~ b ; 
op = (int a,b)bool:a~b"a~b; 

(E48.0) 
(E48.1) 
(E48.2) 
(E48.3) 
(E48.4) 
(E48.5) 

op = = (bool a,b)bool:(aAb)v(laAlb); 
··op I = (bool a ) bool: ( a I false I true) ; 

prio I = 3; 
(E48.6) op. I = (bool a,b)bool:aAlb; 

Now: 

but: 

w=z 
x =y 
i = j 
p =q 

eq(w,z)] 
eq(x,y) 
eq(i, j) 

however: 

eq(p,q) 

but: 

invokes E48.1 
invokes E48.2 
invokes E48.3 
invokes E48.4 

all three call E48.0 [
because wand z are ref compls 
x and y will be Widened} to 
i and j will be widened compl 

is undefined, because a boot cannot be coerced to compl 

eq(absp, abs q) calls E48.0 , because abs p and abs q yield 
ints which will be widened to compl 
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and in: 

Ipllq } 
or 

(lp)I(lq) 

the first occurring I is monadic, and invokes E48.5 
the second occurring I is dyadic ,and invokes E48.6 
the third occurring I is monadic, and invokes E48.5 

Apart from owning a routine, operators also have a certain priority which 
determines the parsing of the formula in which they occur. By inserting 
brackets in a formula, a different parsing can be obtained from that required 
by the "natural" priorities; in fact, priorities serve to avoid brackets. 

Take, for instance, the formula ((1/\ b) V (Ia /, Ib ). The operators /\ 
and v have different priorities ( prio /\ = 3 , v = 2 ); consequently, the 
brackets are superfluous: a /\ b Via /\ Ib yields the same value, though in a 
less transparent manner. 

The monadic I is of higher priority than any dyadic-operator and 
therefore the brackets in, for instance I( a 1\ Ib ) are essential. 

0.l0.3. Operations on arithmetic operands, the standard prelude 

. Maybe a certain amazement will fall upon you in Section 10.2.3 of the 
Report. You will find there declarations such as: 
[R 10.2.3.3.i] op += (int a, b) int: a - - b ; 
[R 10.2.3.3.m] op += (int a, b) int: 

if b:j: 0 
then int q := 0, r := abs a ; 

while ( r -:= abs b ) ~ 0 do q +:= 1 od; 
if ( a < 0 and b ~ 0 ) or ( a ~ 0 and b < 0 ) 
then -q else q fi 

fi; 

and even worse, because you will also meet tokens not belonging to the 
language such as L ,P ,Q ,R ,E etc. which provide a kind of shorthand for 
the standard-prelude only. 

These definitions of arithmetic operations (the meaning of which will be 
known to every programmer ) have rio thing to do with machine efficiency. To 
the contrary, their jUstification lies in the fact that they "fix the semantics" 
by defining all operations in terms of a certain minimal set of primitive 
operations. Agreement with the choice of this set and whether you like this 
method or not is a matter of taste (maybe even of philosophy); it has nothing 
to do, however, with the language defined. This is entirely a problem of how 
to define a language. 

Moreover, a routine defines a series of actions in a computer and it is 
explicitly stated in the Report [R2.l.4.1.a] that any of these actions may be 
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replaced by any other action which causes the same effect. Consequently, an 
implementor is perfectly free to supply means for generating (more) efficient 
machine code, whenever he is able to do so. In particular, for the routines 
occurring in the standard-prelude (and also in the library-preludes, see 
0.1 0.7), he can generate efficient machine code himself, taking advantage of 
every specific machine feature (most machines will have single commands for 
addition and integer division and, unless he is a maniac, your implementor 
will not follow the routines in the standard-prelude to the letter). 

0.1004. Operations on complex operands 

mode compl = struct ( real re , im ) " 

[R 10.2.3.7] 

op 1 = (real a,b)compl: (a,b); 

op re = (compl a) real: re of a; 
op im = (compl a) real: im of a ; 

op abs = (compl a) real: sqrt (re at 2 + im at 2 ) ; 

op arg = (compl a) real: 

op conj 

op 
op :j: 

op + 
op 

op + 
op 

op x 

if real re = re a , im = im a ; 
re:j: 0 or im :j: 0 

then if abs re > abs im 
then arctan ( im/re ) + 

pi/2 x ( im < 0 I sign re - 1 11 - Sign re ) 
else -arctan ( re/im ) + pi/2 x sign im 

fi 
fi,' 

= (compl a) compl: 

= (com pi a, b) bool: 
= (com pi a, b) bool: 

= (compl a) compl: 
= (compl a) com pi: 

real-ima; 

rea=rebl\ima=imb; 
i( a = b); 

a' , 
-rea l-ima; 

= (compl a, b) compl: (re a + re b ) l( im a + im b ) " 
= (compl a, b) com pi: (re a - re b ) 1 ( im a - im b ) ; 

= (com pi a, b) com pi: (re a x re b - im a x im b ) 1 
( re a x im b + im a x re b ) ; 
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op / 

op t 
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= (compl a, b) compl: ( real d = re ( b x conj b); 
compl n = a x conj b ; 

( re n I d ) 1.( im n I d ) ) ; 

= (compl a , int b) com pi: 
(complp := 1 ; 

to abs b do p : = p x a od ; 
( b ~ 0 I pilip) ); 

We could subjoin another operator to this set, which the authors seem to 
have forgotten: the monadic i (or 1 which is, however, a less appropriate 
representation in this case): 

(DIO) op i = (int a) compl: ( 0, a); 
op i = (real a) compl: ( 0, a) ; 
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Instead of xl y (or x iy) you could then also write x + iy, which is closer 
still to the usual mathematical notation. 

0.10.5. Operations combined with assignations 

[R 10.2.3.11] 

op +: = = (refreal a, real b) refreal: a := a + b ; 4' or plusab 4' 
op -:= = (ref real a , real b) ref real: a := a - b ; 4' or minusab 4' 
op x: = = (ref real a, real bj ref relll: a := a x b ; 4' or timesab 4' 
op /: = = (ref real a, real b) refreal: a := a I b ; 4' or divab 4' 

The first formal-parameter has to be ref, because we want to assign to it. 
The value returned has also been declared to be ref, and some consequences 
of this are shown in 6.3. These operators are declared for all arithmetic 
operands (int , real and com pl). 

0.10.6. Operations on strings 

The standard mode string is defined as follows: . 

[R 10.2.2] mode. string = flex [J : 0] char; 

The flex in front of the [1 : 0] means that the bounds of a string may be 
reset by assignation (compare 5.5.4.1) - i.e. a string is a multiple which is 
allowed to "breathe" - initially a string is empty, which is expressed by 
[J : 0], the upper-bound being less than the lower-bound. 

It is instructive to unravel the operations on strings. In doing so we meet 

-----------_._ ... _._-_ .. _ .. __ ................ . 



52 VERY INFORMAL INTRODUCTION TO ALGOL 68 CIt.O.lO.7 

the at-symbol @ (or at) which arranges for the bounds of the actual strings to 
be considered (by "sliding" them) to have a lower-bound 1. 

[R 10.2.3.10] 

op < = ( string a , b ) bool: 
begin int m = upb a [@1] ,. n = upb b [@1] ,. int e : = 0 : 

for i to ifm < n then m else n fi 

end: 

while ( e := abs a [@1] [i] -abs b [@1] [i]) = 0 
do skip od; 
if c = 0 then m < nand n > 0 else· e < 0 fi 

op ~ = ( string a , b ) bool: "1 ( b < a ) 
op = = ( string a , b ) bool: a ~ b and b ~ a 
op =1= = ( string a , b) bool: "1 ( a = b) 
op ;;.. = ( string a , b ) bool: b ~ a 
op > = ( string a , b ) bool: b < a 
op + = ( string a , b ) string: 

beginint m = if int la = upb a [@1]; la < 0 then 0 elsela fi , 

end; 

n = if int lb = upb b[@l]; lb <0 then 0 else lb {i; 
[1:m +n] chare; 
e[l: m] :=a[@l];e[m + l:m + n] := b[@l]; 
c 

op x = ( string a , int b ) string: ( string e.; to b do e := e + a od ; e) ; 
op x = (int a , string b ) string: b x a 

0.10.7. The library prelude 

The operation-declarations considered thus far belong to the standard­
prelude of the language, Le. they are built in. You will also find in the 
standard-prelude all environment enquiries and .all declarations for formatless 
and formatted input and output (which therefore are also built into this 
language). 

Nothing, however, prevents you from subjoining to this standard-prelude a 
set of home made declarations. Of course you are free to declare such new 
things in your own particular-program; but, as soon as you want to apply > 

them in several programs,or you want to enable others to use them, or you 
have reason to expect that more efficiency may be acquired, then you can go 
to your implementor and ask him to make the whole set an as efficient as 



------------------._._-----

Ch.O.11 VERY INFORMAL INTRODUCTION TO ALGOL 68 53 

possible extension of the standard-prelude, i.e. 'it 'library-prelude'. In that way 
an arbitrary number of problem oriented dialects may be defined. For some 
possible examples see 8.4 and 8.5. 

The possibility of subjoining library-preludes to the standard-prelude 
contributes in no small measure to the flexibility of this language and this is 
one of the basic concepts of ALGOL 68. 

You should, therefore, never accept an implementation in which 
library-preludes cannot be coded efficiently or. in which the attachment of 
one or more library-prelude(s) to the standard-prelude cannot easily be done. 

0.11. bits and bytes, longs and shorts 

On most modern computers you will find, if not in the hardware then in 
the standard software, provision for the manipulation of single bits in a 
machine word, of parts of machine words (byte-addressing) and also for 
double and maybe even multilength arithmetic. 

In a concrete computer, all instances of values of all modes will be stored 
as bit-patterns. Whether a specific bit-pattern may correspond to a value of a 
specific mode or not is mainly a matter of how the standard software may 
interpret that piece of binary information. That is to say the interpretation of 
bit-patterns and also the arrangement, size and structure of their locations in 
the memory is almost entirely a matter of software. 

In this language, the possibility. of considering (a part of) a machine word 
as a mere sequence of bits is reflected in the mode bits (0.11.1), the particular 
interpretation of a "byte" as a char (i.e. the interpretation of one or more 
machine words as representing a fixed sequence of chars) is reflected in the 
mode bytes (O.ILl) and the possibility of multilength arithmetic is reflected 
in the long - - -long modes (0.11.2). To what extent available hardware 
features will be used for these further modes and to what extent (and how) 
they will be simulated by software provisions is entirely a matter of 
implementation. 

0.11.1. The modes bits and bytes 

Both bits and bytes are defined to enable the programmer to take 
advantage of certain (hardware-) features of the machine on which the 
language is implemented. A bits will be something pretty close to a machine 
word and the environment enquiry bits width is then the wordlength. A bytes 
may be a memory unit In which a certain number of characters can efficiently 
be stored; a bytes may be considered as a string of fixed length bytes width. 
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Operators are defined for bits and bytes reflecting the most current 
machine operations. 

For bits we have = and =1= to compare them, and V (disjunction), A 

(conjunction), shl (shift left), shr (shift right), abs (from bits to int), bin 
(from int to bits), an operator elem (selects a certain bit from a bits) and 
some others. 

For bytes we have the comparison operators as for strings, elem as for bits 
and a transfer from string to bytes. 

(DIl) bits t ,. bytes r ,. 

declares t to be a bits variable, and r to be a bytes variable. 
For bits we have a separate denotation, consisting of a sequence of digits 1 

(the equivalent of true) and 0 (the equivalent of false), preceded by 2 r to 
indicate that the sequence following is to be understood as a number in 
binary representation (radix 2). Ifwe assign: 

(E49) . t:=2r1011100100001 

and bits width is, say, 32 then! refers to a machineword(abits): 

2 r 00000000000000000001011100100001 

The value of abs t is now 5921 (conversely, the value of t is bin 5921). 
If we now assign: 

t;= t.A2 r 111111 

then the value of t becomes 2 r 100001. Then; after the assignation: 

. t := t shl3 

. the value of t is 2 r 100001000, so that 29 elem t, i.e. (bitswidth-3) elem t, is 
true, but 30 elem t is false. . 

If we want to consider the bytes r as a string, then we may apply ai:ast, 
e.g. 

S plusab string (r) 

Just to demonstrate bits and bytes, we consider the following example: 
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(ESO) proc compose string = 
( bits select, ref [1: bits width] bytes phrase) string: 

( string s ; 4 initialization is not necessary, because 
the flexible bounds are set to 0 and 1 at 
the declaration (see D3 in 0.4.3) 4 

for ito bitswidth 
do if i elem select then s plusab string ( phrase [i] ) fi od ; 
s); 

0.11.2. The long and short modes' 

The prefices long and short playa role in the creation of new modes in 
much the same way as [] ,struct, proc and ref do; the long or short, 
however, may stand only in front of int ,real, compl , bits and bytes and of 
all long and short modes derived from these. 

In the standard-prelude you will find environment enquiries such as: 

int int lengths = c the number of different lengths of integers c; 
int int shorths = c the number of different shorths of integers c; 

stating to what extent the long and short feature is implemented for ints, and 
correspondingly for reals, bits and bytes. 

Now, if we declare, for instance: 
long long long long long long long int iiiiiiiint ; 

but int lengths = 3 , then the value of our iiiiiiiint will be treated as if it had 
been declared: 

long long int iiiiiiiint ; 

Hence, int lengths = 3 means that your implementor will distinguish only 
three kinds of integral values: int , long int and long long int . The same 
applies to real (and, consequently, to compl), bits and bytes. The number of 
longs characterizes the degree of discrimination with which the value is kept 
in the computer. 

In the language the prefices long and short also tum up in denotations: 

iiiiiiiint := long long long long long long long 0 

In the standard-prelude you will also find the environment enquiries: 

long int long max int = c the largest long integral value c; 
short int short max int = c the largest short integral value c; 

long long int long long max int = c the largest long long integral value c; 

etc. 
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= c the largest short real value c " short real short max real 
short real short small real = c the smallest short real value which can be 

usefully compared with short 1.0 c,' 
long real long max real 
long real long small real 

etc. 

= c the largest long real value c " 
= c the smallest long real value which can be 

usefully compared with long 1. 0 c,' 

For the arithmetic modes.(int , real, compl and their longs and shorts) we 
have a monadic-operator leng which makes the operand one longer, and a 
monadic-operator shorten which takes away one long or adds one short. 
There is no automatic transfer between different longs and shorts of the same 
basic mode. 

For example: 

(E51) proc inprod = ( ref [ ] real a , b ) real: 
( long real value: = long 0.0 " 

for i 
from ( lwh a < lwh b Ilwh b Ilwh a ) 

to ( uph a > uph b I uph b I uph a ) 
do value +: = leng a [i] x leng b [i] od.,' 

shorten value) " 

If, in a call of E51, the bounds of the actual rows are not equal, then the 
routine will compute the innerproduct as if the rows had been supplemented 
with zero elements until their bounds matched. 

0.12. Unions 

United modes (unions for short) are brought into existence to enable the 
programmer to specify locations in which values of different modes can be 
stored, and to dispose of the names which refer to such accommodating 
locations.. In particular, with the aid of unions you can define routines which 
accept actual-parameters and (or) return a value of one of several possible 
modes. 

The mode-declaration: 

(E52) mode strint = union ( string, int ) " 

declares strint to be a new mode encompassing both the mode string and the 
mode into It is important to know that this does not define a new kind of 
value; a new mode has been declared. The values in this mode, however, are 
still strings or ints (see also Section l.6.1). 
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The variable~declaration: 

(ES3) loc strintyear .. 

ascribes to year the name of either a string or an into Thus year is a ref strint 
identifier. 

A ref strint is, most certainly, a new kind of value (Le. it is neither a ref 
string, nor a ref int), it is a ref union ( string, int ), but it 'does not refer to a 
"strint" because there is no such thing. 

You may now assign to year: 

(ES4) year := "1968" 

as on another occasion: 

(ES4*) year:= 1968 

Observe, that in the context of: 

(ESS) string text, int numb .. 

neither the assignation text := 1968, nor the assignation numb := "1968", is 
allowed. 

The assignations ES4 arid ES4* may be depicted as follows: 

I.I.A.-3 

\ 
\ 
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string 

Once you have declared a united variable, you may want to ask the mode 
of the value assigned to it. It may be clear that this requires mode checking at 
run time. However, this is in fact the only situation where, in this language, 
run time mode checking is inevitable and for no other reason than that the 
programmer has explicitly asked for it. 

In the context of E52 - - - E55 you may write: 

(E56) case year 
in ( string) : true , 

( int) : false 
esac 

This unit is a 'conformity-clause'. It yields upon elaboration the value true if 
year refers to a string (which is the case, for instance, after the assignation 
E54): otherwise its value is false (which is the case after E54*). 

The expressions text := year and numb := year are not correct assignations 
in this language, not even when the modes conform. Therefore we have a 
slightly more extended form of the conformity-clause: 

(E57) case year 
in ( string s ) : text := s , 

( inti) : numb : = i 
esac 

If we want to know which of the two assignations has been elaborated we 
might declare: 
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proc deliver = ( ref string t, ref int n , strint tn ) bool: 
case tn 

in ( string s ): (t : = s ; true ) , 
(inti ):(n:=i;false) 

esac; 
deliver ( text, numb, year) 

The call deliver (text, numb, year) delivers the actual value of year to the 
right destination. The value of deliver is true or false depending upon the 
mood of the year. 

An example of a procedure yielding a value of one of two possible modes 
may be (in the context of the declarations E23 * and E23**, see 0.7.3): 

(ES9*) mode intreal = union ( int, real) ; 

(ES9) proc factorial = ( int n ) intreal: 
if n > nmaxfac 

thenfaclarge (n) 
¢ in which cas~ a real value is yielded ¢ 

else int f := 1 ; 
for i from 2 to n do fx:= i od; f 
¢ in which case an int value is yielded 4' 

fi; 

The difference with E23 is that any call of the there declared 
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proc( int )realfac yields a real (the int computed in the else-part is widened 
to real because such is required), so that you can not know whether the value 
returned was an exact factorial or not. A call of the proc( int )intreal 
factorial, on the contrary, yields an int or a real and you can find out which 
of the two was the case. 

Beware, however, of a pitfall. 
You cannot assign: 

y := factorial (m) 
nor: 

i := factorial (m) 

because an ~'intreal" can neither be assigned to a ref real nor to a ref into 
The way to achieve this, of course, is: 

case factorial (m) 
in (real r): y := r, 

(int n): i := n 
esac 
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As a final example consider: 

(E60) mode numb = union (int ,real, eompl ) ; 
proegamma = (numb u) numb: 

case u 
in ( inti ): 

ifi>O 
then case i 

in 1, 1 , 2, 6 , 24 , 120, 720, 5040, 
40320 , 362880 , 3628800 , 39916800, 
479001600 

outfaclarge (i-1) 
esae 

fi, 
( realr ): e algorithm for the gamma function with 

Ch.O.I3 

a real argument r ,yielding a real value e , 
( eompl c ): e algorithm for the gamma function with 

a eompl argument c, yielding a eompl value c 
esae 

0.13. Local and global generators, stack and heap 

We know that by a variable-declaration like 

loe real x; 

a real value is generated on the stack. To put it more precisely: 

The "local-generator" loe real generates on the stack a new real value 
(its "side-effect" so to speak) and it yields upon elaboration the ref real 
name x which is then ascribed to the identifier x. 

A less concise way to formulate this happening is: 

ref real x = loe real ; 

in which we meet the local-generator as a unit. 

An interesting example of the use of a local-generator outside a variable­
declaration or an identity-declaration is given by the following phrases in 
which a triangular matrix is generated: 

(E61) loe [1: n] ref [ ] real triang; 
for ito n 
do triang [i] := loe [1: i] real od; 
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Observe that triang is declared to yield a singly subscripted row of names: 
triang[i] yields the name of a [ ] real; triang [i,j] is undefined. If you want to 
access the [i,j] th element of triang, you must write: 

triang [i] [j] 

You then access the jth element of the row referred to by the ith element of 
triang (for further discussion, see 5.7 .2.EIO). 

The generator loe real is a local-generator because the real value it 
generates ceases to exist as soon as the range to which the value was loeal is 
completed (i.e. as soon as we leave that range). Not only the relation between 
the identifier x and the ref real ascribed to it ceases to hold, but also the real 
value it referred to vanishes as the stack contracts. We must know that a 
serial-clause is a local range when it contains at least one declaration -
therefore the clause between do and od in E61 was not a local range and we 
could take the ref [ ] real value with us outside the do and od. 

Now, what can we do when we want to take a value and its name outside a 
local range, for example when the serial-clause between do and od contains a 
declaration? Or, to put it differently, how can a location (a box) survive a 
contracting stack? 

The solution in this language is the presupposition of the "heap": another 
storage allocation regime besides the stack, in which values may be generated 
which remain there as long as some name refers to them. 

By a variable-declaration like: 

heap real hx ; 

or an identity-declaration: 

ref real hx = heap real; 

a real value is again generated, and the global, or "heap", generator heap real 
yields its name. 

For example: 

(E62) loe [1: n] ref [ ] real zigzag; 
for i to n 
do loe int length; read (length) ; 

zigzag [i] := heap [1: length] real 
od; 

Here the local-generator loe [1 : length] real would not work, because the 
stack will contract at the completion of the serial-clause between do and od 
which now is a local range because it contains the declaration loe int length;. 

----------- ---------
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For an example of a heap variable-declaration consider: 
(E63) mode record = struct (string name, int date of b(rth, 

real value, refrecotd next), 
mode society = struct (ref record first, last); 
loc society high; 

Ch.O.13 

Now assume a large file of records defining potential members for the high 
society. We want a procedure try to scan that file and try every record for 
acceptability on the ground of age and minimal value required. The procedure 
try has to yield false when the record under consideration is not acceptable; if 
it is (the rare cases) it must generate a seat in the society and yield true. A 
procedure always defines a local range. so we must apply a heap-generator: 

proc try = (int date, real minimum) bool: 
if heap record new; 

read ((name of new, date ofbirth of new, 
value of new ) ) ; 

next of new := nil; 
date of birth of new < date and value of new> minimum 

then last of high := next of last of high := new; 
ct in which case new survives ct 

true 
else false ct in which case new is thrown away ct 

fi; 
Now let us generate the founder member: 

first of high := last of high := 
heap record := ('Methuselah", 0, 1000.0, nil); 

and examine the first hundred candidates, who are apparently required to be 
no more than 50 years younger than Methuselah, and to be not much lower 
in value than their predecessors. 

to 100 
do if try ( (date of birth of first of high) + 50, 

od 

.95 x (value of last of high)) 
then print ( (name of last of high, newline) ) 

fi 

0.14. What to do next 

The remainder of this Introduction contains, in a two-dimensional way, 
eight (or seven) chapters (please now refer to the table of contents). The eight 
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horizon tal chapters are: 

1. BASIC CONCEPTS 
2. DECLARATIONS 
3. CLAUSES 
4. ROUTINES 
5. UNITS 
6. STANDARD PRELUDE 
7. TRANSPUT 
8. EXAMPLES 

The seven vertical chapters are: 

.1 FUNDAMENTALS 

.2 PROCEDURES AND NAMES 

.3 OPERATIONS 

.4 STRUCTURES 
;5 MULTIPLE VALUES . 
. 6 UNIONS 
.7 DISTINCTIVE FEATURES 

Thus the horizontal chapters are subdivided into seven sections ".1" 
through ".7". Likewise, the vertical chapters are subdivided into eight 
sections "1." through "8.". 

You may read row-wise: 

for ito 8 
do for j to 7 do elaborate section ri.il od od 

or you may read column-wise: 

for i to 7 
do for j to 8 do elaborate section If.i] od od 
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The latter (vertical) route is the more didactic one, for those who wish to 
learn the language. The horizontal one (along which this Introduction has 
been bound) is more appropriate for those who wish to survey the essential 
principles of the language as a whole. In particular, the first chapter on 
BASIC CONCEPTS is a survey of the main part of the basis on which the 
language was "orthogonally designed" [R 0.1.2]; i.e. the generalized concept 
of "mode", and all its consequences. 

If you are now in some doubt as to which route iS'for you, then take our 
suggestion - read horizontally in Chapter I Until you find the waters 
beginning to get a little deep: then return to 2.1 and read by the vertical 
route thereafter. 



1. BASIC CONCEPTS 

I.I.Fundamentals 

You write or read a 'particular-program' which is embedded in an 
environment consisting of the 'standard-prelude' (and '-postlude') and a 
'library-prelude' . 

The standard-prelude is a comprehensive selection of features, generally 
accepted as a standard environment for a modern programming language. A 
library-prelude is a continuation of the standard-prelude. It may contain more 
specific features you would like to have at your disposal in certain classes of 
problem. The implementation is supposed to cater for some provision which 
enables you to subjoin one or, ideally, a selection of library-preludes. 

The whole constitutes a 'program'. 

1. 1. 1.0bjects 

A program may be parsed into a tree of "constructs", such as identifiers, 
denotations, formulas, procedures, declarations, clauses, etc. These are all 
classified as "external objects", since they comprise the written, external 
form of the program. A construct (or for that matter the whole program) 
may be "elaborated" by a "computer" (be it a human being or an 
automaton), whereupon a defined sequence of "actions" takes place and, 
upon the completion of these, a "value" is "yielded". With some constructs, 
the sequence of actions is the prime reason for the elaboration. With others, it 
is the value yielded which is important-indeed, in the case of identifiers and 
other such "indicators" there are no actions at all, and the value yielded is 
simply that which had previously been "ascribed" to that indicator in a 
declaration. 

A "value" (or, more precisely, an "instance" of that value) must 
presumably be kept somewhere, either in the human's mind or in the memory 
of his automaton. A value is therefore classified as an "internal object". Each 
internal object (in the sequel often "object" for short) has three relevant 
attributes: 

1) it is of some "mode", 
2) it is a particular instance of a value of that mode, 
3) it has some location. 

1) The mode specifies how the object is built up from basic material (bits, or 
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the little grey cells in your brain) and to what kind of entities (numbers, 
characters, records, names, etc.) it -is related. Partly this is a matter of 
implementation (the buildi~g of a real number for example), partly this 
construction may be specified by the program in terms of modes already 
defined (for example the bliilding of a complex number as an ordered pair of 
real numbers). In the program text a mode may be indicated by a bold faced 
word, which is then to be considered as one indivisible symbol (e.g. amode). 
Such a mode-indication may be regarded as the badge of some class of values. 
2) Some modes define but a few values (e.g. a bool can only be true or false), 
some quite a lot (e.g. int and real), some in principle an infinity (e.g. string); 
but there may be any number of instances of any particular value within the 
automaton, and such an "instance of a value" of some mode is an internal 
object. 
3) An object is to be found somewhere, and this somewhere is its location (its 
address in the memory). The physical address is none of your business, but in 
many cases you will certainly want to have control of that location (for 
example you may wish to supersede the object by another instance of a value, 
or to enter its location in some chain), that is' you may wish to "refer to" that 
object. As far as the location is concerned, there are two possibilities: 
3a) The internal object was, in some previous declaration, "ascribed" to an 
external object (specifically, an indicator). Now you can always obtain the 
internal object by elaboratirig that indicator and inspecting its yield, but you 
still have no control over its location (because it may well be concealed in the 
object code) and you have to take it as it arises in the elaboration of the 
program, in which it is a "constant". 
3b) The internal object is "referred to" by a second internal object 
(specifically, a "name"). In that case, its location is at your disposal in the 
form of that name. This gives you the right to supersede it, and it is therefore 
not a constant but a "variable". A name is an object of another (!) related 
mode-a 'reference to' (ref) mode. A ref amode object (a name) refers to an 
amode object. 

You may visualize the interrelation of the concepts mode, value and name 
(which are of fundamental importance in this language) by drawing boxes in a 
"paper computer". ' 

Boxes of the same shape then represent intern1l1 objects of the same mode. 
Each box holds an instance 9f a value (not necessarily different from the 
instance in another box). Names may come into the picture by drawing boxes 
of another shape, holding tQose names. 

The relation "to refer" between two internal objects is depicted by an 
arrow pointing from the name to the object referred to by that name: 
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refamode ref amode ref amode 

cp 
D D D 

amode amode amode 

. We shall presently show you how actions may be depicted in our paper 
computer. They will always achieve the effects defined by the hypothetical 
computer in the Report (but sometimes by a different method). 

1.1.2.1dentlfiers 

In order to discuss internal objects, we need 'identifiers'. An identifier is a 
sequence ofletters and digits with a leading letter, like marllyn and unlike 
Jmarlyn. 

The meaning of an identifier is defined in an 'identifier-declaration', of 
which there are two sorts-the variable-declaration (1.1.2.1) and the identity­
declaration (l.2.2). (Alternatively, a label-identifier is defined as such when it 
occurs as a label in the program text.) 

1.1.2.1.Variable declarations 

By declaring: 

(E1) loc amode objectl , object2, object3 ; 

three internal objects are generated in the memory, each of them being an 
amode. Three names (ref amode objects) referring to the amode objects 
generated are then ascribed to the three identifiers. Therefore they are known 
as ref amode identifiers and the generated amode objects are 'variables'. In a 
picture: three boxes come about, each of them holding the name (location) 
of another box of the mode amode. 

Now, objectl , object2 and object3 are external objects, being constituents 
of the program. By the variable-declaration E1 an internal object is ascribed 
to each of them. The relationship between an identifier and the object 
ascribed to it cannot be changed; and the object ascribed (in this case a name) 
cannot be changed. 
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loc amode 

ref amode ref am ode ref amode 

D D D 
amode amode amode 

We preferably draw external objects at the top of the diagrams in our 
paper computer (to separate them from the boxes, which are internal) and, if 
the elaboration of one of the external objects yields one of the internal ones 
(at the instant of time under discussion), we depict this by a line joining the 
two. The diagram above shows that, since ref amode objects have been 
ascribed to the identifiers objectl, object2 and object3, the yields of these 
identifiers will henceforth be the three objects drawn immediately below 
them. These objects are constant (the top row of boxes in our diagrams will 
generally depict constants). The boxes in the bottom row, however, are 
variable (we can see that this is so, because we can see that there exist names 
referring to them). 

Thus, objectl, for example, yields a constant name (mode ref amode) 
which refers to a variable amode. In the sequel we shall abbreviate this by 
saying, simply, that objectl refers to that variable. 

This is nothing new. In many other programming languages the proper 
relation between an identifier and its variable value is exactly the same, 
although perhaps you were never aware of it. 

1.1.2.2.Assignation, collateral elaboration 

If marllyn and mar21yn are likewise declared to be ref amode identifiers 
(consequently yielding ref amode objects), then by assigning: 

(E2) object1 := marllyn ; object2 := mar21yn 

the object referred to by ob,ectl (object2) is "superseded" by an instance of 
the value referred to by m arllyn (mar21yn). Nothing happens to the names 
ascribed to the identifiers. The value referred to by the LHS (Left Hand Side) 
becomes a copy of the value referred to by the RHS (Right Hand Side). The 
copy-action "to assign" is depicted below by a bowed arrow originating from 
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the object to be copied and pointing into the location of the copy: 

marll~ 

ref amode ref am ode refamode ref amode 

I ,U/ I 
amode amode 

~'LJ/ I 
amode am ode 

Again this is nothing new. In most other programming languages the 
process of "assignment to a variable" takes place in exactly the same way. 

In an assignation the LHS (the 'destination') and the RHS (the 'source') 
are elaborated "collaterally", i.e. there is no prescribed order for the actions 
of getting the name (the ref am ode) in the LHS and getting the value (the 
amode) in the RHS. Consequently, if these two actions should happen to 
have any side effect upon each other (in the case of more involved 
assignations this could occur), then the result of the assignations is 
"undefined" (i.e. not defined by the Report alone). 

In El also we met a collateral elaboration. In fact El involves three 
variable-declarations, the declaration of objectl, of object2 and of object3; 
and these three declarations are elaborated collaterally. 

1.1.3.Phrases, serial and collateral elaboration 

The piece of program text: 

(E3) amode objectl, object2, object3 ; 
objectl := marllyn ; 
object2 := mar21yn 

is a simple case of a 'serial-clause'. The "constituents" separated by 
semicolons are 'phrases' which may be either 'declarations' or 'units'. The 
semicolons represent the 'go-an-symbol'. The action defined by the phrase 
following a go-on-symbol begins after the completion of the action defined 
by the phrase preceding it. 

As we have already pointed out, the variable-declaration: 
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loc amode objectl , object2, object3 

is a collateral-declaration. In fact it is a "contraction" of the phrase: 

loc amode objectl , loc amode object2 , loc amode object3 

Tne commas represent the 'and-also-symbol' and achieve the collateral 
creation of the objects. 

The symbolloc expresses the act of generation of the variable (1.2.2.3), 
but it is optional in this context and is frequently omitted. 

Besides collateral-declarations we may have serial-declarations, for 
example: 

amode objectl .. amode object2 .. amode object3 

69 

and the go-on-symbols achieve serial creation of the objects (one by one). 
Eventual' side effects (which in the case of more involved declarations could 
occur) now'act precisely as prescribed by the order of elaboration thus 
defined. 

Enclosing a serial-clause between "(" and ")" or "begin" and "end", we 
obtain a 'closed-clause': 

(E4) (amodeobjectl, object2, object3 .. 
object 1 := mar llyn .. object2 := mar2lyn .. 
XXXXX) , 

By "XXXXX" we denote here and in the sequel an arbitrary constituent 
valid in the context. 

By enclosing a serial-clause, a 'range' is demarcated (see also 3.1.5). A 
range has much in common with what in some other programming languages 
is known as a block: in particular it defines the "scope" of the values (names) 
created by the declarations within it. 

A unit always yields a value of some mode (which may, however, be void 
if no value is actually required). For example, the unit: 

objectl := marllyn 

yields the value yielded by its LHS (and not, as you might have expected, the 
value yielded by its RHS), that is the ref amode object yielded by objectl. An 
assignation yields the name in its LHS. 

Correspondingly, a serial-clause yields a value of some mode, namely the 
value yielded by the unit which completes its action. 

The same applies to closed-clauses. 
For example, if XXXXX in E4 yields by elaboration an amode object, 
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(and marilyn is declared to be a ref amode identifier) then: 

(ES) marilyn := (amode objectl, object2, object3 .. 

Ch. 1. 1.4 

object 1 : = mar llyn .. object2 : = mar2lyn .. 
XXXXX) 

is a perfectly sound assignation. It assigns the value yielded by E4, which is 
the value yielded by XXXXX, to marilyn. 

ref amode 

amode 

1.1.4.Routines 

An internal object of fundamental importance is the ~'routine", which is 
the internal equivalent to the sequence of symbols which comprises a 
'routine-text'. A routine mayor may not have formal-parameters, and mayor 
may not return a value of some mode. A routine-text is rather close to what 
in some other programming languages is known as "a procedure-heading with 
procedure-body" . 

In this language a routine may be ascribed, not only to an identifier, but 
also to an 'operator'. 

A routine rnay be "called": 
a) in a 'formula' by means of a operator yielding the routine, 
b) or else by means of an identifier yielding (or, which may also be the case, 
referring to) the routine, i.e. by a 'call'. 

By declaring: 

(E6) op 0 = ( amode formall ,formal2 ) amode: XXXXX .. 

the symbol "0" is declared to be an operator, and the routine yielded by the 
routine-text on the RHS is ascribed to it. In this routine-text, XXXXX is 
some unit defming the action, using the formal-parameters formall and 
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formal2. The amode: preceding it expresses that the routine is to return an 
amode value. 

By virtue of this declaration, the unit: 

(E7) object3 := objectl Oobject2 

results in: 

o 

refamode ref amode ref amode 

The routine ascribed to 0 is depicted by a circle. 
In E7 again, the LHS and the RHS are elaborated collaterally. The RHS is 

a formula in which both 'operands', objectl and object2, are in their turn 
elaborated collaterally (corresponding to the fact that the formal-parameters 
in E6 are separated by a comma). Formulas are described more fully in 1.3 
and 5.1.3. 

By declaring: 

(E8) proc function = (am ode formall, formal2, formal3) amode: XXXXX ; 

the identifier function is declared, and the routine yielded by the RHS is 
ascribed to it. In this routine-text, XXXXX is some unit defining the action, 
using the formal-parameters formall, formal2 and formal3. 

By virtue of this declaration, the unit: 

(E9) marilyn := function ( objectl , object2, object3 ) 
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results in: 

:= ~ect3 ) 

refamode ref amode ref am ode ref amode 

amode 

Again, the LHS and the RHS are elaborated collaterally, as are the three 
actual-parameters objectl, object2 and object3 on the RHS, by virtue of the 
commas between the formal-parameters in the routine. 

1.1.5. Defining and applied occurrences 

Consider the assignation: 

(E5*) marilyn := ( amode objectl, object2, object3; 
objectl := mar llyn ; 
object2 := mar2lyn ; 
object3 := objectl 0 object2 ; 
function ( objectl, object2, object3 ) ) 

To marilyn is assigned the value of a closed-clause. The outmost "(" and 
")" enclose a serial-clause consisting of a collateral-declaration, followed by 
three consecutive assignations, in the last of which the RHS is a formula, 
followed by the call of a procedure returning an amode value. This value 
returned by function is now the value yielded by the closed-clause and 
consequently the value assigned to marilyn. 
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It might be worth your while to try to visualize the elaboration of E5* in 
one picture, in the same way as we did for .the separate constituent phrases. 
You will meet then several "occurrences" of the identifiers object 1, object2 
and object3, the first of which are the "defining occurrences" in the 
declaration amode objectl, object2, object3; All other occurrences of these 
identifiers are "applied occurrences". Here we have a relation between two 
external objects, the technical term for this relation is "to identify": the 
second occurrence of objectl identifies its defining occurrence. You might 
depict this relation by an arrow pointing from the applied occurrence to its 
defining occurrence. 

1.1.6.Coercion 

Every external object has, independent from the particular syntactic 
position in which it stands, an "a priori" value of some a priori mode. In 
order to make it fit its particular context, the external object may be 
"coerced", that is "forced to yield a value of another mode": its "a 
posteriori" mode and a posteriori value. 

For example, the a priori mode of marilyn in E2 is ref amode (by virtue 
of its declaration), and thus its a priori value is a name (of an amode object). 
Now, by the assignation process as described in 1.1.2.2 ("getting the value" 
on the RHS), the a posteriori mode of marilyn must here be amode (we want 
the amode value referred to, and not the name). In this particular context 
marilyn must be "dereferenced"., which is one of the six basic coercions in 
this language. 

Observe that objectl in E2 (the LHS of this assignation) is not 
dereferenced, but in E7 (in the syntactic position of an amode operand) as in 
E9 (in the syntactic position of an amode actual-parameter) it is. 

Another example of coercion is "widening", implicit change from mode 
int to mode real, mode real to mode compl, and some others. Once you know 
what the term is about, you will find quite a lot of coercions in other pro­
gramming languages, although perhaps they are not always so well defined if 
at all [see R6]. 

In a language in which the basic concepts are extended as far as possible, 
one must inevitably be very clear and precise on the subject of the actions 
concealed in the language. It is dangerous to presume actions to be implicit 
without stating exactly why, where and how. Of course, one could have 
supplied a certain number of operators, expressing explicitly the desired 
transitions from a priori to a posteriori mode and value. But then you would 
have been coerced into writing objectl := DEREFERENCE marilyn and 
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object3 := DEREFERENCE objectl 0 DEREFERENCE object2 or some· 
such, and very soon you would encounter much more miserable constructions 
(see 5.1.0.2). 

In ALGOL 68 at least six rather offensive monadic operators of this kind 
are incorporated in the syntax, being implied by the syntactic position of the 
external object to which they otherwise ought to have been explicitly 
applied. This, indeed, complicates in no small measure the syntax. However, 
once you have mastered that part of it [the whole of R 6] ,you will 
appreciate that the burden is taken away from your shoulders. Apart from 
that, coercion has one great charm: it does exactly for you what you want, 
but could easily have forgotten. You will feel happy that you can write x := i 
instead of x := WlDENTOREAL DEREFERENCE i. For a systematic 
discussion of all the coercions, see Chapter 5. 

Vertical readers, please tum to 2.1. 

1.2.Names and declarers 

1.2.1.Ascription and assignation 

We have already introduced- variables to you. They are internal objects and 
new values can be "assigned" to them at any time and as often as you like. 
This is natura,l, for why should it be called a "variable" if you cannot vary it? 

A constant is, of course, quite a different thing. Obviously it cannot be 
, varied: it is an external object which is given a value once and for all, and the 

process of giving it its once only value is termed "ascription". This process 
can be brought about in identity-declarations (1.2.2) and in procedure calls 
(1.2.3.2.1). It also arises in variable-declarations (as we have seen in 1.1.2.1), 
but for a different reason. Behind each amode variable there hides a constant 
ref amode name (it has to be a constant name, for otherwise you might lose 
the variable). It is this constant name which is ascribed to the ref amode 
identifier in a variable-declaration. 

Often, when creating a new object, you have the choice of declaring it as a 
constant or as a variable. Which should you do? (You might say thatit does 
not matter, since it will work either way, but this is a dangerous belief.) Take 
our advice. If you db not intend to vary it again (at least within the lifetime 
of the relevant range-see 2.2.1), declare it as a constant and ascribe its only 
value to it. Variables are dangerous objects, and assignation is a dangerous tool. 
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1.2.2.Identity declarations 

An 'identity-declaration' (defining the meaning of an identifier within its 
range) consists of an equals-symbol "=" with a 'formal parameter' on its left 
and an 'actual-parameter' on its right: 

formal-MODE-parameter = actual-MODE-parameter 

(The "MODE" stands for an arbitrary mode. In the syntax you will find a 
number of production rules starting with MODE, generating an infinity of 
different constructs. MODE is a so-called "metanotion"; the capitals express 
that there are separate metaproduction rules for it. You may forget this 
remark; everything will become clear in the sequel.) 

A formal-MODE-parameter consists of a formal-MODE-declarer followed 
by a MODE-identifier. The formal-MODE-declarer determines the mode of 
the internal object which will be ascribed to that identifier: 

formal-parameter 
declarer: identifier: 

amode 
ref amode 

ref ref amode 

etc. 

thing 
name 
pointer 

this identifier is a: 

amode-iden tifier 
reference-to-amode- identifier 
reference-to-reference-to-amode- . 
identifier 

The actual-MODE-parameter yields an internal object to be ascribed to the 
MODE-identifier of the formal-parameter. We shall consider several 
possibilities for the actual-parameter: 
1) a unit yielding the required mode (1.2.2.1 and 2) 
2) a local-generator (1.2:2.3) 
3) an initialized local-generator (1.2.2.3). 

1.2.2.1.Constants 

(E1) am ode thing = marllyn; 

The actual-parameter mar llyn is a simple case o~ a unit and it yields a ref 
amode; thing, however, is declared to be an amode-identifier (by the formal­
declarer amode). Consequently, marllyn must be dereferencedto yield an 
amode value and what happens is: 
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amode 

am ode ref amode 

Now, by this declaration, a copy of the value currently referred to by 
mar llyn is ascribed to thing. You can never assign to such a thing, because it 
is not a name. You may consider thing as a constant and indeed, whatever 
may happen to the amode value referred to by marilyn, thing always yields 
the instance of an amode value it got from marIlyn at its declaration. 
"Constant" is to be understood as "constant until next elaboration of the 
declaration"; then it may get a different value from marIlyn. 

Instead of marilyn we may write any unit yielding, after the proper 
coercions, the required mode: 

(EI *) amode thing = XXXXX ; 

which may be depicted as follows: 

XXXXXI; 

amode 

1.2.2.2.Equivalences 

(E2) ref amode name = marIlyn; 

Although here again, as in E I, the actual-parameter is a strong unit, this is 
a story completely different from El. 

The formal-declarer in E2 is ref amode; and the formal-declarer determines 
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the mode of the object to be ascribed to the newly declared identifier, in this 
case a 'reference to amode' value is required from the actual-parameter. 

The a priori mode of mar llyn happens to be reference-to-amode. 
Consequently no dereferencing of the actual-parameter is needed. A copy of 
the name yielded by marIlyn is ascribed to the identifier name. 

What happens is: 

ref amode 

refamode refamode 

L.....-.-----D 
amode 

The result of the elaboration of E2 is that we have got two different 
identifiers, name and marllyn, yielding different instances of the same name 
and consequently referring to the same internal amode object. 

Assigning to name or to marllyn has the same result (supersedes the same 
amode value); different identifiers but the same variable value. 

In some other programming languages this phenomenon is known as 
"equivalence". In this language "equivalence" is only a particular case of a 
general (and extremely fruitful) construction. 

1.2.2.3.Local generators 

We may want an identity-declaration to create the name of a new object 
(we want to define a new variable). Then we choose for the actual-parameter 
a 'generator'. A generator "generates" a new object; a local-generator creates 
a new object on the "stack"; an amode-Iocal-generator creates a new amode 
object on the stack. On creating a new object, the generator yields its name. 

The new object created by a local-generator ceases to exist when the range 
in which it occurs has been elaborated up to the hilt. 

A MODE-local-generator consists of the local-symbol "loc", followed by 
an actual-MaDE-declarer; the amode-Iocal-generator is loc amode. loc amode 
generates an amode object on the stack and yields its name on that special 
occurrence. We shall depict the creation of the amode object by a special kind 
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of arrow: 

ref amode 

am ode 

Now conSlUer the identity-declaration: 

(E3) ref amode aname = loe amode ; 

What happens is essentially the same as in E2: 

ref am ode 

amode 

The name yielded by loe amode is ascribed to the identifier aname, which 
consequently refers to the newly created amode object on the stack. 

When the local-generator has done its work, the picture we are left with 
looks like this: 

refamode 

arnode 
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But we have seen many pictures like this before. They were brought about by 
variable-declarations such as: 

(E3*) amode aname " 

It seems that E3* means exactly the same thing as E3. Every variable­
declaration has an identity-declaration hiding behind it. Moreover, the amode 
in E3* is really a disguise for the generator loc amode in E3. Indeed, as was 
explained in 1.1.3, you may write the loc in E3* if you prefer: 

(E3**) loc amode aname " 

which goes to show why the amode in E3* must be regarded as an actual­
declarer (remember that the ref amode in E3 was a formal one). We can 
show how the process of generation enters into our pictures of variable­
declarations in the following way: 

I loc amode I aname 

(a new 
amode 
object is 
generated 
on the 
stack) 

refamode 

amode 

We often wish to assign an initial value to a newly generated variable. 
Now consider the assignation: 

(E4) loc amode := marllyn 

This is, of course, a perfectly correct assignation. What happens is: 

ref amode 



80 BASIC CONCEPTS . Ch.1. 2. 2.4 

The local-generator yields the name of the newly created amode object, 
which is initialized to the value referred to by marllyn; marllyn, of course, is 
dereferenced (compare 1.1.E2). So far so good, but we cannot do much with 
it, because no external objectin the whole program yields the name of our 
newamode. 

However, an assignation yields the value yielded by its LHS (see 1.1.3) 
which is ref amode. We may how consider E4 as a special case of a reference­
to-amode-unit (compare E2) and write: 

(E4') ref amode aname = loc amode : = marilyn; 

And see what happens: 

~--I ,I I; I 
amod~amode 

We should expect there to be a variable-declaration corresponding to this, 
and indeed there is: 

(E4*) loc amode aname := marllyn .. 

in which the loc is, as before, optional. 

1.2.2.4. Variables and names 

Please, do not confuse this with 
amode thing = marilyn .. 
(seeEl) 

Syntactically, a 'variable' is a reference-to-MODE; a name. 
Semantically, the object which is in fact "variable" is the object referred 

to. 
Informally, we may choose an intermediate position and regard the pair of 

objects, consisting of an instance of a value and the name referring to it, as a 
variable: 
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var 

ref amode this one is constant 

--
a "variable" is the association of { 

a name 

and 

a value D ----------
- - thO . . bl am ode - - IS one IS varIa e 

Going up one stair of references, we can generate variable names: 

(ES) ref ref amode pointer = loc ref amode ; 

or the corresponding variable-declaration: 

(ES*) ref amode pointer; Observe that again one ref is embezzled; 
it is a ref ref am ode value that is ascribed 
to pointer. 

What happens is: 

~ 
ref ref arnode ref ref amode 

ref amode 

This is essentially the same as E3. The generator loc ref amode generates a 
name on the stack. Such a ref amode on the stack may, by assignation to 
pointer, become an instance of a name referring to an amode object on the 
stack. In this way, "indirect addressing" is another fruit of the general 
concept of an identifier-declaration. 

1.2.2.S. Casts 

Consider the assignation: 
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(E6) pointer := marIlyn; 

Here the value referred to by pointer (a ref amode object) is superseded by 
the value yielded by marIlyn (its a priori value; of course there is no 
dereferencing in this syntactic position; the required mode is ref amode). 

What happens is: 

L!!!!!,llyn 

ref ref amode ref amode 

ref amode 

I 
amode 

Now the value referred to by pointer refers to the value referred to by 
marIlyn (describing indirect addressing in a natural language always leads to 
muddling sentences). Observe the resemblance with the situation in E2, we do 
the same thing at one reference level higher. 

We could also have achieved this in the declaration of pointer, again by an 
initialized declaration. 

(E6*) ref amode pointer := marIlyn; 

To make things workable on the higher reference-to-something levels, we 
often need dereferencing in syntactic positions where coercion cannot do 
it for us; for example in the LHS of an assignation. In a reference-to­
reference-to-MODE, we have at least two name levels, and we have to make 
clear which name is meant (how far down we want to assign). In E6* 
(pointer := marIlyn) the value assigned is the ref amode. 

Now suppose we want to assign the amode value of object1 0 object2 to 
the variable referred to by pointer (which is, after E6, the variable marIlyn). 
We cannot do it without further preface. pointer is one ref above the level at 
which we want to assign. 

Now the "preface" is a remarkable little magic wand termed a 'cast', which 
provides in many situations where coercion fails. 
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If we now write: 

(E7) ref amode ( pointer) := objectl 0 object 2 

the LHS is a cast obtaining a ref am ode value from pointer (dereferencing it 
once), which is (after E6) the variable yielded by marllyn. 

What happens is: 

ref ref amode 

1.2.3. The metanotion MODE 

In this language a mode is something you can define (declare) yourself in 
terms of other, already defined, modes (see 1.3.3.1). In the Report [R 1.2.1] 
you will find a set of metaproduction rules for "MODE", defining an infinite 
number of possible modes. They are all derived from the primitive modes: 

bool ,char, int, real, bits, bytes (see also Section 2.1.1) 

There is also a special mode void (implying no value at all) which can turn up 
as the yield of a procedure (4.2.1) and also as the resident value of a union 
(5.6.1). 

(Occasionally, we shall follow the syntatic style of the Report, as we 
already did on some occasions, writing for instance "reference-to-reference-

. ----------- -------
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to-MODE-identifier". We do so just to point out that for these "notions" 
exist certain production rules in the syntax, by which they are defined· 
ultimately as sequences of symbols. You can have some confidence that the 
intuitive meaning of these notions is in good accordance with their 
syntactic coherence and the meaning imposed upon them by the semantics 
of the language. Certain parts of notions are written in capital letters. For 
such "metanotions" exist separate metaproduction rules, defining them in 
terms of other notions. Some of these metanotions stand for an infinite 
number of other notions, which is the case with "MODE". Some others 
cover only a finite number. 

There is no reason to worry about the syntax, but in the long run you 
might appreciate our attempts to break you softly to the syntactic saddle 
and the metanotional stirrups of the Report. 
In this informal Introduction "amode" stands for "a mode" (you may 

conceive amode as a declarer for some, not specified, MODE). We shall also 
use indications like bmode, umode, zmode. For all these declarers you may 
substitute any MODE-declarer derived from the primitives, with the assistance 
ofthe symbols: 

ref 
proc 
struct 
"[" arid "] " 
union 
long and short 

(1.2.2) 
(1.2.3 and 4.2.1) 
(Sections 1.4.1 and 2.4.1) 
(Sections 1.5.1 and 2.5.1) 
(Sections 1.6.1 and 2.6.1) 
(Sections 1.7.1. and 2.7.2) 

We have already met marilyn and her sisters marl,2,3Iyn who all yield ref 
amode objects. We shall soon meet also their cousins mar u lyn mar v lyn and 
other mar-vellous ladies. However, we shall in the sequel substitute for.amode 
other declarers (even ref amode), and all the girls will then follow the new 
fashions. We trust that you will recognise them in their other moods. 

1.2.3 .1. 'proc modes 

In this section we consider the case in which we substitute for amode the 
declarer of a procedure with parameters delivering a value or not. We mainly 
do so to elucidate further the principle of identity, which is the main subject 
of 1.2. A more complete discussion of declarations in which procedures are 
involved will be found in 4.2. 

All values of mode PROCEDURE are routines. A routine is the internal 
equivalent of the sequence of symbols which comprises some routine-text. In 
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a call this routine is activated. In a routine we can make use of formal­
parameters; the actual-parameters are then supplied when the routine is 
called. It is not without reason that the LHS of an identity-declaration is 
denominated as the "formal-parameter", and the RHS as the "actual­
parameter". The fact is that the identity-declaration states very precisely 
what happens when an actual-parameter is supplied, be it in a procedure call 
or in a formula. 

A routine can be denoted by a routine-text, in much the same way as, for 
instance, "true" may denote the value of this sentence. In the denotation of a 
routine with formal-parameters we find the formal-PARAMETERS-pack, a 
sequence of formal-parameters separated by commas" ,". 

Declarers for procedures with parameters (see also 4.2.1) have the form: 

not returning a useful value: returning a zmode value: 

proc ( umode ) void proc ( umode ) zmode 
proc ( umode , vmode ) void 
proc ( umode , vmode , wmode ) 

proc ( umode , vmode ) zmode 
proc ( umode , vmode , wmode ) 

void zmode 

etc. etc. 

We now reconsider: 

(E1) amode thing = marIlyn; 

We take for amode the declarer: 

(E8.1) proc ( umode , vmode ) zmode 

and for marIlyn the routine-text: 

(E8.2) (umode u, vmode v) zmode: XXXXX 

in which we find the formal-PARAMETERS-pack ( umode U , vmode v ), 
corresponding to the ( umode , vmode ) in E8.1. 

We thus obtain the identity-declaration: 

(E8) proc ( umode , vmode ) zmode thing = 
( umode U , vmode v ) zmode: XXXXX; 

This, however, seems to contain some redundancy, and it may therefore be 
replaced by the contracted form: 

(E8*) proc thing = ( umode u , vmode v ) zmode: XXXXX; 
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The result of the elaboration of the 'routine-identity-declaration' E8* is 
that (a copy of) the routine E8.2 is ascribed to thing. Observe that the 
XXXXX is not elaborated at this stage. The result of the elaboration of E8* 
may be depicted as below: 

proc ( urnode , vrnode) zrnode 

( urnode u , vrnode v) 

zrnode: XXXXX 

1.2.3.2.1. The supply of the actual parameters (call by value) 

Calling the thing of E8 *, we have to supply an actual-umode-parameter 
and an actual-vmode-parameter. Let mar u lyn be a umode variable and 
mar v lyn a vmode variable. If we now "parametrize" thing by writing the 
actual-PARAMETERS-pack (mar u lyn, marv lyn) right behind thing, we 
obtain the procedure call: 

(E9) thing ( mar u lyn, mar v lyn ) 

To elaborate this, we must first do some transformation of the routine 
(E8.2) yielded by thing: 

(E8.2*) zmode ( umode u = ~, vmode v = ~; XXXXX ) 

The "~"s are only there as locum tenens for the actual-MODE-parameters; 
we will now get rid of them by replacement with the corresponding actual­
parameters. 

The result is the cast: 

(EIO) zmode ( umode u = mar u lyn , vmode v = mar v lyn ; XXXXX ) 

This cast is then elaborated, yielding a zmode value which is then the value 
returned by the call: 
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If, for instance, mar z lyn is declared to be a zmode variable, then you may 
assign: 

(E9*) mar z lyn := thing ( mar u lyn , mar v lyn ) 

which, in fact, elaborates into: 

(ElO*) mar z lyn := zmode ( umode u = mar u lyn , vmode v = mar v lyn ; 
XXXXX) 

1.2.3.2.2. The supply of the actual parameters (call by reference) 

Observe that in EIO you cannot assign to the formal-parameters u and v; 
the identity-declarations in ElO are of type EI; u and v are constants, copies 
of the values referred to by mar u lyn and mar v lyn respectively. This 
situation has some similarity to "call by value" in some other programming 
languages. 
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If you want to assign a formal-parameter, you have to declare it to be a 
reference-to-MODE; the replacement action then leads to an identity­
declaratton of type E2 (equivalence, two names referring to the same instance 
ofa vahle). 

Consider, for example, the procedure declaration: 

(Ell) proc ( ref zmode , umode , vmode ) void assign thing = 
( ref zmode z , umode u , vmode v ) void: z := XXXXX 

or, contracted: 

(Ell *) 

The call: 

(EI2) 

proc assign thing = ( ref zmode z , umode u , vmode v ) void: 
z :=XXXXX; 

assign thing ( mar z /yn , mar u /yn , mar v /yn ) 

elaborates into: 

r­
I 
I 
I 

I 
I 
I 
I 
I L ________ -, 

I 
vmode I 

z xxxxx 
\1 

zmode 
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The call El2 is equivalent to the cast: 

(E12*) void ( ref zmode z = mar z lyn , umode u = mar u lyn , 
vmode v = mar v lyn .. z := XXXXX ) 
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It is important to observe that the first identity-declaration is of the type 
E2. Its effect is that, by its elaboration, a copy of the name yielded by the 
actual-parameter mar z lyn is ascribed to the formal-parameter z. The result is 
that z and mar z lyn both refer to the same zmode value. Consequently, 
assignation to z within the routine has the same result as assignation to 
mar z lyn. This is exactly what we wanted to achieve. 

Conforming to the domesticated terminology of a "call by value", we 
might refer to the elaboration of a reference-to-MODE-parameter as a "call by 
reference" . 

The second and third declarations ascribe constants to u and v, copies of 
the values referred to by mar u lyn and mar v lyn respectively; these actual­
parameters are "called by value". 

1.2.3.2.3. The supply of the actual parameters (other possibilities) 

Now we know exactly what happens to the actual-parameters in a 
procedure call, we shall find no difficulties in other applications of the 
principle of identity. For example: 

Suppose you want to call assign thing, but you are only interested in the 
elaboration of the routine (for its side effects, for instance) but not in the 
implied assignation to the first parameter. Then you may call: 

(EI3) assign thing ( loe zmode , mar u lyn , mar v lyn ) 

which elaborates into: 

(E13*) void f ref zmode z = loe zmode , umode u = mar u lyn , 
vmode v = mar v lyn ,. z :=XXXXX) 

and see what happens. The first identity-declaration is now of type E3; a 
variable oflocal scope is ascribed to z. The value in which you were not 
interested is assigned to this local variable and disappears when the 
elaboration of the routine is completed. 

Suppose the value of, for instance, mar v lyn does not matter under some 
circumstances, and you have no vmode value at hand in the range where you 
want to call assign thing. Then you may call: 

(E14) assign thing ( mar z lyn , mar u lyn , skip) 
I.I.A.-4 

--~--~--~-~--------~ 
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Now, when this call is elaborated, the textually third "-" in the 
transformed routine is replaced by skip. A skip happen~ to be a very docile 
little dud: i! always delivers an undefined value of the required mode without 
any further action. 

1.2.4. Summary 

For their importance in this language, we review briefly the constructions 
El, ---, E6. Ascribe them to identifiers in your own memory: 

recommended form: extended form: 

amode thing = marIlyn; amode thing marllyn (E1) 

ref amode name = marIlyn; ref amodename marllyn (E2) 

loc amode aname ref amodeaname loc amode (E3) 

loc amode aname := marIlyn; ref amodeaname loc amode ;= 

marllyn (E4) 

loc ref amodepointer ; ref ref amode pointer = loc ref amode ; (E5) 

Ioc ref amode pointer ;= marIlyn; ref ref amode pointer = loc ref am ode := 

marllyn (E6) 

where the locs in the left hand column may be omitted. 

And remember: 

(E1) thing does not yield a name and you cannot assign to it (provided, 
however, that amode does not happen to be a mode-indication for a 
refbmode). . 

(E2) name yields .the same name as marllyn; assignation to name has the 
same result as assignation tomarllyn and vice versa. 

(E3) aname yields a new name, different from all other names (that is 
what the local-generator achieves) and you can assign to it. 

(E4) aname yields a new name (variable) and is initialized by assigning the 
value referred to by marllyn to it. 

(E5) pointer yields a reference to a name (a variable name or name of a 
name); you can assign a name to it. 

(E6) pointer yieldsa.reference to a name and is initialized to refer to the 
name yielded by mar llyn. 

Vertical readers, please tum to 2.2. 
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1.3. Symbols, modes and operators 

1.3.1. Representations 

A 'program' is defined to be a sequence of 'symbols'. Consider for 
example: 

begin real x, y, z; 

end 

read (x); read (y); x := abs x; y := abs y; 
z := (x + y)/2 - sqrt(x xy); 
pn'nt (z) 

This piece of program begins with the symbol "begin" followed by the 
sequence "real" "x" "," "y" "," "z" ";" "read" "(" "x" ")" ";" and so on. 
Typographical display features, such as blank space, change to new line, and 
change to new page have no significance in the language. Strictly speaking 
"begin", "real", "x", "," etc. are not themselves symbols; they rather 
represent them. 

In the Report the representation(s) of symbols is strongly recommended, 
rather than explicitly prescribed. For the benefit of available charactersets, 
other repres(;1ntations may be chosen for a specific implementation of the 
language; one and the same implementation might even accept different 
representations from different input-devices. The given piece of program 
could for example look like: 

or even: 

'BEGIN' 'REAL' X, Y, Z; 

'END' 

READ(X); READ(Y); X:= 'ABS' X;Y:= ABS' Y; 
Z := (X + Y)j2 - SQRT(X x Y); 
PRINT(Z) 

.BEGIN .REAL X, Y, Z; 

.END 

READ(X); READ(Y); X : = .ABS X; Y:=.ARS Y; 
Z : = (X+Y)/2-SQRT(X*Y); 
PRINr(Z) 

On the other hand, if small letters and capitals are both available, one 
could for instance reserve the capitals for the construction of representations 
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for special symbols such as the begin-symbol, the real-symbol etc. If suitable 
tokens are available one could also choose other representations for the 
go-on-symbol and the becomes-symbol and the example might then look like: 

BEGIN REAL x, y, z ~ 

END 

read(x) ~ read (y) ~ x +- ABSx ~ Y +-ABSy ~ 
z +-(x + y)/2 - sqrt(x xy) ~ 
print(z) 

In this Informal Introduction we shall always follow the recommendations 
of the Report [see R 9.4]. Where the Report suggest alternatives, we shall 
follow our own taste which may, however, depend upon the context. A 
complete list of the alternatives recommended by the Report is given in 
Appendix I and a particular recommended standard is given in Appendix 5. 

1.3.2. Symbols, bold words and comments 

In this language a rather extensive set of symbols is required, and 
moreover, we need some expedient for constructing aI). arbitrary number of 
new symbols. 

A decisive point of course is the set of characters, types and marks 
producible by your input equipment; or, to, state it more precisely, 
distinguishable by the input devices on your computer. If this happens to be 
you, then there is hardly any problem, thanks to the productive power of 
human handwriting and the perceptive qualities of the human eye. With an 
automaton there may, however, be some difficulty. Usually its senses are only 
able to distinguish a rather small set (some power of two) of different 
combinations of punched holes or magnetized spots in some material. In that 
binary form usually at least one font of letters (we represent them in lower 
case), ten digits, the punctuation marks".", ",", ":''.. ";" and "''', one pair of 
brackets "(" and ")" and a more or less generally accepted set of marks, such 
as "+", "-", "x" (or "*"), "I" and "=", can be represented. In more 
favourable cases, the equipment may afford more luxury in the form of a 
second case ofletters andlor some selection of types such as "<", ">", "[", 
"]", "V", "A" and perhaps even "i", "t", "10" etc. In particular an 
underlining" _" and a vertical stroke" I" may be available and can be used to 
assist in the construction of other tokens like, for instance, "=1=". ""';;", "~" 
etc. 

Nevertheless, this language needs much more than all the marks' 
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mentioned, and thus, even for the representation of the finite set of required 
symbols, an expedient to construct symbols from available marks appears to 
be essential. The Report recommends [R 9.4.2.2.b] that the extra symbols, 
or "bold words", be constructed similarly to identifiers, but distinguished 
from them by means of a "stropping" convention. The strop mechanism may 
be open- and close-apostrophes, or a period used as "boldface shift", or 
underlining, or bold type face, or the use of upper case letters (Le. the 
capitals): 

"begin" is an identifier or 'tag' (see 1.4) 

but: 

. "'begin''', ".begin", "begin", "begin" or "BEGIN' 

might be used as a stropped word to represent the begin-symbol. 
Here we adopt stropping by bold type face. In this notational convention, 

a sequence of marks like "notification" is to be considered as one indivisible 
symbol and definitely not as a sequence of the symbols "not", "if", "i", "c", 
"at", "i" and "on", even though "not", "if", "i" and "at" happen to be 
proposed representations for required symbols, and "c" and "on" very well 
might be operators or mode-indications. Whether you want to consider such a 
construct as an ill chosen representation (in particular if such a splitting 
happens to make sense) or not is related to your inclination to meditate on 
problems concerning the amount of blank paper needed to separate spots of 
ink. Anyhow, you will be wasting your time, because the Report dictates 
[R 9.4.2.2.b] that, even though blank space, change to a new line and the 
like normally have no meaning in this language, you must use them to resolve 
this ambiguity by writing not if i c at i on if that is what you really want. 
Otherwise, the bold word notification is to be assumed. 

We are thus able to construct as many symbols as we need. For example 
"isnt" for "::j::" and "at" for "@" if we are unable or unwilling to produce or 
use "::j::" and "@" on our input equipment. In particular we are now in the 
position to introduce as many bold words as we want, and we really need 
them for: 

1) MODE-mode-indications (see 1.3.3.1) 

for example we used am ode as an amode-mode-indication 

2) operators (see 1.3.3.2 and 3) 

For the representation of an operator, it will be appropriate to use "+", "x", 
"1\" etc. if the action defined can be considered as an "addition", 

... _---_._---_ ....... _-------
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"multiplication" or "conjunction" in some technical sense. Moreover, 
composite symbols such as +x, >=, +:=, +x:= are admissible [R 9.4.2.1]. For 
the rest we shall use bold words for operators as well. 

A particular role is played by the comment-symbol represented by 
"comment", "co", "#" or "f' and also, for special puposes, by "pr" or 
"pragmat". These symbols serve to step outside the language for a while. 

A 'comment' consists of two matched comment-symbols enclosing an 
arbitrary sequence of characters, marks and types, not containing that 
comment-symbol. Thus comment this is a comment comment and co 4' co are 
comments, but co this is not a commentd'. is not. Comments can be inserted 
at any place in a program except inside an identifier, a bold word or a 
denotation (S.1.1.1 and S.S.1.1). 

A specific implementation may distinguish human comments, between 
two comments or 4's, from pragmats between two pragmats or prs. 

A (human) comment then serves to supply additional human information 
for the possibly human reader. 

A pragmat may contain a message for a specific compiler (for instance to 
inform it to compile in some special mode or sub-language or to subjoin the 
program to some library or something), or for an operating system (for 
instance to inform it concerning certain required equipment or availability of 
hardware features, certain libraries etc.). A pragmat will usually be subject to 
the rules of a specific command language. 

Consider the following program: 

pr ALGOL 68 pr 
. begin comment this example is based on the revised 

report on the algorithmic language 
algol68 section 9.2; end of comment 

proc pr NONREC pr pr = void: pr; 
pr 
comment if NONREC means "nonrecursive compilation", 

whatever that may be, then we got into 
trouble comment 

end pr RUN pr 4'??? 4' 

In the standard-prelude (the standard declarations) of the Report a special 
comment-symbol "c" is used to express that the so called "pseudo-comment" 
should be replaced by a representation of a declarer or closed-clause suggested 
by that comment [R 10.1.2 Step 7] . In this Informal Introduction we shall 
follow this convention (e.g. in 3.7.2.ES). 
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1.3.3. Other declarations 

Besides the identifier-declarations (1.1.2) we have: 

1) mode-declarations 
2) operation-declarations 
3) priority-declarations 

1.3.3.1. Mode-declarations 

(1.3.3.1) 
(1.3.3.2) 
(1.3.3.3). 

A mode-declaration has the form: 

mode MODE-mode-indication = actual-MODE-declarer 

For example, in: 

(E1) mode pram = proc (umode, vmode) zmode; 
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the pram-mode-indication pram is declared to stand for the actual-declarer, 
which is proc (umode ,vmode) zmode, and now, by declaring for example: 

(E2) loe pram puvz ; 

you ascribe to puvz a name referring to a value of the mode pram. which is a 
routine with a umode and a vmode as parameters, returning a zmode value: 

We may now assign to the procedure variable puvz, for example: 

(E3) puvz := thing 

where thing ~s declared as in 1.2.3.1.E8 to yield a proc (umode ,vmode) 
zmode. What happens in the elaboration of E3 is: 
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thing 

zmode: XXXXX 

In fact we are now repeating the things we discussed in 1.2. 
By virtue of the mode-declaration E1, the variable-de,claration E2 

"develops" into: 

(E2*) loe proe ( umode , vrnode ) zmode puvz .. 

Ch.1.3.3.1 

"to develop" is a technical term, which should be distinguished from 
"to elaborate". 
In "elaboration" actions on internal objects are performed. 
In "development", a mode-indication is replaced by its actual-declarer. 

(One could say that "elaboration" is performed by the object code (at run 
time). while "development',' is an action of the compiler.) 

(In E3 the semantics of the lanugage state that the pram yielded by thing 
is copied into the pram referred to by puvz. As in other situations where 
copying is prescribed, one should remember an important remark in Section 
2.1.4.1.a of the Report: "Any of these actions ... may 'be replaced by any 
action ... which causes the same effect". In particular where routines are 
manipulated, the implementor usually has other expedients at his disposal 
which "cause the same effect" as copying. The same applies to many other 
situations of this kind, particularly whl;:re copying might appear to be 
involved.) 

You may declare a mode-indication as a convenient abbreviation for 
~ertain declarers (as, for instance, was the case in E1 and E2). You could do 
without them in these situations, at the price of time and ink. 

There are, however, very interesting and important situations in which 
mode-declarations are indispensable for expressing certain essential 
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interrelations of objects in the memory. Some of these more involved 
mode-declarations will be 4sed in qther sections (see 1.4). 

Circular mode-declarations like: 

mode amode = amode.; 
mode amode = bmode ,. mode bmode = cmode ; 

mode cmode = amode ,. 
mode amode = ref amode ; 
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might bring the compiler into difficulties and are apparently of no use. 
Consequently, they are regarded as not well-formed (2.4.3). However, there 
are constructions which might puzzle you at first sight, because they have an 
appearance of circularity (in fact are circular in some aspect), but nevertheless 
are very useful and can (easily) be implemented. Of course, such mode­
declarations are well-formed and are not excluded. 

1.3.3.2. Operation declarations 

There are two kinds of operators: 
monadic, declared as: 

(E4) op ( umode ) zmode m = ( umode u ) zmode: XXXXX; 

or, by contraction: 

(E4*) op m = ( umode u ) zmode: XXXXX; 

and dyadic, declared as: 

(ES) op ( umode , vmode ) zmode 0 = 

( umode u , vmode v ) zmode: XXXXX,. 

or, by the same contraction: 

(ES*) op 0 = ( umode u , vmode v ) zmode: XXXXX ; 

Observe the resemblance to procedure declarations. Instead of declarers 
like proc ( umode ) zmode and proc ( umode , vmode ) zmode we have here 
op ( umode ) zmode and op ( umode , vmode ) zmode. 

The result of the elaboration of an operation-declaration is that (a copy 
of) the routine is ascribed to the operator. For example, E5 (ES*) elaborates 
into: 
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op ( umode , vmode) zmode 

(umodeu. , 

vmode v) 

zmode: XXXXX 

Ch.1.3.3.2 

In contrast to procedures, an operator can only be defined to yield a 
routine and not to refer to one. Consequently, the uncontracted forms (as in 
E5) are rarely of practical use, and we shall never write one again. 

If mar z lyn is declared to be a zmode variable; then the assignation: 

(E6) . mar z lyn := mar u lyn o mar v lyn 

elaborates into: 

(E6*) mar z lyn := zmode ( umode u = mar u lyn , vrnode v = mar v lyn; 
XXXXX) 

The cast in E6* is then elaborated, yielding a zmode value which is 
returned by the formula: 

~ode(wnode~--~._~4 

~ 
, vmode . 

Observe that this picture is almost identical to the pi9ture of Section 
1.2.3.2.1. 
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There is, however, a fundamental contradistinction to procedures. For one 
and the same operator more than one declaration may occur within the same 
range. Which one then applies depends entirely on the mode(s) of the 
operand(s) in the particular formula in which the operator is applied. 

For example: 

(E7) op m = ( amode a ) amode: XXXXX .. 
(ES) op m = (bmode b) bmode: w.v.w«WW .. 
(E9) op 0 = ( amode aI, a2 ) amode: W~ .. 
(EIO) op 0 = ( bmode bI; b2 ) bmode: ~ .. 

amode am, amI, am2 .. bmode bm, bmI, bm2 .. 

amI := m am2.. ~ E7 applies 
bmI := m bm2.. ~ ES applies 
am := amI Oam2;· ~ E9 applies 
bm := bmI Obm2 ~ EIO applies 

Observe that it is determined during the compilation of the formula which 
operator, i.e. which routine, applies. 

l.3.3.3. Priority declarations 

All monadic-operators have the same, the highest, priority. 
For dyadic-operators nine priority levels can be declared by a priority­

declaration of the form: 

prio 0 = DIGIT-token 

in which "DIGIT-token" produces one of the nine digits" I" to "9". 
In a formula with dyadic-operators of equal priority like: 

(Ell) am 0 amlO am2 0 am 

the implied bracketing is: 

(Ell *) (( am o amI ) Oam2) Oam 

Priority-declarations may impose another (implied) bracketing: 

(EI2) prio 0 = 6, 0 = 7, x = S ; 

the bracketing implied in th!) formula: 

. (E13) a x b 0 c x dOe 0 fO g x hOi x j x k 0 I 
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is: 

(E13*) (( ((a x b)O(c x d)) o(eOf) )o( (g x h)O( (ixj)x k))) of 

Unless explicit bracketing requires otherwise, monadic-operators are 
elaborated first, i.e. they have the highest priority: 

(EI4) am := m amI 0 m am2 

is parsed like: 

(EI4*) am := ( m amI ) 0 ( m am2 ) 

Ch.1.4 

Of course it would have been possible (and in fact has been investigated) 
to declare different priority levels for different monadic-operators. However, 
it makes matters very awkward without much gain. The main root of this 
smallness of gain is that, if ml, m2, ---, mn were monadic-operators with 
different priorities, nevertheless only one parsing is conceivable for the 
formula ml m2 --- mn operand, Namely: 

( ml ( m2 ( --- ( mn operand) --- ) ) ) 

The gain can thus be found only in combination with dyadic-operators. There 
is only one situation in which you might feel sorry (see 5.1.3). 

Vertical readers, please tum to 2.3. 

1.4. Stowed values, structures 

1.4.0. STOWED values 

In this language values (one or more) can be STOWED (Le. collected) to 
form a value of a new mode. The metanotion "STOWED~' stands for: 

1) 'structured with FIELDS mode' 

or 

2) 'ROWS of MODE' 

corresponding to two entirely different systems of collecting: 

1) into a "structured value" 
2) into a "multiple value" 

(this section) 
(section 1.5). 
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In a multiple value you collect values of essentially the same mode, its 
"elements", each of which can be selected by a specific set of subscripts. The 
mode of a multiple value is 'ROWS of MODE' and covers the concept of 
"array" (or "vector", "matrix". "dimension", etc.) in other programming 
languages. 

In a structure you collect values of (not necessarily) different modes, the 
"fields" of the structure, each of which can be selected by a specific field­
selector. Structured values cover what in other programming languages are 
known under a variety of names like "records", "lists", "trees", "queues", 
"chains", etc. 

The important feature of structures is that values of different modes may 
be collect~d into them. In particular, one or more of the fields may be 
references to other values, in which way lists and trees of all kinds may be 
constructed. 

Anotherimportant feature, however, is that the selection ofa field in a 
structure may very well take place at compile time, whereas the"subscripts of 
an element in a multiple value are usually determined (computed) at run 
time. Therefore, even in situations in which multiple values are the only 
possibility in many other programming languages, in this language you will 
often use structures instead. A good example is the compl (see Section 2.4.4). 

Finally, the general concept of MODE allows you to build multiple values 
the elements of which are structures, and vice versa to build structures the 
fields of which are multiple values. 

1.4.1. Enumeration by tagging 

By a mode-declaration like: 

(EO) mode triple = struct ( umode first, vrnode second, wmode third) ; 

triple is declared to "specify" a new class (mode) of values, each of which is 
structured with three fields, a umode field first, a vrnode field second and a 
wmode field third. first, second and third are the 'field-selectors'. 

Syntactically a field-selector is a sequence ofletters and digits with a 
leading letter. It may look like an identifier but it is not. It is important to 
recognize clearly its function: 

A field-selector as such does not ¥ield any internal object. 
A field-selector is part of a declarer or of a selection; 

A triple object, as declared by EO, may be visualized as a box with a 
umode, a vmode and a wmode box within it, the fields of the triple. These 
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fields can be "pulled up" by their field-selectors first, second and third. We 
might imagine a piece of cord between the field and its tag: 

triple 

vrnode 

wrnode 

~L __________ ~ 

It is important to 
bear in mind that 
first, second and 
third are not names 
referring to the 
fields (see 1.4.1.1) 

Merely -to simplify our drawings we shall often write the selectors inside 
the boxes: 

_ triple 

umode 

[ first 

vrnode 

I second I 
wmode 

third 

1.4.1.1. Structured constants 

warning: our drawings serve 
to visualize internal 
objects and matters 
of elaboration; 

please do not 
confuse the selector 
in the box with the 
instance of a value 
in it. 

We now reconsider the three fundamental identity-declarations El, E2 and 
E3 of Section 1.2, in which we substitute systematically triple (as declared in 
EO) for amode: 

(E 1 ) triple thing = mar llyn .. 
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By El, a copy of the triple value referred to by marIlyn (which is itself of 
mode ref triple) is ascribed to thing: 

triple thing 

triple 
ref triple 

wmode 
\ 

third 

After this declaration thing yields a triple object and its fields can be 
selected separately by pulling them up by their tags: 

first of thing 
second of thing 
third -of thing 

selects 
selects 
selects -

the umode object, 
the vrnode object , 
the wmode ~bject . 

Because thing does not refer to a triple, you cannot assign to it. 
Consequently you cannot assign to its fields first of thing, second of thing and 
third of thing, which in their turn yield the fields of thing. 

In the declaration El, marIlyn is dereferenced, because thing is required 
to be of triple mode, and its fields are copied into the triple thing thus 
defined; the supersession is a triple action (three'fields are copied). But, in the 
reach of this aeclaration, whatever may happen to the fields of the triple 

--_._._-- -----------
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referred to by marllyn, nothing can happen to the fields of the triple yielded 
by thing. You may select them, you cannot change them;first of thing etc. 
are not names. 

1.4.1.2. Names of structures 

By the declaration: 

. (E2) ref triple name 

-triple 

urnode 

I first 

vrnode 

I second I 

wrnode 

I third 

mar llyn is not dereferenced (see 1.2.E2) as in EI, because the formal­
parameter requires a ref triple value. 

Clearly, name is a name, referring to the same triple object as marIlyn 
(two identifiers referring to the same internal triple). 

You may assign to name, for example: 

(E2*) name := mar2lyn 

by which assignation the triple object referred to by mar2lyn is copied into 
the triple object referred to by name (and by marllyn). 
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Moreover you can assign to the names: 

first of name, second of name and third of name. 

For example, the assignation E2* is equivalent to the collateral assignation: 

(E2**) ( first of name:= first of mar2lyn , 
second of name := second of mar2lyn , 

third of name . third of mar2lyn ) 

Recapitulating: 

but: 

first of thing, second of thing and third of thing 
yield the fields of the triple yielded by thing, 

first of name, second of name and third of name 
yield names which refer to the fields of the triple referred 
toby name. These are known as the "subnames" of name. 

1.4.1.3. Creation of new structures 

A new triple variable can be declared (see 1.2.E3) by means of a local­
generator: 

(E3) ref triple ·ample = loc triple; 

or by the more usual variable-declaration: 

(E3*) triple ample,' or loe triple ample,' 

What happens is essentially the same as in 1.2.E3**: 

umode 

I first 

vmode 

I second I 

wmode 

I third 
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Of course you can also initialize a thus declared neW triple: 

(E4) ref triple atriple = loc triple :=marllyn ; 

or more usually: 

(E4*) triple atriple : = mar llyn; 

You are not required by the syntax to declare a new mode like triple (EO) 
before you give identifier-declarations; that is, you may very well declare: 

(E3**) struct ( umode first, vmode second, wmode third) atriple ; 

In most cases, however, you will spare time and ink by a mode-declaration. 
Moreover, if you use structures to construct lists etc., the mode-declaration is 
indispensable (see 1.4.3). 

1.4.2. Different objects in one box 

The fields of a structure may be of different modes, but could also be the 
same. In the latter case it is often a matter of efficiency (or even convenience) 
whether you declare them in a structure or in a multiple value. You can stow 
as many values in a structure as you wish, but you have to enumerate them in 
the declaration by tagging the fields explicitly. The number of fields in a 
structure is determined statically (at compile time). The minimum number is 
one, the maximum depends only on your perseverance in writing them down. 

Of course the field-selectors in one structure must all be different. 
However, if it suits you, you may very well use the same sequence of symbols 
as a field-selector in different structures or even elsewhere as an identifier. 

Just to give you some impressions, consider: 

(ES) mode threeofakind = struct ( amode one, two , three) ; 

which is a contraction of: 

(ES*) mode threeofakind = struct ( amode one, amode two, amode three) ; 

And consider further: 

(E6) mode couple = struct ( man one, wife two ) ; 

(E7) mode largebox = struct ( amode one, two , three, 
bmode first, second, third, fourth, 

fifth, sixth, 
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cmode a , b , c , d , e , f, g , h , i , j , k , 
l,m,n,o,p,q,r,s, t,u, 
v,w,x,y,z); 

Now consider the variable-declarations: 

(E8) threeofakind one, two, three, four, five, six, seven, eight; 
couple romeo and juliet, tristan und isolde, 

daphnis et chloe; 
largebox a, b , c , d , e , f, g , h , i , j , k , I , m , n , 0 , p , q , r , 

s,t,u,v,w,x,Y,z; 

and observe that there are no ambiguities in: 

(E9) one of two, two of three, one of one, 
two of romeo and juliet, one of daphnis et chloe, 
one of t, t of t, 0 of 0, a of b , 
etc. 

There is no restriction on the modes of the fields in a structure; every 
mode is allowed (including structures, see 1.4.4). Consider, for example: 

(EIO) mode surprisepacket = 
struct ( umode umode , vmode vmode , zmode zmode , 

proc ( ref zmode , umode , vmode ) void proc ) ; 

and the variable-declaration: 

(Ell) surprisepacket s , sl , s2 , s3 .. 

and the assignations: 

(EI2) umode of sl := mar u lyn ; 
vmode of s2 : = mar v lyn ; 
proc of s := assign thing; 

By virtue of Ell, proc of s is a procedure variable, a reference to a proc 
( ref zmode , umode , vmode ) void to which we assign in E 12 the compatible 
routine yielded by assign thing (see 1.2.Ell *). If we now parametrize proc of s 
(1.2.3.2.1), it will be dereferenced to yield a routine which can be called (this 
will be discussed in 4.2.2.2). For reasons to be discussed later (5.5.1.3.E30) 
we must put brackets around proc of s before parametrizing it. 

Now you may fish out what happens by elaboration of the call: 

(EI3) ( proc of s ) ( zmode of s3, umode of sl, vmode of s2 ) 
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1.4.3. Chaining 

By declaring a field of a structure to refer to (to be the name of) another 
value, you can chain this structure to that other value. If, in particular, this 
other value is of the same mode as the structure, we are able to chain values 
of the same mode (i.e. to construct "queues", "lists", "trees" etc.). 

Consider: 

(E14) mode box = struct ( amode value, ref box next) ; 

This mode-declaration is one of those which have an appearance of 
circularity (see 1.3.3.1). You might think that it develops into: 

mode box = struct ( amode value, 
ref struct ( amode value, 
ref struct ( amode value, 
ref struct ( etc. ad infinitum 

This, however, is not the case. The box textually contained in ref box next 
in E14, is "shielded" by the struct and the ref (see 2.4.3 for the details). 
Therefore the compiler does not develop box (in this syntactic position). 

Consider the identity-declarations: 

(E1S) box a , b ,c , d ; 

The result of their elaboration will be: 

arnode amode amode amode 

B B ~ B 
ref box ref box ref box ref box 

8 8 8 8 

Observe that the field tagged next is of the same mode as the name 
ascribed to a , b , etc. There is not a tittle of infinity about the size of these 
boxes. 
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Let us first assign: 

(EI6) value of a := marllyn ; 
value of b := mar2lyn ; 
value of c := mar3lyn ; 
value of d := mar4lyn .. 

mar3 and 4lyn are ref amodes 
like their sisters (see 1.1.2.2). 

109 

Because a refers to a box, value of a is the subname referring to its amode 
field. Consequently, value of a yields a ref amode value and thus is an amode 
variable, which is why we can assign marllyn to it. The four mar lyns are 
dereferenced and their amode vruues are copied into the value of fields of the 
boxes referred to by a , b , c and d respectively. 

Much more interesting is to see what happens when we assign: 

(EI7J) nex t of a : = b .. 

By the same reasoning as above, next of a is the subname referring to the 
ref box field of the box referred to by a. Consequently, next of a yields a ref 
ref box value and thus is a ref box variable (is a variable name) (see ruso 
5.4.2). Therefore b in the RHS of the assignation is not dereferenced and the 
value yielded by b is copied into the field next of the box referred to by a: 

box box 

amode 

B 
ref box 

< next > 
The result is that we have chained the box referred toby a to the box 

referred· to by b via the nex t of field of the box a . 

. _---------_ ... _----_ ... 
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Similarly: 

(EI7.2) 

(EI7.3) 

nex t of b : = c ; 

nextofc:= d; 

BASIC CONCEPTS Ch.1.4.3 

Finally, we want to express that d is the last box in the chain. Then we 
must give a special value to its next of field, recording this fact. Such a value 
is nil, which is "a name referring to no value": 

(EI7.4) next of d := nil ; 

What we have achieved by the assignations El7 is: 

a b c 

ref box ref box ref box 

box box -box 

am ode 

EJ 

Let us now consider the assignation: 

(EIS) value of next of next of next ofa := marilyn 

next of a refers to b , 
next of b refers to c , 
next of c refers to d , 

box 

nil 

consequently, value of nex t of next of next of a refers to the amode field of 
the box referred to by d. It thus appears that EIS was a rather complicated 
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I 
I. 
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way of prescribing: 

(EI8*) value of d := marilyn 

In a mode as declared in El4 we can build single threaded lists. Of course 
we can chain in much more complicated ways. 

For example: 

(EI9) mode node = struct ( amode mainvalue , 
proc ( amode ) amode function, 
ref node north, east, south, west) ; 

(E20) node p, q, r, s, t, u, v, w; 

We may assign: 

(E21) mainvalue of p : = marilyn; 
etc. 
function of p := ( amode a ) amode: XXXXX; 
etc. 

(E22) north of p := q ; east of p := r ; south of p := s ; west of p := t ; 
north of r := u ; east of r := v ; south of r := w; west of v := r ; 
northofs :=p; east oft :=p; southofq:=p; westofu :=q; 
north of w := r ; east of q := u; south of u := r; west of r := p; 

east of s :=w ; west of w := s ; 

[]-"--~ -+----------+--~ [J 

You might now like to meditate on expressions like: 
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(E23) [unction of w := ( amode a ) amode: 
if mainvalue of w = a 

then mainvalue of north of w 
else ([unction of v) (main value of east of w) 

fi 

1.4.4. Pandora's boxes 

A field of a structure may be another structure with a field which may be 
another structure and so on: 

(E24) 
(E2S) 
(E26) 

mode pandora = struct ( amode a , pando p ) ; 
mode pando = struct ( amode a ,pan p ) ; 
mode pan = struct ( amode a , ref pandora next) ; 

By virtue of E2S and E26, E24 develops into: 

(E24*) mode pandora = struct ( amode a , 
struct ( amode a , 

); 

struct ( amode a , 

)p 

ref pandora next 
)p 

Intentionally, we chose the selectors of the fields of pandora and its inner 
fields somewhat confusingly, just to point out that such is allowed (though it 
may not be wise). 

(E27) pandorap; 

Now observe that: 

but: 

as are: 

a ofp 
a ofp ofp 
a ofp ofp ofp 

refers to an amode value, 
refers to an amode value, 
refers to an amode'value , 

a of p of p of p of p is meaningless 

next ofp 
next ofp ofp 

because a pandora has no next of field, 
because a pando has no next of field, 

I 

I 
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but: 

next ofpofp of p 

as do also: 

BASIC CONCEPTS 

refers to a pandora 

next of p of p of next of p of P of p , 
next of p of p of next of p of p of next of p of p of p , etc. 

pandora 

pandora 

arnode 

D 
pando 

amode 

D 
pan 

~ 
amode 

D 
Ci>-'- ref pandora 

next ) 

! 
pand 

The well-formed rule (2.4.3) prohibits circular definitions like: 

mode pandoravel = struct ( am ode a , pandoravel.p ) ; 

ora 

113 

Here pandoravel is not shielded by a ref. The compiler cannot do anything 
sensible with this pandoravel. Obeying such a mode-declaration would result 
in an endless loop of development. 



114 BASIC CONCEPTS Ch.1.S 

Observe that, as soon as a ref stands in front of some declarer, the only 
thing the compiler has to do is (to be prepared) to reserve a location for 
holding a name; that is why a declarer following a ref in a struct can be 
shielded. 

Vertical readers, please tum to 2.4. 

1.5. Stowed values, mUltiples 

1.5.1. Multiple values and descriptors 

A multiple value (or "multiple" for short) consists of: 

1) zero, one or more values, all of the same mode. 
These values are the "elements" of the multiple. Each element is 

selected by a set of one or more integers, its "subscripts". In this 
section, we use h , i, j , k, m , n , ml , nl , ... as units yielding an 
integral value. 
2) a "descriptor". 

A descriptor describes the subSCripts that are required to select an 
element-how many of them are needed and what bounds are to be set 
on their values. 

Examples of the modes of multiple values are: 

[] amode [, ] amode [" ] amode [", ] amode 

which should be pronounced as 'row of am ode', 'row row of amode', 'row 
row row of amode' and so on, or, in general, as some 'ROWS of MODE' 
where "ROWS" stands for as many times 'row' as you may require. The 
number of 'row's in the mode is the number of subscripts needed to select an 
element, and "MODE" (am ode in the examples) specifies the mode of each 
element. 

Syntactically, [ ] amode, [,] amode, etc. are formal-ROWS-of-MODE­
declarers (you can use them in formal-parameters). Actual-ROWS-of-MODE­
declarers (for use in generators and therefore also in variable-declarations) are 
more complex, since they must contain the descriptor of the value to be 
generated. Here"are some examples: 

[m : n] amode 4- one 'row' in the mode 4-
[k: k, m : n] amode ¢ two 'row's in the mode d' 
rml : nl ,1112: n2, m3 : n3] amode d' three 'row's in the mode 4-
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and even 

[k: k] [m : n] amode ¢ one 'row', but the 'MODE' also has a 
'row' in it, giving 'row of row 
of amode' II' 

m : n, k : k, etc. are "boundpairs"; [k : k, m : n 1 specifies the complete 
descriptor. Each boundpair consists of a lower-bound (to determine the 
lowest acceptable subscript), a colon, and an upper-bound (to determine the 
highest acceptable subscript). If the upper-bound of any boundpair is lower 
than the corresponding lower-bound, then the descriptor is "flat" and the 
multiple value consists of zero elements. 

We shall bring multiple values into our pictures in the following way: 

[I amode 

k 

h 

h+l 

k-l 

k 

It is important to realize that the 
descriptor belongs to the multiple value. 
You even have a certain access to it (see 
1.5.5). 

n 
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1.5.2. Indexing 

To select a "subvalue" of a given multiple (Le. a value which is a subset of 
that given multiple value), we use 'indexers'. The smallest subvalue is one 
individual element of the multiple, which is obtained by "subscripting". All 
other subvalues can be obtained by "trimming"; the mode of a subvalue thus 
obtained is some 'ROWS of MODE'. 

1.5.2.1. Indexers 

An indexer consists of a sub-symbol" [", followed by one or more 
'trimscripts' separated by comma-symbols followed by a bus-symbol "]" (see 
below). A trimscript is a trimmer-option (Le. a 'trimmer' or EMPTY) or a 
'subscript'. Examples: 

[i] [i,j] [i,j,k] 

[i : j] 
[ i: ] 
[ : j] 
[ ] 

[h : j, i : k] 
[ :j,i:k] 
[ , i : k] 
[i: , : k] 
[ ] 

i , j and k are subscripts; 
a subscript may be almost any unit 
yielding an integral value (see 5.5 .1.3) 
all is and h s are lower-bounds , 
all j sand k s are upper-bounds; 
all such bounds must again yield 
integral values; 
i : j , h : j , i : k etc. are trimmers 

If a bound is omitted, then its value is that of the corresponding bound in 
the descriptor of the given multiple. If both bounds are omitted, then the 
colon may be omitted also. 

Examples in which we find trimscripts of both kinds in an indexer are: 

[h,i:j] [ ,k] [Ilk] 
[h,i:j,k] [ :h,i,k: 

A special kind of a trimmer is a trimmer with a revised-lower-bound: 
, 

[ i : j at h ] 

or or (in another notation) 

[i:j@h] 

the lower-bound of the multiple subvalue 
trimmed by i : j gets a new value which 
is the value of h ; a revised-lower-bound 
must again yield an integral value. 

In the absence of a revised-lower-bound (but not when both bounds and 
the colon are omitted also), the multiple subvalu~ gets a revised lower-bound 
of 1. 

Semantically, an indexer is pretty close to a descriptor. In fact, unless all 
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its trimscripts are subscripts, it describes a multiple (sub)value in much the 
same way that a descriptor does. We give two examples: 

1.5.2.2. Subscripting 

the slice [i • i] 

m m+l i 

mdi"t!~ 
n-j n 

I 
I / , 

I I 
I 

if I 
I 

I ~ 
- - --

= =:: :~:: :::-------~ ~: -- - -
- - -- - -- - --

I I 

I I 
I I 
I 

k I I 
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1.5.2.3. Trimming 

p q 

/ 

[ I amode 

1.5.3. Identifier declarations for multiples 

We could discuss, systematically again, the three fundamental identity­
declarations El, E2 and E3 as elaborated for the general amode in Section 
1.2, substituting now for amode all kinds of 'ROWS of MODE'. An 
exhaustive discussion would, however, be rather boring without giving 
substantially new information. We shall, therefore, confine ourselves to a 
brief survey of many possibilities and a few remarks on mixed matters. 

(E3.l) ref [ ] amode arow = loc [m : n] amode ; 
t t 

formal-declarer actual-declarer 

n 
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or, as usual: 

(E3.l *) [m : n] amode arow; 

The identifier arow will now yield the name referring to a row of amodes, 
the descriptor of which is [m : n] . 

(E3.2) ref [ , 1 amode arowrow = loc [h : k, m : n] amode; 

or: 

(E3.2*) [h: k, m : n] amode arowrow; 

The identifier arowrow will now yield the name referring to a row row of 
am odes, the descriptor of which is [h : k , m : n] . 

In both declarations E3.l and E3.2 a new multiple value will be generated 
onto the stack; together with these multiple values, their descriptors will be 
made. 

E3.2 elaborates into: 

7"I~ode! ref I, I ~od, "T,oWJ 

re~, 1 amode -] --- ref [ , 1 amode 
./ 

[,1 amode ~ 

------ n 

\ 
k 

An example of an El-type identity-declaration for multiples is: 

(El) [, ] amode multipleconstant = arowrow ; 

in which the multiple value (and its descriptor) referred to byarowrow is 
ascribed to the identifier multipleconstant. 
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An example of an E2-type identity-declaration for multiples is: 

(E2) ref [ ] amode namultiple = arow .. 

in which the name yielded by arow is ascribed to the identifier namultiple 
(which is thus made to refer to the mUltiple value referred to by arow). 

By virtue of El you cannot assign to multipleconstant (being no name) 
and by virtue of E2 an assignation to namultiple results in assigning to arow. 

namultiple ~ or arow ~ := anotherow 

Here, anotherow must of course yield a [ ] amode value, but it must do 
more than that-the bounds must match also. The bounds of the location 
referred to by arow (and so by namultiple) are [m : n]. Therefore the bounds 
of another ow must be [m : n] also-otherwise it will not fit. 

However, we can declare a "flexible" name to which the restriction does 
not apply: 

(E3.3) ref flex [] amode arowflex = loc flex [m : k] amode .. 

or: 

(E3.3*) flex [m : k] amode arowflex; 

arowflex is a flexible name, and its mode is ref flex [ ] amode (different from 
the mode of arow). Now, when we assign 

arowflex := anotherow 

it does not matter that anotherow has n-m+ 1 elements and the location 
referred to by arowflex has room for k-m+ 1. It is a flexible location and will 
be expanded or contracted to suit. 

This flexible feature will, however, be an expensive lUxury in some 
implementations. It presupposes a storage allocation regime in which 
multiples are allowed to "breathe". 

1.5.4. Slices 

The external object which yields or refers to a subvalue of a multiple is the 
'slice'; it consists of an identifier (yielding or referring to a multiple value) 
followed by an indexer: 

arow[i] 
arow [i:j] 
arowrow [i,j] 

is an amode variable, arow is subscripted 
is a [ ] amode variable, arow is trimmed 
is an amode variable, arowrow is subscripted 
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arowrow [i, ] is a [ ] amode variable, arowrow is subscripted 
I and trimmed 

arowrow [i :j,p:q] is a [ ~] amode variable, arowrow is trimmed 

All these slices yield (sub )names (by virtue of E3.1 and E3.2) and you may 
assign to them (provided the bounds fit, of course). 

arow : = arowrow [i, ] ; 
arowrow [i:j,p:q] :=anotherrowrow [h:k,r:s] ; 
arowrow [i, ] := arow ; 
arow := arowrow [j, ] 

In an assignation like: 

arowflex := arow [i : j] 

nothing can go wrong, because arowflex is flexible. See 5.5.4 for full details 
of such assignations. 

Slices may also turn up in identity-declarations: 

(ELl) [ ] amode rowcopy = arowrow [i, J 

A copy of the ith row of the multi pIe value referred to by arowrow is 
ascribed to rowcopy (this copy of a subvalue has got its own descriptor, 
which is [m :,n]). 

(E1.2) ref [ ] amode arowname = arowrow [i, ] 

The name of the ith row of the multiple value referred to by arowrow (for 
which subname a new descriptor has been made) is ascribed to arowname_ 
The element: 

arowrow [i,j] 

may now also be accessed by: 

arowname [j] 

Such identity-declarations are of the utmost importance in situations 
where you want to have an efficient access to a multiple subvalue. For 
applications see 8.5.3. 

1.5.5. Interrogations 

We already mentioned that its deSCriptor belongs to a multiple (sub)value 
and that you have a certain access to it. Bounds of a flexible location, for 

I.I.A.-S 

- ------------- ----------
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example, can be changed by assignation (see 5.5.4.1). 
In a formal-row-of-MODE-parameter the lower- and upper-bounds do not 

have to be specified. In that case, you cannot in general know the bounds 
that will appear in the actual-row-of-MODE-parameter. For example, if you 
are'in a routine, then you cannot know the actual bounds from the formal­
parameter(s)_ For this purpose some standard operators, lwb and upb, are 
provided: 

1 lwb arowrow or Iwb arowrow yields the first lower bound 
yields the second upper bound 2 upb arowrow 

For further details see 5.5.3 and 6S 

Vertical readers, please tum to 2_5. 

1.6. Unions 

1.6.1. United modes 

A MODE may be MOOD or UNITED. Thus far we have considered 
MOODs. Every MOOD defines a certain class of values_ A UNITED mode 
does not define a new class of values. 

If we declare: 

(EO) mode abcmode = union (amode , bmode , cmode); 

then an abcmode is either an amode value or a bmode value or a cmode value_ 
There is no such thing as an abcmode value_ Nevertheless we shall bring an 
abcmode into our pictures in the following way: 

In any given situation, one of 
the dotted lines will b~ thick (Le. 
one of the possible modes in a 
union will be in force). 
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Unions "commute" and "associate": 

(EO. I ) mode bacmode = union ( bmode , amode , cmode ) ; 

specifies the same united mode as abcmode. 

(EO.2) mode abcmodedaemodeuv = union ( amode , bmode , cmode , 
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union ( dmode , amode , emode , 
, union ( umode , 

specifies the same united mode as: 
vmode)) ); 

(EO.2*) mode abcdeuvrnode = union (amode ,bmode ,cmode , 
dmode , emode , 

umode , vmode ) ; 

Let there be declared: 

amode maralyn , bmode marblyn , cmode marclyn ; 

1.6.1.1. United constants 

Consider the identity-declaration: 

(EI) abcmode marlyn = marblyn; 

it elaborates'into: 

A copy of the bmode value referred to by marblyn is ascribed to the 
identifier marlyn. Observe that marlyn is still an abcmode identifier, but she 
now yields a bmode value (we say that bmode values are "acceptable" to the 
mode abcmode). 
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When we declare: 

(El.2) abcmode marlyn = maralyn ; 

then she is made to yield an amode value, and in: 

(Bl.3) abcmode marlyn = marclyn ; 

she is made to yield a cmode value. 

Ch.1.6.1.2 

In all these cases, marlyn is a constant. Strictly speaking marlyn is either 
an amode constant, or a bmode constant, or a cmode constant. So, recalling 
the fact that marlyn is declared to be of united mode, we might term marlyn 
a "united constant". United constants will be of little (if any) use when 
declared in this way, but these identity-declarations can easily arise when 
matching an actual-parameter to its formal counterpart in a routine (as in 
2.6.2.E8, for example). 

1.6.1.2. Equiv.alence of unions 

Let nylram be a ref abcmode, i.e. nylram yields the name of a union 
( amode , bmode , cmode ). Although there is no such thing as an abcmode 
value, a ref abcmode is a well shaped internal object as are all names; it is. 
simply a name referring to a union. 

Consider the identity-declaration: 

(E2) ref abcmode marlyn = nylram ; 

it elaborates into: 

ref abcmode 
'---r--' 

\'~.............. am ode \,', 0 \, "-

\ , 
\ "-

\ " bmode 

\\\\~ 
\ 
~ cm()de 

\LJ 
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A copy of the name yielded by nylram, which refers to an abcmode, is 
ascribed to the identifier marlyn. Now marlyn and nylram both yield names 
referring to the same union. 

But what about the identity-declaration: 

(???) ref abcmode marlyn = maralyn (???) 

The actual-parameter refers to an amode value; the formal-parameter, 
however, requires a reference to a union. Although in this union there occurs 
an amode, this water is too wide. You can assign an amode value to a variable 
which is united from amode; you can never make a reference to such a union 
refer to a value which occurs in that union. Try drawing the picture, it cannot 
be done!' 

1.6.1.3. Local united generation 

The happening: 

(E3) . ref abcmode marlyn = loc abcmode ; 

or: 

(E3*) abcmode marlyn; 

can be depicted as follows: 

ref abc mode 

------ ----------------------

.... "/, 
amode ",'" 1/ 

'" / / 0 ","" /1 
I I 

/ , . I, 
bmode / / 

r=\ III 
. / o 

\ 
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You might askwhat value is, now generated on the stack, because there is 
no such a thing as an abcmode value. You have to ask your implementor. His 
answer will be something pretty close to "I reserve sufficient locations for an 
amode, or a bmode, or a cmode and, for use in conformity-clauses (see 1.6.2), 
I also reserve space to record which of these is actually in residence". 

1.6.2. Assignations and conformity-clauses 

To an abcmode variable you may assign either an amode or a bmode or a 
cmode value. For example: 

(E4) . marlyn := marblyn 

elaborates into: 

, 
\ " arnode 

\\\ "'..r-i 
\ ~ 

\ 
\ 

\ 

\' 
\ 
\ crnode 

brnode 

After this assignation the name yielded by marlyn now refers to a bmode 
value. In order to enable you find out which is the mode in force in a union, 
we have the 'conformity-clause'. 

An important application of unions will be found in routines. Suppose you 
want to switch in a routine ciepending upon the mode of an actual-parameter 
when you declared the formal-parameter to be the union of several modes; 
then you most likely will want to find out (inSide the routine) the mode of 



Ch.1.6.2 BASIC CONCEPTS 

the parameter actually supplied, which you may achieve as follows: 

(ES) case marlyn in 

esac 

(amode) : c do this c 1 

(bmode) : c do that c , 
(em ode) : c do the other c 
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In many cases it will not suffice to find out the mode actually supplied, 
you may also want to know its value. Now you cannot assign: 

marblyn := marlyn 

not even.when the modes confonn. The proper tool in such cases is the 
conformity-clause again: 

(E6) case marlyn in 
(bmode bvalue) : marblyn := bvalue 

out c marlyn's mode was not bmode; some alternative action can be 
taken here c 

esac 

Here, we have declared a bmode identifier bvalue to which, provided marlyn 
"conforms" to bmode, her bmode value can be ascribed. The assignation 
marblyn := bvalue is then quite straightforward: 

case 
'---""':--1 

,' ........ 
\ " arnode 

\ '-'0 
\ 
\ 

\ 
\ 

D 
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Contrariwise, if marlyn does not conform to bmode, no assignation takes 
place and, since no specific alternative modes have been mentioned (as they 
were in ES), the clause in the out part will be taken. 

Vertical readers, please tum to 2.6. 

1. 7. Distinctive features 

As we pointed out in 1.2.3, all modes in this language are derived from th( 
primitive modes with the assistance of the symbols ref, proc , struct , 
"[" and "]", union, long and short. Until now we have not discussed long 
and short, and we have not discussed the identity-relation for ref modes 
(names); these are the subject matter of this section. 

1.7.1. The long and short modes 

Going down to the level of a concrete computer, the values of all primitive 
modes (I .2.3) will be mapped into bit-patterns. A bool will most likely be a 
single bit, a char may be stored in at least six bits (more likely seven or eight, 
i.e. a "byte"), an int may occupy an entire machineword (a bits, see 2.7.1), a 
real one or two machinewords. 

On most modern computers you will find provision for (if not in the 
hardware, then in the standard software) multi length arithmetic. That is to 
say, apart from an int occupying a single machineword, we may also be 
enabled to add, subtract, multiply and divide integers occupying, say, two 
machinewords, and maybe even larger ones (occupying three or more 
machine words). The same may apply to reals and also to the primitive modes 
bits and bytes (discussed in 2.7.1), and there may in addition be further 
versions of all these occupying half, or even a quarter, of a machineword. 

To distinguish between the various sizes of such values we have the 
long-symbol "long" and the short-symbol "short". 

Thus we may distinguish an infinity of different modes 

For integers: 

int long int 
short int 

long long int 
short short int 

long long long int 



Ch.1.7.2 

for real numbers: 

real long real 
short real 

BASIC CONCEPTS 

long long real 
short short real 

and similarly for bits and bytes. 
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long long long real 

In a specific implementation, only a few of these will in fact be 
distinguishable as values of different length. The effective riumber of longs or 
shorts is not necessarily the same for int, real, bits and iJytes. It may be 
acquired from correspondi1)g environment enquiries (see 6.7.1). 

Modes of different longth and shorth derived from the same primitive 
mode are different modes and it is therefore quite proper to unite from 
different longths and shorths derived from the same (or different) 
primitives: 

mode integral = union ( short int , int , long int ) ; 
mode number = union ( real , long real , long long real) .. 

1.7.2. Identity relations 

As was pOinted out in 1.2, a 'reference to MODE' value is also an internal 
object in the compu ter, i.e. a ref will also be mapped into a certain bit-pattern 
(theaddress of the value referred to). Consequently, names may also be 
operated upon and, in particular, compared. To compare names of the same 
mode we have the identity-relators :=: (or is) and ::j:: (or isnt). 

Consider the following picture: 

ref ref amode ref ref amode 

I mar21yn I 

<'--t------'i )>------------,1 
ref aiDode ref amode 

O.J 
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Apparently, the assignations: 

pointerI := marllyn 

and 

pointer2 := mar2lyn 

have been made. 
Now: 

(El) pointer 1 : =1=: pointer2 

but: 

(E2) marllyn :=: mar2lyn 

We may also write: 

because they refer to different 
internal objects 

because they refer to the same 
intetnalobject. 

(E3) ref amode (po in terI ) is ref amode (pointer2) 

which means the same thing. 
We might write: 

(E4) pointerI = pointer2 

or: 

(E5) marllyn = mar2lyn 

or even: 

(E6) pointer1 = mar2lyn 

Ch.1.7.2 

but, in all of these, the pointers and the marlyns would be dereferenced to 
yield the amodes ultimately referred to (assuming the operator "=" to havli( 
been declared for a pair of amodes), and it is these that would be compared. 
It would not then be possible to declare "=" between ref amodes or ref ref 
amodes (for otherwise E4-6 would become ambiguous). This is why ":=:" 
and ":=1=:" had to be specially included in the language. 

Vertical readers, please tum to 2.7. 
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2.1. Primitive declarations 

2.1.1. Primitives 

In the previous chapter, we considered values of a hypothetical mode 
amode. In ALGOL 68 there is in principle an infinite number of possible 
modes which could be substituted for amode, and in the course of the 
present chapter we shall show you how to construct them all. They are, 
however, all derived from a small number of "primitive" modes (1.2.3). The 
primitives are as follows: 

int The values of this mode are the integers within some fmite range 
dependent upon the implementation (e.g. from _231 to 231 _1 for a 
32 bit binary machine). See 6.2.1 for how to fmd the size of the 
range. Arithmetic performed upon int values will in general yield 
exact results, the same in every implementation. 

real The values of this mode will in general be held as floating point 
n~mbers by the implementation. Thus the range of numbers that can 
be held is much greater than for int, but one pays for this by a 
restricted precision (again see 6.2.1 for details). 

bool There are only two values of this mode, true and false. 

char The values of mode char are characters - i.e. internal representations 
of certain graphic inarks on external media. These graphic marks will 
include at least the letters a to z, the digits 0 to 9, ", +, -, (,), point, 
comma and space. Most implementations will aqd others to this list, 
and we shall assume, in our examples, that this has been done (and 
in particular we shall use A to Z quite freely). 

bits } The values of these modes are computer words, regarded as a 
bytes collection of bits or of characters, see 2.7.1. 

2.1.2. Variable declarations 

Whenever we wish to have, at our disposal, a variable value of some inode, 
we must declare it, and proVide an identifier to yield its naine (1.1:1): 
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(EI) real x; int i; bool p; char c; 

A variable-declaratio.n [R 4.4.I.e] co.nsists o.f: 
a) an 'actual-declarer' (real, int, etc.) which specifies the mo.de o.f the 

variable value created thereby. Fo.r every mo.de ~hich can be co.n­
structed in the language, an actual-declarer can be written .. Fo.r 
example, real, refreal, ref ref real, int, ref char, bo.ol, etc. are all 
perfectly go.o.d actual-declarers, and the mo.de that each specifies is 

·o.bvio.us. . . 

b) an identifier (x, i , etc.) to which the name referririgto. the newly 
created yariable is to. be ascribed .. 

If we have to. declare several variables of the same mode, we have three 
metho.ds: 

(E2) real x; realy; real z; int i; intj; 
(E3) real x, real y, real z, inti, int j; 
(E4) real x, y, z, int i, J~' 

E3 and E4 are 'collateral-declarations'. In fact they mean exactly the same 
thing, but the "co.ntractio.n" E4 is mo.re convenient to. write. The difference 
between E2 (with ";"s) and E3 (with ","s) is that the declaratio.ns take place 
serially in the first case and co.llaterally in the second. The difference between 
them is quite academic in tne case o.f these simple primitives, but could be of 
crucial impo.rtance in more complex situations, such as we shall meet in 2.5. 
Declarations are always separated from each other, and from other clauses, by 
go-on-symbo.ls (i.e. ";"s), and for this purpose a co.llateral-declaration such as 
E4 counts as one declaration: 

(ES) bool p, real x, y, z, int i, j; char c; 

No.w that we have declared these variables, we are free to use them: 

(E6) x := 3.142; 
y:=x; 
i :=3 

2.1.3. Sample declarations 

In the chapters that follow, we shall give many examples using identifiers 
such as x, y, i, j, etc. To. save co.nfusing yo.u, we shall not declare them each 
time we use them, and so whenever you see such an ex;ample, please assume 
the declaratio.ns listed in Appendix 2 to. have been already made .. You have 
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already met most of them in Chapter 0 (where they were conspicuously 
marked with a "D"), and the Report itself also uses most of them in the same 
way [R 1.1.2]. 

Vertical readers, please turn to 3.1. 

2.2. Identity declarations 

Identifiers are declared in 'identifier-declarations' of which there are two 
kinds - the variable-declaration, which has just been described (2.1.2), and 
the identity-declaration, which follows. 

2.2.1. Identity declarations 

An identity-declaration serves to introduce a new identifier, to specify the 
mode of the internal object (value) that is to be ascribed to it, and to fix that 
value. Thereafter, until the end of the range (3.2.1) in which that identity­
declaration occurs all other occurrences of that identifier are deemed to yield 
that same value (see 3.2.3 for the precise mechanism of this). 

An identity-declaration [R 4.4.l.a 1 has two sides - its left hand side, or 
'formal-parameter', and its right hand side, or 'actual-parameter'. Consider: 

(EI) real e = 2. 718281828; 

An identity-declaration is constructed as follows: . 
Its LHS (the formal-parameter) (real e in the example) consists of: 

a) a 'formal-declarer' (real) which simply specifies the mode of the 
. internal object. For every mode which can be constructed in the 
language, a formal-declarer can be written. For example, real, ref real, 
ref ref real, int, ref char, bool, etc. are all perfectly good formal­
declarers, and the mode that each specifies is obvious. 

b) an identifier (e) to which the object is to be ascribed. 
Its RHS (the actual-parameter) (2.718281828 in the example) consists of: 

a unit whose context is strong, and which yields a value whose mode' 
(after coercion if necessary) is the same as that specified by the 
formal-parameter. This value is now ascribed to the identifier, after 
which the identifier will always yield that value. 

The whole.of Chapter 5 is devoted to describing what can and cannot 
stand as a unit, and to explaining all about the strength of contexts and 
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coercion, so that it would be inappropriate here to do more than give a few 
examples that are particularly important. If you have already read 5.1.4.1, 
you will have noticed the similarity between the rule just given for an 
actual-parameter and that appropriate to the RHS of an assignation. 

An identity-declaration is therefore a very simple concept, with a simple 
syntax and simple rules. Do not therefore be afraid when you come across a 
particular example which seems to go on for page after page. It is simply 
because a long and complicated formal-declarer has been used to specify a 
long and complicated mode, or because the unit on the RHS happens to be 
rather a long one. The effect is just the same. We associate together a 
particular mode and a particular identifier, and ascribe to that identifier a 
particular value ,of that mode. 

Note, however, that once a value has been ascribed to the identifier, this 
value cannot be changed (it is a constant (see 1.2.2.1 », and the compiler 
should be able to take advantage of this. After El: 

(E2) x :.= e 

should compile into exactly the same code as: 

(E3l x:=2.718281828 

Things are slightly more complicated with examples like: 

(E4) real xy == x x y 

Here, the value to be ascribed to xy is to be calculated (x x y) at the time 
when this declaration is encountered during the elaboration of the program, 
and if it is encountered several times the values will presumably be different 
on each occasion. Nevertheless,although the compilerwill now, presumably, 
have to reserve a. word of store to hold this value, it should still be able to 
gain some benefit from knowing that it cannot change until the next time. 

2.2.2. Another look at variable declarations 

(E5) real x; or even loc real x; 

We have already seen that real is an actual-declarer which creates a real 
variable, and that the name referring to this variable is ascribed to x (making 
x a refreal identifier). So it seems that we have two methods of creating a ref 
real identifier and ascribing a value (more specifically a name) to it. Let us 
therefore try to construct an identity-declaration to do precisely the same job 
as the variable-declaration E5. Presumably it will look something like this: 
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ref real x' = "something" 

In this example, "something" must obviously be a unit that yields a 
constant value (a name) of mode ref real, but it must also have the property 
that it reserves a space in the store where a real value may be put, and it is the 
name referring to this space that it must yield. If you search through 
Chapter 5 looking for such a unit, you will find that it is known as a 
'generator' and is not described until 5.7.2. This is because the use of 
generators is rather specialised. There are two kinds of generator, and we 
recommend the loc one for the present purpose (as we have already explained 
in 1.2.2.3): 

(E5 *) . ref real x = loc real; 

loc real is the generator, and the mode it yields is ref real in spite of its 
appearance to the contrary. The loc signifies that the real value thus created is 
local to the current range, as will be explained in 3.2.2. real is an actual­
declarer. 

If you feel like trying a heap generator, then you should read 2.7.3 first. 
Of course, we have already met this before in 1.2.2.3 - E5 means exactly 

the same as E5*. But please remember the distinction between formal­
declarers (such as refreal in E5*), which merely specify modes, and actual­
declarers (such as real in E5 and on the RHS of E5*), which, in addition, 
.generate values of the mode specified. This distinction may not seem 
important just now, but you will forget it at you peril when you come to 
2.5.2 and even in 2.2.3 it will be relevant. 

2.2.3. Initialized variable declarations 

We explained in 1.2.2.3 how you could write: 

(E6) real ee := 2. 718281828; 

which has created a real variable and assigned an initial value to it all in one 
go. But beware! E6 (at least in this representation) looks deceptively like El 
- the difference is just one ":". We can subsequently assign a different value 
to ee (E6), but never to e (El). 

Now, if we have the collateral-declaration: 

(E7) real x := 1.0, realy := 2.0; 

we may appLy qur usual contraction to obtain: 

(E8) realx:= 1.0,y :=2.0; 
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likewise, if we had had: 

(E9) realx=1.0,realy=2.0; 

we could have obtained: 

(ElO) real x = 1.0, y = 2.0; 

which simply goes to show that formal-declarers (the reals in E9) may be 
gathered together in just the same way as actual ones (the reals in E7). But: 

(Eli) real x = 1.0, realy := 2.0; 

which is perfectly good collateral-declaration, creating a real object x and a 
refreal object y, cannot be contracted to: 

realx=1.0,y:=2.0; 

for here we would be gathering together one formal-declarer and one actual 
one, and moreover it would be too confusing to have the one declarer real 
being used to create objects of two different modes. 

Vertical readers, please tum to 3.2; 



Ch.2.3 DEC LARA TIONS 137 

.2.3. Mode declarations 

We introduced mode-declarations to you in 1.3.3.1; Consider: 

(El) mode myproc = proc(real, int, ref char) bool; 

This is a 'mode:declaration'. On th"e LHS we have introduced the bold word 
(1.3.2) myproc as a 'mode-indication'. On the RHS we have an actual-declarer 
specifying the required mode. Henceforth, (or at least within this range) 
myproc and proc (real, int, ref char) bool may be used in terchangeably. You 
may have declarations such as: 

(E2) myproc proc; 
ref myproc refproc; 

and you may now embark upon the construction of even more elaborate 
modes such as: 

(E3) proc(myproc) void 

See 2.5.2.2 for mode-declarations of 'row of modes where bounds must 
be specified. 

Naturally, a mode-declaration may be combined with other declarations 
(whether they be other mode-declarations, or even identifier- (1.1.2), 
priority- (4.3.1) or operation- (4.3.2) -declarations) into a collateral­
declaration: 

(E4) mode rl = real, mode it = int, mode bo = bool , real x; 

to which we may now apply our usual contraction, collecting together all the 
modes: 

(E5) mode rl = real, it = int, bo = bool , real x; 

Vertical readers, please turn to 3.3. 
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2.4. Declarations of structures 

2.4.1. struct declarers 

The concept of a "structure" was introduced in 1.4.0. Each structured 
value is of some mode, and for each such mode we can write a declarer (and 
up to this poin( formal- and actual-declarers are sti1llooking the same): 

(El) struct(real first, int second, ref char third) 

This is the way you would write a struct declarer [R 4.6.1.d] ; but should you 
wish to declaim it in public you would take a deep breath and say*: 

"structured -with -( a-)real-field-first -(and -an -)in tegral­
field-second-(and-a-)reference-to-character-field-third-mode" 

This is the way in which the Report would specify this mode [R 1.2.1], but 
in this Introduction we shall stick to the corresponding declarers - they are 
much cleaner. 

first, second, and third in E1 are 'field-selectors', not identifiers, and they 
are a part of the declarer, which identifiers could never be. Thus: 

(E2) struct (real fourth, intfifth, ref char sixth) 

specifies a different mode from that specified by E1. A value of one could 
not be assigned to a name referring to a value of the other. 

The fields inside a structure can be of any mode whatsoever, including of 
course other structs: 

(E3) struct (proc ( real, int, ref char) bool pr, 
struct (real first, int second, ref char third) group) 

Where two adjacent fields are of the same mode, the usual contraction is 
possible, as in: 

(E4) struct (real re, im) 

The only limitation is that a struct cannot contain itself (2.4.3), although 
it can contain a reference to itself. To achieve this, however, we must use a 
mode-declaration (2.3): 

(ES) mode sequence = struct (int object, ref sequence next); 

Modes such as this are particularly useful in conjunction with heap generators 

* If some pedant should notice that even this verbosity is not the full story, let him 
please keep the secret to himself. 
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(5.7.2.2), and for a substantial example of their use you are referred to 8.7.1. 

2.4.2. struct declarations 

Now we can use struct declarers in the formal-parameters of identity­
declarations, or as the actual-declarers in variable-declarations: 

(E6) struct (real x, int i) st = (3.14, 123); 

in which a constant st is created, and 

(E7) struct (real x, int i) ss; 

in which a variable ss is created. ss can now be assigned to other variables of 
the same mode, or its individual fields may be accessed using their selectors: 

(E8) x:=xofss 

This subject will be treated more fully in S.4.2. 

2.4.3. Well-formed modes 

The mode-declaration 2.4.1.ES was circular. However, not all such 
circular mode-declarations are valid. There are two dangers to avoid: 

a) we must avoid modes whose values would occupy an infmite amount of 
storage space (consider the problems of representing a large as specified 
by mode large = struct (int large, large larger);); 

b) we must avoid modes which could be strongly coerced into themselves 
(how many times should you dereference the RHS of ref itself who = 
loc itself, given that mode itself = ref itself?). 

Here is how to distinguish the sheep from the goats [R '7.4.1] . 
Start from the mode-indication on the LHS of the suspect declaration. 
Now look through the RHS, marking, or "shielding", each ref or proc with 

the word "yin", and each struct and each set of parameters of a proc with the 
word "yang". 

At each mode-indication you encounter, find the mode-declaration that it 
identifies (3.3.1), and continue there. 

Eventually (because it is circular), you will get back to the mode­
declaration which you started from. 
So we have: 

(E9) mode sequence = struct (int object, ref sequence next); 
yang yin 
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and, in a more complicated case: 

(ElO) mode a = struct (ref b fl, union (int, a) [2), 
yang yin 

mode b = proc (int, int) a; 
yin yang 

Ch.2.4.4 

Now consider all routes from your starting mode-indication returning to 
the same point. Is each route properly shielded by passing through at least 
one "yin" and one "yang"? If not, the mode is not well formed and the 
mode-declaration is invalid. E9 passes the test. InElO, there are two routes 
from a back to a again. One passes by way of "yang-yin-yin-yang" but the 
other can only manage "yang". It can be shown that a missing "yin" will land 
you in danger (a) above, and a missing "yang" will put you in danger (b). 
Keep your yin and yang in the correct balance and you will attain harmony. 

2.4.4. The mode compl 

The mode compl (for complex) is not a primitive in the language, although 
you would not come to much harm if you were to regard it as such, since it is 
provided with a complete set of operators and other useful facilities (5.4.0 
and 5.4.3). It is, in fact, a struct, being declared in the standard-prelude (1.1) 
[R 1O.2.2.f] by: 

(Ell) mode compl = struct (real re,im); 

Vertical readers, please turn to 3.4. 
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2.S. Declarations of multiples 

2.5.1. Row declarers 

The concept of a "multiple value" was introduced in 1.5.1. Each multiple 
value is of some mode, and for each such mode we can write a declarer. Now, 
however, we are at the point where formal- and actual-declarers beginto look 
different. Here is a formal-declarer: 

(E1) [, ,] refreal 

which is pronounced: 

'row row row of reference to real' 

This specifies the mode of a multiple value which needs three subscripts 
(because there are two ","s between the" [" add the "] "), and whose 
elements are names of mode ref real. 

Here is an example of a formal-declarer whose interest lies in its com­
plexity, rather than in any use it might have: 

(E2) [] struct (proc (in t, ref [ ] real) [] real p, 
[,] [] ref compl q) 

The pronunciation of this one is left to the proverbial student as his pro­
verbial exercise. You have enough information to do it, but have you the 
stamina? However, this example does show that we may have rows of structs 
and of other rows, structs containing rows, and procs that use and yield 
rowed modes. Observe the difference between [,] [] real ('row row of row 
of real') and [,,] real ('row row row of real'). The first is a doubly subscripted 
multiple each element of which is a singly subscripted one. The second is a 
straightforward triply subscripted multiple value. 

2.5.2. Row declarations 

In a variable-declaration involving a 'row of mode we encounter a problem 
that did not arise before. A multiple value consists (1.5.1) of a descriptor and 
a set of elements, and whenever we create such a value, not only must it be of 
the required mode, but its descriptor must fit our requirements as well. It is 
the responsibility of the actual-declarer to ensure that both these 
requirements are met. 
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2.5.2.1. Fixed and flexible names 
A multiple value is simply a row of elements together with a descriptor, 

and its mode is something like [,] real. Observe that the mode tells you the 
number of subscripts, but not the number of elements. So, you may ask, if I 
have a multiple value with 100 elements, may I supersede it with another one 
of 200 elements (but of the same mode, of course)? 

The answer is that "it all depends". Superseding takes place during 
assignation (1.1.2.2), in which the value superseded is that referred to by the 
name on the LHS. It is the name which controls the location where the 
elements are kept, and so it is the name which determines whether the 
location is flexible enough to accommodate the greater number of elements. 
If the mode of the name is ref flex [,1 real, well and good, but if its mode is 
only ref [,] real the assignation will not be allowed. 

Thus we have the situation (which only arises with multiple values) that a 
value may be referred to by either a "flexible name" (with a flex after the ref 
in its mode) or a "fixed name" (without a flex). Nevertheless, the mode of 
the value itself is the same in either case. There is no such mode as flex [,] real. 

Suppose that rowvar yields a flexible name of mode ref flex [ ] real. You 
will see presently that rowvar could have been declared as follows: 

flex [1 : 0] real rowvar := skip; 

where the skip is to signify that we do not at the moment have the slightest 
idea what size it is, or what are the values of its elements. 

Here now is an identity-declaration: 

(E3) [ ] real xl = rowvar; 

Since xl is not a name, no question of flexibility arises. xl now simply yields 
the multiple value obtained from rowvar, with whatever number of elements 
that had. 

Here is another identity-declaration: 

(E4) ref flex [] real xlm = rowvar; 

Now xlm yields the same flexible name as rowvar, and refers to the same 
location in store. The flex was necessary in order to match the mode of 
rowvar. If we have a fixed name row[lX of mode ref [ ] real declared by: 

[1 : 10] real rowfix; 

then the corresponding declarations are: 

(ES) [ ] real xf= rowfix; 
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(E6) ref [ ] real xfg = rowFzx; 

2.5.2.2. Actual 'row of declarers 

A 'ROWS of' variable-declaration contains, of course, an actual 'ROWS of' 
declarer. This has to reserve a substantial region of store, and so it must know 
how much store to reserve, and whether it is likely to be changed later (throUgh 
being flexible). This information is provided by bounds in the actual-declarer: 

(E7) [1 : 99] real xfgh; 

(ES) flex [1 : 99] real xlmn; 

Space for 99 reals is reserved, with the option of altering it later in the second 
case, and arrangements are made to release the space again when the current 
range is left. 

Since an actual-declarer is actually going to reserve some actual store, of 
some actual size, it follows that the bounds must be actually present. If the 
upper-bound is less than the lower-bound, then the descriptor is "flat" and 
the number of elements in the multiple is taken as zero (the bounds [1 : 0] 
are frequently used when an initially empty multiple is to be created, as in 
2.S.EII below. If the lower-bound is I, it may be omitted as in 

(E7*) [99] real xfgh; 

A bound can be any meek int unit, and you will see in Chapter 5 that this 
covers a large number of possibilities. All the bounds in the actual-declarer, 
together with the RHS if the declaration is initialized (2.2.3), are elaborated 
collaterally each time that the variable-declaration is encountered [R 4.4.2.b] . 

Also, since a variable-declaration creates a name whose mode has a. ref in it 
(2.2.2) (even though this refdoes not appear in the actual-declarer), itfollows 
that an actual-declarer may start with a flex (as in ES) if the name created is 
to be a flexible name. This may seem more natural if ES is written in its 
alternative form: 

(ES*) loe flex [1 : 99] real xlmn; 

Next you might like to reflect upon the fact that the RHS of a mode­
declaration (2.3) is an actual-declarer, so that not only maya mode-indication 
be made to specify a mode, but it then also specifies bounds and flex, where 
relevant, as well. A splendid example of this is the mode string declared in 

-------~.----.-.-~---
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2.5.3. If such a mode-indication now appears as or in a formal-declarer, no 
harm is done, the actual-bounds and any flex associated with it simplybeing 
ignored. 

However, if the bounds of a mode-declaration require elaboration, as n in: 

(E9) mode a = [1 : n] real; 

then they are not elaborated at the time this mode-declaration is encoun­
tered. Instead, it is the value of n in force at the time a is applied that 
matters: 

(ElO) n := 1; 
a a; 4' i.e. [I : 1] real a; 4' 
n :=2; 
a b; 4' i.e. [1 : 2] real b; 4' 

2.5.2.3. Summary 

Let us now summarize the differences between actual- and formal­
declarers: A 'row of' actual-declarer must have bounds and may start with 
flex: 

[I : 99] real flex [1 : 99] real 

moreover, if an actual-declarer specifies a ~truct mode, then its fields are also 
actual-declarers: . 

struct ([1 : 99] real a, struct (int c, flex [I : 99] real d) b) 

A formal-declarer never has any bounds, and never starts with a flex: 

[] real 
struct ([] real a, struct (in t c, [] real d) b) 

However, if it starts with a ref, or has a ref anywhere within it, then flex may 
occur in parts of the declarer controlled by that ref: 

ref [] real ref flex [ ] real 
ref struct ([ ] real a, struct (int c, flex'[ ] real d) b) 
ref [] flex [] real 
ref ref flex [] real 

Moreover, certain declarers are always constructed like formal ones, even if 
they occur as or inside actual ones. These are declarers beginning with ref, 
proc or union, so that the following are all correctly formed actual-declarers: 

ref [] real [1 : 99] ref flex [ ] real 
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struct ([1 : 99] real a, ref struct (int c, flex [ ] real d) b) 
proc ([ ] real) [ ] real 
union ([ ] real, [] int) 

2.5.3. The mode string 

145 

The mode string is not a primitive in the language, although you would not 
come to much harm if you were to regard it as such, since it is provided with 
a complete set of operators and other useful facilities (5.5.1.1, 5.7.0.2, 6.1). 
It is, in fact, a [ ] char, being defined in the standard-prelude (1.1) 
[R 10.2.2.i] by: 

(E 11 ) mode string = flex [1 : 0] char; 

An interesting consequence of this is that if we declare: 

(E12) string t; 

we have not created an object with an undefined value as we would have done 
in: 

real x; 

Instead, t has been made to refer to an empty string, which is a very definite 
(and useful) entity, and the only thing undefined about it is the value of the 
elements which it hasn't got. 

Because flex is only meaningful after a ref, the mode string is the same as 
the mode [ ] char, but the mode ref string is equivalent to ref flex [ ] char. 

Vertical readers, please turn to 3.5. 
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2.6. Union declarations 

2.6.1. union declarers 

We introduced you to unions in 1.6.1. Although we cannot create values 
of united modes, we can talk about such modes, and to do this we need 
declarers: 

(E1) union ([ ] real, [ ] int) 

Note how the inside of a union is always formal (2.5.2.3), so that there is no 
difference in appearance between formal and actual union declarers 
[R4.6.l.s] . 

You will remember that (1.6.1) the order in which the modes are specified 
inside a union is quite immaterial [R 4.6.1.s, R 7 .3. 10k] , so that: 

(E2) union ([ ] int, [ ] real) 

specifies exactly the same mode as that specified by E1. Moreover: 

(E3) union (int, string, union (real, union ([ ] char, int)}} 

could equally well (and with less ink) have been: 

(E4) union (int, real, [ ] char) 

However: 

union (int,ref int) 

is not allowed because, if this mode were required (a posteriori) in a firm 
context (e.g. as the operand in a formula), and a ref int were available (a 
priori), we should not know whether to dereference it and then unite it 
(5.6.0), or whether to unite it straight away. It is therefore forbidden for a 
component mode of a union to be firmly coercible to one of the other 
component modes or to the union of those others [R 4.7 .1.f] . Thus: 

union (ref union (int, real), int, real} 

would not be correct either, because ref union (int, real) can be firmly 
coerced to union (int, real). 

2.6.2. union declarations 

Now we can use union declarers in the formal-parameters of identity­
declarations, or as the actual-declarers in variable-declarations: 
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(ES) union (real, int) ir = (p 1213.14); 

in which a constant ir is created (either int or real depending on the yield of 
p),and 

(E6) union (real, int) ri; 

in which a variable ri is created, to which either a real or an int may sub­
sequently be assigned (5.6.0). At the moment, it is not defined whether ri 
refers to a real or an int, but it will certainly be one of them [R 4.6.2.a] . 

Since there is no such thing as a value of a united mode, there are some 
declarations which, whilst being legal, are not at all useful: 

(E7) union (bool, real) br = 3.142; 

br will now, in fact, always yield a real value, but wherever it is used allow­
ance for both possibilities will nevertheless be made (and, for example, 
x := br will not be allowed). This declaration could, however, very reasonably 
arise when matching the actual-parameter of a call to the formal-parameter of 
a routine-text (1.2.3.2.1): 

(E8) proc pbr = (union (bool, real) br): XXXXX; 
pbr(3.142) 

Here, pbr yields a routine which is prepared to accept either a bool or a real 
as its actual-parameter (and occurrences of br within XXXXX will be treated 
accordingly). 

Vertical readers, please turn to 3.6. 
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2.7 bits, bytes, longs and shorts 

2.7.1. bits and bytes 

bits and bytes [R 10.2.2.g,h] are two primitive modes which are intended 
to give you access to the actual words in your computer, so that you may 
achieve greater efficiency. bits is similar to [ ] bool and bytes to [] char (or 
string), except that the number of bools or chars respectively is limited to 
exactly that number which can be fitted into one computer word. rhus 
individual bits or bytes values can be passed around inside your program with 
great efficiency, at the expense of some additional effort (by widening 
(5.7.0.2) or the procedures bitspack and bytespack (6.2.2) and the operator 
elem (6.1.2)) whenever you want to get at the individual bools or chars 
within them. Environment enquiries are provided (6.2.1) to tell you how 
much you can get into a single bits or bytes in your implementation. 

bits and bytes are, of course, easily declared: 

(E1) bits bits; bytes bytes; 

Note that [] bits and [ ] bytes may be declared and bits and bytes may 
appear inside struct, union and proc modes. 

2.7.2. long and short modes 

Double, triple, etc. length working is used in computers in order to obtain 
greater accuracy, or to distinguish between a greater number of possible 
values of some mode, or to pack more information into one value. rhe 
ALGOL 68 modes where this facility would be useful are: 

int, real, compl, bits and bytes 

Indeed, it is possible to prefix all of these modes by "long" in order to obtain 
new modes of approximately double the precision, by "long long" for triple 
precision, and so on. A given implementation does not have to carry this on 
indefinitely, however. After some number oflongs (perhaps only one) it will 
treat values of longer modes as being of the same precision. Various environ­
ment enquiries are provided to tell you how many longs are effecthre, and 
how precise they are (6.7.1), and a full set of operators (6.7.3) and pro­
cedures (6.7.2) is provided for them. 

long modes are, of course, easily declared: 

(E2) long real reaeal; long long int iiiiiiint; 
proc (long int, int) long long int power; 
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In the same manner, these modes may be prefixed by "short" in order to 
take advantage of any facilities in the hardware for manipulating half words 
or individual bytes; Again, after some number of shorts (perhaps none at all) 
further shorts will make no further difference to the precision. Appropriate 
environment enquiries, operators and procedures are provided as before . 

. (E3) short real reZ; short short int it; 
proc (short int, int) short short int root; 

2.7.3. heap declarations 

Just as: 

(E4) real x; 

which may also be written as: 

(E4*) loc real x; 

means the same thing (2.2.2) as: 

(E5) ref real x = loc real; 

so: 

(E6) heap real x; 

means the same as: 

(E7) ref real x = heap real; 

in which the heap real is a heap generator. The effect of E6js to reserve a 
space in the store for the variable x which will not disappear when the current 
range is left. (It will not, of course, then be accessible via the identifier x, but 
its name may in the meantime have been assigned to a ref real variable with a 
larger scope). 

This and other uses of heap generators will be described more fully in 
5.7.2.2. 

Vertical readers, please tum to 3.7. 
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3.1 Serial clauses 

A particular-program (1.1) [R IO.l.l.g] consists of an ENCLOSED-clause 
(3.2.4), which is usually a 'serial-clause' enclosed by embedding between 
begin and end (or, if you prefer, between "(" and ")", which can be used as 
alternatives wherever begin and end may occur). 

The bricks out of which a serial-clause is constructed are called 'declara­
tions', 'statements' and 'expressions'. Declarations we have already met (1.1.3 
and 2). 'Statements' and 'expressions' [R 3.0.1.b, c] are alternative names for 
'void-units' and 'MODE-units' respectively, and units in general will be 
discussed in Chapter 5. In the meantime, it will suffice to say that: 

x := a+b 

is a statement (usually) and: 

a+b 

is an expression (likewise). 
We shall also need 'go-on-symbols' (better known as semicolons) which 

constitute the mortar which bind the bricks together, and 'labels' which 
enable us to find our way around. 

3.1.1. The declarations 

The building rules are really quite simple [R 3.2.1] . The foundations, 
which come first, consist of declarations (as many as you like) with mortar in 
between: 

(E1) begin 
or the begin is not part of the serial clause proper; it is 
the earth in which the foundations are embedded 4-
real a; 
int i; 
char c,d,e; 

The last one is a collateral-declaration (see 1.1.3) meaning the same as: 

(E2) char c, char d, char e; 

however, it all counts as one brick for our present purpose. 

150 
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Statements are also allowed within the foundations (but not labels). This is 
particularly useful when you are declaring multiple values (as described in 
2.5.2) in which the bounds are first to be calculated: 

(E3) begin 
int i; 
read (i); H7.1.2H 
[1 : i] real xl; 4' declares a multiple with bounds 1to i 4' 

Note that it is perfectly possible for there to be no foundations at all, the 
building starting straight away with the walls. This would be rather unusual 
for the serial-clause which constituted the body of a particular-program, but 
there are plenty of other places where such serial-clauses could occur. 

3.1.2. The statements 

The walls come next, and these too may be entirely absent. They consist 
of statements and semicolons, with labels attached where required (a label 
always comes before a statement (or before an expression, or even before the 
whole particular-program) and consists of an identifier (1.1.2) followed by a 
colon). 

(E4) begin 
int i; real x, y, z; 
comment those were the foundations: now for the walls comment 
z : = 1 - 3 x sqrt (small real); ~ for small real see 6.2.1 ~ 

Iabl: read (i); . 
x:= i; 

lobi: 
lubl: y := i/xt2; 

x:= (2 xx + y)/3; 
if y/x < z then go to lobi fi; 
print (x); 4' (7.1.1) 4' 
go to Iabl; 

This will compute and print the cube roots of the (nonzero) integers read 
in. The conditional statement (if ...... fi) does what you would expect it to do 
(see 3.2.4.2 for details). 

We now observe (as you have doubtless guessed already) thatwhen a 
statement is followed by a ";" the completion of the elaboration of that 
statement is followed by the initiation of the elaboration of the following 
statement. Only when we come to a go to statement (consisting of go to 

- ---------------
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followed by a label-identifier, or alternatively of just the label-identifier) is 
this sequence broken. Note that several labels can precede one statement (as 
lobi: and lubl: in E4). 

3.1.3. The yield 

Finally, we come to the roof. This consists of just one statement (void­
unit) or one expression (MODE-unit) (and there may be some labels before 
it). 

(ES) begin 
int i; read (i); real x, y, z; 

4' those were the foundations 4' 
z := 1 - 3 x sqrt (small real); x := i; 
lobi: y := i/xt2; x := (2 x x + y)/3; 

if y/x < z then go to lobi fi; 
4' those were the walls ¢ 

print (x) 
end ¢ the end is part of the embedding, too 4' 

In this case the roof (print (x)) was a statement - it was, in fact, just the last 
statement of the clause, and if there had been any more following it would 
have been quite content ro be part of the walls. 

Note that, in accordance with the best building practice, there is no mortar 
underneath the foundations, and there is none on top of the roof. Also, there 
is exactly one ";" between each brick. Contrast this with ALGOL 60 where 
extra ";"s mostly did no harm. 

Now, if the roof is an expression, then it must yield a value. What happens 
to this value? 

(E6) a := b + (real x, y, z; z := 1 - 3 x sqrt (small real); x := i; 
lobi: y := i/xt2; x := (2 x x + y)/3; 

if y /x < z then go to lobi fi; 
x) 

Her~ tlJ.e piece between the "(" and the ")" is indeed a serial-clause and it 
occurs in a place where it is expected to yield a value (it is in fact a real­
serial-clause). x is its roof and is an expression which (after a little dereferenc­
ing - see 1.1.6) yields a real value. This value now becomes the value of the 
serial-clause as a whole, and in due course it gets added to b, and the result is 
put into a. 
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3.1.4. Completers 

We. will now consider buildings wi:th several roofs. Suppose, in the example 
E6, we only wanted the cube root of i if i was positivefand the cube root was 
less than 10.0 (actually, it was rather a poor way of fi~ding cube roots for 
largish numbers anyway). In the other cases, we wanted to print a message 
and to yield the result 10.0 regardless. Then we could build a house like this: 

real x :=i, y:=O, Z:= 1-3xsqrt( small real); 

(i~O llibl ); libl: 
while y/x < z do print ( 
x:=(2xx+(y:=i/xt2))/3; "ou(,pfdange" ); 
(x~10.01Iibl )od; 

10.0 
x 

We have to make it an Australian house, so that you can read the program 
from the top downwards. We also included one or two short cuts in the 
program, whi9h you might be able to follow. 

Observe that the foundations are common to both roofs. The complete 
statement containing the two-roofed serial-clause (and without the short cuts) 
will now look like this: 

(E7) a := b + (real x, y, z; z := 1 - 3 x sqrt(small real); x := i; 
if x ~ 0 then go to libl fi; 

lobi: y := i/xt2; x := (2 x x + y)/3; 
if y/x < z then go to lobi fi; 
if x ~ 10.0 then go to libl fi; 
x exit 

libl: print (" out of range" ); 
10.0) 

exit means that we have come to the first roof, and if this point is reached 
during the elaboration, then x is the value of the serial-clause. Otherwise 
(there being no more exits in this particular clause) 10.0 is the roof and 
provides the value. Inevitably, the exit must by followed by a label (for how 
else could the following statement be reached), and so the exit with its label 
attached constitute what is known as a 'completer' and the process ofleaving 
a serial-clause through the roof (Le. via either the x or the 10.0 in theE7 

I.l.A.-6 
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example) is known as "completing". Contrariwise, if you jump out of the 
middle of a serial-clause by means of a go to (oU t of the window perhaps) 
then that .is to "terminate" it, and in this case no value is yielded. The mode 

. of the value yielded on completing may be coerced and balanced (5.2.0.1) 
according to the context in which the serial-clause as a whole appears. 

You can try imagining how E7 could have been written without the exit 
facility. It would have been necessary to re-arrange it so that the x to be 
yielded came right at the end. After libl, it would have been necessary to 
assign 10.0 to x, and then to go to another label just before the final x. 

Note that, syntactically, a completer is a special type of mortar, so one 
does not expect to see any ";"s either before or after it. It might be tempting 
to regard it as a statement meaning "and now go to the end of the clause" but 
this would be dangerous since you must be quite sure first that you know 
which clause it will go to the end of. 

3.1.5. Delimiters 

In all the examples given above, the serial-clause itself was the part 
between the begin and the end (or "(" and ")"). However, serial-clauses can 
occur in a variety of contexts, and the complete list of delimiter pairs 
applicable is as follows: 

between begin and end (in particular-programs 
or closed-clauses) 

( and ) 
" *if and then (in conditional-clauses) 

r then and else 
elif 

*elif and then 
else and fi 

*case and in (in case- and conformity-
clauses) 

*ouse and in 
out and esac 

*while and do (in loop-clauses) 
do and od " 

* Strictly, the clause between these delimiters is an enquiry-clause rather than a serial­
clause - see 3.2.4.2. 
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Closed- conditional- and case-clauses will be discussed in 3.2 and 
conformity-clauses in 3.6. 

Vertical readers, please turn to 4.1. 
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3.2 Closed clauses 

3.2.1. Range.s and reaches 

A 'range' [R 3.0.1.f] is a piece of source text which constitutes a serial· 
clause {or one which constitutes a routine-text (see 4.2.2.1) or certain 
portions of choice-clauses and loop-clauses (3.2.4, 3.5.2)). A range can 
"contain" further ranges within itself, and so on recursively. Here is a (not 
very sensible) particular-program, with all its ranges marked and numbered: 

(El) 

ReI 

begin 
i real a, b; int i, J k I , , , 

labl: i := 1; k := 2; 
print(i); 
begin 

1 real X, y; 
j:= 0; 
i:= 3; 

lobI: j:= j+1; 
if 

Ra i> 
then 

int i; 

j 

Ra2 boo 
p: 
q: 
pri 
go 

lp, q; 

Ral 
RaS 

fi; 
,print(i) 

end; 
print(i); 

I begin int i; 

Ra3 i:= 4; 

end 

print(i) 
end; 
print(i); 
go to labl 

= true; 
=p; 
nt(q); 
to lobI 

• ) 

A "reach" [R 3.0.2] is a range, with the exclusion of all the ranges 
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contained within it. Thus Rei in the above example is a reach. 
Note how the ranges in EI are mostly serial-clauses contained between the 

delimiters listed in 3.1.5. 

3.2.2. Scopes of names 

Consider the declaration real x at the head of Ra2, which could also have 
been written as: 

(E2) loc real x 

When this is reached during elaboration of the program (i.e. just after the 
beginning of Ra2), a name. is created (a location in the store is reserved) and is 
ascribed to the identifier x [R 4.4.2.b]. The loc in E2 means that the "scope" 
of this name is local, i.e. restricted to the lifetime of the range Ra2 (in whose 
declarations it occurs). Therefore, as soon as we cease elaborating statements 
within Ra2 (when we reach the delimiter end which terminates it in this 
instance), the name (to all intents and purposes) ceases to exist (the location 
in store is relinquished). .. 

Thus, anything that you declare at the head of a range is only available to 
you inside that range (this is of course exactly the same as in ALGOL 60, 
except that there they are termed "blocks" instead of "ranges"). 

In an assignation (5.1.4.1) the scope of the RHS must be at least as old as 
that of the LHS, for otherwise the value referred to by the LHS would be 
undefined in some reach: 

(E3) begin ref real xx; real y; 
begin real x; 
read (x); ~ reads a real value (2.0, perhaps) ~ 
y := x; ~ this is all right because the real value is being as­

signed, and its scope is not limited ¢ 
xx := x ~ this one is going to cause trouble ~ 
end; 

print(y); ~ no complaints ~ 
y := xx; 
print(y) ¢ now what? ¢ 
end 

In this example, the name x is newer in scope than the names xx and y 
(newer in the sense that it was created later than them and will disappear 
sooner). Thus the assignation xx := x, in which the name x was supposed to 
be assigned, was illegal. 
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3.2.3. Identification 

Identifiers may occur in declarations .:.. these are called "defining­
identifiers". In all other places (in assignations to take the most obvious 
example) they are "applied-identifiers". Consider the range Ra5 in El. The 
identifier p is defined in: 

(E4) boolp 

and is applied in: 

(E5) p := true and in q:= p 

Now it is up to the compiler to correlate each applied~identifier with a 
defining one,and when this has been done the former is said to "identify" or 
to be "within the reach of' the latter. The two occurrences of p in E5 thus 
identify the pin E4 (or E5 is within the reach of E4), still in the context of 
the range Ra5, of course, and this means that all these ps yield the same name 
(they get hold of the same location in the store) and they are all of the same 
mode (ref bool in this case). 

Now, what about the identifier i, which has defining occurrences at the 
helld of Ral, Ra2 and Ra3 in El, and applied occurrences (notably as 
print(i)) allover the place? The rule is quite straightforward [R 7.2] :, 

Start at the applied occurrence in question (call it "A") 
Look for a defining occurrence in the same reach as A (call it "B") 
If none is found, 

then look for a defining occurrence in the reach which is immediately 
outside the range which contains the reach which you have just been 
looking at (call it "B") 

If none is found, 

A then iden tifies B. 

Thus the "reach" of a particular defining-identifier is the range in which it 
is declared with the exclusion of all inner ranges within which it is re-declared. 
Note that, in some other languages, the term "scope" is used with this static 
meaning. In ALGOL 68, however, "scope" has another, dynamic meaning 
(3.2.2). 

The arrows on the right hand side of example El show how all the applied 
occurrences of i are identified, and if you follow through the elaboration of 
this particular-program, you will find that what it prints out is: 

lTT31411TT31411T •..• 
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where T is printed for the value true (see 7.1.1). 
Note that, each time a new defining occurrence of i is encountered, then, 

until further notice, a new name is ascribed to i. This certainly does not mean 
that the old name yielded by i ceases to exist. It simply goes underground, 
and cannot be accessed (at least not via i) until after the end of the range in 
which i was redefined. It can, of course, be accessed if the programmer has 
made provision for some other object to yield or to refer to it. 

Labels are identified just like any other identifiers, being defined as in: 

labl: 

and applied as in: 

. go to labl 

This means that the go to lobl at the end of RaS can be used to jump out of 
RaS (which is then terminated - 3.1.4) into Ra2, which contains it; but it 
would be quite impossible to jump into Ra2 at lobl: from anywhere in the 
'reach Re 1. The identification just would not work. Thus, a range can only be 
entered via its declarations (which is just as well, if you think about it). 

Finally, as you might expect, each applied-identifier must identify one, 
and only one, defining-identifier [R 7.2.1] . Thus all variables which you use 
must be declared (as in ALGOL 60, but not as in FORTRAN) and any given 
identifier may only be declared once within a reach. However, an applied­
identifier need not necessarily come after its defining-identifier: 

(E6) begin 

end 

proc a = real: b := c; 
realb:= 1, c :=2; 
x :=a 

is perfectly legitimate (see 4.2.2.1 for further details of routine-texts, of 
which real: b := c is one). On the other hand: 

(E7) begin 

end 

real b; 
b := c; 
real c; 
c:= b 

is syntactically correct, and the identification of c works, but the assignation 
b := c will not work because no name has been ascribed to c at this point of 
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the elaboration (indeed, no such name has even been generated). 
For the identification of modes see 3.3.1, and for operators see 4.3.3. 

3.2.4. ENCLOSED clauses 

An ENCLOSED-clause is either: 

a closed-clause (3.2.4.1) 
a collateral-clause (3.7.1) 
a parallel-clause (3.7.2) 
a structure-display (3.4) 
a row-display (3.5.1) 
a conditional-clause (3.2.4.2) I 
a case-clause (3.2.4.3) ~ 
a conformity-clause (3.6) ) 

or a loop-clause (3.5.2) 

these 3 being known collectively as 
choice-clauses 

ENCLOSED-clauses occur primarily in primaries (5.1.0.1). This means, inter 
alia, that they can stand as statements or as expressions (yielding respectively 
either void or some mode). 

3.2.4.1. Closed clauses 

A closed-clause is a serial-clause enclosed between begin and end, or 
between "(" and ")" [R 3.1] . There are two chief reasons for using them. 
The first is to create some variables (strictly names) which are to be local to 
some range: 

(E8) begin 
real pie; 

begin 
real w := 0, int i := 1; real z = sqrt (small real12); 

loop: w := w + 2/(i x (i + 2)); 
i := i + 4; 
if Iii> z then go to loop fi; 
pie :=4 x w 
end; 

print(pie) 
end 

Here, the closed-clause was a statement, and it was created because w, i, z and 
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loop were not needed outside it. Here is a similar example in which the 
closed-clause is an expression: 

(E9) begin 
print (4 x (real w := 0, int i := 1; real z = sqrt (small real/2); 

loop: w := w + 2/(i x (i + 2)); i := i + 4; 
if l/i>z then loop fi; 
w) ) 

end 

Indeed, 99% of an entire particular-program could be contained within one 
such expression. Note here the alternative form of the go to statement in 
which the "go to" is omitted. 

The second reason why closed-clauses are used is to alter the priority of 
operators in formulas (5.1.3): 

(E10) y:=xx(a+b) 

In these cases, the serial-clause inside the closed-clause often contains just one 
unit (the building is nothing but a roof, using the metaphor of 3.1). 

3.2.4.2. Conditional clauses 

if 

Ra1 
Ra2 ithen 

1 else 
Ra31 

fi 

some meek bool enquiry-clause yields the value true 

let us elaborate a serial-clause (and yield a value if one is 
asked for) 

let us elaborate another serial-clause (and yield its value) 

An enquiry-clause is built like a serial-clause (3.1), except that it may 
contain no labels (apart from ones nested inside some ENCLOSED-clause 
within the enquiry) and hence no completers. The range that commences 
with its declarations extends right to the end of the conditional-clause (Ra1 
above) and the two serial-clauses are also ranges (Ra2 and Ra3). Each of them 
can contain declarations, statements, other ENC~OSED-clauses and all the 
rest of the paraphernalia, or it can be as simple as a single unit: 

(Ell) if p then r else s fi 

. where p would have to be a bool (or a proc bool), and rand s might be labels, 
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or they might be procs. Either way, rand s would be statements and there­
fore the whole conditional-clause would be a statement, and would yield no 
value. 

In order to save ink, there are alternative representations that may be used 
for if, then, else and fi: 

(plrls) 

It is quite in order to omit the else and its associated clause: 

(p I r) 

If P is true the statement r is elaborated. Otherwise no statement is elaborated 
at all. However, this is not a sensible thing to do if the conditional-clause is 
expected to yield a value, for then the value yielded if p were false would be 
undefined. 

x := (i <jla+b la-b) 

That was a slightly more ambitious example. i<j is a formula yielding a bool 
value (5.1.3 and 6.1.2). The conditional-clause as a whole is required to yield 
real (in order that it may be assigned to x). Both a+b anda-b are formulas 
yielding real, and so all is well. As a matter of fact, it would have been 
sufficient for them to have been coercible to real, and a phenomenon known 
as "balancing" could have been invoked to aid the process. However, we shall 
leave discussion of this (and indeed of the coercion of all ENCLOSED­
clauses) to 5.2.0.1. 

Ral 

if 
some bool enquiry-clause is true 

. then 
Ra2J do this serial-clause 

Ra3 

1 elif 

some other boo I enquiry-clause is true 

tthen 
Ra41 do this other serial-clause 

elif 
Ra5 this third bool 

then 
Ra61 this third clause 

else 
Ra7-t this last resort 

fi 
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This is a piece of syntactic sugar to save you from writing (or forgettirig to 
write) too many fis. It has im alternative representation: 

(E12) ( p \ r \: q \ s \ t) 

meaning: 

(E13) if p then r else if q then s else t fi fi 

3.2.4.3. Case clauses 

case 
some meek int ehquiry~clause yielding a value, say i 

in 
a 1st unit 

Ral a 2nd unit 

a 3rd unit 
out 

Ra21 an alternative serial-clause 
esac 

Some number,say n, of units are separated by ","s. If the value ofiis such 
ili~ " 

i"'- 0 ori> n 

then the out clause is elaborated. Otherwise the ith unit is elaborated. If the 
case-clause as a whole is required to yield a value, then each unit must be 
capable of yielding a value of the required mode (but all legitimate coercions 
and balancings may be applied to this end (see 5.2.0.1)). 

It is quite in order to omit the out and its associated serial-clause. "If the 
clause as a whole is a statement, this means that no action is taken. If it is an 
expression, however, the value yielded is undefined: 

(E14) begin int days, month, year; 
days := case month in 

end 

31, (year mod 4 = 0 A year mod 100:j: 0 v year mod 
400 = 0129128), 

31,30, 31,30,31,31,30,31,30, 31 esac 
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As usual, there are alternative represpntations for case, in, out and esac: 

(E1S) print((il"SUNDAY", "MONDAY", "TUESDAY", "WEDNESDAY", 
"THURSDAY", "FRIDAY", "SATURDAY" I "NODAY")) 

Corresponding to elif in conditional-clauses, there is ouse in case-clauses: 

case 
some int enquiry-clause 

in 
a 1st unit 

Ra1 a 2nd unit 
ouse 

some other int enquiry-clause 
in 

Ra2 
another 1st unit 

another 2nd unit 

Ra3 
1 out 

esac 
a last resort 

If you think it confusing that "(", ")". "I" and "I:" should be able to 
represent so many things, please accept our assurance that no syntactic 
ambiguity arises. They are quick and easy to write, although it might be 
kinder to use the longer versions in algorithms intended for publication. 

Vertical readers, please turn to 4.2. 



Ch.3.3 CLAUSES 165 

3.3. Bold words 

Certain bold words have fixed meanings in this language (e.g. real, begin, if 
- see Appendix I for the full list). All other bold words may be used for 
mode~indications and for operators. They are declared to yield modes or 
routines by means of mode-declarations (2.3) and operation-declarations 
(4.3.2). These declarations are valid for some range, and so the question of 
identification arises. 

3.3.1. Identification of mode-indications 

The identification of identifiers was described in 3.2.3. The purpose and 
method of identification of mode-indications are exactly the same [R 7.2] .. 
Consider the identification of r in: 

(EI) begin 
mode r = real; 

begin 
~ m.ode .r = int; 
L-rl :=J; 

skip 
end; 

r x := y; 
skip 
end 

An explanation of the identification of operators will be postponed until 
4.3.3. 

Vertical readers, please turn to 4.3. 
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3.4. Structure displays 

Structure denotations as such do hot exist in the language. However, the 
required effect can be obtained by means of a particular form of 
ENCLOSED-clause known as a 'structure-display'. These can stand in any 
strong position where a primary yielding a structure would be allowed 
(because the position is strong, it follows that the exact mode of the 
structure-display is always known). Thus, given the declarations involving the 
mode vec in Appendix 2, and the declaration: 

(E1) vec vI, v2, v3, 

we can write: 

(E2) vl:=(I,J,I) 

but not: 

(???) vI := vI * (1,1,1) 

where the context would be firm (see 5.1.0 and 5.1.3). 
A structure-display, then, is enclosed between "("and ")" (or between 

begin and end) and contains one strong unit (5.1) for each field (of which 
theie must be at least two) [R 3.3.1.e, h] . Because each field position is 
strong, widening is permitted (as indeed happened in the case of the (1, 1, 1) 
in the E2 example above). Because a field position is also a unit, structure­
displays are considerably more than a substitute for structure denotations, 
e.g.: 

(E3) vI := (x + 2, 3:4, ;-3) 

Note that the various fields are elaborated collaterally (1.1.2.2). 

Vertical readers, please turn to 5.4. 
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3.5. Row displays and loops 

3.5.1. Row displays 

Multiple denotations as such do not exist in the language (except for the 
special case of string (5.5.1.1 )). However, as in the case of structures (3.4), 
the required effect can be obtained by means of a particular form of 
ENCLOSED-clause known as a 'row-display'. These can stand in any strong 
position where a primary yielding a multiple would be allowed (because the 
position is strong, it follows that the exact mode of the structure-display is 
always known). Thus: 

(E1) xl := (1.2,2.3,3.4); 
(E2) y 1 := (x, y, axb+ 1) 

but not: 

(???) xl:= yl + (1,2,3,4,5) 

A row-display, then, is enclosed between "(" and" )" (or between begin 
and end) and contains one strong unit (5.1) for each of its elements (of which 
there must be at least two) [R 3.3.l.d, i]. 

Because each element is strong, widening is permitted: 

(E3) xl := (1,2,3,4,5) 

Note that the various elements are elaborated collaterally (1.1.2.2). 
A row-display yields, of course, a multiple value, whose elements are 

yielded by its units [R 3.3.2.b] . The lower-bound of this multiple is always 1, 
and the upper-bound is the number of units in the row-display. Thus 

(1,2,3,4,5) 

has bounds [1 :5] , and: 

( (1,2,3), (4, 5, 6) ) 

has bounds [1 :2, 1:3] . Note how the row~display here contains as many 
row-displays as there are rows, each of which contains as many elements as 
there are columns. 

A special kind of row-display, known as a 'vacuum', has no units at all and 
yields a multiple of appropriate mode with bounds [I :0] , [1 :0, 1 :0] , etc.: 

(E4) aI':= ( ) 
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3.5.2. Loop clauses 
for 

some int identifier, which is hereby declared (I) 
from 

some meek int unit (1) 

Ral 
by 

some other meek int unit 
to 

a third meek int unit 

Ra2jl ;:ile a m"k bool enquiry-clau" 

1 Ra31 a void serial-clause 
od 

For example: 

(E5) for i from k-2 by 1 to m while real lim = max real/a; x < lim 
do x :=x +ati/i od 

This sums a certain series from k-2 to m, or until x is getting too large, 
whichever happens first. 

(K) 

(L) 

(P) 

(S) 

Now a loop-clause consists of various parts labelled as I through S above. S 
is the serial-clause which is to be repeated. In E5 it was just one unit, but it 
will usually contain a substantial amount of program within itself: 

(E6) for i from j by k to I while p 
do 
x := x + xl [i]; 
p := x < max real/2 
od 

From inside S you may access I and you may do things which will alter the 
yield of P, but you may not alter I because its mode is int and not ref int (this 
means that the compiler is at liberty to treat I specially, perhaps keeping it in 
some fast access register). You can do what you like to J, K and L, but it will 
make no difference to the number of times the loop is obeyed, which is 
determined once and for all (effects of P apart) at the beginning. The loop is 
obeyed until I> L (or < if K is negative). I.e. the number of times obeyed is 

- entier - ((L-J)/K + 1) 

or zero if this is negative. The loop will be obeyed zero times if P yields false 
upon entry. 
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More precisely, the interpretation of a loop-clause is illustrated by the 
following piece of program, which is entirely equivalent to E6: 

(E7) begin 
int from := j, int by = k, to = I; 

4' j, k and 1 are elaborated (collaterally) and their values are 
remembered. The counting is going to be done in from 4' 

m: if by> 0 Afrom':;:;; to V by < 0 A from ~ to V by = 0 
4' i.e. if the count is not yet exhausted & 

then int i = from; & the user's i is declared here, and is a copy 
of the current value of from 4' 
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if p 4' the user's p, however complex it may be, is 
elaborated here, each time the loop is about 
to be obeyed 4' 

then 4' now comes the user's serial-clause & 

fi 

x := x + xl [i],' 4' the user may access his i 4' 
p := x < max real/2,' 4' the user may change his p 4' 

from := from + by; 4' the count is in(de)cremented 4' 
go to m 

. fi 4' we are now outside the reach of i, so the question of its 
value upon exit does not arise ¢ 

end 

You may omit those parts of a loop-clause that you do not need: 

if for I 
if from J 
if by K 
if to L 
if while P 

is omitted, there is no I to be accessed 
is omitted, from I is assumed 
is omitted, by I is assumed 
is omitted, to 00 is assumed 
is omitted, while true is assumed 

In fact, the only part which has to be there at all times is the do Sod. If this 
does stand on its own, then the loop is executed indefinitely, unless you jump 
out of it. 

--------------------------
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(ES) 

ref int h = i; ¢ so that hand i are interchangeable identifiers ¢ 

i :=-4; for i from 3 by 2 to 3 
i :=-4; from 3 by 2 t03 
i :=-4; by 2 to 3 
i :=-4; to 3 
i :=-4; 
i :=-4; 

Vertical readers, please turn to 4.5. 

3.6. Conformity clauses 

case 

while 1<0 
while 1<0 
while i<O 
while i<O 
while 1<0 

do h:= h+] od; & obeyed 0 times & 
do h:= h+] od; & obeyed] time & 
do h:= h+] od; & obeyed 2 times & 
do h:= h+] od; & obeyed 3 times & 
do h:= h+] od; & obeyed 4 times & 
do h:= h+] od; & ad lib & 

some meek union (a, b, c, ... ) enquiry-clause yielding 
a value of one of the modes a, b, c, ... 

Ral 

in 
Ra2i (a a): a 1st unit 

Ra3{ 
Ra41 , 

jout 
Ra5 ! 

esac 

(b b): a 2nd unit 

(c c): a 3rd unit 

an alternative serial-clause 

As with case-clauses (3.2.4.3), there is a number of units separated by", "s, 
but now each one of them is preceded by a "specification", such as (a a):. 
The enquiry-clause yields a value whose mode is of one of the modes in its 
union. If the formal-declarer in one of the specifications matches, or 
"conforms to", this particular mode, then that specification is chosen and the 
value is ascribed to its identifier (which is a defining-identifier), if it has one 
(these identifiers being optional). The unit following the chosen specification 
is then elaborated, and of course applied occurrences of that same identifier 
can make the value available inside it. On the other hand, if none of the 
specifications conforms to the mode of the value, then the out clause is 
elaborated. 

Here is an example of a conformity-clause yielding a bool: 
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(El) union (char, bool, int, real) cbira; 
if case cbira 

in (bool b): b, 
(int i): i> 0, 
(real r): r> ° 

out false 
esac 

then cf we get here if cbira was not a char and was otherwise 
true or > 0, as the case may be cf 

fi 

As in ordinary case-clauses, you may omit the out clause, you may 
introduce an ouse followed by a new union to be tested and a new set of 
specifications and units, and you may substitute the usual alternatives for 
case etc.: 

(E2) union (char, bool) cba, union (int, real) ira; 
if (cba 1 (char): false, (bool b): b 

I: ira 1 (inti): i > 0, (real r): r> 0) 
then skip-
fi 

171 

(Here we must observe that every value referred to by a ref union must 
include within itself an indication to show of which of its permitted modes it 
currently is. Therefore a union (int, real), whilst being a very convenient 
example with which to illustrate the point, is likely to occupy two words of 
storage - one for the int or the real, and one to say which it is. Thus there is 
no practical benefit in using this mode if the intention is to save storage 
space. 
A real saving would occur in the following case: 

union ([] int, [] real) ir 1; 

because the elements in these multiples are all int or all real, and only one 
additional word is needed to indicate the mode of the whole lot.) 

Vertical readers, please turn to 5.6. 

---------- --------
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3.7. Collaterality 

3.7.1. Collateral clauses 

Collateral-clauses [R 3.3] include such things as structure-displays (3.4) 
and row-displays (3.5.1), but the ones we are particularly interested in at the 
moment are void-collateral-clauses. These consist of a list of two or more void 
units separated by commas, and enclosed between begin and end, or between 
"(":and ")": 

(El) (x:=1,y:=2,z:=3) 

These three statements are elaborated "collaterally". There is not likely to be 
much gain in using collateral-clauses in this way unless your hardware 
contains three central processors (so that they can do a statement each), or 
unless you have reason to believe that your compiler is sufficiently clever to 
discover that they can be done more efficiently in an order other than that in 
which they were written down. Alternatively, it might be the case that one of 
the statements was likely to get held up awaiting some event in real time 
(transput perhaps), in which case the others would be carrying on. This 
situation is more likely to arise when parallel-clauses are used (see next 
section). In the meantime we must consider exactly what "collateral" means. 

Collateral elaboration occurs, inter alia, in the following situations: 

collateral-declara tions 
collateral- and parallel-clauses 
structure- and row-displays 
between the two sides of an assignation or an identity-relation 
between the two operands of a dyadic-operator 
amongst the primary and the actual-parameters of a procedure call. 

Suppose two phrases A and B (it could be more) are to be elaborated 
collaterally. Then the elaboration of A may be merged in time with that of B 
in a manner left quite undefined by the Report [R 2.1.4.2.e] . So long as the 
elaboration of A has no side effect upon that of B, and vice versa, then the 
manner of this merging has no effect on the result - otherwise, anything 
might happen. Normally, the two elaborations would proceed until both were 
completed (3.1.4), but if one were terminated by a go to, then the other 
would be stopped abruptly at whatever stage (if any) it had reached. 

In practical compilers, it is probable that A would be elaborated first and 
then B, or vice versa, but one is not entitled to make any assumptions based 
on this. Consider the following: 
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(E2) begin int i; 
proc side = int: (i := 1; i := 2; i); 
proc add = (int ii, int jj)int: ii+jj; 
prin t (add( side, side)) 
end 
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The two calls on side are elaborated collaterally. If one were elaborated 
entirely before the other (in either order), each would yield the value 2, and 4 
would be printed. In the corresponding ALGOL 60 program, this would be 
the guaranteed result. However, this ALGOL 68 program is perfectly entitled 
to print 3 as its answer, because i is global to side and the collateral elabora­
tion of the two calls is quite entitled to be merged [R 2.1A.2.e 1 in the 
following manner: 

'i := 1; 
i:= 2; 

4' on behalf of the first side 4' 
4' likewise 4' 

i : = 1; 4' this is the second side starting up 4' 
4' on behalf of the first side, which therefore 

yields the value 1, as set by the second side 4' 
i : = 2; 4' the second side 4' 

4' the second side yields 2 4' 

Here is another example: 

(E3) i := 0; 
x1[(i+:=1;j-2)] :=x2[(i+:=1;j-2)]; 
print (i) 

The two subscripts are to be elaborated collaterally. Suppose their 
elaborations were merged as follows: 

Take i (=0) 
Add 1 (=1) 

Store in i (1) 

Takej 

subtract 2 

use to index xl 

Take i (=0) 
Add 1 (=1) 

(because the operator +:= in­
Store in i (1) eludes assignation) 

Takej 

subtract 2 

use to index x2 
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Thus 1 is printed, even though i +:=1 has been elaborated twice. In general it 
may be said that if two identical clauses are to be elaborated collaterally, then 
the implementation is quite entitled (but not of course bound) to perform 
the elaboration of only one of them and to assume that the other yields the 
same result. In other words, a compiler may detect common sub-expressions 
(such as the (i +:= 1; i -- 2) in E3), and optimise its code accordingly, and if a 
user has put side effects into these sub-expressions, he has no right to 
complain if they do not behave as he expected. 

So the moral of this story, if you were thinking of use side effects and 
collaterality is involved, is "Don't". 

3.7.2. Parallel clauses 

These are like collateral-clauses, except that you are provided with some 
control over the synchronisation of the constituent statements. They consist 
[R 3.3.l.c] of par followed by a void-collateral-clause: 

(E4) par(x:=1, y:=2, z:=3) 

However, this example, although legitimate, does not take advantage of the 
synchronisation facilities provided. To take a more realistic example, suppose 
we have a procedure which generates lines of output at random intervals: 

(ES) proc item generate = ( e computes the next item of output, 
taking a random length of time to do so e); 

mode item = struet ( e a collection of values intended to be printed e); 

We wish to print these items of output on a lineprinter which operates in real 
time (i.e. not disguised by an operating system), and at some fixed number of 
lines per minute. In order to smooth out the irregular periods between the 
generation of items (so as, hopefully, to keep both the printer and the central 
processor busy at all times), we shall put the items into a buffer as they are 
generated, and take them out at a rate suited to the printer. First let us 
declare our buffer: 

(E6) int nmb buffers = e the number of items the buffer can hold e; 
[1 : nmb buffers] item buffer; 
int index := 0, exdex := 0; ¢ pointers to items within the buffer ¢ 
bool work to be done := true, printing to be done := true; 

ct we shall need these in order to know when to stop ct 



Ch.3.7.2 CLAUSES 175 

Now we must set up some semaphores so that the generating department 
and the printing department can communicate with each other. There is a 
special mode provided for this purpose: 

(E7) serna free slots, full slots; 

A serna has a reference to an int hidden inside it, but you are only allowed to 
get at it by means of the special monadic operators level, up and down 
[RIO.2.4]: 

oper- prior- mode mode meaning 
at or ity of a of result 

level 10 int serna yields a serna referring to a 
copy of the int a 

level 10 serna int yields the int referred to by 
the serna 

down 10 serna void if the int referred to is 
zero, then the elaboration 
of this part of the parallel 
clause is "halted", other-
wise the int is reduced 
by 1 

up 10 serna void the int ref erred to is in-
creased by 1 and all ela-
borations previously 
halted by the operation of 
down on this particular 
serna are "resumed" by 
repeating the tests for zero 
in their downs 

We shall now initialise our semaphores: 

(E8) free slots := level nmb buffers; 4' because we have not generated 
any itemsyet 4' 

full slots := level 0; 4' because there are no items 
waiting for printing 4' 

Now we come to our parallel-clause: 

(E9) par begin 
4- the generating department 4-
while work to be done 
do 
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down free slots; 4' halts this department if all the slots 
are jUll. initially, there are plenty 4' 

index modab nmb buffers +:= 1; ¢ increment index 
modulo nmb buffers ¢ 

buffer [index] := generate; 
if c there are no more items to generate c 

then work to be done := false fi; 
up full slots 4' to enable the other department to get 

going~ 

od 
, ~ comma to separate the two statements. 4' 

4' the printing department ~ 
while printing to be done 
do 
down full slots; 4' halts this department if there is 

nothing to print (as initially) ~ 
exdex modab nmb buffers +:= 1; 
print ( buffer [exdex] ); 
printing to be done := work to be done V indext-exdex; 
up free slots 4' if the other department was halted, 

it may now be resumed ~ 
od 

For a more ambitious example of parallel-clauses see R 11.12. For a 
general discussion of the use of these semaphores see: 

E.W. Dijkstra, Cooperating Sequential Processes, contained in 
"Programming Languages", Ed. F. Genuys, Academic Press. 

and E.W. Dijkstra, Comm ACM 11 5 May 1968 p 341. 

Vertical readers, please turn to 5.7. 
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4.1. Procedures and operators 

In ALGOL 68, procedures arise ~)Ut of the structure of the language in a 
very natural way. Thus routines are values, which therefore have modes. They 
become ascribed to identifiers or operators by the elaboration of declarations, 
and they are called in the course of a variety of units. 

Therefore, there is hardly a topic in this area which could not have been 
fitted elsewhere in our orthogonal plan (which is, indeed, why the Report 
itself contains no chapter on the subject). However, the chapter which you 
are about to read is not entirely redundant, since we thought it proper in view 
of their central importance to gather all the information about routines, 
procedures and operators into one place. 

The necessary concepts were introduced in 1.1.4, which indicated how to 
declare a procedure: 

(E1) proc reciprocal = (real a) real:1/a; 

and how to call it: 

(E2) real x; 
x := reciprocal (3.14) 

Also how to declare an operator: 

(E3) op oneover = (real a) real:1/a; 

and how to use it in a formula: 

(E4) real x; 
x := oneover 3.14 

All these matters will be discussed at greater length in 4.2 in the case of 
procedures, and 4.3 in the case of operators. In particular, note how the right 
hand side of E1 is the same as that of E3. This is the part which defines 
precisely what the routine, which is being created in either case, is to do, and 
is known as a 'routine-text' (4.2.2.1). 

4.1.1. Standard prelude routines 

However, a large proportion of the operators and procedures which you 
will call in the course of your programs will not have been declared by you in 
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this way, because they will be already built in to your program by means of 
the 'standard-prelude' (1.1). Amongst these you will find procedures for all 
the usual mathematical functions (sine, cosine, square root, etc. - the full list 
is given in 6.2.2), and operators for all the usual mathematical operations (+, 
-, x, +, etc., and a lot of not-so-obvious ones - all listed in 6.1., 6.3, 6.5 and 
6.7). 

Although the procedures declared in the standard-prelude will be just that 
- when you call them, certain built-in routines will be entered - this may not 
be so for the operators. For example, the operator "+", used to add two ints 
together, is defined in the Report [R 1O.2.3.3.i] by the following operation-
declaration: . 

(ES) op + = (int a, b) int: a - - b; 

If you had used this in your own program, it would have compiled a routine 
to do (a - - b), and called it in whenever such a "+" was encountered in a 
formula. This is not the intention for the standard-prelude operators. When 
this "+" appears in a formula, your compiler should produce, on the spot, the 
most efficient possible code to do the same job. . 

Therefore you need hardly be aware, when using these operators, of the 
strange way in which they were introduced into the language, and any such 
lack of awareness should be no bar to a full understanding of 5.1.3 where the 
use of operators in formulas is fully discussed. 

Vertical readers, please tum to 5.1. 
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4.2. Procedure declarations 

4.2.1. proc declarers 

The concept of a "routine" was introduced in 1.1.4. Each routine is of 
some mode, and for each such mode we can write declarers. There are four 
classes of routine, categorised according to whether they require parameters 
or not, and whether they return a value or void. 

(E1) 
(E2) 
(E3) 
(E4) 

proc void 
proc int 
proc ( real, int, ref char) void 
proc ( real, int, ref char) bool 

¢ no parameters, returns void d' 
¢ no parameters, returns int ¢ 
¢ 3 parameters, returns void d' 
¢ 3 parameters, returns bool ¢ 

This last one would be pronounced in public as: 

"procedure-with -( a-)real-parameter-( and-an-)in tegral-parameter­
(and-a-)reference-to-character-parameter-yielding-( a-) boolean" 

To say that a routine returns "void" is to say that it returns no useful 
value. 

Formal proc declarers and actual proc declarers look exactly the same 
[R 4.6.1.0] . (Note also that the declarers specifying the modes of the 
parameters and of the value returned are always formal.) 

The parameters and returned value of a routine can be of any mode 
whatsoever, including another proc mode: 

(ES) proc ( real, proc ( real, int ) void) proc ( int ) real 

A 'procedure' is an external object which upon elaboration yields a 
routine: 

(E6) proc void proca; 

is a variable-declaration declaring a ref proc proca. The value referred to by 
proca is at present undefined, since we have not yet prOvided a routine for it. 
However, if it had referred to some routine, then: 

(E7) proc void proch := proca; 

would have created proch, making it refer to the same routine (initially). 
Which all goes to show that routines may be assigned and otherwise handled 
just like values of any other mode. 
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4.2.2. Routines 

What, then, is a routine? It is a piece of code somewhere within your 
program, compiled there as a result of some state men ts written by you (or 
maybe it was put there by the standard-prelude (6.2.2)). When a routine is 
assigned, as in E7 above, there is of course no question of moving pieces of 
code around inside the computer - it is a pointer to the piece of code that is 
handled during these operations, but the effect is just the same. Note that 
there are.no operations operating on routines defined within the standard­
prelude (with a little ingenuity, you might construct some of your own, but 
they would probably not be particularly useful). 

There are, therefore, two questions that we have to answer: 

1) How do we introduce routines into a program, and cause them to be 
yielded by procedures? 

2) How do we "call" them - i.e. cause them to be obeyed? 

Major discussion of the second question will be deferred until 5.2.1. 

4.2.2.1. Routines texts 

A 'routine-text' [R 5.4.1] is used to create a routine. It may stand, inter 
alia, as the actual-parameter of an identity-declaration, or of a call (see E18 
below), or as the RHS of an assignation. Here is a routine-text yielding a 
routine of mode proc (real, real) real: 

(E8) ( real a, real b ) real: a+b 

Please note that (real a, real b) real is not a declarer such as proc (real, 
real)real is (declarers do not contain identifiers). The real a and the real b 
occurring in E8 are formal-parameters, such as you would expect to find on 
the LHS of an identity-declaration (2.2.1), and the two reals in these formal­
parameters and also the real specifying the mode to be returned are therefore 
formal-declarers. The a+b in E8 is a strong unit (5.1.0.2) and forms the body 
of the routine. 

Now we may use E8 in an identity-declaration, to declare a proc ( real, 
real) real: 

(E9) proc ( real, real) real sum = ( real a, real b ) real: a+b; 

Rather a cumbersome way of adding two reals together, and rather a cumber­
some way of declaring it, too. There are two contractions we can use to 
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shorten it. Firstly, the reals in the two formal-parameters of the routine-text 
may be gatliered together in the familiar (2.1.2) fashion (i.e. (real a, b)). 
Then, there still being considerable redundancy, all of the formal-declarer 
after the proc may be omitted [R 4.4.1.b 1, leaving: 

(ElO) proc sum = (real a, b) real: a+b; 

which really is about as short as you could expect. In this form it is known as 
a 'routine-identity-declaration'. Likewise: 

proc refsum ~ of mode ref proc etc ~ := (real a, b) real: a+b; 

which was a 'routine-variable-declaration'. 
When there are no formal-parameters, the routine-text becomes very 

simple, as in this proc real: 

(Ell) real: x + 3.14 

which may appear in an identity-declaration with the usual routine 
contraction: 

(E12) proc xplus = real: x + 3.14; 

Finally, there is one more contraction to be used where several procedures are 
to be declared (but please use it only for short snappy ones): 

(E13) proc iplus = int: i + 3, zplus = compl: z + 1 i 1; 

The part after the ":" in a routine-text can be any strong unit (Chapter 5) 
yielding the required mode. Most often it will be some form of ENCLOSED­
clause (3.2.4), as in the following example in which we also illustrate a 
routine-text returning void: 

(E14) procpqrs = (ref real a, b) void: 0<0 1 a := 3.141 b := 3.14); 

Note that in a routine-declaration the RHS must always be a routine-text. 
If we go back to the uncontracted identity- or variable-declaration, this 
restriction does not apply and we can, for example, make the routine to be 
ascribed or assigned dependent upon some condition: 

(EI5) proc voidpq = (i<O 1 void: a := 3.141 void: b := 3.14); 

Here we have two routines available. Which of the two is ascribed to pq will 
depend on the value of i at the time El5 is encountered. Please compare this 
example carefully with E14, in which there is only one routine which tests i 
each time it is called. 

A r~utine-text is a quaternary (5.1.0.1), and this determines where it may 
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be used (thus ifit was needed as the operand ofa formula (5.1.3) it would 
need to be enclosed between "(" and ")". 

4.2.2.2. Calling 

A routine with formal-parameters can be called by providing it with 
actual-parameters to match its formal ones. Within the context of ElO we 
could put: 

(E16) a := sum (x, y) 

x andy are the actual-parameters of this call. What happens next is just as if 
the routine-text had been transformed into a cast containing an identity­
declaration to match each formal-parameter with its actual counterpart. The 
elaboration of the call is equivalent to the elaboration of that cast. Applying 
this process to El6 and EI 0, we get: 

real ( 
real a = x, b = y; 

after which comes the body of the routine: 

a+b 
) 

Observe how the ( and the) demarcate a new range, so that the formal­
parameters a and b, to which real values have been ascribed for the duration 
of this call, may not be confused with any occurrences of a and b elsewhere. 
Observe also that real a = x, b = Y is a contracted collateral-declaration, so 
that x andy are elaborated collaterally (3.7.1). 

In this example, real values were ascribed to the formal-parameters a and 
b, and so it would have been illegal to try to assign to them from within the 
routine. In ALGOL 60, this would have been known as "call by value". If we 
do wish to alter the value referred to by a f~)fmal-parameter,then that 
parameter must be of a mode that refers to something, as in E14 which 
permits the following call: 

(E17) pqrs (x, y) 

which will assign 3.14 to either x or y, according to the value oU at the time., 
We term this "call by reference". In ALGOL 60, you would have had to use 
(or misuse) "call by name" for that one. 

To get some other effects of the ALGOL 60 call by name, however, you 
must declare your procedure with proc mode parameters: 
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(E18) proc series = (int k, proc (int) real term) real: 
begin real sum := 0; 
for j to k do sum +:= term (j) od; 
sum 
end; 

This sums the terms of some series from 1 to k. When it is called, the actual­
parameter provided for the term can be any unit that yields a proc (int) real, 
and very commonly this will be a routine-text. 

(E19) x := series (100, (inti) real: 1 Ii) 

During a call of this routine, the procedure ascribed to term (in this case the 
routine-text) is called once each time round the loop-clause. This is how, in 
ALGOL 68, we achieve the effect of Jensen's device. 

See 5.2.1 also for other examples and further discussion of calls. 
A routine without formal-parameters is called by means of a coercion 

known as deproceduring. This is described fully in 5.2.1, but here is a brief 
example: 

(E20) begin 
real x; 
proc pp = void: x := 3.14; 

begin 
real x := 0; 
pp; 4' pp is called 4' 
print (x) 4' prints 0.0 4' 
end; 

print ( x) 4' prints 3.14 4' 
end 

Whenpp is called, the routine from void: x := 3.14 is entered. Note, however, 
that the name x assigned to by this routine is (as we hope you would expect) 
the one declared in the outer range, and not the one declared just before the 
call. 

4.2.2.3. Recursion 

Suppose, now, that a routine happens to contain a call on itself (either 
directly, or via a chain of calls on other routines which eventually calls the 
same one again). Are there any problems? In some programming languages 
there may be, but not in this one. It all works out normally, just like you 
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would expect. You will find several examples of such recursion in this book, 
notably in 8.7.1. Here is another one: 

(E21) begin 
proc blocked = (int x, y) bool: c A description of a maze, centred 

at (0, 0) with entrance at (0,100). 
Yields true if the point (x, y) is 
inaccessible (part of the walls). The 
maze is presumed to contain no 
cycles. c; 

int x := 0, y := 100, d := 0; 4- starting coordinates and direction 4-
proc maze = bool : 

if blocked (x, y) then false 
elif x = 0/1. y = 0 then true 
else int presx := x, presy := y, presd := d, i := 0; 
loop: i:= i+ 1; 

fi; 

x := presx +((d := (presd +2 + i) mod 4) + 1 10, -1, 0, +1); 
y := presy + (d + 1 1-1,0, +1, 0); 
if maze then true else (i < 3 I go to loop); false fi 

print (if maze then "Maze is solved" else "No route to centre "fi ) 
end 

OearJy, maze can call itself recursively to a considerable depth~ Now maze 
contains decIiuations for the variables presx, presy, presd and i, which must 
be elaborated whenever it is called (two trivial cases apart). This means that 
four locations must be reserved on the stack (1.2.2.3). Next, maze calls itself 
recursively, and we meet these declarations again. Do we get the same four 
locations? Of course not! We reserve another four on the stack, and the first 
four become inaccessible until such time as we return to the particular call of 
maze in which they were created. Then we will find that their values have not 
been touched since we left them. 

So, by the time maze has called itself to a depth 'of 20, there are 20 
instances of these four variables on the stack, and their values form a 
complete record of how we got from the entrance to where we are. So, if we 
replace the last line but one of maze by: 

if maze then print ((presx, presy, newline)); true else (i < 3 I ... 

then we shall get printed a complete set of directions showing how to get out 
again. 
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4.2.3. Scopes of routines 

The following example should be compared carefully with 3.2.2. E3: 

(E22) begin proe void pp; realy; 
begin real x; proe p = void: y : = x; 
x :=2.0; 
p; 4' this is all right. 2.0 is assigned to y 4' 
pp := p 4' this one is going to cause trouble 4' 
end; 

print (y); 4' no complaints 4' 
pp; 4' tries to assign x to y, but who is x? 4' 
print (y) 4' now what? 4' 
end 
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In an assignation, the scope of the RHS must be at least as old as that of the 
LHS, and in the case of pp := p above, it was obviously the scope of the 
routine ascribed to p (i.e. void: y := x) that was too new. 

In fact, the scope of a routine corresponds to the smallest range containing 
a declaration of an identifier or a bold word (2.3 or 4.3 .2) which is used 
inside that routine [R 7.2.2.c] (i.e. the inner range in the above example 
because the routine contained anx). There are two small exceptions. A 
mode-indication used inside the routine as a formal-declarer (i.e. not as an 
actual one) does not count for this purpose, neither does an applied-operator 
whose only crime is to identify a priority-declaration (4.3.1) outside. 

In both this example, and in 3.2.2. E3, the trouble could have been caught 
by a check at compile time, but in the following example a run time check 
would be necessary: 

(E23) begin ref real x>f, proc copy = (ref real a) ref real: a; 
begin 
real x := 2.0; 
xx := copy (x) 
end; 

print (xx) 
end 

Vertical readers, please turn to 5.2. 

I.I.A.-7 
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4.3. Operation declarations 

The operators used in formulas (5.1.3) are either symbols built in to the 
language for. the purpose, or bold words (1.3) invented by the user. (Note 
that a bold word used in a mode-declaration (2.3) may not, in that reach 
(3.2.1), be used for an operator.) (Note also that the built in symbols may all 
be used for either monadic- or dyadic-operators, except for the symbols <, 
>, /, =, x, and * which may not be monadic [R 9.4.2.1].) 

In order to be used, an operator must yield a routine, and if it is to be used 
as a dyadic-operator it must have a priority too. Now several routines may, at 
one and the same time (subject to a restriction that will be discussed below in 
4.3.3), be ascribed to a given symbol (or bold word), but that symbol (or 
bold word) may only have one priority. Therefore, before a symbol can be 
used as a dyadic-operator, it must be given a priority (unless it has already 
acquired one in the standard-prelude [R 10.2.3.0]). 

4.3.1. Priority declarations 

There are 9 available priority levels for symbols to be used as dyadic­
operators (for convenience, we classify monadic-operators as having priority 
10 in Chapter 6, but this is purely our own convention). We associate a 
priority with a symbol (for the duration of some range) thus [R 4.3.1] : 

(E1) prio min = 9; 

Priority-declarations may be incorporated into collateral-declarations: 

(E2) prio min = 9, prio max = 9; 

and this may be contracted into: 

(E3) prio min = 9, max = 9; 

4.3.2. Operation declarations 

An operation-declaration looks rather like an identity-declaration: 

(E4) op (real, real) real min = (real a, b) real: (a < b I a I b); 

The RHS of this one is a routine-text (4.2.2.1), but in general it is an actual­
parameter (2.2.1) - so if you were trying to be very posh you might try to 
organise yourself some other unit which (after suitable coercion, of course) 
would yield a proc (real, real) real. Normally, however, a routine-text is as far 
as you will ever need to go, in which case you may then immediately contract 
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it as with routine-declarations (cf 4.2.2.1. ElO): 

(E5) op min = (real a, b) real: (a <b I a I b); 

The operator min now works for pairs of reals. However, we may wish it 
to work for other combinations: 

(E6) op min = (int a, b) int: (a < b I a I b), 
(E7) min = (int a, real b) real: (a < b I a I b), 
(E8) min = (realq, int b) real: a min real (b); 

E8 was trying to be clever by using the version of min already declared in E5. 
It is an interesting example of the use of a cast (5.1.1.3) but not an efficient 
way of doing a job, as E7 was. Note the contraction whereby the ops have 
been gathered together (cf 4.2.2.1. EI3). 

Now min yields four routines, but this is only the start of it. Now there are 
all the combinations of long reals and long ints (2.7.2), and no doubt sensible 
meanings could be found for min when operating upon chars, strings and all 
sorts of things. 

min is a dyadic-operator (so far), and as such yields routines which have 
two formal-parameters. Monadic-operators, of course, yield routines with 
one formal-parameter: 

(E9) OIl min = ([] real al) real: 
begin real x := max real 4' 6.2.l q; 
for i from lwb al to.upb al do (al [i] <x I x := al [i] ) od; 
x end; 

Routines yielded by operators are entered when those operators are 
encountered in the elaboration of formulas [R 5.4.2] . For a full under­
standing offormulas, you should consult 5.1.3. It will suffice here to show 
how the operands of the formula are matched up to the formal-parameters of 
the yielded routine (having selected the right routine to match the modes of 
.the operands, of course). This process is identical to that used when pro­
cedures with parameters are called (4.2.2.2). So, if we have the formula: 

(ElO) i minx 

we first select the E7 version of min, and then construct the following 
colla teral-declara tion: 

int a = i, real b = x; 

In the reach of this declaration, (a < b I a I b) is elaborated, and the real 
result becomes the value yielded by the formula. 
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4.3.3. Identification of operators 

The identification of identifiers was described in 3.2.3, and the purpose 
and method of identification of operators are essentially similar. Consider the 

. identification of min in: 

(Ell) begin 
, __ ~prio min = 9; 
: op min = (real a, b) real: (a < b I a I b), 
I min = (int a, b) int: (a < b I a I b); +---+------... 
~, a := x miny; I -_ - - - ...I '.;-'-__________ --/ 

I begin 
I /--+prio min = 8; 
I : op min = (ref real a, b)ref real: (a < b I a I b);:-J. 

\ xx :=x mmy 
I -- - - - - J ,'-'--------------~ 
I end; 
\ k:= i minj 
- - end -.-' '-'---------------------' 

Firstly, you must identify all the applied occurrendes of min in the 
formulas with the defining occurrences of min in the priOrity-declarations. 
This results in the dotted lines to the left hand side of Ell. 

Secondly, you must identify all the applied occurrences of min in the 
formulas with the defining occurrences of min in the operation-declarations. 
But you must only accept, in your search,. a defining occurrence the modes of 
whose formal-parameters can be firmly coerced from the modes of the 
operands of the formula [R 7.2.1] .·This results in the lines on the right of 
El1. 

However, let us now try to declare another version of min: 

(EI2) op min = (ref real a, b) ref real: (.a < b I a I b); 

The purpose of this one is to determine which of two names (of mode ref 
real) refers to the smaller value. Let us use it in a formula: 

(E13) xminy 

But Oh dear! Doesn't this also identify the version of min declared in E5 (in a 
formula, the operands are firm, and so x and y can be dereferenced in this 
example (5.1.0))? 

Clearly, it must be forbidden for E5 and E12 to oceur in the same reach. 
This is expressed by saying that the modes of the formal-parameters of two 
declarations of the same operator in the same reach must not be "firmly 
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related" [R 7.1.1] , i.e. one of them, or a component mode of one of them (if 
it is a union), must not be firmly coercible to the other. Since ref real (in 
E12) is firmly coercible to real (in E5), these certainly do not pass the test. 

However, even if two declarations are in different reaches, as they are in 
Ell, and they are firmly related, then the one in the inner reach renders 
invisible the one in the outer reach. Thus you could not have written, 
immediately after xx := x min y in Ell, a := x min 2. O. It certainly could not 
have identified the min declared for two ref real parameters, and it is not 
allowed to see the other one. On the other hand, k := i min 2 would have 
been all right in this position. This additional restriction simplifies implemen­
tation of the language and is unlikely to affect the average user, since it is 
more likely that such an identification would indicate an error on his part, 
than that it would be his real intent. 

Vertical readers, please turn to 6.3. 

-----_. --- - --.. -------------~----.---------------------
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4.5.· Row-of parameters 

Consider routines of modes such as proc ([ ] real) void. When such a 
routine is called, the compiler may be obliged to take a copy of the value of 
the actual-parameter - in general a time consuming operation - just in case 
the body of the routine should contrive in some way to alter the original: 

(El) [0: 99] real xl; 
proc a2 = ([ J real bl) void: for ito 99 do xl [i] := b1 [i-1] od; 
a2 (xl) 

The intention and effect of this example is not to make every element of xl a 
copy of xl [0], which is what would have happened if b1 had not yielded a 
copy of the value of xl at the start of the call. . 

However, cases such as this are rare, and a decent implementation will 
postpone making the copy until the problem actually arises, if at all. But not 
all implementations are decent, and so it may be wiser to declare your 
formal-parameter as a ref [ ] real. Then, as call, it is only a name which has 
to be passed to the routine, which uses it to access the original multiple value 
that it refers to. However, if a routine is provided with a name, it is entitled 
to be told whether the multiple value referred to is fixed or flexible: 

(E2) proc as = (ref [ ] real bl) void: XXXXX; 
proc a6 = (ref flex [] real bl) void: XXXXX; 

For further discussion of this point, see 8.5. 

Vertical readers, please turn to 5.5. 
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4.7. Jumps 

We have informally been using jumps in this book right from the start, but 
mainly only in places where we had not yet introduced choice-clauses (3.2.4) 
or loop-clauses (3.5.2). Since these already provide powerful and adequate 
facilities for controlling the flow of your program, jumps are hardly necessary 
in ALGOL 68. Their main legitimate uses are for premature exits frqm 
loop-clauses and from event routines (7.4.4). 

4.7.1 . Simple jumps 

We have already seen (3.1.2) that labels may appear anywhere in a 
serial-clause provided no declarations come afterwards: 

(El) labl: 

A jump to a label consists of goto (or go to) followed by the label that is to 
be identified (3.2.3), or simply just of that label by itself: 

(E2) go to labl 
go to labl 
labl 

The effect of the jump is to cause the unit following that label to be elabora­
ted next. A jump may only occur in a strong context (its mode is irrelevant, 
but is automatically regarded as the mode expected for syntactical purposes). 

4.7.2. Procedured jumps 

In some other languages, there is a mode label, and one may assign labels 
to label variables and subsequently jump to them. In ALGOL 68, however, 
procs are used for this purpose [R 5.4.4.2] : 

(E3) proc void ppp; 
ppp := go to stop 

The elaboration of this constructs the routine 

void: goto stop 

and assigns it to ppp, just as if we had written 

(E4) ppp := void: goto stop 

An interesting application of this facility can be used to realise the equivalent 
of the ALGOL 60 switch facility: 
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(E5) [] proc void switch = (el, e2, e3); ct a multiple of procs. 
el, e2 and e3 are labels ct 

switch [i] ct jumps to the label selected by i ct 

In fact, if a jump appears in any strong context where a procedure without 
parameters is expected (no coercions allowed), this is what happens. In all 
other contexts, the jump is simply obeyed immediately. Thus we may 
distinguish between 

(E6) x := if p theny else goto stop fi 

and 

(E7) taskl := if p then void: print (lip WAS TRUE") else goto stop fi 
d' see Appendix 2 for taskl. 

if p is false, we assign void: goto stop to taskl, 
but we do not go there yet d' 

Vertical readers, please tum to 5.7. 
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5.1. Simple units 

'Units' (also termed 'unitary-clauses') are the entities in the language which 
actually get things done. The simplest example of a unit is ·the simple type of 
assignation (e.g. x := y + 2.4) which we have used many times already. 
However, examples much more complex than this can be constructed in 
accordance with a set of rules which it is the purpose of this chapter to 
describe. (The corresponding definitions are mostly to be found in RS.) 

5.1.0. Coercion 

5.1.0.1. Coercends 

The basic building blocks out of which units are made are known as 
'coercends', of which there are 16 types, arranped in a hierarchy as follows: 

quarternaries (or units) 

assignations 

routine"texts 
iden tity-relations 

*jumps 

*skip tertiaries 

formulas 

*nil . secondaries 

selections 

generators primaries 

denotations 

applied-identifiers 

casts 

calls 

slices 

format-texts 

I *ENCLOSED-clauses I 

* Strictly speaking, these units are not coercends, since they cannot be coerced. 

193 
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A unit can be any quaternary. Right at the bottom are ENCLOSED-clauses 
(as (a+b) in x := y x (a+b) which are themselves made up of further units (as 
described in 3.2.4), so that the definition of the whole setup is recursive . 
. Now the elaboration of a unit (Le. of a coercend or of an ENCLOSED-

clause) has two effects. ' 
Firstly, it must yield a value (e.g. the value of the formula 2+3 is 5). This 

value will be of some mode, possibly void, uniquely determinable at compile 
time. If the mode is void, then the unit is a 'statement'; otherwise it is an 
'expression'. Secondly, some other actions (independent of what is yielded) 
may take place (e .g. in x : = 2. 4, the. value 2.4 is assigned to x); 

S.1.0.2. Coercion 

Now the a priori mode of a coercend may have to be coerced (see 1.1.6) 
into the mode that is required by the "context" in which that coercend 
appears [R 6.1] . Thus, the a priori mode of 2 is int. If 2 occurs in the con text 
x := 2, then the expected mode (after the x :=) is real. When this assignation 
is elaborated, then, the integral value 2 must be coerced into the real value 
2. o before the assignation can proceed. Fortunately this particular coercion 
(which is known as "widening") is permitted in this particular context and 
this assignation is therefore legitimate; The question as to whether anyone of 
the 6 permissible coercions may be applied in a particular case depends upon 
the context. For this purpose, contexts are divided into S classes: 

strong 
firm 
meek 
weak 

and soft 

All 6 coercions may be applied in strong positions. During the rest of this 
chapter, as we describe each form of unit, we shall indicate the strength of 
the contexts occurring in it. Here, in the meantime, is a summary: 

strong contexts The RHS of identity-declarations (2.2.1) 
The actual-parameters of calls (5.2.1) 
The RHS of initialized variable-declarations (2.2.3) 
The RHS of assignations (S .1.4.1) 
The ENCLOSED-clauses of casts (S .1.1.3) 
The units of routine-texts (4.2.2.1) 
Statements (must yield void) (5.7.0.1) 
All constituents but one of a balanced clause (S.2.0.1) 
One side of an identity-relation (S.7.4) ~----------~.-
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firm contexts Operands of formulas (5.1.3) 
In effect, the a~tual-parameters of transput 

calls (7.1.1, 7.1.2) 

meek contexts Trimscripts (must yield int) (5.5.1.3) 
Enquiries (3.2.4.2, 3.2.4.3, 3.5.2, 3.6) 
Primaries of calls (e.g. sin in sin(x)) (5.2.1) 

weak contexts Primaries of slices (e.g. x in x [i]) (5.5.1.3) 
Secondaries of selections (e.g. z in re of z) (5.4.2) 

soft contexts The LHS of assignations (5.1.4.1) 
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I----------~ The other side of an identity-relation (5.7.4) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I ___ J 

A complete chart of all the coercions is given below. The way to use this 
chart is as follows. Consider first the mode (a priori) of the available coercend 
and secondly the mode (a posteriori) required by the context. Then you must 
find a route following the arrows on the chart that will, through a sequence 
of intermediate modes, take you from the first to the second. If the coercion 
is possible, then there will be such a route (if tjlere are several routes, they 
will always be found to be equivalent). 

Suppose, for example, that in a strong context you have (a priori) a 
coercend of mode proc ref bool and what you really need (a posteriori) is a 
value ofmod~ [ ] union (real, int, bool). Then there is indeed a route 
between them, but the simplest way of describing it to you will be to 
introduce a fictitious operator to represent each coercion on the way, as 
suggested in 1.1.6 (of course these opera tors are not really part of ALGOL 
68). Thus the required value is obtained by the following operations on the 
coercend: 

ROW(UNITE(DEREFERENCE(DEPROCEDURE( coercend)))) 

and you will encounter these operations (from the innermost to the 
outermost) as you follow the route. Doubtless you will be relieved to hear 
that coercions do not invariably get so complex. 

The change of mode brought about by each of these fictitious operators is 
given in the chart. Their effect upon the elaboration of the program will be 
found at appropriate points in this introduction, as follows: 

voiding 5.7.0.1 
rowing 5.5.0 
widening 5.1.0.4,5.4.0,5.7.0.2 
uniting 5.6.0 
dereferencing 5.1.0.3,5.4.2,5.5.1.3 
deproceduring 4.2.2.2,5.2.0.2,5.2.1 
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COERCION CHART 

coercend, of the 
MODE AVAILABLE (a priori) 

c-- deprocedure --- proc amode to amode 

c=weakly dereference-ref ref am ode to ref amode 

c--- dereference --- ref amode to amode 

~ deprocedure --- proc amode to amode -; 

(unite 
( 

amode to union (amodes) 

Lunion (amodes) to union (more amodes) 

lwiden int ** to real 

~~ 
~ bits** to [ ] bool ~ 

'--- bytes** to string-

rmWE~odeto [UJ~od' 
ref amode to ref [1: 1] amode-

[ ] amode to [1 :1, ] amode ~ 

ref [ ] amode to ref [1:1, ] am ode 
and so on 

, 
void nonproc * to v~ 
morfs *** only 

void amode to void 
comorfs *** only 

* nonproc is all modes except proc amode and refs proc amode. 

** The corresponding longs and shorts versions can also be widened. 

*** Comorfs are assignations and casts. The rest are morfs. See 5.2.1. 

Ch.5.1.0.2 

soft con texts 

weak co ntexts 

meek con texts 

fIrm cont exts 

strong contexts 
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If you cannot find a suitable route through the maze simply because your 
context is not strong enough, then all is not lost. A device known as a 'cast' 
has been provided wherein you first state the mode you would like to have (a 
posteriori), and then strongly coerce yourself into it regardless. Casts are 
described in 5.1.1.3 below. They are particularly useful for dereferencing in 
soft contexts and for widening in firm ones. 

5.1.0.3. Dereferencing 

We have already explained in 1.1.2.1 and in 2.1.2 how a declaration such 
as real x; causes a location in the memory to be reserved (or "generated") for 
a real value, the name which refers to that value being ascribed to the 
identifier x. Thus, the value yielded by x is a name of a priori mode ref real. 

Now, very frequently, what we want is the real value stored in the location 
referred to (as x in the assignation y := x) and what we have got is its name. 
We must therefore have resort to the coercion known as "dereferencing". 

Dereferencing [R 6.2] is permitted in any con text that is strong, firm, 
meek or weak (which is almost everywhere). (A slight restriction in the case 
of weak positions will be discussed in 5.4.2.) The effect is to remove one ref 
from the a priori mode, and to yield the value of the thing that was named. If 
this value is in turn another name, then further dereferencing may be 
required. 

Thus if the ref real identifier x stands in a context that is strong, firm or 
meek, and if the expected mode is real, then the value yielded is the real value 
that x refers to. 

5.1.0.4. Widening 

Consider: 

(EI) x := i 

Widening [R 6.5] is used to tum an int value into a real value (also a real 
value into a compl value (see 5.4.0) and some further cases in 5.7.0.2). In this 
example, therefore, the ref int i is first dereferenced to yield an int value, 
which is then widened to yield the corresponding real value, which can then 
be assigned to the name x. 

We shall now consider the simpler forms of coercend, starting with the 
primaries: 

5.1.1. Primari.es 

We shall consider three forms of unit here-denotations, identifiers and casts. 
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5.1.1.1. Denotations 

Denotations are those entities which, in earlier languages, would have been 
known as "literals" or "constants". The following examples show some 
legitimate denotations, together with the a priori modes of the values that 
they yield [R 8.1]. 

Yielding int 2 ; 1024 ; 123 ; 0123 
Yielding real 12.3 ; 1.23101 ; .12310+1 ; 0.123e+l ; 1230e-l 

0.00123; .00123; 123.0; but not 123. 
Yielding bool 
Yielding char 

true; false 
"a" ; "B" ; "1" ; "," ; ":,." for a space symbol; 
" '"' " for a (single) quote symbol 

From a study of these examples, you should be able to construct any 
other denotation that you might require. 

For string denotations see 5.5.1.1, for the void denotation see 5.6.1 and 
for bits and long denotations see 5.7.1. 

5;1.1.2. Applied identifiers 

An identifier standing as a unit constitutes an applied occurrence (1.1.5) 
of that identifier. Somewhere, that same identifier will have been declared (at 
its defining occurrence). These two occurrences must be correlated since the a 
priori mode of the value yielded when it stands as a unit is the same as the 
mode with which it was declared. The exact method of correlation is 
considered in 3.2.3. 

5.1.1.3. Casts 

Suppose the operator.<Q had been defined for pairs of reals, but not for 
Ints, and suppose you wanted the formula: 

(E2) x Oi 

which would not then be allowed. i cannot be widened because its context is 
only firm. If only it were strong. Let us therefore make a mould the shape of 
a real, and melt up our int, and cast it into the required shape: 

(E3) x 0 real (i) 

This is all right. real(i) is a 'cast' [R 5.5.1]. The formal-declarer real specifies 
that it shall yield a real, which suits the 0 operator. Immediately after the 
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formal-declarer the context is strong, and an ENCLOSED-clause is expected. 
Thus the int i may be widened to real and everyone is happy. 

Other examples of the use of casts will be given in 5.2.4. Ingenious users 
will find many other applications. For example, in transput (see 7.1), given 
i = 1234: 

(E4) print(i); 
prin t( rea1( i) ) 

5.1.2. Secondaries 

¢ will print + 1234 d' 
d' will print + 1. 23410+ 3 d' 

Discussion of secondaries will be postponed until Section 5.4.2. 

5.1.3. Tertiaries-formulas 

(The reason why we sometimes prefer to talk of formulas rather than 
formulae is to be found in the Report at 1.1.4.2.a, but we would not 
recommend that you should read that just yet.) 

The following are examples of 'formulas': 

(E5) x - 2 ; x 0 y d' if a meaning for 0 has been declared 4' ; 

xxa+b;xx(a+b);-2 

It will be seen that the essential feature of formulas is that they contain 
operators which operate upon operands [R 5.4.2] . 

If a formula contains more than one operator, then there is an implied 
bracketing which ensures that each dyadic-operator has two clearly defined 
operands, and each monadic has one. In order to assist with the implied 
bracketing, each dyadic-operator has an associated priority in the range of 1 
through 9, all monadic-operators effectively having priority 10. For example, 
"t" has priority 8, "x" and "I" have 7, and "+" and "-" have 6. The rule is 
that the operators with the highest priority are always considered firsLThus: 

(E6) 
(E7) 
(E8) 
(E9) 
(EIO) 

xxa+b 
-a + b 
+4 -2t2 
-2t2+4 
4 +-2t2 

means (xxa) + b 
means (-a) + b (because the" -" here is monadic) 
means (+4) - (2 t 2) (and yields 0) 
means (( -2)t2) + 4 (and yields 8) 
means 4 + (( ,---2)t2) (and yields 8). 

We agree that E8 and E9 are confusing,but it was thought that to have 
some dyadic-operators of priority higher than the monadics would have been 
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even more so. The operator "t", as in atb, should not be thought of as 
equivalent to the usual mathematical notation for "to the power" as in ab , 

which is itself a nota tion for a function such as pow (a, b). 
Where several operators of the same priority occur together, an additional 

rule is needed. Thus for dyadic-operators: 

(Ell) i-j+k-m+n 

means 

(E12) (((i - j) + k)-m)+n 

likewise for monadic-operators: 

(E13) + abs entier - x 

means 

(E14) +(abs( entier (-x))) 

The priority and meaning of each operator are either built into the 
standard-prelude (6) or library-prelude (I.!) or are defined by the user 
(1.3.3.2 and 4.3). 

_ The mode(s) of the operand(s) in a formula must match the mode(s) for 
which its operator has been defined. For example, the dyadic-operator "+" is 
defined (6.1.2) to do a variety of things, amongst which is a definition which 
states that if its first operand is real and its second operand is real, then it 
yields a real value which is to be the sum ofits two operands (within the 
accuracy permitted by the implementation). A separate definition states that 
if its first operand is int and its second is int, then it yields an int value, and 
there are ten other similar definitions, not to mention three more for its 
monadic counterpart (6.1.1). 

An operand can be any tertiary except nil, provided it is of the required 
mode. E.g. it can be another formula (as in the implied bracketing examples 
above), a selection, a denotation or an ENCLOSED-clause, but it cannot be 
an assignation because an assignation is not a tertiary (see 5.1.0.1). Thus if 
you wanted to operate upon an assignation, you would have to make it into a 
closed-clause thus: 

(E15) x + (b := a xy) 

The tertiary which constitutes an operand is in fact firm, and the 
permitted coercions therefore include dereferencing, but not widening. Thus 
in: 

(E16) x + y 
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the names x and yare first dereferenced to yield two real values, which are 
then added to yield the real value of the formula. 

Consider also: 

(EI7) x := i + j 
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i andj cannot be widened because of the firm context, but the version of "+" 
to add two ints can be used. Then the value of the whole formula i+j, being of 
mode int, can be widened to real. 

(EI8) x := i + y 

Here again, i cannot be widened in order to be added to y. The formula i+y is 
only valid by virtue of the fact that the operator "+" is also defined (6.1.2) 
for the case of an int plus a real yielding a real. 

5.1.4. Quaternaries 

5.1.4.1. Assignations 

An 'assignation' [R 5.2.1] is one of the commonest forms of unit. It 
consists of two parts-a left hand side (its 'destination ') and a right hand side 
(its 'source'). Consider the following example: 

(EI9) x := y + 3.14 

The LHS (x in this example) is subject to the following restrictions: 
a) It must yield a name (Le. its mode must be ref am ode ; in the example 

above x was ref real). 
b) It must be a tertiary (in the example x was an applied-identifier; a 

formula is also possible but in fact few operators yield names (but see 
6.3)). 

c) Its context is soft, which means in particular that no dereferencing is 
allowed (unless you use a cast). 

Application of these rules completely determines the mode of the value 
referred to by the name yielded. 

The RHS (y + 3.14 in the example) therefore has considerable freedom, 
the rules being the following: 

a) It must yield a value whose mode is the same as that of the value 
referred to by the left hand side (in the example a real value is yielded, 
which is in agreement with the ref real mode of the left hand side). 

b) It can be any quaternary, which means it can be any coercend or any 
ENCLOSED-clause, provided a suitable mode is yielded (in the example 
it was a formula). 

--------------------------
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c) Its context is strong, which means that any known coercion can be 
applied in order to obtain the required mode (in particular, both 
widening and dereferencing can be used). 

d) It has a scope restriction, but this is described in 3.2.2. 
Consider: 

(E20) x :=y 

Both x and yare, a priori, names (of mode ref real). y must be dereferenced 
to yield a real value. The value formerly referred to by x is then superseded 
by this real value. 

x :=a + b 

In this case the RHS is the formula a + b, which already yields a real value. 
No dereferencing is therefore needed (note, however, that a and b were in 
fact dereferenced during the elaboration of the formula itself). 

Since any quaternary can stand for the RHS of an assignation, it follows in 
particular that another assignation can so stand. It is therefore necessary to 
specify what value (and of what mode) is to be yielded. In fact, the value 
yielded by an assignation is the value yielded by its LHS, which is always of 
mode ref amode. Consider the following: 

(E21) a :=b :=x :=2.4 

Let us first insert the implied bracketing (which, as you will observe, is not 
that of a dyadic-operator (see 5.1.3. E12)): 

(E22) a := (b := (x := 2.4)) 

First of all, the real value 2.4 is assigned to x. The value of x := 2.4 as a whole 
is the name x which, being of mode ref real, must be dereferenced before the 
value to which it refers (which is now 2.4, of course) can be assigned to b. 
The value of this assignation is the name b, the value referred to bywhich 
(2.4 again) can now be assigned to a. Thus, everybody lands up by referring 
to his private instance of 2.4. The formula x + (b := axy) given in example 
E15 causes the product axy to be assigned to b. x and the. new value now 
referred to by b are then added together. 

5.1.4.2. skip 

skipis a special form of unit. As a statement, it is a dummy. In other 
strong contexts, it yields an undefined value of the mode demanded. 
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Note that it is never subject to coercion and that it may only occur where the 
context is strong. 

Vertical readers, please tum to 6.1. 

5.2. Balance and call 

In this section we consider balancing, procedure calls, and also some 
further examples of coercends involving names. 

5.2.0. Coercion 

5.2.0.1. ENCLOSED clauses and balancing 
Any form of ENCLOSED-clause (3.2.4) may stand asa primary. Often, 

the effect is straightforward: 

(El) y:=xx(a+b) 

However, let us consider again the example E9 from 3.2.4.1 : 

(E2) begin 
print (4 x ( real w := 0, int i := 1; real z = sqrt (small real/2); 

loop: w:= w + 2j(i x (i + 2)); i := i + 4; 
if 1 Ii> z then loop fi; 
w) ) 

end 

In this example, the value of the serial-clause within the parentheses is, a 
priori, the name w (of mode ref real) which will have vanished by the time we 
are outside the clause. Fortunately it is also clear that, if the value of this 
serial-clause is a name, it ought to have been dereferenced (because the 
operator "x" is expecting a real). However, the rules provide that an 
ENCLOSED-clause cannot be dereferenced (it is not a coercend). Instead, the 
required mode and the strength of the context are passed on to the unit 
which is to be yielded, which in this case is the identifier w. Therefore, it is w 
that gets dereferenced, right at the last moment before it disappears, and the 
resultant real value is passed on. The following piece of syntax (which is not 
the complete syntax for a serial-clause) may make this clearer to those who 
have some familiarity with the Report [R 3.2.1] . 

---------------------
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SORT: strong; firm; weak; meek; soft. 
SORT MOlD serial clause: 

Ch.S.2.0.1 

strong void unit, go on token, SORT MOlD serial clause; 
declaration, go on token, SORT MOlD serial clause; 
SORT MOlD unit. 

The ENCLOSED-clause might well be a conditional-clause: 

(E3) x := (i<OI-iliJ 

or it might be a case-clause: 

(E4) x := (ilj,k,m,n) 

In these cases as well, any coercion that might appear to be needed on the 
ENCLOSED-clause as a whole is instead performed on the unites) inside, as 
the context may permit. Indeed, different coercions may be applied to 
different internal units; 

(E5) x := case i inj, k, x, y esac 

The first two alternatives in E5 would have to be widened - the last two are 
already real. Widening is possible because the case-clause occurs in a strong 
context. However, even if the context had been firm, widening would have 
been permitted provided that at least one of the alternatives had been real, 
e.g.: 

(E6) a := x x (i<O Ijly) 

The fact that y is real shows that the version of the operator "x" requiring a 
real is intended, and therefore the context of j can be promoted to strong. 
The same holds for 

(E7) a := x x (i<Olxlk) 

This principle is known as "balancing". However: 

(E8) a :=x x (i<Oljlk) 

involves the multiplication of a real with an int, and is not balanced. 
Balancing is permitted between: 

a) The completion points of a serial-clause [R3.2.1] (i.e. the exits and the 
final unit (3.1.4)), e.g. 
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(E9) a := b + ( real x, y, z; z := 1 - 3 x sqrt( small real); x := i; 
if x ,;;;; 0 then go to libl fi,; 

lobI: y := i/'d2; x := (2 x x + y)/3; 
if y Ix < z then go to lobI fi; 
if x ;;;, 10.0 then go to libl fi; 
x exit 

libl: print ("out of range "); 
10) 

Please compare that carefully with 3.1.4. E7. 
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b) The alternatives of a conditional-clause [R 3.4.1] , following then or else 
(3.2.4.2 and examples E6 and E7 above). 

c) The altematives of a case-clause, including the out option (3.2.4.3), e.g.: 

(EIO) a:=yx(ilj,k,x,y) 

d) The alternatives of a'conformity-clause, including the out option (3.6). 
e) The LHS and RHS of an identity-relation (5.7.4). Experienced readers 

might like to consider the rather delicate example 5.7.4. E28. 
See also 5.5.1.3 for the balancing of transient names. 

5.2.0.2. Deproceduring 

Deproceduring is a method of calling routines not having parameters, and 
has already been introduced in 4.2.2.2. We think it best, however, to consider 
it alongside calls of routines which do have parameters, which brings us to: 

5.2.1. Primaries - procedure calls 

It will have been seen (1.2.3.1 and 4.2) that procedures are declared in 
< much the same way as other objects, and that they yield values (i.e. their 

routines). Thus proc void, proc real, ref proc ( int, real) int are perfectly valid 
modes. The consequence of which is that if random (which is declared to be 
of mode proc real (see 6.2.2)) appears as a coercend, it is not immediately 
apparent whether its value (i.e. its routine, which is of mode proc real) is to 
be yielded, or whether the intention is to elaborate the routine and to yield 
its real result (although the latter may well be intended 99% of the time, the 
former facility is needed whenever a procedure is to be assigned, or operated 
upon in a formula, or yielded by another procedure - all of these things 
being quite allowable). 

The distinction between these two interpretations can only be made by 
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context. There are two cases: 
a) Calls [R S .4.3] 

UNITS Ch.5.2.1 

(Ell) proc (real) real p; proc sinh = (-real x) real: (exp(x) - exp( -x))/2; 
y := sinh(x); 

(EI2) p:= sinh 

sinh has been declared to be a procedure requiring a parameter. Therefore, 
in Ell where an actual-parameter is indeed present, the intention is clearly 
that the procedure should be called. If there are no parameters, as in E12, 
then its body must be yielded. Thus the problem does not arise. 

b) Deproceduring [R 6.3] 

(EI3) 
(EI4) 

proc real q; proc sinh x = real: (exp(x) ---, exp(-x))/2; 
y := sinh x; 
q := sinh x 

sinh x does not require parameters. Therefore, we must see which mode is 
required by the context. In E13, real is required, which is what the routine 
yielded by sinh x returns. Therefore we must employ the coercion known 
as "deproceduring". . 
The effect of deproceduring is always to convert the mode of a coercend 

of proc amode into amode (including proc void into void), at the same time 
calling the value (Le. the routine) that the coercend yields. 

In El4,on the other hand, the mode required is proc real and so the 
routine yielded by sinh x is assigned without any coercion. 

Deproceduring can be used in any context*, including the LHS of an 
assignation. 

In elaborating a call of either sort, it is first necessary to establish what is 
to be called. In case (a) this is specified by a meek primary yielding the 
required routine, and the primary is followed by the actual-parameters. The 
interpretation of these has already been described in 4.2.2.2. Usually, the 
primary will be an identifier, as ncos (see Appendix 2) in: 

(EIS) x := ncos (i) 

* In strong void contexts, there may be some doubt as to whether deproceduring or 
voiding (5.7.0.1) is tobe used. The coercion chart (5.1.0.2) shows that deproceduring is 
always to be preferred to voiding, except where the coercend is an assignation or a cast. 
In E14 it was an assignation yielding (a priori) the ref proc real value q. Clearly, to have 
now called this would have been ridiculous, and therefore immediate voiding was 
appropriate. If q had stood as an applied-identifier on its own, however, it would have 
been dereferenced, then deprocedured (so that any side effects of sinh x could happen), 
and finally voided. 
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However, it could be an ENCLOSED- (e.g. conditional-(3.2.4.2)) clause, as in: 

(E16) x := (p I ncos I nsin) (i) 

In case (b), where deproceduring is to be used, the required routine must 
be yielded by a suitable unit (but not an assignation or a cast). Again, usually, 
it will be an identifier as in: 

x := random 

It cannot, however, be an ENCLOSED-clause (which is not a coercend). If 
proca andprocb are both of mode proc real, then: 

(E17) x := (p I proca I procb) 

is legitimate, but the deproceduring of proca and procb takes place in situ, as 
you have already seen in 5.2.0.1, and the conditional-clause as a whole yields 
real without further coercion. 

The corresponding situation in the case of calls with actual-parameters 
arises in: 

(E18) x := (p I ncos(i) I nsin(i)) 

which should be compared wjth example E16 in which the actual-parameter 
(i) appeared only once. 

The modes yielded by the actual-parameters in a call must, of course, 
match those of the formal-parameters (4.2.2.2) of the routine. However, the 
context of an actual-parameter is strong, so that all the coercions are 
available. 

5.2.3. Tertiaries - nil 

nil is a special tertiary of mode ref amode which yields a name which does 
not refer to any value. See S.2.4.E27 for an example. Note that nil is never 
subject to coercion and that it may only occur where the context is strong. 

5.2.4. Quaternaries - assignations involving names 

Here are some examples of assignations involving names. Remember that 
xx and yy are of mode ref ref real and that a, x and yare merely ref real: . 

(E19) xx := if i<O then x else y fi; 

The value of xx is therefore the name x or the name y. 



208 UNITS Ch.S.2.4 

(E20) yy:=xx; 

and so is the value of yy. 

(E21) a :=xx; 

The value currently referred to by x or y (whichever was assigned to xx) is 
assigned to a. Note that xx is dereferenced twice in this example. 

(E22) ref real (xx) := a; 

The value referred to by a is assigned to x or to y. xx is here put in a cast, so 
that it may be dereferenced. There is normally little point in using a cast as 
the RHS of an assignation, since: 

(E23) y := real (x); 

means the same as: 

(E24) 

(E25) 

y :=x; 

a:=xx:=x; 

means the same as a : = real (xx: = x), in which the name x is assigned to xx, 
the value referred to by the value referred to by which (i.e. it is dereferenced 
twice) being then assigned to a. On the other hand: 

(E26) xx :=a :=x; 

means the same as xx := (a := x), in which the value referred to by x is first 
assigned to a, and the name a is then assigned to xx (but the resultant value of 
xx is no way dependent upon x, so that one might just as well have written 
a := x;xx := a;). 

(E27) xx := nil 

means that the value referred to by xx is a name which does not refer to 
anything. 

Vertical readers, please turn to 6.2 ... 
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5.4. Units and structures 

5.4.0. Coercion - complex widening 

The widening of ints into reals was introduced in 5.1.0.4. In a similar 
fashion, it is possible to widen a real into a compl, provided the context is 
strong. Thus: 

(E1) z:=x 

x is first dereferenced into a real and then widened. 

(E2) z := 2 

209 

Here the int 2 is first widened into a real, and then widened again into compl. 
Even an implementation (of a sUblanguage) which does not include the 

compl operators in its standard-prelude ought to implement this particular 
widening (Le. of a struct (real re, im)), in order that a user may then declare 
these operators himself, and use them in the normal fashion. 

5.4.1. Primaries - applied identifiers 

Clearly, once a struct (or a ref struct, etc.) has been ascribed to an 
identifier, then that identifier can stand as a unit, and the value yielded is the 
whole of some structure (however complicated) of the appropriate mode (or 
the name of such a structure). For example, in: 

(E3) vi := v2 

v2, which is of mode ref struct (real xcoord, ycoord, zcoord) (see Appendix 
2) is dereferenced to yield a value (consisting of three real quantities) which is 
of mode struct (real xcoord, ycoord, zcoord). Such identifiers can occur in 
assignations (as above), or in formulas, as in: 

(E4) vi := v2 + v3 

or in selections, as will now be discussed. 

5.4.2. Secondaries - selections 

A 'selection' is a form of secondary which can be used to obtain an 
individual field out of a structure, thus: 

(ES) xcoord of vi," re of z 

Here, xcoord and re are field-selectors (see 2.4.1) and v i and z are identifiers. 
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More specifically, any weak secondary can be selected from, and this hal! 
various consequences as follows: 

a) Because it is weak, the secondary can be dereferenced, but a special 
provision attaches to weak dereferencing. If we have a name ref~rring to a 
structure, we have the right to expect, from our selection, a name referring to 
the selected field, and so the dereferencing of the secondary must yield the 
name of the structure, never the structure itself. Therefore, in weak 
dereferencing, succeeding refs may be removed from the mode of the 
secondary until one remains, but this last one cannot go. 

A special rule now provides that where the secondary thus yields the name 
of a structure, the selection as a whole yields the subname (1.1.4.2) referring 
to the selected field (but if the secondary (being of a non-ref mode) yields the 
structure itself, then the selection yields the field itself). For example in: 

(E6) xcoord of vI 

vI is of mode ref struct (real xcoord; ycoord, zcoord) and hence the example 
as a whole yields a name of mode ref real. This selection as a whole may now 
be dereferenced ifits context is strong, firm or meek, as happens in: 

(E7) x := y + xcoord of vI 

However, if we declare: 

(E8) vec wI = (1,2,3); 

in which wI is of mode vec, then: 

(E9) xcoord of wI 

is of mode real. Thus both vI and xcoord of vI are acceptable on the LHS of 
an assignation, but wI and xcoord of wI are not. 

For another viewpoint over this whole matter, you are invited to re-read 
1.4.3. 

b) Becauseit is a secondary from which the selection is made, and because 
a seleciion is a secondary, it follows that selections can be selected from. If we 
declare: 

(EtO) mode tens = struct ( vec xlevel, ylevel, zlevel); tens uI; 

then we may call upon: 

(Ell) xcoord of ylevel of ul 

and the result is of mode ref real. Moreover, if we declare: 
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(E12) mode man = struct ( int age, ref man father); man jones; 

then we may call upon: 

(E13) age of father of father of father of father of father of jones 

and the result is of mode ref into Each time we s~lect a father in this example, 
we obtain a ref ref man which, since it occurs in a weak position, can be 
dereferenced as far as ref man which is just what we need in order to be able 
to select another ref ref man from it. 

5.4.3. Tertiaries - formulas with complex operators 

It will be recalled (2.4.4) that compl is really a structure of mode struct 
(real re, im). Six special operators are provided for use with compls. They are 
re, im, abs, arg, conj and i. The first four operate on compl and yield real. For 
example: 

(E14) 

(E1S) 

(E16) 

re z means the same as real (re of z) 

re (w + z) means the same as re of (w + z) 

abs z means the same as sqrt (re zt2 + im zt2) 

Contrariwise: 

(E17) re w :=x 

is not permitted, although: 

(E18) re ofw :=x 

is. 

(E19) conj z means the same as re z i - im z 

i is a dyadic-operator which produces a compl out of two reals or ints. 
Thus: 

(E20) z := x iy means the same as z := (x, y) 

However: 

z :=w+(x,y) 

is not legitimate because the context of (x, y) is not strong. 

(E21) z :=w+xiy 
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is all right because i is of higher priority than "+". 
N.B. Those still unhappy with the interpretation of -xt2 should pay some 
attention to rezt2, in E16 above. 

Vertical readers, please tum to 7.4. 

5.5. Units and multiples 

5.5.0. Coercion - rowing 

The restriction that a row-display (3.5.1) should contain either zero or at 
least two units is necessary in order to avoid ambiguity. However, a multiple 
value is perfectly entitled to contain only one element, and in order to be 
able to assign values to such multiples a coercion known as "rowing" is 
provided. This may be used in any strong context. Thus, given: 

(El) flex [1 : 2] real wi; 

then 

(E2) wi := 2.4; 

causes a multiple (with bounds [1 : 1]) of one element (Le. 2.4) to be 
assigned to w 1. Also : 

(E3) w1 := (1, 2, 3); 
flex [1 : 2, 1 : 4] real w2 := w1; 

gives w2 the bounds [1 : 1, 1 : 3]. 
likewise: 

(E4) flex[1 : 2] [1 : 3] real w3 := w1; 
gives w3 the bounds [1 : 1] [1 : 3]. 

Thus, rowing consists of adding one 'row' or one 'row of to the mode of a 
value, at the same time providing bounds [1: 1] (several 'row's or 'row ofs 
may be added by repeated rowing). See also 5.5.1.3. E20 for how to produce 
names by rowing 

5.5.1. Primaries 

5.5.1.1. String denotations 

A string is of course of mode [ ] char, and therefore a literal string could 
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be provided by means of a row-display: 

(E5) s := ("T", "H", "E", '~", "Q", "U;', "1", "C", "K") 

However, a more compact denotation is provided: 

(E6) s := "THE.:.QUICK-'..BROWp[FOXJUMPS.PVER]HE,..LAZypOG" 

The value of the RHS here is a multiple value of mode string, and with 
bounds [1:43]. Note the denotation "~' for the space character. You can, if 
you like, use a space as the space-character: 

(E6*) s := "BUT IF YOU HA VE AVER Y LONG STRING­
DENOTATION WHICH CONTINUES ON TO THE NEXT 
LINE, HOW CAN YOU TELL HOW MANY SPACES 
THERE WERE AT THE LINE BREAK?" 

Presumably as many as you actually punched when you punched the program 
in the first place. Note that this is an exception to the general rule (1.3.2) 
that blank spaces have no meaning in this language. 

If the quote-sumbol itself is required to appear in the string, it must be 
represented by two quote-symbols (Le. "" ), thus: 

(E7) s := "He said" "she said" "he is a liar"" "" " 

An empty string can also be assigned: 

(E8) "" s := 

There is no denotation for a string of one character only. However, in strong 
positions the same result can be obtained by taking a character·denotation 
(5.1.1.1) and rowing (5.5.0) it: 

(E9) s := "A" .. 
'II'" " s := 

Note that a comment may not appear inside a string- (or character-) 
denotation, and thus the comment symbol (~) may safely appear, and stand 
for itself [R 8.1.4.1] . 

5.5.1.2. Applied identifiers 

Clearly, once a multiple (or a ref to a multiple, etc.) has been ascribed to 
an identifier, then that identifier can stand as a unit, and the value yielded is 
the whole of some multiple value of the appropriate mode (or the name of 
such a value). Note that the value so yielded includes a descriptor. For 
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example: 

(EIO) xl := yl 

(in whichyl has to be dereferenced before a multiple value is obtained). 

5.5.1.3. Shces 

Slices are used in order to dissect multiple values. They consist of a weak 
primary, which yields a multiple value, followed by an 'indexer' con taining a 
series of 'trimscripts' which specify which parts of that multiple value are 
required. Trimscripts may be either 'subscripts' or 'trimmers'. 

Let us declare: 

(Ell) [" J realx3 =(c some mUltiple with bounds [0:1-1, O:m-I, O:n-JJ c); 

which is of mode [ , ,J real. It can be represented thus: 

,.. 

C 

IL 

~M 
H I 

I 
s 

0 
n ~ 

ABCDEFGH represents the whole value, x3. From this, we may select the 
plane PQRS by writing: 

(E12) x3[i,,] 

which yields a value of mode [ , ] real. This could now be assigned to any 
doubly subscripted variable which it happened to fit. Here, i is a subscript. 
Further sUbscripts can be used to yield the row 1M (of mode [ ] real) and the 
element W (of mode real): 
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(EI3) x3 [i,jl,]; x3[i,jl,kl] 

To obtain the column TN (of mode [ ] real) we write: 

(EI4) x3 [i" kl] 

Trimmers are used to obtain a part (a "subvalue") ofa row, column, etc. 
The required lower- and upper-bounds (both inclusive) are given, separated by 
a colon. Additionally, the 'revised-lower-bound' from which the yielded 
bounds are to run is also specified following an @.! (effectively, the sub value 
between the specified lower- and upper-bounds is extracted, and its bounds 
are then "slid down" until the revised-lower-bound is reached). If no 
revised-lower-bound is specified, @ 1 is assumed. The following examples 
should make this clear: 

(ElS) 

slice 

x3Ii,jl:j2@jl , ] 
x31i, jl :j2 , ] 
x31i, :jl , ] 
x31i, : ,I 
x3li,j2: @j2 , ] 
x31i, ,kl :k2] 

value yielded 

JKLM 
JKLM 
PJMS 
PQRS 
KQRL 
NTUV 

x3li,jl :j2@jl,kl:k2@kl] 
x31i,jl, kl:k2] 

WXYZ 
WZ 

x31i,il :j2, kl] 
x3li,jJ, kl] 
x31, .1 
x31:,:, :] 
x3 

WX 
W 

ABCDEFGH 
ABCDEFGH 
ABCDEFGH 

(The last line is not strictly a slice at all). 

mode yielded bounds yielded 

1,Ireal [jl:j2,O:n-11 
I, ] real Il:j2-jl+l,O:n-11 
1,lreal Il:jl+l,O:n-l I 
[,Ireal Il:m,O:n-l] 
I, I real [j2:m-l,O:n-l] 
[.] real [O:m-I, 1:k2-·kl+l] 
I, ] real [jl :j2, kl :k21 
[ ] real [l:k2-kl+J] 
[ 1 real' II:j2-jl+J] 
real 
1 .. 1 real 
I .. ] real 
I .. ] real 

WI-I, O:m-l. O:n-l] 
IJ:l,I:m,l:n] 
10:/-1, O:m-I, O:n-I] 

Note that, if a bound is omitted from a trimmer, the bound currently 
existing in that multiple is implied. Moreover, if both bounds are omitted, 
both existing bounds are taken (but @ 1 is still implied). Alternatively, when 
both bounds are absent, the colon may be omitted as well, but now the 
existing lower-bound is assumed (Le. there is no sliding). This accounts for 
the difference between x3 [ , , ] and x3 [: , : , :] iil E 15. The first is the same 
as x3 (no trimmers, existing bounds). The second is an abbreviation for 
x3[O:I-I, O:m-l, O:n-l] (full set of trimmers, with @l implied for each). 

Subscripts, and bounds occurring in trimmers, are meek int units, and 
therefore expressions of considerable complexity can be used, including any 
coercion that is able to yield into The use of an assignation will be quite 
common: 
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(EI6) x3[j : = i, , ] 

A slice consists of a weak primary, followed by an indexer. The weak 
primary leads to the following consequences: 

a) Because it is weak, it can be dereferenced, but only until one ref is left 
(see 5.4.2 for the corresponding phenomenon in connection with selections). 
Thus dereferencing can never yield the multiple value itself. 

A special rule now provides that where the primary thus yields the name 
of a multiple value, the slice yields the sub name which refyrs to the element 
or subvalue that has been sliced (but if the primary already yields a multiple 
value - as x3 in the examples above - then the slice yields the element or 
subvalue itself). The similarity between this and the -corresponding provisions 
for selections (5.4.2) should be noted. 

However, names referring to multiple values may be either fixed or flexible 
(2.5.2.1) so that there are two cases to consider. For example, in: 

(EI7) xl [i] 

xl is a fixed name of mode ref [ ] real, and hence the example as a whole 
yields a name of mode ref real, which may itself now be dereferenced if its 
context is strong, firm or meek, as happens in: 

(EI8) x := y +x1 [i] 

whereas in: 

(EI9) xx :=x1 [i] 

we have obtained, in xx, a pointer to a real value, which just happens to be a 
. particular element of a [] real. 

(The converse operation, in which a pointer intended for a multiple value 
can instead point to a single value is also possible: 

(E20) ref [ ] real xx1 := x; 

This involves rowing (5.5.0), and the bounds, when the real value referred to 
is accessed via xx1, are [1 : 1]). 

A pointer to a subvalue can also be obtained: 

(E21) ref [ ] real xx1 := x2 [2 : 4, i]; 

in which xx1 is made to point to part of the ith column of x2. 
If, however, the pri~ary yields a flyxible name, as in: 

(E22) a1 [i] 

where a1 is of mode ref flex [] real, we have to be careful. We indeed get a 
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name, and its mode is ref real as in E 17, but it is said to be a "transient 
name" [R 2.1.3 .6.c] because it is ·only meaningful so long as the flexible a1 
stays the same size. If the whole of a1 is subsequently assigned to, it may 
grow or contract and, in the process, be re-incarnated at a different address in 
the store. What happens now if a subnamereferring to an element or 
subvalue in the old store address has· been preserved somewhere? 

Clearly, transient names are undesirable things to harig on to, and it is 
therefore forbidden for them to be either assigned, or ascribed, or passed to 
or returned by a routine. They may be dereferenced, or stand on the LHS of 
assignations, so that we may have 

(E23) x := y + a1 [i]; a1 [2 : 5] := (a, b, x, y); 

but not 

(***) xx := a1 [i] ~ cf. E19 ~ 

Care must therefore be taken, when using the flex feature (and especially the 
mode string), to avoid these situations. Indeed, these unfortunate, but 
necessary, restrictions are a significant limitation on the usefulness of 
flexibility. 

(Transient names can also arise in rowing, with the same restriction. Thus 
we may have 

(E24) [1: 1, 1 : 4] real b2; 
(p I b2 I a1) := [ ] real (a, b, x, y) ~ a1 is rowed to ref [,] real¢ 

but not 

(***) ref [, ] real xx2 := a1; & cf. E20 ~ 

nor even 

(***) ref flex [,] realxx2 :=a1; 

Note how E24 illustrates the balancing of a fixed name (b2) against a 
transient name (the rowing of a1) to give a transient name.) 

b) Because it is a primary, it follows tha.t any suitable ENCLOSED-clause 
can be used, thus: 

(E2S) ifi<j thenx1 elsey1 fi [2: n-ll 

Even a string denotation cap be trimscripted: 

(E26) "abed" [2] 

yields" b" . However, a row-display cannot be used because its context must 
I.l.A.-8 

--------------- .--.--------... 
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be strong, not weak (3.5.1). However, it can always be cast: 

(E27) [ Jint (j, k, I, m) [i] 

Of course, slices can always be sliced again: 

(E28) w3 [i] [j] C see 5.5.0 .E4 & 

c) Because a selection is a secondary, parentheses may be needed when 
slices and selections are to be combined: 

(E29) p of q [i] 

is only meaningful if q is of some mode such as [] struct (am ode p, ... ), in 
which case the ith structure is to be sliced from the multiple, and then the 
field p is to be selected from it. 

(E30) (p of q) [i] 

is only meaningful if q is of some mode such as struct( [] amode p, ... ), in 
which case the field p (which is a multiple) is to be selected from the 
structure q, and the ith element is to be sliced from it. See 104. E13 for a 
similar case concerning a selection which yields a procedure. 

5.5.2. Secondaries - multiple selections 

Suppose we have a row of structured values (e.g. complex numbers). We 
may select a row of fields: 

(E31) xl :=reofz1; 
ref [ ] real xx1 := im of zl 

Observe that (re of zl) [i] and re of (zl [i]) th.erefore both select the same 
real value, but by completely different mechanisms! 

Again, the possibility of transient names arises, so preventing 

(***) flex [1 : n] compte1; 
ref [ ] real xx1 := reof c1 

5.5.3. Tertiaries - bound interrogations 

It is useful to be able to discover the actual value of the bounds of a 
multiple which is on hand, particularly so when it is a formal-parameter of a 
routine, and the bounds of the actual-paramter are needed inside the routine. 
Two special operators are provided for this purpose: 
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(E32) n Iwb x3; 
n upbx3 

These two formulas yield, respectively, the lower- and upper-bounds of the 
nth boundpair (see 1.5.1) of the multiple x3. (For example, with x3 declared 
as in Ell, 3 upb x3 would yield the value n - 1). 

For getting at the first (or only) boundpair, monadic versions oflwb and 
upb are provided. Thus: 

(E33) upb xl 

means the same as 

(E34) 1 upb xl 

All these operators are introduced formally in 6.5. 

5.5.4. Quaternaries - assignations 

There are three questions to be answered: 
1) What happens when the LHS yields a flexible name (2.5.2.1)? 
2) What happens when the LHS is a slice? 
(Note that these two questions can never arise together, because a slice 

cannot yield a flexible name). 
3) What happens when the LHS and the RHS involve the same multiple 

value? 

5.5.4.1. Flexible assignations 

In the first place, it must be stated that the bounds on the two sides of an 
assignation must match exactly. Thus: 

(***) [1 : 3] real xa, [2:4] real xb ; xa := xb 

can never be legitimate under any circumstances. 
However, if the LHS yields a flexible name (and this can only occur when 

the whole of some multiple is being assigned to), then the bounds from the 
RHS are copied across. This means that a flexible ,multiple may well change 
its size when the whole of it is assigned to. Given the declaration: 

(E35) 

. (E36) 

flex [1 : 0] real el, [O:n-1) real d1; 

el :=d1 
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causes cl to acquire the bounds [O:n-I] , whereas: 

(E37) cl := dl [2:n-2] 

causes cl to acquire the bounds [1 :n-3] . 

5.5.4.2 Assignation to slices 

When the LHS of an assignation is a slice, then of course only the sliced 
part of the multiple referred to is assigned to. First, however, the bounds of 
the slice are elaborated, and slid down according to any @s that may be 
present. These bounds are then compared with those on the RHS to see 
whether the assignation is legitimate. If it is, the value of the RHS is assigned 
to the slice on the left (but as selected by the un-slid bounds, of course). 
Thus, given the declarations:. 

(E38) [1 :3] real xa, [2:4] real xb, [J: 2] real xc, [2:3] real xd; 

the following statements are all legitimate : 

(E39) xa [2:3] := xc; 
xa [2:3 @ 2] := xd; 
xa [2:3] :=xd[@I]; 
xa [@1] :=xb [@I] 
xa [ :] := xb [ : ] 

In these examples the bounds used for comparison purposes are 
[1:2] ,[2:3], [1:2], [1:3] and [1:3] respectively, but in all of the first 
three cases it is [2:3] ofxa that get altered. The fourth and fifth cases show 
how the presumably intended effect of xa := xb (which is not legitimate) can 
be achieved. 

5.5.4.3. Overlapping slices . 

Suppose we wish to effect a cyclic permutation of the elements of xl. 
Then we may write 

(E40) yI[2:n] :=xI[I :n-I]; 
yl [1] := xl [n] ; 
xl := yl 

However, we might consider the effect of: 
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(E41) 
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x:=xI[n]; 
xI[2: nJ :=xI[J: n-I]; 
xl [1] :=x 

Consider the second line of this: 

xl[2 : n] := xl [1 : n-I]; 

in which the slice being assigned from overlaps the slice being assigned to. 
Does this work, or is it equivalent to: 

forifrom2tondoxI[i] := xl [i-I] od; 
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(which has rather a disastrous effect)? Fortunately, the overlapping slices of 
E41 do wo~k correctly, and it is up to the implementation to ensure that it 
starts the copying operation at the correct end. 

Vertical readers, please turn to 6.5. 
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5.6. Units and unions 

(El) union (int, real) ira, irb; 

ira and irb may refer to values of mode either int or real. However, this raises 
no problem when one is assigned to the other: 

(E2) ira := irb; 

since ira now refers to whichever mode irb referred to before. The modes on 
the two sides of E2 are both ref union ( int, real), and the RHS is 
dereferenced as usual. 

The problems do not begin to arise until we want to set the mode of irb in 
the first place (by assigning an int to it, for example) or until we want to get 
an int out ofit again (always assuming that it happens to refer to an int at the 
time in question). The first of these problems is dealt with by a new coercion 
known' as "uniting". The solution to the second has already been given in 3.6 
(conformity-clauses). 

5.6.0. Coercion - uniting 

It should be emphasised that there are no built-in-operators for operating 
on unions so ira + ;rb is not a valid formula unless you have suitably dermed 
"+" for yourself. This is reasonable because your compiler could not tell 
whether you were trying to add a real to an int or an int to an int or 
whatever. Therefore, all arithmetic must be done on ununited operands. Once 
you have a value of some definite mode, however, (and if your context is at 
least firm) then you may unite it to yield any union containing that mode 
which may be demanded by the context: 

(E3) ira := i+2; 

Here, i+2 is of mode into The mode required is union (int, real) and the 
context is strong (being the RHS of an assignation). Therefore i+2 is united to 
be of mode union (int, real) and as such it can now be assigned to ira. Because 
the uniting was from an int, ira now refers to an int value. You might be 
tempted to think that this example is ambiguous,because the i+2 might also 
be widened to real and then united. However, if you try to follow through 
this possibility on the coercion chart given in 5.1.0.2, then you will find that 
it has been carefully excluded - the only coercions that may precede uniting 
are the meek ones. 

(E4) union (bool, int, real) bira; 
bira := ira 
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Here, ira is united from union (int, real) into union (bool, int, real). This is 
quite in order because all the constituent modes of the former are also 
constituents of the latter. 

5.6.1 Primaries - the void denotation 

One of the few places where void values are actually useful is in unions 
such as 

(E5) union (real, int, void) riv; 

Here, riv may refer to a real value, an int value, or to no value at all (i.e. a 
void value). We can bring about the last state of affairs using the void 
denotation empty: 

(E6) riv := empty; 

and of course we can test for this case in a conformity-clause: 

(E7) case riv in (real x): print(x) , 
(int i): print(i) , 
(void): print(" neither") 

esac 

5.6.4. Quaternaries - assignations of unions of rows 

Multiple values inside unions are always declared with formal bounds 
(2.5.2.3) [R 4.6.1.u] : 

(E8) union ([] int, [] real, bool) irla; 
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The effect is much as if the bounds had been preceded by flex, insofar as a 
multiple value of any size (and suitable mode) may be assigned thereto: 

(E9) irla:= yl; 
irla:= il [17:23]; 
irla:= il 

In all these examples, the RHS is ani ted before being assigned. The whole of 
the multiple value on the RHS (bounds and all) is copied across regardless. 
[R 5.2.1.2.b]. There is no question of checking the existing bounds of the 
LHS (for ifir 1 a had previously referred to a bool, there would have been none). 

A union containing multiples cannot be sliced (5.5.1.3), so there is no 
question of·assigning to only a part of it. To get at a part of its existing value, 
we use a conformity-clause (3.6): 
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(EI0) il[I7:23] :=(irlal([] intijl):ijl)[17:23] 

Note that if ir 1 a did not refer to a [] int at this time, the result of El 0 would 
be undefined. 

It is, however, possible to discover the bounds of the multiple within a 
union without all this bother, provided the union consists of multiples and 
nothing else [R 10.2.3.1.a]. Thus irla as declared in E8 would not do, but 
if we declare: 

(Ell) union ([ ] int, [, ] real)ir 1 b; 

then we can say: 

(E12) i := Iwb irlb; ~ yields the lower-bound of the first or only 
boundpair ~ 

p := 2 upb irl b ~ yields the second upper-bound, so that it is 
undefined unless irlb is currently exercising 
its [, ] real option ~ 

Vertical readers, please tum to 7.6. 
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5.7. Bits and pieces of garbage 

5.7.0. Coercion 

5.7.0.1. Voiding 
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We have one coercion left to consider, although we hav~ in fact been using 
it informally all along. Formally, it is necessary in order to satisfy the general 
syntactic rule that the mode of each external object must, a posteriori, be 
that required by its context. 

The bulk of any ALGOL 68 program will consist of statements forming 
the bodies of serial-clauses (3.1.2). Statemen ts are, of course, void-units,-but 
in practice most of them will be assignations which yield a value (the name 
yielded by the LHS). This value is thrown away by "voiding" [R 6.7] : 

(EI) begin x := 1: y := 2 : z := 3 end 

The first two assignations in this will certainly be voided. Whether the third 
one is or not depends upon whether the context in which the whole closed­
clause occurs expects void. 

Voiding can occur in strong contexts (but all contexts where void is 
required are strong anyway) and may in most c~ses be preceded by 
deproceduring (see coercion chart in 5.l.0.2): 

(E2) .... ; x or y; ~ see Appendix 2. x or y is deprocedured and the 
next random number is taken but (the context re­
quiring void) its real result is then thrown away by 
voiding ~ 

However, an assignation (or a cast) must never be deprocedured and then 
voided, for otherwise in: 

(E3) proc void ppp; ppp ;= finish; 

we should have to assign finish to ppp 'and then, by deproceduring the whole 
assignation, call the routine now referred to by ppp (i.e. finish). The 
assignation is therefore voided straight away .. 

It is useful to note that the context immediately preceding a ";" is always 
void (and strong). 

5.7.0.2. bits and bytes widening 

In strong contexts, bits values can be widened to [ ] bool and bytes values 
to string. The bounds of the [ ] bool will always be [1 : bits width] (see 

-------------_ .. __ ._----
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6.2.1) and the string will always contain exactly bytes ~idth chars. 
Here is an example in which a slice is trimmed out of a bits value. Note the 

use of a cpst to give strength to what would otherwise have been a weak 
. context (5.5.1.3): 

(E4) bits t:= 2rl0111 00; ~ for bits denotations see next section ~ 
[1 : 3] bool bl := [] bool (t) [bits width-4: bits width-2]; 

~ yields ( true, true, true ) ~ 

Similarly, longs and shorts bits and bytes can be widened, the upper-bound 
of the resultant value being given by environment enquiries such as short bits 
width, long long bytes width, etc. 

5.7.1. Primaries 

5.7.1.1. bits denotations 

A special form of denotation [R 8.2} is provided for values of mode bits: 

(E5) bits bits := 2rl011 01 011 001; 

which means that the value assigned to bits is the row-display: 

(false ... false, true, false, true, true, false, true, false, 
true, true, false, false, true) 

Note that the correct number of falses is automatically inserted at the left 
hand end. The 2r means that the bits denotation is in binary. Radices 4,8 and 
16 are also possible: 

(E6) 4r231121 
8r5531 

16rb59 

These all yield the same value as that in E5. Note the use of the letters a - f 
to denote the "digits" 10 -15. 

Thus if you like quoting your ints in octal, you can always write: 

(E7) i := abs 8r12 It meaning i := 10 It 

(For the operator abs, see 6.1.1). 

5.7.1.2. long and short denotations 

There is no coercion provided in the language for converting a real into a 
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long real or a long long reaL Therefore the a priori mode of any object must 
already contain the right number of longs. In the case of denotations (int, 
real and bits) this is achieved as follows [R 8.1.0.1]: 

(E8) long int iiiint := long 122333444455555; short int it := short i2; 
long long reaI'reaeal := iongJong 3.14159265358979323846; 
long long long ~its biiiits := long long long 

2r1011001011010111000101100101100101101101011 ; 

There are no long forms of pool, char, or- string denotations. 

5.7.2. Secondaries - generators 

'Generators' [R 5.2.3] are used to make available to the user regions of 
store where values may be put. They yield 'the names of those regions. A 
generator consists of an actual-declarer (2.1.2 and 2.5.2.2), preceded by loc 
or heap. 

5.7.2.1. loc generators 

In the case of loc generators, the scope (3.2.2) of the name thus created is 
the lifetime of the "local range" in which the g~nerator appears. The "local 
range" is the smallest enclosing range (3.2.1) containing the generator which 
is either 

a) a routine-text, or 
b) a serial-clause with at least one declaration (3.1.1), except that 

priority-declarations (4.3.1) do not count, or .. 
c) an enquiry-clause together with the remainder of its choice-clause 

(3.2.4.2,3.2.4.3,3.6) or loop-clause (3.5.2), if that enquiry-clause 
contains at least one declaration (priority-declarations again excepted). 

(E9) begin 
[1:n] ref realxx 1; 
for ito n 

do xx 1 [i.] := case sign il [i] +2 in xl [i], 
nil > 

loc real := 0 esac 
od; 

comment At ~his point, each element of the multiple value 
xx 1 has be.en set up referring to either an element of x 1 (if the 
corresponding element of il was negative), or to no value at 

........... _-_.-.-... -._._._----- _ .. -.-_.-
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all (if zero), or to some value specially created for the purpose 
by the generator loc real, and initially set to zero. The number 
of these special values is determined at run time, according to 
the values of the elements of ii. The only way to gain access 
to them, at the moment, is via the elements of xx 1. Because a 
loc generator was used, they will all disappear when we leave 
this range. comment 
skip 
end 
d At this point,xx1 has disappeared, and so have any locally 

generated values to which it referred if 

In this example, the generator loc real, each time it was encountered, would 
reserve storage for one real value (presumably on the same stack as xx1 and i) 
and yield the name referring to that value. 0 would then be assigned to that 
name, and the name itself would be assigned to xx1 [iJ. 

Although the generator loc real in this example is contained within the 
range lying between the case and the esac, 

which is in turn contained within the range lying between the do and 
the od, 

which is in turn contained within the range lying between the for and 
the od (but excluding the to n, see 3.5.2), 

which is in turn contained within the range lying between the begin 
and the end, 

only the last range of the four is the local range in question, since the others 
do not declare anything, neither are they routine-texts. 

loc generators are sometimes useful for creating triangular and other 
oddly-shaped multiples: 

(EI0) begin 
flex [1 : 0] ref flex [ ] real triangle; 
mode array = flex [1 : 0] real; ¢ to save ink ct 
triangle := (Ioc array := 1, 

loc array :=/1,2), 
loc array := (1,2,3), 
loc array := ( 1,2,3,4) ); 

for i to 4 do print (triangle [i) [i)) a prints the diagonal a 
end 

Outside the range of EI0, both triangle and the arrays to which it referred 
will have vanished. 
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The slice triangle [i] [i] is worthy of further examination. triangle itself is 
of mode ref flex [] ref flex [] real. triangle [i] is a slice of mode ref ref flex 
[] real (for the reasons explained in 5.5.1.3). It yields the name of the name 
of the ith row of triangle (it is impossible to get hold of the columns). In 
order to be able to take a further slice out of triangle [i], we must 
demonstrate that it is a weak primary of mode ref flex [] real. Now a slice is 
a primary (5.1.0.1) and a weak primary of mode ref .flex [ ] . real can be 
obtained by dereferencing a slice of mode ref ref flex [ ] real, such as 
triangle [i] ,and there we are. We can make the further slice triangle [i] [i], 
and the mode it yields is ref real. In EIO this was then dereferenced once more 
so that a real value could be printed. 

Now, we shall remind you for the last time that: 

(Ell) real x ; 

means exactly the same (2.2.2) as: 

(El2) ref real x = loc real; 

x is here declared to be of mode ref real and the name of the piece of store 
made available by the generator loc real has been ascribed to it. Since it is a 
loc generator, the piece of store will cease to be available outside the range in 
which Ell or El2 appeared. Also, outside this range, the identifier x cannot 
occur (or if it does, it identifies something completely different). Thus x and 
the name which it yields rise and fall together. 

5.7.2.2. heap generators 

In the case of heap generators, the scope (3.2.2) of the name that is 
created is not restricted to the lifetime orany range: 

(EI3) begin 
real w; 
w := 10.5; 
xx := heap real := w d creates an extra instance of 10.5 

on the heap d . 

end; 
comment now we are outside the reach of wand of the 

first instance of 10.5 to which it referred. However, the 
second instance of 10.5 is still intact, and is accessible 
via the variable xx comment 

prInt (xx); ¢ prints 10.5 (after de referencing xx twice) ¢ 
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xx :=x ~ the instance of 10.5 on the heap is now quite 
inaccessible, because no-one now refers to it ~ 

In this example, when the heap generator heap real was encountered, storage 
for one real value was reserved (but not on the main stack such as was used 
by w - thus a different region of store, usually termed the "heap", is 
involved). The generator yielded the name referring to this piece of storage, 
the value 10.5 was assigned to it, and it was assigned to xx (which is of mode 
ref ref real - see Appendix 2). Both xx and this value remained fully available 
outside the range in which heap real occurred, and were used in the print. 
However, after this, xx was used for something else and the 10.5 .was just left 
sitting there. 

Thus it is very easy to waste large amounts of the heap: 

(E14) to 10000 do heap real od 

this will reserve 10,000 words on the heap, and there will be no way of 
accessing any of them - they will in fact be "garbage". Therefore it will be 
necessary for your implementation to include in your run-time program a 
"garbage collection routine" which will be called in whenever the size of the 
he<tp has become embarrassingly large. How this works in detail is your 
implementor's worry, but it will go something like this: 

1) Consider all the values (on the stack) which are names that have been 
ascribed or assigned to identifiers (i.e. all identifiers declared with 
mode ref ref amode and some with ref amode within the current 
range, or its surrounding ranges). 

2) If any such name refers to a value on the heap; mark that area of 
the heap as useful (this could be done by a vast array of bits, one 
for each word on the heap). Since the mode of the name is always 
known, the size of the value can easily be determined. 

3) If the value referred to by any such name contains further names 
within itself (again, this will be apparent from the known mode of 
the given name), then consider these names also. 

4) Go through the array of bits searching for areas of the heap that 
have not been marked as useful. These areas can now be made avail­
able for further use. 

This process will be recognised as being similar to that employed in 
list-processing languages such as LISP, and it is for applications in which 
list-processing would otherwise have had to be used that heap generators are 
primarily intended. 
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You can, if you like, do fairly conventional list-processing in this language: 

(EIS) mode atom = union (char, int); 
mode cons = struct (union (atom, ref cons) car, ref cons cdr); 
proc list = ( [ ] union (atom, ref cons) item) ref cons: 

begin 
ref cons a := nil; 
for i from upb item by -1 to 1 

a 
end; 

do a := heap cons := (item [i], a) od; 

ref cons expression := list (("X", "+", list(("y", "x", 2)))); 

However, if you intend to create many lists with the same layout, it is better 
to declare them as structs, and generate them as such: 

(E16) mode operand = union (char, int; ref expression); 
mode expression = 

struct ( operand left, char operator, operand right); 
ref expression expression := heap expression := 

("X", "+", heap expression :=("Y", "x", 2)); 

This version is more convenient to write, will use less storage space, and will 
have its garbage collected more speedily (since a complete expression can be 
removed at one go). 

As was mentioned in 2.7.3, the declaration: 

(EI7) heap real x; 

means exactly the same as: 

(EI8) ref real x = heap real; 

x is here declared to be of mode ref real and to yield the name of the piece of 
-store made available by the generator heap real. This piece of store will still 
be available outside the range in which E17 or E18 appeared, even though the 
identifier x cannot occur there (or if it does, it identifies something 
completely different). It could be accessed in the following circumstances, 
which should be compared with E13: . 

------------------~-------------- ---._------------------------------
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(EI9) begin 
heap real w; 
w := 10.5; 
xx :=w 
end; 

UNITS 

print(xx); d' prints 10.5 d 

Ch.S.7.3 

xx := x q the instance of 10.5 on the heap is now garbage d 

5.7.3. Tertiaries - order of elaboration of operands 

The elaboration of a dyadic-formula involves the elaboration of two 
operands (these are either other formulas or secondaries). These two operands 
are elaborated collaterally (see 3.7.1). The following dangerous example 
illustrates this, and should be compared with 3.7.1. E2: 

(E20) begin int i; 
proc side = int: (;:=1; i:=2, 0; 
prin t ( side + side) 
end 

This will print either 3 or 4, for the reasons given in 3.7.1. 
The advantage of this collateral elaboration from the point of view of 

implementation is that the order of elaboration can be chosen to be that 
which yields the minimum number of compiled instructions. For example: 

(E2I) y :=x +a x b 

Most compilers will choose to fetch and multiply a and b before getting hold 
ofx. 

5.7.4. Quaternaries - identity relations 

Identity-relations are used todetectwhether two names areidentical: 

(E22) ref real anotherx = x; realy; 
anotherx :=: x; q always yields true <l' 

anotherx ::j:: x; ~ always yields false ~. 

anotherx :=: y q always yields false d 

This example is quite trivial, because anotherx and x, by virtue of the 
identity-declaration, both yield the same name. 
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(E23) 
(E24) 
(E2S) 
(E26) 

UNITS 

xx := yy :=x; 
xx :=: x ; d yields true d 
x :=: xx; d yields true d 
xx :=: yy ¢ yields false ¢ 
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In E24 and E2S, xx was dereferenced to yield the name to which it 
currently referred (i.e. x). It is permissible to dereference on one side of an 
identity-relation, but not on hath, and it is for this reason that E26 did not 
work. E26 could never yield true, whatever assignations we might make to xx 
and yy. However, by the use of casts we can achieve the result presumably 
intended: 

(E27) ref real (xx) :=: ref real (yy) d yields true(in the context 
of E23) ~ 

The rules governing the use of an identity-relation are the following: 

It has two sides - a strong side and a soft side. One of these can stand as the 
LHS, in which case the other must stand as the RHS. The symbol in hetween 
is either ":=:" or "::j::" (which may alternatively be written as is or isnt). 

For its strong side: 
a) It must yield a name (i.e. its mode must be ref amode). 
b) It must be a tertiary. 
c) Its context is strong (so that de referencing is allowed, 

and also nil (5.2.3))., 

For its soft side: 
a) It must yield a name, of the same mode as that yielded 

by the strong side. 
b) It must be a tertiary. 
c) Its context is soft (so that deproceduring is the only 

possible coercion, and nil is not permitted). 

As a whole, an identity-relation yields a bool value -- true if the names match 
and the symbol in between is ":=:" or if the names do not match and the 
symbol is "::j::". 

Here is a delicately balanced example: 

(E28) case i in xx, x or y out nil esac 

casej inyy, skip, heap ref real:= xesac 

First, let us rewrite the example showing the a priori modes of all the items: 
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case i in xx, d- ref ref real q 
x ory <t proc ref real d-

out nil <t wait and see d-
esac :=: 
casej inyy <t re f ref real d-

skip, d- wait and see d-
heap ref real:=x <t ref ref real d-

Which is the soft side, and what is the mode of the name that it yields? Well, 
to put you out of your misery, the LHS is the soft one and the mode is ref 
real, but to obtain it we have to recall that case-clauses can be balanced 
(5.2.0.1) so that, even on the soft side, all but one of the items can be 
strongly coerced. Here then is the example again with all made clear: 

case i in xx, 
x ory 

out nil 
esac :==: 
casej inyy, 

skip, 
heap ref real :=x 

d- strongly dereferenced d­
<t softly deprocedured d­
d- a strong context d-

d- strongly derefert>nced d 
<t a strong context d-
d- strongly dereferenced d 

For an application of identity-relations, let us return to our list processing 
in E15. Let us assume all the declarations of E I 5 to have been made, and now 
continue thus: 

(E29) op eql = (union ( atom, ref cons) a, b) bool: 
case a 
in ( char c): (b I( char d): c=d, (jnt): false I b eql c) , 

(int i): (b l(int j): i=j, (char): false I b eql iJ, 
(ref cons rc) : car of rc eql b 

esac; 
comment this recursively defined (and probably not very 

. efficient) operator compares two cars (or cdrs) 
of conss and yields true if they are, or refer to 
via a chain of cars, identical atoms comment 

ref cons a :=list(("A", "X")); 
ref cons b := list(("B", "X")); 
cdr of cons (a) eql cdr of cons (b); 

d- yields true because both sides refer to the value "x" d­
cdr of cons (a) :=: cdr of cons (b) 

d- yields false because both sides refer to different 
instances of the value "x" <t 
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The distinction here illustrates how, in list processing, it is often important to 
distinguish between a pointer to a list which is merely a copy of a given one, 
and a pointer which points to the given list itself. The identity-relation should 
be used to make this test. 

Vertical readers, please tum to 6.7. 
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6.1. Operators 

Each particular-program written by a user is presumed to be included 
within an "outer range", at the head of which is the standard-prelude (1.1) in 
which various standard declarations are made. These include: 

Standard constants (see 6.2 and 6.7) 
Standard procedures (see 6.2 and 6.7) 
Standard operators (see this section, and 6.3, 6.5 and 6.7) 
Additional constants and procedures required for transput (see 7). 

Likewise, at the tail of the outer range, is a label stop:, to which you may 
jump in order to terminate the elaboration of your program, and which is 
followed by the standard-postlude (see 1.1 and Appendix 3). 

We now set out, in tabular form, details of all the common operators (for 
the manner in which they are used in formulas see 5.1.3). The tables include, 
for completeness, all of the meanings which each operator can have, even 
though you may not yet be familiar with all of the modes involved. The 
meaning of each operator is given in the last column for those operators 
whose meaning is not obvious. If nothing appears in this column, it means 
that the generally accepted meaning applies, or that a similar operator has 
already been explained higher up the column. 

There are sometimes several operators which perform the same function, 
in which case they are all given in the first column. Not all implementations 
will proVide all the versions, however. 

6.1.1. Monadic operators 

oper- prior- mode mode meaning 
ator ity of a of result 

I • 10 bool bool 
bits bits 

not 

+ 10 int int 
real real 
compl compl 

10 int int 
real real 
compl com pi 

236 
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oper- prior- mode mode meaning 
ator ity ofa of result 

bin 10 int bits the binary digits represent-
ing the positive integer a 

re 10 campi real the real part 

im 10 compl real the imaginary part 

conj 10 campi campi reai-ima 

abs 10 bool int I for true and 0 for false 
int int 
real real 
campi real sqrt(reat 2 + imat 2) 
bits int the opposite of bin 
char int a unique integer for each 

permissible value of char 

arg 10 campi real the argument of a, 
-rc<arga.;;;rc 

odd 10 int bool true if odd, false if even 

sign 10 int int } yields -1,0, or + 1 
real int 

round 10 real int the neares t in teger 

entier 10 real int the integer eq ual to a, or 
L the next integer below 

(more negative than) a 

repr 10 int char the opposite of abs of a 
char 

6.1.2. Dyadic operators 

oper- prior- mode mode mode meaning 
ator ity of a ofb of result 

i 9 real real campi a plus i times b 
1 int int campi 
+x int real campi 
+* real int campi 
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oper- prior- mode mode mode meaning 
ator ity of a ofb of result 

t 8 int int int ab where b ;;.0 

** real int real ab 
up compl int compl ab 

t bits int bits a shifted left b places (or 
shl right for b negative) 
up 

~ 8 bits int bits a shifted right b places (or 
shr left for b negative) 
down 

7 int int int abs (a -;. b) = entier abs (a/b) 
% i.e. truncation towards 
over zero 

mod 7 int int int 0.;; a mod b < b 
-;'x 
-;.* 

%x 
%* 

x 7 int int int 
* real real real 

compl compl compl 
real int real 
int real real 
com pi int compl 
compl real compl 
int compl compl 
real compl compl 
string int string a replicated b times 
int string string b replicated a times 
char int string 
int char string 

/ 7 int int real 
real real real 
compl compl compl 
real int real. 
int real real 
compl int compl 
compl real compl 
int oompl compl 
real oompl compl 

elem 7 int bits bool the a th bit of b 
0 int bytes char the a th char of b 
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oper- prior- mode mode mode meaning 
ator ity ofa of b of result 

+ 6 int int int 
real real real 
compl compl compl 
real int real 
int real real 
compl int compl 
compl real compl 
int compl compl 
real compl compl 
string string 

'm~} string char string the concatenation 
char string string ofa and b 
char char string 

6 int int int 
real real real 
compl compl compl 
real int real 
int real real 
compl int compl 
compl real compl 
int compl compl 
real compl compl 

< 5 int int bool 
It real real bool 

real int bool 
int real bool 
char char bool true if abs a < abs b 
string string 

boot } 
true if the first character 

string char bool in a that differs from the 
char string bool corresponding character 
bytes bytes bool in b is less than same 

> 5 int int bool 
gt real real bool 

real int bool 
int real bool 
char char bool 
string string bool 
string char bool 
char string bool 
bytes bytes bool 

. .;; 5 int int bool 
<= real real bool 
Ie real int bool 

int real bool 
bits bits bool true if each bit in a implies 

the corresponding bit in b 
char char bool 
string string bool 
string char bool 
char string bool 
bytes bytes bool 

-- - --.-~--.~--.----.,,- ---------
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oper- prior- mode mode mode meaning 
ator ity of a of b of result 

;;;. 5 int int boot 
>= real real boot 
ge real int bool 

int real boot 
bits bits boot 
char char bool 
string string boot 
string char boot 
char string bool 
bytes bytes boot 

4 bool bool boot 
eq int int boot 

real real bool 
compl compl boot 
real int boot 
int real boot 
compl int boot 
compl real boot 
int compl' boot 
real compl boot 
bits bits boot 
char char boot 
string string bool 
string char boot 
char string boot 
bytes bytes boot 

'*' 
4 boot boot boot 

/= int int bool 
ne real real boot 

compl compl boot 
real int boot 
int real bool 
compl int boot 
compl real bool 
int compl boot 
real compl boot 
bits bits boot. 
char char boot 
string string bool 
string char bool 
char string boot 
bytes bytes boot 

1\ 3 bool boot boot 
& bits bits bits 
and 

V 2 boot bool boot 
or bits bits bits 

Vertical readers, please turn to 7.1. 
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6..2. Constants and procedures 

6.2.1. Constan ts 

With the exception of pi, the purpose of these constants is to give infor­
mation about the implementation upon which the program is being run, and 
they are therefore called "environment enquiries". They are all declared in 
the standard-prelude [R 10.2.1] , by means of identity-deClarations, to be of 
some mode such as int or real. Hence they are not names, and hence they 
cannot be altered by the user. 

Some further environment enquiries are given in 6.7.1 (in connection with 
long modes) and in 7.2.2 and 7.5.3 (in connection with transput). 

identifier mode value 
of constant 

max int int the largest int value which can be represented 
max real real the larges t real value which can be represented 
small real real the smallest real value which can be meaning-

fully added to or subtracted from 1 
bits width int the number of bits in bits (see 2.7.1) 
bytes width int the number of chars in bytes (see 2.7.1) 
max abs char int the largest value which abs of a char can yield 
null character char some character (see bytespack in 6.2.2) 
blank char ":.." (the space character) 
pi real 1T 

6.2.2. Procedures 

The following procedures are all declared within the standard-prelude 
[R 10.2.3.12, 10.5.1] to be of some mode proc amode, rather than ref proc 
amode. Hence they cannot be altered by the user. Their meanings are those 
generally accepted, or as specified by the last column of the following table. 

Further procedures from the standard-prelude are to be found in 6.7.2, 
7.1.1,7.1.2,7.2.3,7.2.4,7.2.5,7.4.2,7.4.3,7.5.1,7.6.3 and 7.7.1. 
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identifier 
ofproc 

sqrt 
exp 
In 
cos 
arccos 
sin 
arcsin 
tan 
arctan 
next random 

last random 

random 

bitspack 

bytespack 
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mode 

proc( real) real 
proc( real) real 
proc( real) real 
proc( real) real 
proc( real) real 
proc(real) real 
proc( real) real 
proc(real) real 
proc( real) real 
proc(ref int a) real 

ref int 

proc real 

proc([] bool a) bits 

o .. arccos(x) .. 1C 

-1C/2 .. arcsin(x) .. 1C/2 

-1C/2 .. arctan(xj .. 1C/2 
The next int value after a from a pseudo-random 
sequence uniformly distributed in the range 
o .. a .. max int is assigned toa. The yield is a 
real value x (0 .. x < 1) obtained by means of 
some uniform mapping from a (such that x is 
also pseudo-random and uniformly distributed) 
an int variable, initialised to round(max int/2), 
which is used by random (below) 
a call of next random, using last random as 
parameter 
the multiple a, made up with falses at the left, 
is turned into bits 

proc(string a)bytes the string a, made up with null characters 
(6.2.1) on the right, is turned into bytes 

See 6.7.2 for long(s) versions of these. 

Vertical readers, please turn to 7.2. 
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6.3. Assigning operators 

The operators in the following table all have the property that the result of 
the operation is automatically assigned to the name of the left hand operand, 
and this name is yielded as the value of the formula. Thus: 

(E1) 
(E2) 
(E3) 

a plusab b or a +:= b 
x := a plusab b 
a minusab b plusab c 

E3 has implied bracketing: 

d' means the same as a := a+b ¢ 
¢ means the same as x := a := a+b ¢ 

(E4) (a minusab b) plusab c ¢ and therefore means a := a-b; a := a+c ¢ 
(E5) a plusab b := x 

E5 is legitimate example of a formula on the LHS of an assignation, but it is 
not very sensible since b does not enter into the result. 

oper- prior- mode . mode mode meaning 
ator ity of a of b of result 

timesab ref int int ref int a:= axb 
x:= ref real real ref real 
*:= refcompl compl ref compl 

ref real int ref real 
refcompl int refcompl 
ref compl r.eal refcompl 
ref string int ref string a := axb (x implying 

replication) 

overab ref int int ref int a := a7b 
+:= 
%:= 

divab 1 ref real real ref real a := alb 
1:= refcompl compl refcompl 

ref real int ref real 
ref com pi int ref compl 
ref com pi real ref compl 

modab ref int int ref int a:= a mod b 
7X:= 
7*:= 
%x:= 
%*:= 

... _ .. _-----_._--- .. _._._._------_._ .... _---_ ...... _-------------------
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oper- prior- mode mode mode meaning 
ator ity ofa of b of result 

plusab ref int int ref int a:= a+b 
+:= ref real real ref real 

ref compl com pi ref com pi 
ref real int ref real 
refcompl int refcompl 
ref compl real ref com pi 
ref string string ref string } a := a+b (+ implying 
ref string char ref string concatenation) 

plusto string ref string ref string b := a+b 
+=: char ref string ref string 

minusab ref int int ref int a := a-b 
-.- ref real real ref real 

ref compl compl refcompl 
ref real int ref real 
ref compl int refcompl 
ref compl real refcompl 

Vertical readers, please tum to 8.3. 



Ch.6.5 STANDARD FRELUDE 245 

6.5. Interrogations 

The following table specifies the operators introduced informally in 5.5.3. 
Note that amode stands for any mode and ",s" stands for any number of 
commas (including none). 

6.5.1. Dyadic operators 

oper- prior- mode 
ator ity of a 

lwb 8 int 
L 

upb 8 int 
I 

6.5.2. Monadic operators 

oper­
ator 

lwb 
L 

upb 
I 

prior­
ity 

10 

10 

mode 
of.l 

[,s) amode 

[,s) amode 

mode 
of b 

[,s) amode 

[,s) amode 

Vertical readers, please turn to 7.5. 

mode meaning 
of result 

int the lower bound of the 
a th subscript of b 

int the upper bound of the 
a th subscript of b 

mode meaning 
of result 

int llwba 

int 1 upb a 



246 STANDARD PRELUDE Ch.6.7 

6.7. Long operators 

6.7.1. Environment enquiries 

The numbers of different lengths and shorths of ints, reals, etc. that are 
provided may vary between different implementations. Environment 
enquiries (6.2.1) are therefore provided to indicate these numbers 
[R 1 0.2.l]. Additionally, the environment enquiries introduced in 6.2.1 
(max int, etc.) and in 7.5.3 (int width, etc.) have long versions of themselves. 
Note that the number of different '<lengths" or "shorths" of each mode 
includes none at all, so that if the implementation distinguishes just short int, 
int and long int, then both int lengths and int shorths will have the value 2. 

identifier 
of constant 

int lengths 
int shorths 
real lengths 

real shorths 

bits lengths 
bits shorths 
bytes lengths 
by tes shorths 
long max int 

long long max int 
long long long 

max int 

mode 

int 
int 
int 

int 

int 
int 
int 
int 
long int 

long long int 

value 

the number of different lengths of ints 
the number of different shorths of ints 
the number of different lengths of reals 
(and of compls) 
the number of different shorths of reals 
(and of compls) 
the number .of different widths of bits 
the number of different shorths of bits 
the number of different widths of bytes 
the number of different shorths of bytes 
the largest long int value which can be 
represented 

and so on, up to any number of longs. For the rest of this table, let us introduce 
the convention that "long(s)" means any number of longs or shorts and "Iong(s)" 
means the same number of longs or shorts. 

long(s) max real long(s) real the largest long(s) real value which can be 
represen ted 

long(s) small real long(s) real the smallest long(s) real value which can be 
meaningfully added to or subtracted from f. 

long(s) bits width int the number of bits in long(s) bits 
long(s) bytes int the number of chars in long(s) bytes 

width 
long(s) int width int the number of decimal digits required to re-

present long(s) max int - not including sign 
long(s) real width int the number of decimal digits required to re-

present a mantissa, such that long(s) small real 
is not neglected in comparison with f - not 
including sign 

long(s) exp width int the number of decimal digits required to re-
present a decimal exponent, such that long(s) 
max real can be correctly represented - not 
incl uding sign 

long(s) pi long(s) real 1T 
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6.7.2. Procedures 

The procedures introduced in 6.2.2 [R 10.2.3.12, 10.5.1] also have their 
long and short versions. Note that a procedure with, for example, a long long 
real formal-parameter yields a value whose mode has exactly the same 
number of longs in it. 

identifier 
of proc 

long sqrt 
long long sqrt 

mode 

proc(1ong real) long real 
proc(long long real) long long real 

and so on. We shall adopt the same abbreviation as before. 

long(s) exp 
long(s) In 
long(s) cos 
[ong(s) arccos 
long(s) sin 
long(s) arcsin 
long(s) tan 
long(s) arctan 
long(s) next random 
long(s) last random 
long(s) random 

long(s) bitspack 
long(s) by tespack 

6.7.3. Operators 

proc(long(s) real)long(s) real 
proc(1ong(s) real)long(s) real 
proc(1ong(s) real)long(s) real 
proc(1ong(s) real)long(s) real 
proc(long(s) real) long(s) real 
proc(long(s) real)long(s) real 
proc(long(s)real)long(s) real 
proc(1ong(s) real)long(s) real 
proc(ref long(s) intjlong(s) real 
ref long(s) int .... initialized to round(long(s) max int/2) 
proc long(s) real .... which uses long(s) last random: see 

6.2.2 
proc([ I bool)long(s) bits 
proc(stringJlong(s) bytes 

Most of the operators introduced in 6.1.1,6.1.2 and 6.3 have their long(s) 
and short(s) counterparts [R 10.2.3]. We shall not list them all here; instead 
we shall give you a rule for working them out yourself. 

Each operator has one or two parameters and a result, each being of some 
mode. If one or more of these modes is: 

int, real, compl bits or bytes 

then new version of that operator can be obtained by inserting long(s) or 
short(s) in front of each of those modes. However, the modes bool, char and 
string, wherever they occur, must be left strictly alone. 

For example, one of the versions of the operator "+" can be used to add a 
real to an int yielding a real (6.1.2). There therefore exists another version 
which adds a long long real to a long long int yielding a long long real (but 
not to add a long long real to a long int yielding a real - the number of longs 



248 STANDARD PRELUDE Ch.6.7.4 

added must be the same throughout). Likewise, a short real can be added toa 
short int yielding a short real. 

However, there are certain exceptions to this general rule, all of which are 
concerned with not allowing long(s) ints in places where they would clearly 
be ridiculous. Thus: 

The abs of a char yields a (single) int 
The repr of a (single) int yields a char 
long(s) ints, reals and compls can be raised to a (single) 

int power, yielding correspondingly long(s) ints etc. 
strings and chars can be replicated a (single) int number of times 

using x, * or timesab 
The (single) int th element of a long(s) bits or bytes 

yields a bool or a char 
The level of a (single) int yields a serna and vice versa (3.7.2) 

In all of these, the phrase "(single) int" implies int where long(s) int or 
short(s) int might otherwise have been expected. 

6.7.4. leng and shorten 

There are no coercions provided in the language for converting, for 
example, ints into long ints or vice versa. Instead, you are provided with the 
monadic-operators leng and shorten (see 8.4.2 for a meaningful example of 
their use): 

oper- prior- mode ofa mode of result meaning 
ator ity 

leng 10 long(s) int long long(s) int } the longer value 
long(s) real long long(s) real equivalent to a 
long(s) compl long long(s) compl . 
long(s) bits long long(s) bits making up with 

faIses at the left 
long(s) bytes long long( s) bytes making up with null 

characters (6.2.1) on 
the right 

shorten 10 long long(s) mt long(s) int } the shorter value 
long long( s) real long(s) real equivalent to a, 
long long(s) compl long(s) compl if it exists 
long long(s) bits long(s) bits truncating on the 

left 
long long(s) bytes long(s) bytes truncating on the 

right 
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In this table, as usual, "long(s)," means long or short repeated zero or more 
times (but the same number of times in each column). Also, of course, leng 
of a short short int yields 1I short int, leng of a short int yields an int, and so 
on. Note that if you trY to shorten, for example, a long int which is greater 
than max int (6.2.1), tilen the result is undefined. 

6.7.5. up and down 

The operators up, down and level, as applied to semas, were defined in 
3.7.2. 

Vertical readers, please tum to 7.7. 

I.I.A.-9 



7. TRANSPUT 

'7.1. Formatless transput 

"Transput" is the name given to all those operations which communicate 
with the environment. These include input, output and transfers to backing ·1 

media such as magnetic tape and discs, 1 

There is a large variety of transput facilities provided to suit the user's 
taste, ranging from the simplest formatless transput described in this section, 
through the facilities for accessing various types of device (7.2) and for 
dealing with exceptional. situations (7.4.4) up to the formatted transput 
described in 7.6 and the binary transput in 7,7. 

7.1.1. Formatless output 

Formatless output is achieved by means of the procedure print, e.g.: 

(E1) print (x); print (i+3); print (p & i<j); print ("A"); 
print ("ABC"); print (x i y); print (bin 5); print (r) 

The modes of the actual-parameters jn these examples are, respectively, real, 
int, bool, char, string, compl, bits and bytes (for a description of the mode 
string see 2.5.3 and 5.5.1.1, forcompl see 2.4.4 and 5.4.3 and for bits and 
bytes see 2.7.1 and 5.7.1.1). In addition, multiple values (1.5.1,2.5) and 
structures (1.4.1,2.4) made up of any of these modes can be used. The 
actual-parameter of this procedure is a firm unit (the firmness arises from the 
particular way in which it is defined in the standard-prelude), which means 
that widening is not allowed, but dereferencing is. Note that it is not possible 
to output names (Le. modes beginning with ref), or formats (7.6.2) or 
routines. 

It is possible to output more than one item with. one call on print: 

(E2) print ( (x, i+3, p & i<j, "A", "ABC", x i y, bin 5, r) ) 

which is equivalent to the series of separate prints in E1 above. Note the 
additional parentheses (these are required because the "data list" of items is 
really a row-display (see 3.5.1)). 

The following layout procedures [R 10.3 .1.6] may be called upon in 
between calls of print: 

250 
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identifier mode 
ofproc 

newpage proc(ref file)void 

newline proc(ref file)void 

space proc(ref file)void 

backspace proc(ref file)void 
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continue printing at the beginning of the next 
page 
continue printing at the beginning of the next 
line . 
skip one character (whi~h results in a space 
character unless cunning use has been made 
of backspace) 
move back one character (but not beyond the 
start of the current line). A subsequent call on 
print will overwrite whatever chara-ctet was 
previously there (but a call on space will not). 

These layout procedures (and other proc(ref file)voids (see 7.2.5) written 
by the user) may also be called upon within a print call. Thus: 

(E3) print ((newpage, "HEADING", newline, "X=" ,x)) 

means the same as: 

(E4) newpage (stand out); 
-print ("HEADING"); 
newline (stand out); 
print (("X = " ,x)) 

The stand out parameter specifies the file (see 7 .2.1) to be affected. Tht: file 
stand out is automatically implied by print, and is therefore supplied as the 
parameter of these routines when they are called from Within it. 

When print is called, the mode of each item to be printed is identified, and 
appropriate action taken as follows: 

ints, reals, compls: 

If there is not room for the item on the current line (page), then newline 
(newpage) is called. Then the item is printed, preceded by a space (if not at 
the beginning of a line), allowing sufficient positions to cope with the largest 
permissible value of that mode. 

Examples are: 
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+123456 
+456 

-1 
+0 

+ 1. 2345610+ 11 
-6.5432110 -2 

TRANSPUT 

+1.2345610+11 1-6.5432110 -2 

chars, bools: 

Ch.7.1.2 

newline or newpage is called if necessary as above, and then the item is 
output with no preceding space. The (single) characters to be printed for true 
and false are to be decided by the implementer (see 7.5 .3). In this book we 
use T and F. 

strings, bytes, bits: 

These are treated as sequences of chars or bools as appropriate, newline and 
newpage are called wherever required (and thus a string may get split over a' 
line - but see 7.4.4 for how to control this). 

If an item is a multiple (structure), then its component elements (fields) 
are output in tum according to the above rules. This is discussed more fully in 
7.5.1 (7.4.1) under the heading of ~'straightening". 

For those who prefer it, the procedure write may be used instead of print. 

7.1.2. Formatless input 

This is achieved by means of the procedure read, e.g.: 

(ES) read (x); read (0; read (p); read (c); read (s); read (z); 
read (t); read (rJ .' 

The modes of the actual-parameters in these examples are, respectively: 

ref real, refint, r~f bool, ref char, ref string, ref compl, 
ref bits, ref bytes . 

In addition, references to multiples and references to structures made up of 
any of the modes referred to can be used. The actual-parameter is in fact a 
firm unit, which means that. 

(E6) read (xx) 

is allowed, where xx is of mode ref ref real and must be dereferenced once. 
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The quantity actually input, of course, is of mode real, int, etc. The actual­
parameter yields the name of the place where it is to be put. Note that it is 
not possible to input names, or formats, or routines or unions (1.6,2.6). 

It is possible to input more than one item with one call on read: 

(E7) read ( (x, i, p, c, s, z, t, r) ) 

which is entirely equivalent to the series of separate reads given above. Note 
the additional parentheses (these are required because the "data list" of items 
is really a row-display (see 3.5.1)). 

The following layout procedures [R 10.3.1.6] may be called upon in 
between calls of read: 

iden tifier mode 
of proc 

newpage 

newline 

space 
backspace 

proc( ref file) void 

proc(ref file)void 

proc(ref file)void 
proc(ref file)void 

ignore the rest of the current page and start 
reading the next 
ignore the rest of the current line, and start 
reading the next 
ignore the next character 
move back one character (but not beyond the 
start of the current line). A subsequent call on 
read will yield the last character again 

These layout procedures (and other proc(ref file)voids (see 7.2.5) written 
by the user) may also be called upon within a call of read. Thus: 

(E8) read ((newpage, s, newline, x)) 

means the same as: 

(E9) newpage (stand in); 
read (s); 
newline (stand in); 
read (x) 

The stand in parameter specifies the file (see 7.2.1) to be affected. The file 
stand in is automatically implied by read, and is therefore supplied as the 
parameter of these routines when they are called from within it. 

When read is called, the mode of each item required is identified, and 
appropriate action taken as follows: 

ints, reals, compls, bools: 

The input stream is searched for the first character that is not space (newline 
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and newpage being called as necessary). When it is found, the required item is 
read in (note that when real is called for, an int will suffice). Ifno recognis­
able item is found, then the result is undefined (unless the user has called the 
on char error procedure (see 7,4.4.7). The following examples are acceptable: 

+123456 
+ 456 

+456 
-1 
123456 
12.3456 

.3456 
12.34 

1. 2345610+11 
1. 23456e-2 
121012 
12.34 1 1.23456101.2 
T (for true) 
F (for false) 

" i " may be accepted in place of "'/''', and" e " or "Y' in place of" 10" . 
. chars: 

The next-character (possibly space) is read from the input stream, newline or 
newpage being first called if necessary. 

strings (i.e. flex [ ] chars): 

Characters are read from the current position until either the end of the 
current line is reached, or (if the user has called make term (see 7.4.2» one of 
the terminating characters is found (this character is not yielded as part of the 
string, but will be read by the next read). If you do not want to have the 
string stopped by the end of the line (but only by the term), you may call the 
on line end procedure (7.4.4.4) so as to call newline automatically. If the 
current position is already at the end of the line (or if the line is em pty), 
newline is not called - you just get an empty string. On the other hand, 
newpage will be called if you are off the end of the page. 

[m : n] chars (i.e. a multiple with fixed bounds), bytes and bits: 

The exaotnumbenifchars needed (i.e. n-m+l or bytes width or bits width) 
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is read, newline and newpage being called as needed. In the case of bits, 
spaces are skipped (as with bools). 
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If an item refers to a multiple value (structure), then its component 
elements (fields) are sought in tum according to the above rules. This is 
discussed more fully in 7.5.1 (7.4.1) under the heading of "straightening". 
The number of elements expected in a multiple value (other than a string) is 
the number contained in the existing multiple referred to by the item. 

Vertical readers, please tum to 8.1. 

7.2. Files 

7.2.1. Channels, books and files 

Your particular-program communicates with its environment via facilities 
termed "channels" [R 10.3.1.2] . A channel may be anything from a key­
board to a wind tunnel, with all the usual peripherals (tape, cards, magnetic 
tape, discs) coming in between. In alarge operating system, it will most likely 
turn out to be a file in its filestore. We distinguish between "character 
transput" (in which the external representation of the data is potentially 
readable) and "binary transput" (in which it is not, and which we shall not 
consider until 7.7). 

Confining ourselves, then, to character transput (although some channels 
may be able to accommodate both varieties), it is convenient to imagine that 
at the other end of the channel is a "book" (or maybe several books). Some 
channels permit the program to read the book, and some to write in it. Some 
very accommodating ones will permit both, and may even allow you to 
browse through the pages in any order. A program connected to several paper 
tape readers would be reading several such books through one channel (a 
channel is thus a type of device, rather than an individual piece of hardware). 
This channel would presumably permit reading (get possible), forbid writing 
(lput possible), would insist that the book be read in strict sequence 
(l reset possible and I set possible) but might conceivably agree to provide 
data in binary (bin possible). 

A book has pages, lines and characters, the maximum number of each of 
which may be limited by the channel, although the actual book may be 
smaller. If a line is able to accommodate n characters, then positions within 
the line are sp'ecified by one of n+ 1 character numbers (the extra one 
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corresponding to an overflow position at the end). If the line is empty (i.e. it 
contains zero characters), then its character number is always 1 and it is 
always in the overflowed state. Similarly, if a page (a book) is able to 
accomodate m lines (m pages), then positions within the page (the book) are 
specified by one ofm+1line numbers (page numbers). If the page (the book) 
is empty, then its line number (its page number) is always 1. The "current 
position" is a triple (page number, line number, char number) specifying the 
position of the character to be read or written to next (normally the position 
just after the character read or written last). New readers are advised to start 
at (1, 1, 1). If, by some mischance, you find your current position to be at 
the overflow position of a line, or of a page, or of the book, then you have 
overflowed the "physical" book. If the book has been written, but not right 
up the its end, then the "logical end of file" is the position (page, line and 
character number) just after the last character written. New writers are 
recommended to start on an empty book with its logical end of file at 
(1,1,1). Ifby some further mischance you contrive to get your current 
position beyond your logical end of file, then you have overflowed the 
"logical" book. 

A book has a title, its "identification", which you may use to ensure that 
Y0t: get the right one. Som~times, you may be allowed to change the identi­
fication of the book (reid! possible). For your convenience when referring to 
the book from within your program, we provide an identifier for it, and with 
this we associate a record containing useful information (as detailed in 7.4.2). 
This record is of a special mode called file (in actual fact a file is a particular 
form of structure (1.4), and there is no reason why several files should not 
refer to one book, nor why one file should not be assigned to another). files 
may be declared thus: 

(El) file my input, my output; 

The process of causing a file to refer to a book (via some specified 
channel) is known as "opening" the file (see 7.2.3 below). Initially, every 
particular program is provided with one book to be read, one to be written, 
and one to browse in. These are already opened in the standard-prelude 
[R 1O.5.l.c] (and are closed in the standard-postlude), and are referred to by 
me variables called: 

stand in }. {stand in channel 
stand out the books being linked stand out Ch. annel 
stand back via channels called stand back channel 

The properties of all books linked via these standard channels are given by 
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set possible 
reset possible 
get possible 

. put possible 
bin posSible 
reid! possible 
estab possible 
compressible 

stand in channel" stand out channel 

true 
true 

You may open further files on these and other channels: 
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stand back channel 

true 
true 
true 
true 
true 

(E2) open (my input, "BOOK;..1", stand in channel); 
create (my output, special printer channel) 

The results of the first of these can be represented thus: 

ref file 

stand in channel 

ref book 

"BOOK. I " 

The procedures print and read introduced in 7.l. automatically use the books 
referred to by stand out and stand in. Two further procedures put and get 
perform identical functions for other files. These must specify some file, and 
are such that: 

----------_._ .. _------
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print (XXXXX) is equivalent to put (stand out, XXXXX) 
read (XXXXX) is equivalent to get (stand in, XXXXX) 

7.2.2. Environment enquiries 

You will see, therefore, that channels and books have lots of useful 
properties. What we need are some more environment enquiries (see 6.2.1) 
to guide us [R 10.3 .1.3] . Since some of these properties may be a func.tion of 
the channel and some of the book and some (at the whim of the operating 
system) of both, or neither, these environment enquiries mostly take the 
form of procedures with ref file parameters. They are therefore only meaning­
ful when a book has been opened onthe file. 

identifier 
. of proc or constant 

se t possible 
reset possible 

get possible 
put possible 
bin possible 
reid! possible 

compressible 

chan 

estab possible 

stand in channel 

stand out channel 

stand back 
channel 

mode 

proc(ref file)bool 
proc(ref file) bool 

proc(ref file)bool 
proc(ref file)bool 
proc(ref file)bool 
proc(ref file) bool 

proc(ref file)bool 

proc(ref file) channel 

proc( channel}bool 

channel 

channel 

channel 

value 

true if random access is permitted 
true if the current position can be reset 
to (1,1,1) (e.g. rewfud on magnetic 
tape) 
true if fuput is possible 
true if output is possible 
true if binary transput is possible 
true if the string which identifies the 
book can be changed by reid! (7 .2.3) 
true if the line length can be varied on 
outPllt 

. the channel on which the file has been 
opened 
true if new books may be established 
(7.2.3) on the. channel 
the channel on which the file stand in 
is opened 
the channel on which the file stand out 
is opened 
the channel on which the file stand back 
is opened 

Some further environment enquiries will be given in 7.5.3. 
Observe that channel is actually a new mode. Implementations will 

doubtless ascribe to suitable identifiers in their library-preludes (1.1) extra 
channels on the lines of stand in channel etc. (but you cannot create new 
channel values for yourself). 
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7.2.3. Procedures for openipg and closing 
[R 10.3.1.4] 

identifier 
ofproc 

open 

establish 

create 

associate 

mode 

proc(ref file file, 
string idf, 
channel ch}int 

proc(ref file file, 
stringidf, 
channel ch, 
int mp, ml, 

mc} int 
proc( ref fiI.e file, 

channel ch} in t 

proc(ref file file, 
ref [ 1 [ 1 [ 1 
char sss} void 

Attachfile to an existing book with iden­
tification idfthrough channel ch. The book 
will already contain wr.iting up to some 
logical end of file, and it will have some 
number of pages, lines and characters 
consistent with the maxima for ch. 
Create a new, empty book with identifica­
tion idf and with mp pages each of ml 
lines of mc characters. Attach file to this 
book through channel ch (with which mp, 
ml and mc must be consistent). 
Create a new, empty book with undefined 
identification, and with the maximum 
number of pages, lines and characters 
permitted by the channel ch. Attach file 
to this book through ch. 
The existing multiple value (of mode [ 1 [ 1 
[ 1 char). referred to by sss is attached to 
file in lieu of a book. By virtue of the. 
rowing coercion (5.5.0 and 5.5.1.3), the 
actual-parameter supplied for sss may be of 
mode ref [rl [ 1 char (giving a "book" of 
only 1 page) or of mode ref [ 1 char (giving 
a "book" of only 1 line). 

Note that the int returned by open, establish and create is normally zero, 
but if the opening is not successful for some reason (e.g. the required book 
does not exist, or the operating system is unable to provide the required 
facility) some other integer may be returned, depending upon the implemen­
tation. 

identifier 
ofproc 

scratch 

close 

lock 

reidf 

mode 

proc(ref file file}void 

proc(ref file file}void 

proc(ref file file}void 

proc(ref file file, 
string idfJvoid 

detach the book (if any) attached to file 
and burn it 
detach the book from file (but it may sub­
sequently be opened again) 
detach the book from file. It may not be 
re-opened until it has been unlocked again 
by some action of the operating system 
change the identification of the book to 
idf (reid! must be possible) 

Note that, if two files are declared, and one is assigned to the other, then 
they are both attached to the same book. For the application of such 
assignations, see 7.4.2. 
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7.2.4. Position enquiries 

[R 10.3.1.5] 

identifier mode 
of proc 

page number 
line number 
char number 

proc(ref file file)int 
proc(ref file file)int 
proc(ref file file) int 

7.2.5. Layout routines 

[R 1O.3.L6] 

identifier mode 
ofproc 

set 

set char number 

reset 

newpage 
newline 
space 
backspace 

proc(ref file file. 
int p. I. c) void 

proc(ref file file. 
int c)void 

proc(ref file file) void 

proc(ref file file)void 
proc(ref file file) void 
proc(ref file file) void 
proc(ref file file) void 

the current page number of the book 
the current line number of the book 
the current character number of the book. 
N.B. the page, line and character number 
between them define the character position 
about to be read from or written to. 

Set the current position of the book re­
ferred to to (P. I. c). Only meaningful if 
set possible. See 7.7.1 for applications. 

. Set the current position to character c 
within the current line. 
Reset the current position to (1. 1. 1). 
Only meaningful if reset possible. 
See 7.7.2 for further effects. 

. see 7.1.1 and 7.1.2 
see 7.1.l and 7.1.2 
see 7.1.l and 7.1.2 
see 7.1.1 and 7.1.2 

Note that if the book is compressible (7.2.2), the effect of newline 
(newpage) during output is to terminate the current line (page) immediately, 
the length of the line (page) being determined by the number of characters 
(lines) already written. If the book is not compressible, the line (page) is filled 
out with spaces to the size specified when the book was established (7.2.3) 
(the sizes specified in establish are simply the maxima allowed in the com­
pressible case). 

It will be recalled that procedures of mode proc(ref file)void (or firmly 
coercible thereto) may appear as actual-parameters in calls of get, read 
(7.1.2), put and print (7.1.1). Of course, any procedure of this mode written 
by the user is acceptable in such positions. Of the procedures defined in the 
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standard-prelude, the following are the relevant ones: 

backspace, space, newline, newpage, reset, scratch, close, lock. 

Note that where such procedures are called from inside read, etc. they 
need no actual-parameter. In other places, t}-,e file must be specified. 

Vertical readers, please turn to 8.2. 

7.4. Structures and events 

7.4.1. Straightening of structures 

Given: . 

(El) struct (int a, real b, compl c, char d, ...... ) s; 

then print (s) (or put, get, read, etc) is equivalent to 

(E2) print((a of s, b of s, c of s, d of s, ...... )) 
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In other words, the fields of s, taken in order in which they were declared, are 
printed (or put, or got, or read) in accordance with whatever rules are 
applicable to their modes. This is known as "straightening" [R 10.3.2.3]. If 
one of the fields is a further structure or a multiple value, then that field itself 
is also straightened, and so on. Note, however, that although the mode compl 
is a struet, it is specifically forbidden from being straightened into two reals. 

Clearly, since the transput of names and routines and formats and the 
input of unions is forbidden (at least so far as the transput routines declared 
within the standard-prelude are concerned), it follows that these things 
cannot appear in struets that are to be transput. 

For straightening of multiple values, see 7.5.1. 

7.4.2. Files 

A file is, in reality, a struct being declared in the standard-prelude 
[R 10.3.1.3.a] somewhat like this: 
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(E3) mode file = struct(ref book ?book?, 
secret ?conv?, ?term?, 
proc(ref file)bool 

?logical file end?, 
?physicalfile end?, 
?page end?, 
?line end?, 
?format end?, 
?value error?, 

proc(ref file, ref char)bool 
?char error?) 

Ch.7.4.2 

The queries around the field-selectors are intended to convey to you that 
these are not the true selectors of those fields. The true ones are secret, and 
so you have no way of making use of them. You can only alter them via 
procedures provided for the purpose or by assigning a complete new file, and 
it is therefore up to the implementor whether his struct is actually made up 
of the fields suggested in E3 *. 

Now, if you declare two files, open a book on one, and then assign it to 
tire other: 

(E4) file first, second; 
open (first, "bookname", channel); 
second := first; 

you arrive at the situation shown on the next page. 
Both files must inevitably refer to the same book, and there is no way in 

which you can change this. However, if you contrive to make one of the 
fields different in the two versions, then you may get different results when 

* Pedantically speaking, this is not quite true. Your compiler ought not to complain 
upon seeing: 

file f:= (skip, skip, stand in channel,'!. i, p, p, p, p, p, 
skip, "", skip, (ref file f) bool: false, 
(ref file f) bool: false, (ref file f) bool: false, 
(ref file f) bool: false, (ref file f) bool: false, 
(ref file f) bool: false, (ref file f, ref char a) bool: false) 

but we would not like to take any bets on it. 
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you use them: 

(ES) make term (first, "A"); 
make term (second, "BC"); 
string s; 
get (first, s); 

Ch.7.4.2 

comment will read in a string of characters from the current 
position up to the end of the current line, or up to 
an "A" (whichever occurs first) (see 7 .1.1) comment 

get (second, s); 
comment will read in a string from the same book as before, 

starting from where the previous get left off 
(presumably starting with an "A" in this case) and 
reading up to the end of the line, or until either a 
"B" or a "c" is encountered comment 

make term is the first of the procedures referred to above. Its use should 
be apparent from the above example. A complete list of these procedures is 
now given, and their use will be explained in the sections which follow 

[~ 10.3.1.3] 

identifier mode 
of proc 

make term 

make conv 

on logical file 
end 

on ph y si cal file 
end 

on page end 

on line end 

on format end 

on value error 

on char error 

proc(ref file .r. 
string t)void 

proc(ref file f. 
secret c)void 

proc(ref file f. 
proc(ref file)bool p)void 

proc(ref file f. 
proc(ref file)bool p)void 

proc(ref file f. 
proc(ref file)bool p)void 

proc(ref file f. 
proc(ref file)bool p)void 

proc(ref file f. 
proc(ref file)bool p)void 

proc(ref file!. 
proc(ref fiJe)bool p)void 

proc(ref file j; 
proc(ref file. 

ref char)bool p)void 

assigns t to the ?term? field of f 

assigns c to the ?conv? field of f 

assigns p to the ?logical file end? 
field of f 
assigns p to the ?physica/ file end? 
field of f 
assigns p to the ?page end? field of 
f 
assigns p to the ?line end? field of 
f 
assigns p to the ?format end? field 
off 
assigns p to the ?value error? field 
off 
assigns p to the ?char error? field 
off 

Procedures which alter the ?book? field of a file are open, close, establish, 
associate, etc. (7.2.3). Note that associate causes the file to refer to a [] [] 
[ ] char instead of to a book. 
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7.4.3. Code conversion 

All transput is really a matter of sending chars to or from a book. The 
function of the various transput procedures (put, get, etc.) is basically to 
convert the value on hand to or from strings of chars, and to transput the 
latter. You will doubtless have observed that internally we have been talking 
of "chars" - that is the internal objects of mode char which can be handled 
by an ALGOL 68 program. The things which we write in the book (i.e. the 
external representations) we have been talking of as "characters". 

The relationship between these is determined by a conversion rule, and the 
conversion rule is kept in one of the secret fields of the file. A standard 
conversion rule is provided for each channel, and the intention is that the 
library-prelude of your implementation will provide additional ones to suit 
any special codes with which your installation may have to deaL 

An environment enquiry [R 1O.3.1.2.d] provides the standard rules, and 
the procedure make conv attaches them to the file. 

identifier 

stand cony 

mode 

proc(channel chan) 
secret 

value 

gives the standard conversion for chan 

The mode secret is not really called secret, so you cannot do anything with 
it, except use it in make conv.- When a file is opened (or established or 
created) on a channel, it is set up with the appropriate stand conv. When a file 
is assigned, its ?conv? goes with it. 

(E6) file first, second; 
open (first, "bookname", stand in channel); 
second := first; 
make conv (second, special conv); 

4 supposing that special conv is available in the 
particular library-prelude 4 

get (first, s); 4 reads a string according to the standard 4 
get/second, s); 4 reads the next string from the same 

book, according to special conv 4 
make conv (second, stand conv (stand in channel)); 

4 restores the original rule 4 
get (second, s) 4 now does the same as get (first, s) 

would have done 4 

Each conversion rule specifies the transformation of each single char into a 

-----------
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single external character and vice versa (the mapping rule is not necessarily 
one to one in either direction). 

7.4.4. Event routines 

The remaining fields in file are event routines [R lO.3.I.3.cc]. They are 
provided to enable some user-defined action to take place when, for example, 
the end of a page is reached, without the user having to insert a test for this at 
the end of every transput call. 

They all yield some bool value, and their default state, as left by open, 
create, establish or associate, is to yield the value false. If you write some 
routine of your own, and associate it with your file by means of one of the 
on procedures given above (7.4.2), then you may do what you like inside it, 
but there are three ways in which you may finish it: 

I) yield false. In this case you are asking the transput routine which called 
you in to continue by taking its default action (which in some cases is 
left undefined by the Report, but which should then be some sensible 
system action). 

2) yield true. In this case the calling routine will presume that you have 
corrected the situation to your satisfaction, and it will continue with 
next business. 

3) jump right out of (i.e. terminate) your routine. In this case, the calling 
routine is terminated also. However, you must be sure that the label to 
which you jump is in the same reach as that in which your routine was 
declared, or in a surrounding range (else you will be in identification 
trouble (see 3.2.3)). 

In cases 1) and 2), you may alter any of the values associated with the book 
(e.g. the current position - by newline, reset, etc. - or the format, or the 
contents) or with the file (e.g. by closeing and re-opening it with a different 
book, or by providing a different terminating string, conversion rule or event 
routines). 

Beware of associating an event routine with a file if its scope (4.2.3) is 
newer than that of the file. If necessary, you must declare a copy of the file 
with the scope of the proposed routine, so that the original file can continue 
to use its original routine outside this scope. A good example of this tech­
nique can be found in the Report at I0.3.1.3.cc. 

We shall now consider the various routines and their uses. They all cause 
an event routine to be associated with the appropriate secret field of the file. 
The first four of them are concerned with exceeding the logical or physical 
limits of the book (7.2.1). To do this is in itself no crime. You are quite 
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entitled to have overflowed these limits by one character, one line or one 
page as the case may be. It is only when you are in such an overflowed 
position and you try to make matters worse by attempting transput (put, get, 
etc.) or layout (space, newline, etc.) that an event routine will be called 
[R lO.3.1.6.dd]. 

7.4.4.1. On logical file end 

The associated event routine can be called by the input routines (get, getf, 
get bin, etc.) and by the layout routines space, set char number, newline and 
newpage when called in conjunction with input operations. It can also be 
called by set. Input or layout continues right up to and including the last 
character present in the book before the logical end of the file. If a further 
character is now demanded (or one of the layout routines is called), then the 
event is called. If this returns false (or if no such routine is provided) then the 
further elaboration is undefined (presumably the implementation halts the 
program with suitable diagnostics). Ifit returns true, then a further attempt is 
made to input the character or perform the layout. 

The most likely action of the user's routine here is to recognise that his 
input data is ended, and to take steps to commence the next phase of his 
program. 

7.4.4.2. On physical file end 

The associated event routine can be called by the output routines (put, 
putf, put bin, etc.) and by the layout routines space, set char number, 
newline and newpage when called in conjunction with output operations. 
Output or layout continues until the book has overflowed (i.e. until the 
current position has gone beyond the last page that is physically available). If 
further ou tpu t is now attempte d (or one of those layout routines is called), 
then the event is called. The action taken is similar to the previous case - if 
false is returned the further elaboration is undefined, if true the output or 
layout is attempted again. 

This event might be called, for example, if you had filled up a reel of 
magnetic tape, in which case it would be appropriate for your routine to close 
it and open another one. 

7.4.4.3. On page end 

The associated event routine can be called by all the transput routines (i.e. 
by both put and get, etc.) and by the layout routines space, set char number 
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and newline. Transput or layout continues until the current page has over­
flowed (i.e. until the current position has gone beyond the last line physically 
available in the page). If further transput is now attempted (or one of those 
layout routines is called), then the event is called. If this returns false (or if no 
such routine is provided), then the default action is to call newpage (which 
should remedy the situation). If it returns true, then the transput or layout is 
attempted again. 

The user may of course call newpage himself and return true, but he then 
also has the opportunity, for example, of outputting some heading and page 
number on the new page. 

7.4.4.4. On line end 

This is exactly like on page end, except that the event happens when the 
current line has overflowed and the default action (except in formatted 
transput and when getting strings) is to call newline (which should remedy the 
situation). 

The user may, again, call newline himselfand return true, perhaps first 
outputting some line number. 

It is to be noted that the default actions or user routines invoked by the 
above events may provoke other events. For example, the default call of 
newpage in on page end will normally remedy the situation but, in the 
exceptional case that this is the last page in the book, or before the logical 
end, the physical (or logical) file end event will then be invoked. In the 
extreme case in which the user when invited to mend the situation fails to do 
so, but erroneously claims (by returning true) that all is now well, the same 
event will be invoked again, and so on indefinitely. 

7.4.4.5. On format end 

The associated event routine is called by the formatted transput routines 
(putf, getf, etc.) when the format is exhausted. It may yield false whereupon 
the previous format associated with the book is repeated, otherwise it must 
provide a fresh format and yield true. 

7.4.4.6. On value error 

The associated event routine is called by the formatted transput routines 
(7.6.3) when the (internal) value on hand is incompatible with the current 
picture [R lO.3.4.l.l.hh, ii]. For example, on output the picture may 
provide too few digits, on input the value yielded may be too large to store 
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(e.g. > max int) or the expected literal in a choice may not be found, and in 
either case the mode of the picture may be wrong. If true is yielded, the 
offending value and picture are skipped; otherwise the result is unde.fined, 
except that with put/the value is first output with put. 

This event is also invoked during formatless input (get) when the value 
yielded is too large to store. 

7.4.4.7. On char error 

The associated event routine is called by the input routines (get and get!) 
when the converted char read from the book does not agree with the sort of 
value expected (e.g. a letter is found when a number has been called for) or 
when the character in the book cannot be converted to any char (e.g. a parity 
error). 'With the call is provided the name of a char which it is proposed to 
substitute for the offender in order that input may continue. If false is 
yielded, then the implementation will take its own action (e.g. diagnostic 
message) after which the substitution may duly be made (although the user's 
routine may nevertheless have taken some note of the error). Alternatively, 
the user's routine may yield true, after possibly having assigned some alterna­
tive char to be used in place of the suggested one. 

The suggestions that will be made in various circumstances are as follows: 

Expected suggestion 

a number (unformatted) 0 
a digit or supressed zero 

(formatted) 0 
a sign (formatted) + 
a decimal point (formatted) 
10 (formatted) 10 

1 (for com pI) (formatted 
or unformatted) 1 

a bool value (formatted 
or unformatted F (but see 7.5.3) 

an expected char of an insertion 
(formatted) that char 

If the user, in this routine, wants to examine the offending character, he 
has only to backspace the file and use get. If he decides the offending 
character should be a candidate for the next input operation, he has only to 
leave the file backspaced. 
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In the case of an unconvertible character, the suggestion will be ":.." (i.e. a 
space). 

Vertical readers, please tum to 8.4. 

7.5. Rows and strings 

7.5.l. Straightening of multiple values 

Given: 

(E1) [l:n, 1:4] intj2; 

then print(j2 ) (or put, get, read, etc.) is equivalent to: 

(E2) print( (j2[l,1],j2[1,2],j2[l,3],j2[l,4], 
j2 [2,1] , j2 [2,2], j2 [2,3] , j2 [2,4] , 
j2[3,l] , j2[3,2] , j2[3,3] , j2 [3,4], 
........ )) 

In other words, the rows of j2, and within them the elements of each row, are 
printed (or put, or got, or read) in accordance with whatever rules are 
applicable to their mode. This is known as "straightening" [R 10.3.2.3]. If 
one of the elements is a structure, then it itself is straightened in accordance 
with 7.4.1 and if it is itself a multiple, then it is straightened as above, and so 
on. Note, however, that a string or [ ] char is never straightened into its 
constituent chars. 

7.5.2. Conversion procedures 

Basically, non~binary transput consists of considering values of various 
modes and converting these values to or from strings. It is the strings which are 
transput across the channel to or from the book. 

print and put provide certain fixed rules for converting ints, reals, compls, 
bools, etc. (7.1.1 and 7.1.2). These are quick and easy to use, but they may 
not always provide the layout you want, in which case you must do-it­
yourself (or you might consider formatted transput (7.6». You can always 
output a string, and so you use one of the following do-it-yourself procedures 
[R 10.3.2.1] to make your own string. In the following table, number stands 
for real or int or any long or short version thereof. 
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identifier 
ofproc 

whole 

fixed 

float 

char in string 

mode 

proc(number v, 
int w)string 

proc(number v, 
int w, a) string 

proc(number v, 
int w, a, e) string 

proc(char c, 
ref int i, 
string a)bool 

Examples. Given: 

(E3) i := 1023; x := 999.888; 
print(whole(i, 7)); 
print(whole(i, -7)); 
print(whole(i, 0)); 
print(whole(i,3)); 
print(fixed(-x, 8, 3)); 
print(fixed( -x, -8, 2)); 
print(float(x, -12,5,3)); 

Converts v into a string of abs w chars. 
Leading zeroes are replaced by spaces. If 
w is positive, a "+" or" -" is always 
included in the string. If w is negative, 
the string is unsigned for positive v. If 
w is zero, the shortest possible string into 
which v can be converted is provided 
(including a "-" if v is negative, but 
never a "+"). If v cannot be converted 
within abs w chars, a string of w 
asterisks is returned (but see 7.5.3). 
Converts v into a string of abs w chars, 
including sign, if any, and decimal point 
and with a digits after the decimal point. 
The cases when w is negative or zero are 
treated as in whole. If v cannot be 
converted within abs w chars (even after 
reducing a so as to provide more 
positions before the decimal point), then 
w asterisks are returned. 
Converts v into a string of abs w chars, 
including sign, decimal point and" 10", 

and with a digits after the decimal point 
and abs e digits (including any sign) of 
exponent. If w is negative, a leading 
"+" is replaced by".;.." and, if e is 
negative, positive exponents are not 
signed. 
Returns true if c is contained in s, in 
which case the index of its first 
occurrence in s is assigned to i. 

d' .:..:. +1023 4-
d' .:..:..:.1023 4-
d' 1023 4-
d' *** 4-
d' -999.888 d' 
d' -lOCO .00 4-
d' .9.9988810. +24-- -

---_ .. "--------------------------------------
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7.5.3. Conversion environment enquiries 

print and put always output the exact number of digits necessary to 
represent the largest possible magnitude of the value being output. The uSer 
might wish to know what this number of digits is, either when planning the 
layout of his page, or when using formatted transput (7.6). Appropriate 
environment enquiries are therefore provided [R 1O.3.2.1.m, n, 0, 

10.2.1.r, s, t]. 

identifier mode value 
of constant 

int width int the number of decimal digits req uired to re-
present max inr(6.2.1) - not including sign 

real width int the number of decimal digits required to re-
present a mantissa, such that small real (6.2.1) 
is not neglected in comparison with 1 - not 
including sign 

exp width int the number of decimal digits required to re-
present a decimal exponent, such that max real 
(6.2.1) can be correctly represented - not in-
cluding sign 

error character char the char used to represent unconvertible values 
in whole, etc. (7.5.2) - in this book we use 
" " * 

flip char the char used to represent true during transput 
- in this book we use "T" 

flop char the char used to represent false during transput 
- in this book we use "Fo 

See 6.7.1. forlong(s) versions of these. 
Note that the chars used for error character, flip and flop are to be chosen 

by the implementer - the choice of"*", "T"and "F" is merely the con­
vention adopted for this book. 

Vertical readers, please turn to 8.5. 
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7.6. Formatted transput 

In formatted transput, the information about the values to be transput is 
presented separately from the information about how they are to be laid out. 
For example, given, in the book to be read, characters to yield the string: 

"+123:..456.:. 789/A47/999.888*6" 

we could read in the ints 123456789 and 47 and the real 999888000 by 
writing: 

(El) read [(( 
$ + 3d x 3d x 3d "/ ", x 2d "/", 3d. 3d se "*" d $, 
i, j, x) ) 

Here, i, j, x is a data list of the names to which the values input are to be 
assigned. In this case they are two ref ints and a ref real, but they could have 
been of any of the modes acceptable to read (7.1.2) including references to 
multiples and structures which would require straightening (7.4.1 and 7.5.1). 
The only things not permitted here are proc(ref file)voids such as newline, 
space, etc. because these are concerned with the layout rather than the values. 

The layout is controlled by the piece between the two "$"s, which is 
known as a 'format-text'. This is made up of various items known as 'frames', 
'alignments' and 'literals', and the meaning of each item in this example is as 
follows: 

item name effect 
$ to introduce the format-text 
+ sign frame expect a "'+" or a "'-" 
3d digit frame read 3 digits 
x alignment skip one character 
3d digit frame read 3 digits 
x alignment skip one character 
3d digit frame read 3 digits 
"I" literal the next character must be a "I" 

This is the end of the 1st "picture". The sign and the 9 
digits that have been read are to be converted and 
assigned to the I st value, which is i. 

x alignment skip one character 
2d digit frame read 2 digits 
1/ /1/ literal the next character must be a "I" 

This is the end of the 2nd picture. The 2 digits that have 
been read since the last picture are to be converted and 
assigned to the second value, which is j. 

3d digit frame read 3 digits 
point frame expect a"." 

3d digit frame read 3 digits 
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se 

"*" 
d 
$ 

exponent frame 

literal 
digit frame 
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because of the s (for suppressed), no character is read 
for this frame, but the next digit frame will be inter­
preted as the start of a decimal exponent 
the next character must be an * 
read 1 digit 
End of the format-text and of the 3rd picture. 
The characters read (or implied) by its various frames 
are to be converted to real and assigned to the 3rd value, 
which isx. 

Thus every character position of the input line is accounted for, and each 
must contain exactly what the format-text says it should. Formatted input is 
therefore very suitable for punched card input, where fixed layouts are 
customary, but less so for paper tape where the free layouts accepted by the 
unformatted procedures will often be more appropriate. 

For output, however, the formatted procedures will always give more 
control over what is printed, chiefly by their ability to include fixed informa­
tion (Le. literals) anywhere amongst the values that are being printed. For 
example, to print the same line that we read in in E1, we could write: 

(E2) print! ( ( 
$ + 3d x 3d x 3d "/", "A" 2d "/", 3d. 3d se "*" d $ , 
123456789, 47, 999888000)) 

You will see that the format-text here is almost exactly the same as before, 
the only difference being that here we specify the "A" that is to be printed, 
whereas on input we were prepared to pass over any character that might 
have been present. On the other hand, the alignment x is quite sufficient to 
ensure that a space will be output, unless some other piece of trans put has 
tried to put some other character there. In this respect, the x behaves just like 
a calIon space (7.1.1). 

7.6.1. Format texts 

A format-text consists of a list of 'pictures' separed by commas, the whole 
being enclosed between "$"s [R 10.3.4.1.1] . Each picture is obeyed in turn, 
and if it contains any frames it is matched up against the next value that is to 
be transput (otherwise its insertions are performed and the next picture is 
taken). . 

Within each picture there may be found 'insertions' (which can be further 
subdivided into 'literals' and 'alignments'), and 'frames'. Insertions, or 
sequences of insertions, may be put at the beginning or end of the picture, or 
in between any two frames. 
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7.6.1.1. Literals 

A literal [R 10.3.4.1.1.i] consists simply of a string denotation (5.5.1.1). 
On output, when this point in the format-text is reached, the string denota­
tion is printed. On input, it is "expected" [R 10.3.4.1.1.11] ; i.e. the characters 
read from the book at this point must match the literal - if they do not, then 
the char error event is invoked (7.4.4.7). 

The string denotation of a literal is actually preceded by a 'replicator'. 
These will be de.scribed more fully in 7.6.1.4. It will suffice for the moment 
·that a replicator can cQRsist of either "empty" or of an int denotation 
(5.1.1.1), and that We ~an indicate the possible presence of one in what 
follows by an "R". 

(E3) print!( ($ "START" 1'...!..." 3d $, i)) 

There are two literals in the one and only picture in the format-text in this 
example. The first has an empty replicator, implying that the string 
"START" is to be printed only once. The replicator in the second shows that 
":.. ." is to be printed 7 times, so that the characters written to the book 
should look like this: 

START ••••••• 987 
Note that if two literals occur in succession, then the second one must 

have a non-empty replicator, for otherwise: 

(E4) "SMITH""JONES" • 

would be ambiguous. In fact, E4 is a single literal which would be printed out 
(see 5.5.1.1) as: 

SVlIlli"JONES 

7.6.1.2. Alignments 

Alignments [R 10.3 .4.1.1.e] do not write any characters to the book. 
Their purpose is to move the current position (7.2.1) to some different page, 
line or char number, in a similar manner to the procedures newpage, 
newline, space and backspace (7.1.1 and 7.1.2) used in formatless transput. 
The following are the alignments permitted [R 1O.3.4.1.1.ff] : 

--. - ... _---_._------_._--------
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alignment effect 

Rx call space the number of times specified by the repJicator R. I.e. 
skip over R characters. 

Rq write (or expect) R space characters 
Ry call backspace R times 
Rl call newline R times 
Rp call newpage R 'times 
Rk call set char number (7.2.5) with R as its second parameter 

(ES) printf(( 
$ I "ABeD" 4x 4a, 5k 4a $, 
"/JKL", "EFGH" ) ) 

(in which 4a is a character frame) will therefore cause to be written, on a new 
line in the book: 

ABCDEFGHIJKL 

7.6.1.3. Frames 

frame type syntax effect on input effect on output 

digit frame Rd expect R digits print R digits 
Rsd 

sign frame + expect ~, +" or ,,~" print "+" or "-" 
expect "~" or "-" print "....:.-." .or "-" 

Rz+ pass over up to R replace up to R leading 
Rz- spaces (say n). and zeroes (say n) by 

then expect "+", or spaces, and then print 
"-" Of "-!...." as above, "+", "-" or "....:..." as 
followed by R-n above, followed by 
digits R-ndigits 

zero frame Rz expect R digits print R digits with 
Rsz with leading zeroes leading zeroes replaced 

replaced by spaces by spaces 

point frame expect a decimal print a decimal point 
s. point 

exponent frame e expect " 1 D" "\" or "e" print "'0 " 
se 

complex frame 
si 

expect "1" or "i" print "i" 
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frame type 

radix frame 

character frame 

boolean frame 

general frame 

format frame 
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syntax 

2r 
4r 
8r 

16r 

Ra 
Rsa 

b 

g 

g(w) 
g(w, aj 
g(w, a, ej 
here, w,a 
and e stand 
for units 
yielding int 

effect on in'put 

convert the digits 
read, using the 
specified radix, 
into a bits value 

expect R characters 

effe..:t on output 

convert the bits being 
output using the speci­
fied radix, and print in 
accordance with the 
rest of the frames 

print R characters 

expect "T" or /IF" print "T" or "F" 
(but see 7.5.3) 

accept characters as 
unformatted input 
(read or get) 

print as in unformatted 
output (print or put) 

print(whole(~', w)j 
print(fixed(v, w, aj) 
print(float(v, w, a, e)) 
where v is the value to 
be output 

f(format) transput proceeds using the format yielded by 
format. Upon exhaustion of this, the transput 
reverts to the next item of the original format 

here (format) 
stands for any 
ENCLOSED-
clause (3.2.4, 
yielding a 
format 

In all the frames listed above, if an s is present, then on input the expected 
characters are not read from the book, but input proceeds as though they' had 
been (and in the case where digits were expected, zeroes are yielded). On 
output, the characters concerned are not written to the book, but are simply 
"thrown away". 

Note that sign, point, exponent and complex frames serve a dual purpose. 
They indicate that a certain character is to be expected or printed (unless 
suppressed), and they also indicate to the conversion routines the significance 
of the adjacent digit frames. Here are some examples: 
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(E6) x := 999888000; 
print! ( ( $ +d.5de2d $, x));.~ +9.998881008 ~ 
print!( ( $ -5zde-zd $, x)); ~ 99988810 3 ~ 
print!( ( $ .6de+2d $, x)); ~ .999888 10+09 ~ 
print!( ( $ .5de+2d $, x)); ~ .9998910+09 ~ 
print!( ( $ +l1zd. $, x)); ~ + 999888000. ~ 
print! ( ( $ 11 z+ds. $, x)); ~ +999880000 ~ 
print! ( ( $ 9d.3d $, x)); ~ 999888000.000 ~ 
print! ( ( $ 6d3z. $, x)); ~ 999888 ~ 
print! ( ( $ 6d3sds. $, x)); ~ 999888 ¢ 

As you will see, any reasonable combination of frames is permissible. Rather 
than try to list all the permitted cases, we shall instead point out certain 
compatibility restrictions [R 10.3.4.2 - 10.3.4.7] which arise with certain 
modes of the value being transput. Failure to observe them will result in 
invocation of the value error event (7.4.4.6). 

1) A radix frame (r) may only be useful if the value is int. 
2) Either a point frame (.) or an exponent frame (e) must be present if the 

val ue is real. 
3) A complex frame (i) must be present if the value is compl, with either a 

point frame (.) or an exponent frame (e) somewhere on each side cif it. 
4) On output, there is no objection to having point, exponent and 

complex frames present when the value is int, nor to having a complex 
frame when the value is real, since the int or real can be widened. These 
cases are not acceptable on input, however. 

5) Character frames (a) may only be used if the value is char or string. 
6) A boolean frame (b) may only be used if the value is boo!. 
7) The order in which the various frames, if present, must appear in int, 

real or compl pictures is as follows: 
sign frame (+, -, z+, z-) 
zero frames (z) and digit frames (d) 
point frame (.) 
zero frames (z) and digit frames (d) 
exponent frame (e) 
sign frame (+, -, z+, z-) 
zero frames (z) and digit frames (d) 
complex frame (i), in which case all the preceding frames may occur again. 

8) Character frames (a) must not be mixed with other types within one 
picture, but there may be several of them. 

9) A boolean frame (b), a general frame (g) or a format frame if) must be 
the one and only frame of its picture. 
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Here are some more examples, illustrating compls, bools and strings (single 
chars are treated exactly like strings): 

(E7) print! ( ( $ 2z-d.2d i -d.2de-d $,37.2 i -43.4) ); 
¢ 37.201 -4. 3410 1 ¢ 

print! ( ( $ b,b,b $, true, false, true) ); 
¢ TFT ¢ 

print! ( ( $ 4a x 4a $, "ABCDEFGH" ) ); 
d' ABCD EFGH ¢ 

make term (stand in, "F"); 
readf( ( $ g $, s) ) ¢ reads "ABCDE" from a book containing 

.¢ ABCIEFGH ¢ 

Iii addition to the various frames introduced above, there are two further 
types, known as "choices" [R 10.3.4.8], which can be used when the value 
to be transput is intor bool: 

(E8) i := 4;j:= 5; 
print!( ( 

$ c("SUN", "MON", "TUES", "WEDNES", "THUS", "FRI", 
"SATUR") "DAY" $, 

i) ); 
d' prints WEDNESDAY ¢ 

print[( ( 
$ b(" LESS.:. THAN" , "GREATER") $, 
i<j) ) 
¢ prints LESS THAN d' 

On output, one of these literals is selected from the list according to the value 
of the int or the bool. (Note that a sequence of literals, complete with 
replicators (7.6.1.1), could be used in place of each of the single literals 
shown in the examples.) On input, one of the literals listed is expected, and a 
value is assigned to the int or bool accordingly. If two or more of the literals 
match, the earliest one in the list is taken. The search is never carried beyond 
the end of the current line. If no literal matches, the valu(! error event is 
invoked (7.4.4.6). 

7.6.1.4. Replicators and collections 

Two types of replicator have been introduced already (7.6.1.1). These 
consist of "empty" and of an int denotation. There exists a third type, 
known as a "dynamic" replicator [R 1 0.3.4.1. l.dd] , which consists of an n 
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followed by an ENCLOSED int clause (3.2.4): 

(E9) proc digits in = ( int i) int: entier(ln(i)/ln( 10)+1); 
j := 0; 
for i to 4 

do 
j timesab 10 plusab i; 
printf( ( $ln(digits in (j))d $, j)) 
od 

¢ prints: 1 
12 
123 
1234 ~ 

Ch.7.6.1.4 

If the expression of a dynamic replicator yields a negative value, then zero 
is assumed. 

Replicators may also be used to cause a 'collection' of pictures within a 
format to be repeated. This is particularly useful when a multiple value of 
flexible size is to be transput: 

(ElO) flex [1 : 0] struct (inti, char a) ic1 := ((l,"A"), (2,"B"), (3,"C"), (4,"D")); 
me f : = stand out; ¢ ! has the same scope as ic1 ¢ 
put!(!,($ p n(upb ic1)(4z+d,2x a I), "TOTAL=" 3z+d $, 

ic1, (int i := 0; for j to upb ic1 
do i +:= i of ic1 [j] od; i) ) ) 

¢ which will print out, on a new page: 

+1 A 
+2 B 
+3 C 
+4 D 

'IDTAL= + 10 ¢ 

Such replicated collections can, of course, be nested to any depth. Moreover 
the grouping of the pictures so defined need not correspond to any natural 
grouping in the values being transput: 

(Ell) [1:4] intj1 := (999,999,999,999), k1 := (888,888,888,888); 
printf(( 

$ 3d, 3(3"A" 2(3d x) 3x), 3d $. 
j1, k1)) 
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¢ which would print: 

999AAA999 999 AAA999 888 MA888 888 888 ¢ 

In this example,jl and kl are first straightened (7.5.1). The changeover from 
the values arising from j] to those arising from kl actually takes place half 
way through the second repetition of the outermost collection - this is 
slightly odd, but perfectly permissible. 

7.6.2. formats 

We shall now introduce a new mode, known as format. As with other 
modes, you may declare formats, assign them, refer to them, construct 
multiples and structures and unions' out of them, invent procs that deliver 
them, and have operators operating upon them. About the only thing you 
cannot do with a format is to transput it. 

The value of a format is the internal object yielded by some format-text 
(7.6.1). Moreover, the value of any format at any stage in the elaboration of a 
program, unless it is undefined, must be traceable back to a format-text 
somewhere in that program. 

(EI2) format f; ¢ f is therefore of mode ref format ¢ 
f:= $ + n(int width)d $; 
printf( (f, 999)) 
¢ which will print something like: 
+ O()(X)()999 ¢ 

Because a format-text can contain expressions which in tum may contain 
identifiers of limited reach, it should be pOinted out that the scope of a 
format-text is determined by exactly the same rule as is applied to routines 
(see 4.2.3), so thatthe result of the elaboration of the following is not 
defined: 

format /," 
begin 
int i := 4; 
f:= $ n(i)d$ 
end 

printf ( (f, j) ) 

7.6.3. The formatted transputprocedures 

Associated with each file is a format value and a format pointer (which 
l.I.A.-IO 
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keeps track of which picture is to be used next). As with print and read 
(7.1.1, 7.1.2), the parameter supplied to printf or readf is a data list. each 
element of which yields either a fonnat value, or. a value to be transput (but 
not a proe(reffile)void this time). Usually, the first element provides a format 
(it is then associated with the file stand in or stand out as the case may be) 
whose sequence of pictures (as expanded by performing the replication of 
any collections) is then matched against the sequence of values obtained by 
straightening the remaining elerr.ents. This was done in all the examples 
shown so far, but it need not necessarily be the case. Example E2 can thus be 
rewri tten as 

(EI3) printf( ( $ + 3d x 3d x 3d"I" $,123456789, 
$ "A" 2d"I" $,47, 
$ 3d. 3d se "*" d $, 999888000) ) 

If a new fonnat is provided before the old one has been exhausted, the old 
one is lost (note, however, that if the new fonnat is provided to a copy of a 
file obtained by assignation, the original file still retains the old fonnat, as 
should be clear from the diagram in 7.4.2). If part of a fonnat still remains 
unused when the end of the data list is reached, it remains associated with the 
file and will be used for the next data list to be transput via that file. 

(EI4) printf ($ p 6( 8( 6(+d.6de+d 2x) 1) 21) $); 
& a data list of one element which actually performs no 

transput at all & 
proe real compute = e computes some result e; 
to some large number 
do printf(compute) od 

This will print the results of the computation, 6 numbers to a line, 48 lines to 
the page, with 2 extra blank lines inserted after every 8 lines. After printing 
the results of 288 computations the fonnat will be exhausted. Then the 
format end event will be invoked (7.4.4.5). In this case the user has provided 
no event routine and so the default action is taken, viz the same format is 
started again (and printing is continued on a fresh page). 

The procedures printf and readf use the books and formats referred to by 
stand au t and stand in (there is also a procedure writef which is iden tical to 
print!). Two further procedures putf and getf perform identical functions for 
other files, and are such that: 

prin~f(XXXXX) is equivalent to putf(stand out, XXX XX) 
readf (XXXXX) is equivalent to getf (stand in, XXXXX) 
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7.6.4. Events 

The various procedures which you can associate with each file in order to 
trap various events during transput were described in 7.4.4. We shall now 
summarise the situations in which each of them can be called during for­
matted transput. 
During both input and output: 

1) The various frames, alignments and literals encountered in the format 
may cause the current position to overflow the physical book (7.2.1). If 
a character is read from or written to the book in this situation, the line 
end, page end or physical file end event is called as appropriate. 

2) If the end of the format associated with the book is reached before the 
straightened data list of values being transput has been exhausted, then 
the Jonnat end event is called. 

3) If the mode of the value being transput is incompatible with the 
sequence of frames which occurs in the current picture (the possible 
causes of this were liste d in 7.6 J .3), then the value error even t is called. 

During input: 
4) If an attempt is made to read beyond the (logical) end of the book 

(7.2.1), then the logical file end event is called. 
5) If the value yielded by conversion of various digi ts etc, in accordance 

with the picture, is too great for values of that mode (e.g. an int greater 
than max int (6.2.1)), then the value error event is called. 

6) If the character read from the book in accordance with one of the 
frames d, Z, +, -, . , e, i or b is not expected, then the char error event is 
called. 

7) If a character that has been expected by a literal is not found, then the 
char error event is called. 

8) If none of the literals of a choice is found, then the value error event is 
called. 

During output: 
9) If a value to be output cannot be converted into the number of digits 

specified in the picture, then the value error event is called. 
10) If a negative value is to be output, and the picture does not contain a 

sign frame, then the value error event is called. 
11) If the int to be output by a choice is zero or negative or greater than 

the number of literals in the list, then the value error event is called. 

Vertical readers, please tum to 8.6. 

---------------------------------------------



284 TRANSPUT Ch.7.7 

7.7. Binary transput 

Binary output may be used where the sole purpose of the material 
produced i~ that it should subsequently be read (during the same or some 
~ther program) by binary input. Normally, the medium used will be magnetic 
tape, disc or drum, but paper tape or cards can be used if your implementa­
tion permits. 

During binary transput, the medium is still divided into pages, lines and 
chars, but iris not defined how many chars'are occupied by each object that 
is transput, and your implementation may provide some strange shape for the 
physical book (e.g. a magnetic drum might be regarded as a continuum of 
chars, all on the one and only line of the one and only page: on magnetic 
tape, a line might correspond to some block length, and ona disc a page 
might demarcate a region which could be accessed without head movement). 
Nevertheless, it will always be true that the current position will be defined 
by the triple (page number, line number, char number), and that it can always 
be inspected arid manipulated by means of the facilities provided (7.2.4 and 
7.2.5). In particular, the procedure reset can be used (7.2.5) if reset is 
possible (7.2.2) (as on tapes, discs and drums) arid set can be used if set is 
possible (as on discs and drums). All the binary transput routines whiCh are 
about to be described start from the current position. As line and page 
boundaries are passed, line end and page end events are called, but the default 
action is to call newline or newpage, so that the routines proceed auto­
matically to cover as many chars·, lines and pages as the values being transput 
may demand." 

7.7.1. Binary transput procedures 

In all of these procedures, the values are first straightened (7.4.1 and 
7.5.1), and the straightened values are transpl,lt [R 10.3.6] . Thus all informa­
tion as to how the original values were divided into structures and rows of 
multiple values is lost, as are the values of any bounds. Nevertheless, if the 
values output in this way are subsequently read back into a set of structures 
and multiples identical to tl1;at from which they originally came, then the new 
set will be an exact copy .of the old. 
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(E1) struct(inta, b)s1, s2, [1:4]inti1, i2; 
s1 := (1,2); i1 := (3,4,5,6); 
reset( stand back); 
put bin( stand back, (s1, i1)); 
reset(stand back); 
get bin(stand back, (s2, i2)); 

comment we might just as well have said 
s2 :=s1;i2 :=i1 
However, if we want to mix things up: comment 

reset(stand back); 
get bin(stand back, (i2, s2)) 

¢ whereupon i2 has the value ( 1 ,2,3,4) and s2 
has the value (5,6) ¢ 

identifier mode 
of proc 

put bin 

write bin 
get bin 

read bin 

proc(ref file I, 
[ 1 outtype x) 

proc([ 1 outtype x) 
proc(ref file f, 

[ 1 intypex) 

proc([ 1 intype x) 

x is straightened and the resultant values 
are output to the book referred to by I, 
starting at the current position (which is 
suitably advanced) 
equivalent to put bin (stand back, x) 
x is straightened to yield the names to which 
the values in the book referred to by I, 
starting at the current position (which is 
suitably advanced), are read 
equivalent to get bin(stand back, x) 

In this table, the modes outtype and intype (these are not their real names) 
indicate the modes acceptable to print (7.1.1) and read (7.1.2), with the 
exception of proc( ref file)void 

7.7.2. Some restrictions 

The environment enquiries listed in 7.2.2 show what can and cannot be 
done with the various channels provided in an implementation. You can only 
do binary transput if bin possible. However, this is not to say that non.binary 
(i.e. character) transput is forbidden thereby. You are perfectly entitled to 
put and get to and from your disc, provided only that you are prepared to 
tolerate any strange page and line sizes that it may have. 

There-is an· important distinction between channels with set possible (i.e. 
drums and discs) and the rest [R I0.3.1.4.j-mO]. With set possible, you can 
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roam around your book writing characters here, reading them back there, and 
doing binary transput in between. It is your entire responsibility to keep 
track of the (page number, line number, char number) where everything has 
been put, and of course if you try to read back as characters that which has 
been written in binary, or vice versa, then the result will be quite undefined. 

If, on the other hand, set is not possible, then things are different. When­
ever you start off at (1,1,1) (after a reset, for example, assuming reset 
possible), you have the choice of reading or writing in characters or binary 
(assuming a suitable combination of put, get and bin possible on the channel). 
Thus you have 4 possibilities: 

read binary - you must carryon reading in binary. 
write binary - you must carryon writing in binary. 
read characters - you may continue reading characters up to some 

point, and then change to writing characters. But you must 
not read beyond the logical end of the file (7.2.1). 

write characters - each time you write, the logical, end of the file is set 
to the new current position, which effectively prevents 
you from doing anything other than to write characters 
again. 

Thus, with put, get and reset possible, but not set possible, the normal 
behaviour expected with magnetic tape is obtained. If you disobey any of 
these rules, then the result is undefined. Note that, when set is possible, it is 
still impossible to set beyond the logical end. Any attempt to do so will 
merely set the current position to the logical end exactly, and then call the 
logical file end event. 

The possible properties of the three standard channels were given in 7.2.1. 
Note that only the minimum requirements are given there, and individual 
implementations might, for example, allow bin possible on stand in channel. 

Vertical readers, please tum to 8.7. 



8. EXAMPLES 

8.1. Simple examples 

In this chapter, which forms the tail of the columns in our othogonal 
plan, we shall show you, column by column, what you can do with the 
facilities described so far. 

However, the language available to us at the end of this first column is 
rather sparse. We have shown you only the crudest form of conditional· 
statement. strings have only been hinted at. You cannot declare procs, nor 
refs, nor even constants. Any substantial and worthwhile example within 
these limitations could never do justice to the expressive power of ALGOL 
68, and we must therefore invite you to read further before encountering a 
real example in 8.2. 

If shorter examples of these simple facilities are what you would like to 
see, then we must refer you back to the early parts of Chapter 0 (the Very 
Informal Introduction) where you will find many such. 

Vertical readers, please turn to 1.2. 

8.2. Procedure examples 

8.2.1. Easter 

The Gregorian Calendar, insofar as it determines upon which day each year 
shall start, is universally accepted throughout the world. It also fixes the dale 
of Easter as being the next Sunday after the Paschall Full Moon, which is 
intended to be the first full moon occurring on or after the Vernal EqUinox 
(March 21st). The rules given for computing this are not so widely accepted. 
For example, the Jewish Passover and the Orthodox Easter are determined 
from different (and probably more accurate) calendars. 

The defining document for these rules was written by one Clavius under a 
commission from Pope Gregory XIII l1l. Absolute accuracy was not a prime 
consideration. The Full Moon is considered to occur on the fourteenth day of 
the lunar month (which commences with the new moon). The rule was 
carefully devised so that the date predicted for its new moon always fell on, 
or one or two days after, the true mean new moon of the astronomers - but 
never before it. This was to ensure that never, under any circumstances, 
"auld the Christian Easter fall on the same day as the Jewish Passover 

287 
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(notwithstanding which, this terrible circumstance does occasionally arise, as 
in 1903). 

The following is a complete program for calculating the date of Easter 
according to the Gregorian rule. For further explanations, se~ [3Land [4]. 

begin . 
int year, date, moon, paschal, easter; 

comment We shall reckon dates by the number of days since the start of the 
year. 

Thus: comment 
intmarch21st=31 +28+21; 

comment The Gregorian calendar was introduced into various parts ofthe 
world at different dates. In Great Britain, the year was: comment 

int gregory start = 1752 ¢ or whatever date you prefer If' ; 
read ( year ); 
if year < gregory start 
then print ( ( "The Gregorian calendar was not introdu~ed until", 

gregory start, newline) ) 
else int century = year + 100, 

leap = abs (year mod 4 = a A year mod 100 :j: a v 
year mod 400 = 0 ); 

comment leap = 1 for a leap year, and 0 otherwise. comment 
, print ( (newpage, 

year, 
if leap = 1 then " (Leap year)" else "" fL 
newline) ); 

comment To calculate the day of the week corresponding to any date, we 
associate with each year a Dominical Letter, whose position il1 the alphabet 
gives the date of the first Sunday in January. comment 

int dominic = 7 - (year + year + 4 - century + century +4 
'~ 1 -leap) mod 7; 

print (("TheDominical Letteds", 
case dominic-in "A", "B", "e","D", "E", "F", "G"'esac, 
if leap = 1 
then case (dominic -.2) mod 7 + 1 

in "/A", "/B", "/e", "/D", "/E", "/F", "/G" 
esac 

else 
,,,, 

fl, 
newline) ); 
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proc weekday = (int date) string: 
case (date - dominic) mod 7 + 1 
in "Sunday". "Monday". " Tuesday". "Wednesday". 

" Thursday". "Friday". "Saturday" 
esac; 

proc month = (ref int date) string: 
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comment This proc has a ref int parameter which it will alter to become the 
date within the month. comment 

if date';; 31 
elif (date := date-31)';; 28 + leap 
elif (date := date-28-leap)';; 31 
elif (date := date-31) .;; 30 
elif (date := date-30)';; 31 
elif (date := date-31) ';;30 
elif (date := date-30)';; 31 
elif(date :=date-31)';;31 
elif(date :=date-31)';;30 
elif (date := date-30)';; 31 
elif (date := date-31) .;; 30 
else date := date-30; "December" 
fi; 

then "January" 
then "February" 
then "March" 
then "April" 
then "May" 
then"June" 
then "July" 
then "August" 
then" September" 
then" October" 
then "November" 

comment The moon revolves around the earth once every 29.530588 days. 
235 such lunations last just I! hours less than 19 Julian years. The calendar is 
therefore based on a "Metonic" cycle of 19 years, each year in a cycle being 
allotted a "Golden Number" in the range 1 to 19: comment 

int golden = year mod 19 + 1 ; 
print ( ("The Golden Number is". golden. newline) ); 

comment However, following this cycle indefinitely would introduce an error 
of approximately 0.43 days per century. There is therefore a correction 
which, for convenience, is only allowed to change at the end of a century: 
comment 

int Wius 4' who is a not inherently meaningful identifier 4' 
= (century - century -;- 4 4' for the leap years omitted 

·at the start of some cen­
turies 4' 

- (century-( century-17)7 25) -;- 3 
4' the 1 ~ hours error 4' 

-8) mod 30; 
comment On the 1st of Janilary of any year, the number of days since the 
last new moon is given by the "Epact": comment 
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int epact = (11 x (golden-l )-lilius) mod 30; 
print (("The Epact is", epact, newline)); 

Ch.8.2.1 

comment If successive new moons were to occur every 30 days, then we 
should be 'able to associate with each date a unique epact, one less for each 
day modulo 30 (then that date would be a new moon in years with that 
epact). In fact, six times in the year (and once extra at the .end of 19 years) 
we must have a lunation of only 29 days, whereupon the sequence of epacts 
slips back a day and some date will have two epacts listed against it. These 
dates have been carefully chosen (it is alleged) so as to minimise the deviation 
from the true moon. One of them occurs in February and so happenings in 
March occur exactly 59 days after those in January (or 60 in a leap year, 
since the intercalary day, if any, in February is automatically added to the 
lunation in which it occurs). Therefore, there is a new moon on: comment 

moon:= 31-epact + 59 + leap; 
if (paschal := moon + 13) <march21st + leap 
then 

comment the fourteenth day of this moon falls before the Vernal Equinox 
and we want the next one. The next date with two epacts against it occurs in 
April, the critical epact being given by: comment 

fi; 

int clavius = if golden> 11 then 26 else 25 fi; 
moon := moon + (epact:> clavius I 30 i 29); 
paschal := moon + 13 

print (("The Paschal Full Moon falls upon ", 
weekday ( paschal ), space, 
month ( date := paschal ), space) ); 

comment Note how we have to break off the print here and start another 
one, so that we can use the value of date, as calculated therein, in the next 
print. If it had all been done in one print, then we might have been using date 
and assigning to it at the same time (i.e. collaterally), and anything might 
have happened. comment 

fi 
.end 

print ( (date, newline) ); 
print ( ("Easter day, being the next Sunday after the ", 

"Paschal Full Moon, therefore falls upon ", 
month ( date := easter := paschal + 7-(paschal- dominic) 

mod 7))); 
print ((date, newline)) 
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The following are the references quoted in this section: 
[1] Christophorus Clavius. K~lendarium Gregorianum Perpetuum. Cum 

Privilegio Summi Pontificis Et Aliorum Principum. Rome, Ex Officina 
Dominicae Basae. MDLXXXII. Cum Licentia Superiorum. 

A companion volume was also prepared, and published in 1603: 
[2] Christophorus Clavius. Romani Calendarii a Gregorio XIII. Pontifice 

Maximo restituti Explicatio. 
[3] A. de Morgan. A Budget of Paradoxes. Longmans, Green &. -'::0, 1872. 
[4] Sir Harris Nicolas. The Chronology of History, containing Tables, 

Calculations & Statements, indispensable for ascertaining the dates of 
Historical Events, and of Public and Private Documents from the earliest 
periods to the present time. Longman, Brown, Green and Longman's, 
1838. 

Vertical readers, please turn to 1.3. 

8.3. Examples of operators 

8.3.1. Parallel plus 

This example is intended to show how defining your own operators can 
lead to a considerable simplification of a program, at the same time making it 
more easy to follow. 

It is well known that if two resistors A and B are placed in parallel, their 
combined resistance is given by: 

1 
1 1 --+ -
A B 

We can now define the operator "parallel plus" (we shall represent it by pap) 
to perform this operation. pap is a well behaved operator, being both 
commutative and associative. For the sake of completeness we shall also 
define "parallel minus" (pam) and assigning versions·(6.3) paplusab arid 
paminusab. 

Consider the following network: 
~---------rt----------------~ 

r2 a r6 

---.:~",ll'-' __ -1-------' r 3 . GY 
r4 r5 
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It is required to find the value of x such that the resistance of the whole 
network shall be rt. Here is a program to do it: . 

begin 
prio pap = 7, pam = 7, paplusab = 1, paminusab = 1; 
op pap = (real a, b) real: a xb I (a + b); 
op pam = (real a, b) real: a x b I (b-a); 
op paplusab = (ref real a, real b) ref real: a := a x b I (a + b); 
op paminusab = (ref real a, real b) ref real: a := a x b I (b-a); 
realrt, r1, r2, r3, r4, r5, r6; 
read ((rt, r1; r2, r3, r4, r5, r6)); 
print ((rt-(r1 + r2 pap r3 pap (r4+r5))) pam r6) 
end 

Ch.8.4 

Electrical engineers will realise that all these operators ought also to be 
defined for compl operands (2.4.4) and for mixed real and compl. 

Vertical readers, please turn to 1.4. 

8.4. Two examples of library preludes 

A library-prelude (see 1.1) is an expansion of the standard-prelude. I t may 
contain further identity-, mode-, priority- and operation-declarations for use 
in particular applications. A library-prelude must be throughout consistent 
with the standard-prelude (Le. indicators declared in it may not conflict with 
those declared in the standard-prelude). 

In 8.4.1 we give a library-prelude for the basic operations on vectors in a 
Euclidean space E3 , the vectors being declared as 

mode vec = struct (real xcoord, ycoord, zcoord); 

In Section 8.5 we give a library-prelude for the basic operations on vectors in 
En (n arbitrary) which is more general, but also less simple than this one. 

In 8.4.2 we give a library-prel.ude for the basic operations on rational 
numbers, declared as 

mode rat = struct (int numerator, denominator); 

The declarations in 8.4.1 and 8.4.2 (and also those in 8.5) are fully 
consistent with each other and may, therefore, be joined into one library­
prelude without any precaution. They may be regarded as one of many 
possible expansions of the language. Their intention is to demonstrate the 
expressive power and efficient elegance of the language, and to suggest how 
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to do away in practice with dialects and specific languages for use in 
particular problems. 

8.4.1. Operations on vectors in E3 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) 

(11 ) 

(12) 

(13) 

(14) 
(15) 

(16) 
(17) 
(18) 

mode vee = struet ( real xcoord, ycoord, zcoord ) ;. 

prio pari 
op x 
op y 

op z 
op + 
op -
op + 
op~ 

op x 

op x 

op / 

op x 

op lx 

op norm 
op e 

real eps 
op eps 
op eps 

= 5 , perp = 5 , proj = 6, lx = 7; 
= (vee u) real: xcoord of u ; 
= (vee u) real: ycoord of u ; 
= (vee u) real: zcoord of u ; 
= (vee u) vee: u; 
= (vee u) vee: (-xu, -yu, -zu); 
= (vee u , v) vee: (xu + xv , yu + yv , zu + zv) ; 
= (vee u , v) vee: (xu - xv , yu - yv, zu - zv) ; 
= (real r, vee u) ¢ the product of a scalar and a vector ¢ 

vee: (r x xu , r x yu , r x zu) ; 
= (vee u , real r) ¢ the product of a vector and a scalar ¢ 

vee: r xu; 
= (vee u , real r) ¢ the quotient of a vector and a sc'alar ¢ 

vee: (xu / r, yu / r, zu / r) ; 
= (vee u , v) ¢ the innerproduct ¢ real: 

xu x xv + yu x yv + zu x zv ; 
= (vee u , v) ¢ the vectorproduct ¢ vee: 

( yu x zv - zu x yv , 
zu x xv - xu x zv , 
xu x yv - yu x xv ) ; 

= (vee u) real: sqrt ( u xu) ; 
= (vee u) ¢ the unit vector in the direction of u ¢ vee: 

(eps u I skip I (l/norm u) xu); 
= e some small enough real number e ; 
= (real r) bool: abs r < eps; 
= (vee u) bool: eps norm u ; 
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(19) op pari = (vee u , v) ¢ parallel? ¢ bool: eps (eu lx ev) ; 
(20) op perp 
(21 ) op proj 

(22) proe angle 

= (vee u , v) ¢ perpendicular? ¢ bool: eps (eu x ev); 
= (vee u , v) ¢ the protection of u on a plane 

perpendicular to v ¢ vee: 
(vee ew = e ((v lx u) lx v); (u x ew) x ew); 

= (vee u , v) ¢ the angle between u and v ¢ real: 
arccos (eu x ev) ; 



294 EXAMPLES 

(23) proe plane = (vee u , v , w ) ¢ in one plane? ¢ bool: 
eps ( eu x (ev lx ew ) ) ; 

8.4.1.1. Comments on the library-prelude 8.4.1 

Ch.S.4.1.1 

The given set of operations is confined to E3 -vectors over the field of real 
values; it is obvious that they can as easily be defined over the field of 
complex values and also over more particular fields (see, for example, the 
rationals as defined in 8.4.2). It is also obvious in what way more specific 
operations can be subjoined to those given in 8.4.1; the declarations (21), 
(22) and (23) are already of a somewhat specific nature. 

The given set may be of use in a variety of applications in mathematics, 
physics, chemistry and astronomy, enabling the programmer to write 
transparent and straightforward algorithmic prose in his own professional 
jargon. 

Further modes may be derived from the given vee, for instance: 

mode event = struet ( real time, vee position) ; 

mode tens = struet ( vee xlevel , ylevel , zlevel) ; 

The kinds of operators to be then declared for event and tens values, of 
course, depend entirely upon the specific applications. For an example of the 
use of the mode event, see 8.4.1.2. 

The declarations (1) - (12) may speak for themselves. 
In (13) we adopted for vector multiplication (sometimes termed the 

"outer product") the operator lx. The formula u lx v yields a vee 
perpendicular to both u and v and of length I u II v I sin (u, v). 

The norm defined in (14) is the usual Euclidean norm. If the underlying 
field is that of the rational values (8.4.2) we may define: 

op norm = ( vee u ) rat: max ( abs xu , abs yu , abs zu ); 

The environment enquiry eps in (16) serves as a criterion for "zeroness" 
and is used in (20), (21) and (23) to define parallelism, perpendicularity and 
"planeness". The value of eps may depend heavily upon the given input- and 
the required output-precision. If, for instance, real eps = 0.01, then two 
vectors will be considered as "perpendicular" to each other as soon as their 
inner product is <0.01 (see also the example in 8.4.1.2). 

In (21) the vee ew (which is local to the routine) is a unit vector 
perpendicular to v in the plane of v and u (we applied the vector product lx 
twice); hence, (u x ew) ~ a real ¢ x ew yields a vee in the plane perpendicular 
to v and in the plane of v and u. 
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The declarations (22) and (23) may speak for themselves. 

8.4.1.2. An example of the use of vees 

The input starts with an integral number n, whieh fixes the number of real 
quadruples following. The first real in each quadruple is a point in time, the 
remaining three reals define a point in space (a vee). In the first line of the 
program below we define such a quadruple to be an event. 

Let the input consist of some thousands of events, ordered in time; the 
time-coordinates are not necessarily equidistant. One may conceive the row 
of events to be the result of some smoothing process on a large set of 
measurements. The events may then describe, with sufficient accuracy to 
allow second order numerical differentiation, the orbit of a particle (be it a 
mass body or an electric charge) in a possibly complicated field of forces. 

The program below surveys the motion and acceleration of the particle in 
its orbit. It includes a few features of the language which you may not have 
met yet (if you have been reading vertically). Nevertheless, we hope their 
meaning will be readily apparent to you (if not, please see 2.5 and 5.5.1.3 for 
multiple values and how to slice them, and 3.5.2 for the use of for). 

(E1) begin mode event = struet (real time, vee pas ~ ition ~ ) ; 
proe deriv = ~ yields the derivative of a vee as a function of time ~ 

( [ ] event e , int k ) event: 
(event elk = e[k-1J, ekl = e [k+l] ; 

real dt = time of ek1 - time of el k ; 
( time of e1 k + dtl2 , (pos of ekl - pos of el k) I dt } 

) ; 
int n ; read (n) ; 
[l:n] eventorb;read(orb); ~ see 7.1.2 ~ 
real init ~ initial time ~ = time of orb [1] ; 
print ( ("initial time =", init , newline) } ; 
[2:n-1] event vel ~ oeity ~; 
for i from 2 to n-1 do vel [i] := deriv (orb, i) od ; 
vee newx = e pos of vel [2] ; ~ unit vector tangent to the orbit at 

time init ~ 
vee newy = e ( pas of vel [3] proj newx ) ; ~ newx-newy is the 

tangent plane to the 
orbit at time init ~ 

vee newz = newx Ix newy ; ~ newz is the unit vector perpendicular 
to the unit vectors newx and newy ~ 
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proc new = ¢ yields the coordinates of an event relative to the initial 
time and the new axes newx-newy-newz ¢ 
(event e) event: 
( time ore - init , (pos of e x newx , pos of e x newy , 

pos of e x newz) ) ; 
proc pr = <t prints characteristic data of an event, preceded by a 

string and a newline <t ( string s , event e ) void: 
( event newe = new(e); 

print (( newline, s , e pos of newe , norm pos of newe , 
time of newe )) 

) ; 
for i from 3 to n-2 
do event veli. = vel [i] , orbi = orb [i] , 

od 
end 

acci ¢ acceleration ¢ = deriv ( vel, i ) ; 
vec v = pos of veli , a = pos of acci ; 
¢ if certain situations occur, messages and data will be 

printed: ¢ 
if v perp newx then pr ( "orbit in YZ", orbi); 

pr ( "velocity = ", veli) ; 
elif v perp newy then pr ( "orbit in ZX", orbi); 

pr ( "velocity = ", veli ) ; 
elif v perp newz then pr ( "orbit in XY" , orbi) ; 

pr ( "velocity = ", veli ) 
else skip fi ; 

if eps v then pr ( "standstill " , orbi ) ; 
pr ( "accelerat. =", acci ) fi ; 

if eps a then pr ("zero force" , orbi ).; 
pr ( "velocity = ", veli ) fi ; 

if a pari v then pr ( "force//orbit", orbi); 
pr ( "velocity = ", veli ) ; 
pr ( "accelerat. =", acci) 

elif a perp v then pr ( "force1orbit", orbi); 
pr ("velocity = ", veli) ; 
pr ( "accelerat. =", acci) 

else skip fi 
¢ if an appropriate device is available, one might conceive here 

the call of a procedure plotting the curve ¢ 
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8.4.2. Operations on rational operands 

mode rat = struet ( int numerator, denominator) ; 

(1) prio nn = 7, nd = 7, dd = 7; 
(2) op n = ( rat r ) int: numerator of r; 
(3) op d = ( rat r ) int: denominator of r ; 
(4) rat a = ( 0 , 1 ); 
(5) rat! = ( 1 , 1 ); 
(6) proe errat = void: e some action interrupting or halting the elaboration 

of the program signalizing that a result, required to 
be rational, cannot be expressed as a value of the 
mode rat e; 

(7) proe gcd = ( int n , d ) int: 
if d = 0 then abs n else gcd ( d, n mod d ) fi ; 

(8) proe long gcd = ( long int n , d) long int: 

(9) op t 

(10) op t 

(11) op sign 
(12) op whole 
(13) op en tier 
(14) op frae 

if d = long 0 then abs n else long gcd ( d , n mod d ) 
fi; 

= ( int n , d ) rat: 
if d= 0 
then errat ; skip 
else int k = gcd ( n , d ) ; 

fi; 

( if sign n = sign d then abs n 7 k 
else - abs 11 7 k fr, 
ab's d 7 k) 

= ( long int n , d ) rat: 
if d = long 0 
then errat ; skip 
else long int k = long gcd ( n , d ) ; 

long int nk = n 7 k , dk = d 7 k ; 
if abs nk ~ leng maxint 

fi; 

1\ abs dk ~ leng maxint 
then shorten nk t shorten dk 
else errat; skip 
fi 

= ( rat r ) int: sign n r ; 
= ( rat r ) bool: d r = 1 ; 
= ( rat r ) int: if n r ;;;. 0 then n r 7 d r else n r 7 d r - 1 fi; 
= ( rat r ) rat: r - entier r ; 
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(15) op round 
(16) op re 
(17) op nn 
(18) op nd 
(19) op dd 
(20) op< 
(21 ) op = 
(22) op> 
(23) op~ 
(24) op :j: 

(25) op ;;;. 
(26) op + 
(27) op -
(28) op + 
(29) op + 

(30) op + 
(31) op -
(32) op-
(33) op-
(34) op x 
(35) op x 
(36) op x 
(37) op / 
(38) op / 
(39) op / 
(40) op t 

EXAMPLES Ch.8.4.2.1 

= ( rat r ) int: if frac r < 1 -l- 2 then entier r else entier r + 1 fi; 
= ( rat r ) real: n r / d r ; 
= ( rat p , q ) long int: leng n p x leng n q ; 
= ( rat p , q ) long int: leng n p x leng d q ; 
= ( rat p , q ) long int: leng d p x leng d q ; 
= ( rat p , q ) bool: p nd q < q nd p ; 

= ( rat p , q ) bool: p nd q = q nd p ; 
= (ratp, q ).bool: p nd q >q ndp; 
= ( rat p , q ) bool: I ( p > q ) ; 
= ( rat p , q ) bool: I ( p = q ) ; 
= ( rat p , q ) bool: I ( p < q ) ; 
= ( rat r ) rat: r; 
= ( rat r ) rat: -n r -l- d r ; 
= ( rat p , q ) rat: ( p nd q + q nd p ) -l- ( p dd q ) ; 
= ( int n , rat r ) rat:( leng n x leng d r + leng n r ) -l-

leng d r; 
= ( rat r , int n ) rat: n + r ; 
= ( rat p , q ) rat: p + - q ; 
= ( int n , rat r ) rat: n + - r ; 
= ( rat r, int n ) rat: r + - n ; 
= ( rat p , q ) rat: ( p nn q ) -l- ( p dd q ) ; 
= ( int n , rat r ) rat: ( leng n x leng n r ) -l- leng d r ; 
= ( rat r , int n ) rat: n x r ; 
= ( rat p , q ) rat: p x ( d q -l- n q ) ; 
= ( int n , rat r ) rat: n x ( d r -l- n r ) ; 
= ( rat r, int n ) rat: r x ( 1 -l- n ) ; 
= ( rat r , int n ) rat: ( n r t n ) -l- ( d r t n ) ; 

8.4.2.1. Conunents on the library-prelude 8.4.2 

Possibly more than may be necessary for vecs, the operations on rats 
should be "hand-coded" to take advantage of specific machine-features in 
double-precision integral arithmetic. 

(I) The down-symbol -l- is used to obtain a rat from two ints or from two 
long ints. It already has a priority of 8 (see 6.1.2). 
(4-5) The rationals zero and one are ascribed to the identifiers 0 and I. 
(7-8) The recursive declarations of gcd and of long'gcd is not only the 
most natural algorithm, but most likely (in a good implementation) also the 
most efficient one. 
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(9-10) 777 t 1813 yields ( 3,7) 
-777t 1813 yields (-3,7) 

777 t -1813 yields (--3,7) 
-- 777 t -1813 yields ( 3,7) 
correspondingly for long int operands. 
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(8) and (\ 0) All intermediate computations on the numerator and 
denominator will be performed in double-precision. If (being a vertical 
reader) you are not familiar with the mode long int, the denotation long 0 
and the operators leng and shorten, please be assured that such double­
precision is indeed achieved (or read 5.7.1.2 and 6.7). In (10), the fraction is 
then reduced (if possible) to the mode rat. 

Notice that 1813 /777 yields the real 2.3333333 
18137 777 yields the int 2 

but 1813 t 777 yields the rat (7,3) 

(11) sign(777U813)=1 
(12) whole (777 t 1813) = false 
(13) entier (1813 t 777) = 2 
(14) frac(1813 t 777)=(1,3) 
(15) round (1813 t 777) = 2 
(16) re (1813 t 777) = 2.3333333 

sign (-777 t 1813) = -1, sign 0 = 0 
whole (37 t 1) = true 
entier(-1813t 777)=-3 

round (2321 t 777) = 3 

(17-19) The operators nn, nd, dd are declared mainly to facilitate the 
notation of the remaining routines. 

(20-40) These declarations may speak for themselves. 

8.4.2.2. Some remarks on the use of rationals 

The given set of operations on rational numbers may be of some 
importance in problems in which the (rational) coefficients of power series 
should be determined exactly. Such problems may arise when operations like 
addition, subtraction, multiplication, division and substitution of power series 
are relevant. A (truncated) power series (i.e. a polynominal) may, for instance 
be declared as a: 

mode powser = flex [1 : 0] rat; 

The power series for the exponential function then occurs as: 

powser exp = ( t, t, (1,2), (1,6), (1,24), (1,120), (1,720), 
(1,5040), (1,40320), (1,362880), c etc c); 
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and the Bemouilli numbers (the Bemouilli polynomial) as: 

powser bern = (I, (-1,2), (1,6),0, (-1,30),0, (1,42),0, (-1,30), 
0, (5,66),0, (-691,2730),0, (7,6),0, 
(-3167,510),0, c etc c); 

For such powsers one may then define operators: 

op + = (powser p , q) powser: 
op - = (powser p , q) powser: 
op x = (powser p , q) powser: 
op / = (powser p , q) powser; 

(see also 8.5) 

c routine for addition c; 
c routine for subtraction c; 
c routine for multiplication c ; . 
c routine for division c ; 

op ~ = (powser p , q) powser: c routine for the substitution of 
pinqc; 

The complex function defined by such powsers may be declared as: 

proc fun = ( powser p , compl z ) compl: 
(int m = lwb p, n = upb p; compl value := re p [n] ; 

for ifrom n-1 by -1 to m 
do value := value x z + re p [i] od; 
value); 

Vertical readers, please tum to 1.5. 

8.5. A library prelude for vector and matrix operations in En· 

For many applications in a variety of scientific disciplines you may want 
to write in your particular-program mode- and identity-declarations such as: 

!Dode vector = [1: fl] real , 
matrix = [1: fl,1: n] real; 

real p, q, r; 
vector u , v , w ; 

matrix a , b , c ; 

and to apply operators yielding the sum, the difference, the (inner)product, 
the norm, etc. of such vectors and matrices, in order to be able to write 
straightforward expressions close to the well established mathematical 
notation, such as: 
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u := r x ~'; 

U := JI + w; 
r := JI x w; 
p := norm u; 
a := r x b ; 
c := a + b ; 
c := a x b ; 
u := a x JI; 

u := v x a; 
p := det a; 

v := inva x u 

EXAMPLES 

Then you may, of course, also want to write composite formulae such as: 

u := a x ( jJ I norm JI ) ; 

u := inv ( a x ( b-c ) ) x ( w- v) 
You may even want to use vectors of unequal length and non-square 
matrices: 

[1 : n J real x , y ; [1 : nz] real z ; 
[ 1 : nz, 1: k] real nz ; [1: k, 1: n] real n ; 

and formulae such as: 

z:= nz x n x( x + y ) 
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The library-declarations listed in 8.5.1,8.5.2 and 8.5.3 supply a basic and 
general set of such linear operations in En- The whole set is fully compatible 
with the library-declarations 8.4.1 and 8.4.2 and presupposes even the 
priority-declarations 8.4.1 (I) and the declarations for eps and eps in 8.4.1 
(IS) and (16). As was the case in the library-prelude for vecs(8.4.1) we 
confine ourselves to En-vectors and matrices over the field of real values; it 
may again be obvious that and how the whole set can be expanded over the 
field of complex values and even over more particular fields such as the 
rational values (8.4.2). 

All our operation-declarations have formal-parameters of mode [ 1 real or 
[,1 real, even though this may lead to great inefficiency in some 
implementations due to the copying of multiple values when these operators 
are used in formulas (see 4.5). We make no apology for this. The operators 
reflect the user's requirement much more naturally in the form here given, 
and their yields (which are again mUltiple values) are in a form immediately 
suitable for use as operands in further formulas. As for the so-called 
inefficiency, this is simply a problem of implementation. Methods exist which 
avoid the copying entirely, except in those peculiar and rare cases where it is 
really needed. 
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(However, should you be faced with an old-fashioned inefficient 
implementation, then you will need to declare all these formal-parameters as 
ref [] reals or ref [,] reals. Moreover, the values returned willalso have to be 
of these modes. Next you will have to worry about the scope (3.2.2) of these 
returned names, and you will then find that the variable-declarations which 
create them will have to have heap where we have written loe (2.7.3). 
Alternatively, shoot your implementor.) 

In calculating the innerproduct of two vectors (line (10) of 8.5.1), we 
make use of double-precision arithmetic. If (being a vertical reader) you are 
not yet familiar with the long modes, please see the remarks about them in 
8.4.2. I. 

The intention of these declarations is (rather than to make a definite 
proposal for a particular library-prelude) to show how in a quite natural, even 
dogmatic, manner one can define a set of powerful operators which are, in 
their application, very close to the generally accepted conventions of 
mathematical notation. 

A priori information about the multiples to which the operators are to be 
applied and considerations of required precision may influence the ultimate 
form of the routines ascribed to these operators. In particular the algorithms 
in 8.5.3 may, from several technical points of view, depend heavily upon a 
priori information about the condition of the .matrices there we are faced· 
with problems of numerical analysis rather than of programming. 

In 8.5.1 we declare the operations on vectors, adopting a notation which is 
as close as possible to the notation of 8.4.1. In fact, if you redeclare in your 
particular-program: 

mode vee = [1: 3] real; 

then the result yielded by the operators +, -, x, norm, e, eps, pari and perp 
will be the same by 8.5.1 as it otherwise would have been by 8.4.1. 

In 8.5.2 we declare the operations on vectors and matrices, applying where 
possible the operators declared in 8.5.1. Consider, for example, in 8.5.2 (10) 
the statement: 

forkfromp2toq2doab[ ,k] :=axb[ ;k]od 

the occurrence of "x" identifies the operator declared in 8.5.2 (8) where in 
its turn the occurrence of "x" in the statement: 

for i from m1 to n1 do au [i] := a [i, ] xu od 

identifies the operator declared in 8.5.1 (10) where in its turn the occurrence 
of "x" in the statement: 
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for i from m to 11 do inpr +:= leng u [i] x leng v [i] od 

finally identifies the operator declared in the standard-prelude [R 10.2.3.4.1]. 
Observe that the operators +:=, -:=, x:= and /:= in 8.5.1 and 8.5.2 may be 

conSiderably more efficient than +, -, x and /, because no intermediate 
results have to be stored anywhere; for which reason they are anyhow less 
space-consuming! 

The library-declarations in 8.5.3 may be considered as examples of the use 
of the operators declared in 8.5.1 and 8.5.2. The procedure crout is 
essentially the procedure det from R 11.7 in an adopted notation with a 
minor improvement. The operator invert yields a routine which is the 
ALGOL 68 version of a procedure by T.1. Dekker [*]. 

It may be very instructive to study carefully the use of the slicing feature 
in the routines 8.5.3 (6) and (8). 

8.5.1. Operations on vectors in En 

(1) op + 

(2) op-

= ([ ] real u, v) [ ] real: 
q the sum of two vectors q 
if int m = lwb u, n = upb u ; 

m = lwb v A n= upb v 
then loc [m:n] real s ; 

for i from m to n do s [i] := u [i] + v [i] od; 
s 

else error; skip 
fi; 

= ( [ ] real u, v ) [ ] real: 
q the difference of two vectors 4 

if int m = lwb it, n = upbu ; 
m = lwb v An = upb v 

then loc [m:nJ real s ; 
for ifrom m to n do s[iJ := u[i] + v[i] od; 
s 

else error; skip 
fi; 

[* 1 T.J. Dekker: ALGOL 60 procedures in numerical algebra,Part I 
(Mathematical Centre Tracts 22, 
Mathematisch Centrum, Boerhaavestraat 49, Amsterdam). 
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(3) op x 

(4) op x 

(5) op / 

(6) op +:= 

(7) op -:= 

(8) op x:= 

(9) op j:= 

EXAMPLES 

= ( real r, [] real u ) [ ] real: 
d the product of a scalar and a vector 4 
( int m = lwb u, n = upb u ; 

loe [m:n] real ru ; 
for i from m to n do ru [I] := r x u [i] od; 
ru ) ; 

= ( [] real u, real r ) [ ] real: 
4 the product of a vector and a scalar 4 

r xu; 

= ( [ ] real u, real r ) [ ] real: 
4 the quotient of a vector and a scalar 4 

ux(ljr); 

= (ref [ ] real u, [ ] real v) ref [] real: 
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if int m = lwb u, n = upb u ; 
m = lwb v 1\ n = upb v . 

then for i from m to n do u [i] +:= v[i] od; 
u 

else error; skip 
fi; 

= ( ref [] real u, [] real v ) ref [ ] real: 
if int m = lwbu, n = upb u ; 

m = lwb v 1\ n = upb v 
then for ifrom m to n do u [i] -:= v [i] od; 

u 
else error; skip 
fi; 

= ( ref [ ] real u, real r ) ref [ ] real: 
( for i from lwb u to upb u do u [i] x:= r od ; u ) ; 

= ( ref [ ] real u, real r ) ref [ ] real: 
( for i from Iwb u to upb u do u [i] /:= r od ; u ) ; 
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(10) op x = ( [ ] real u, v) real: 
ct the innerproduct of two vectors ct 
. if· int m = Iwb u, n = upb u ; 

m = Iwb v A n = upb v 
then long real inpr := long 0 ; 

for i from m to n 
do inpr +:= leng u [i] x leng v [iJ od; 
shorten inpr 

else error; skip 
fi; 

(11) op norm = ( [ ] rea! u) rea!: 
ct the euClidean norm of a vector ct 

sqrt ( u xu) ; 

(12) op e = ( [ ] real u ) [ J real: 
ct a unit-vector in the direction of the given vector 4 

u / norm u; 

(13) proc norm = ( ref [] real u ) ref [ ] real:· 
ct a reference to a vector divided by its norm 

i.e., u := u'/ norm u ct 
( rea! normu=: norm it ; 
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fori from Iwbu to upb u do U [i] /:= normu od; u ) ; 

(14) op = 

(15) op:J: 

(16) op pari 

= ( [ ] real u, v ) boo!: 
eps norm (u-v); 

= ( [ ] rea! u, Ii ) boo!: 
. i( u,= v); 

= ( [ ] real u, v) boo!: 
eu=ev; 

(17) op perp =( [] real u, v) bool: 
eps ( u x v) ; 

4' for eps applied to a reaL 
see 8.4.1 (17)4' 

4' for the priority of parI, 
see 8.4.1 (1) 4' 
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(18) proe en-or = void: e some action interrupting or halting the elaboration 
of the program signalizing that two vectors or . 
matrices are of incompatible size e ; 

8.5.2. Operations on matrices and vectors 

(1) op + 

(2) op-

(3) op x 

(4) op x 

= ( [, ] real a, b ) [, ] real: 
4 the sum of two matrices 4 

if int mi = I Iwb a, m2 = 2 Iwb a, 
ni = I upb a, n2 = 2 upb a ; 

m2 = 2 Iwb b 1\ n2 = 2 upb b 
then loe [mi :nl, m2:n2] real s; 

for j from m2to n2 
dos[ ,j] :=a[ ,j] +b[ ,j] od;s 

else en-or; skip 
fi; 

= ( [, ] real a, b) [, ] real: 
4 the difference of two matrices 4 

if int ml = 1 Iwb a, m2 = 2 Iwb a, 
ni = I upb a, n2 = 2 upb a ; 

m2 = 2 Iwb b 1\ n2 = 2 upb b 
then loe [ml:nl, m2:n2] real d; 

for j from m2 to n2 
do d [ ,j] : = a [ ,j] - b [ ,j] od ; d 

else en-or; skip 
fi; 

= ( real r, [, ] real a ) [, ] real: 
It the product of a scalar and a matrix It 

( int mi == llwb a,m2 == 2 lwb a, ni = I upb a, n2 = 2 upb a ; 
loe [mi :nl, m2:n2] real ra ; 
for j from m2 to n2 do ra [ ,j] := r x a [ ,j]. od ; ra ) ; 

= ( [, ] real a, real r ) [, ] real: 
it the product of a matrix and a scalar it 

r x a; 
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(5) op +:= 

(6) op -:= 

(7) op x:= 

(8) op x 

(9) op x 

EXAMPLES 

= ( ref [ , ] real a, [, ] real b ) ref [, ] real: 
if int mi = Ilwb a, m2 = 2 Iwb a, 

ni = 1 upb a, n2 = 2 upb a ; 
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m2 = 21wb b 1\ n2 = 2 upb b 
thenforjfromm2ton2doa[,j] +:=b[,j] od;a 
else e"or; skip 
fi; 

= ( ref [, ] real a, [, ] real b ) ref [, ] real: 
if int mi = 1 Iwb a, m2 = 2 lwb a, 

ni = 1 upb a, n2 = 2 upb a ,. 
m2 = 2 lwb b /I. n2 = 2 upb b 

thenforjfromm2ton2doa[ ,j] -:=b[ ,j] od;a 
else e"or .. skip 
fi; 

= ( ref [, ] real a, real r ) ref [, ] real: 
( for j from 2 Iwb a to 2 upb a do a [ , j] x:= r od ,. a ) ,. 

= ( [, ] real a, [] real u ) [] real: 
~ the product of a matrix and a column-vector ~ 

if int ml = 1 Iwb a, m2 = 2 Iwb a, 
ni = 1 upb a, n2 = 2 upb a ; 

m2 = Iwb u 1\ n2 = upb u 
then loc [mI:nI] real au ,. 

for ifrom mi toni doau[i] :=a[i, ] xu od;au 
else e"or; skip 
fi; 

= ( [] real v. [, ] real a ) [] real: 
~ the product of a row-vector and a matrix ~ 
if int mi = 1 lwb a, m2 = 2 lwb a, 

ni = 1 upb a, n2 = 2 upb a,. 
Iwb v = mi 1\ upb v = ni 

then loc [m2:n2] real va ; 
for j from m2 to n2 do va [j] := v x a[ , j] od; va 

else e"or; skip 
fi; 

-------------- -------- -------------------
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(10) op x =( [,] real a, b) [,] real: 
¢ the product of two matrices ¢ . 

(int ml = llwb a, nl = 1 upb a, p2 = 2lwb b, q2 = 2 upb b; 
loc.[ml:nl,p2:q2] realab; 
for k from p2 to q 2 do ab [ ,k 1 : = a x b [ , k] od; ab ) ; 

(11) procicoi =( ref [, ] real a, intjl,j2) ref [,] real: 
¢ interchanges a [ ,jl] and a [ ,j2] ¢ 

( [llwb a:lupb a] real u := a[ ,jl] ; 
a[ ,jl] :=a[ ,j2] ;a[ ,j2] :=u;a/; 

(12) proc irow = ( ref [ , ] real a, int ii, i2) ref [, ] real: 
¢ interchanges a [il , ] and a [i2 , ] ¢ 

( [2lwb a:2 upb a] real v := a[ii , ] ; 
a[ii,] :=a[i2,] ;a[i2,] :=v;a); 

8.5.3. Operations on square matrices 

(1) op zero = ( ref [ ] real u ) ref [ ] real: 
( for i from lwb u to upb u do u [i] := 0 od ; u ) ; 

(2) op zero = ( ref [ , ] real a ) ref [ , ] real: 
( for i from llwb a to 1 upb a do zero a [i, ] od; a ) ; 

(3) op unit = ( ref [, ] real a ) ~ef [ , ] real: 
if int ml = 1 lwb a, nl = 1 upb a ; 

ml = 2 lwb a /\ nl = 2 upb a 
then zero a ; for k from ml to nl do a [k, k] : = 1 od; 

a 
else error; skip 
fi; 

(4) proc iroco = ( ref [ , ] real a; int i, j ) ref [,] real: 
¢ interchanges a [i, 1 and a [ ,j] ¢ 

if int ml = Ilwb a, nl = lupb a ; 
ml = 2 lwb a /\ nl = 2 upb a 

then loc [l:n] real u := a[i, ] ; 
ali, 1 :=a[ ,j) ;a[,j) :=u; 
a 

else error; skip 
fi; 
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(5) op trnsp = ( ref [, ] real a) ref [ , ] real: 
¢ transposes the matrix a ~ 

if int ml = llwb a, n1 = 1 upb a ; 
m1 = 2 lwb a /\ n1 = 2 upb a 

then for k from m1 to n1 - 1 
do iroco ( a[k:n1, k:n1], k, k) od; 
a 

else error; skip 
fi ; 

(6) proc crout = ( ref [ , ] real a, ref [ ] int p ) real: 
¢ By the method of Crout with row interchanges the 

square matrix a is replaced by its triangular decompo­
sition a := I x u with all u[k,k] = 1. The vector p 
gives as output the pivotal row indices; the k-th pivot 
is chosen in the k-th column of I such that 
abs l[i,k] / row norm is maximal. The procedure 
crout yields the value of the determinant of a ¢ 

if int m1 ;= 1 lwb a, n1 = 1 upb a ; 
m1 ;= 2 lwb a /\ n1 = 2 upb a 
/\ m1 = lwb p /\ n1 = upb p 

then fm1:n1] realnorma; 
fori from m1 to n1 do norma [i] := norm a [i, ] od; 
real determinant := 1, r, pivot; 
for k from m1 to n1 
do int k1 = k-l ; ref intpk = p[k] ; real max := -1 ; 

ref [,] reaIJ=a[ ,m1:k1], u = a[m1:k1, ] 
ref [ ] real ak = a [k, ] ka = a [ , k] 

lk = l[ k, ] ku = u [ , k] 
for i from k to n1 
do if ( r := abs ( ka [ i] -:= l[i, ] x ku ) / 

norma [i] ) > max 

then max:= r; pk := i 
fi 

od; 
if pkt. k 
then norma[pk] := norma[k] ; 

irow ( a, pk, k ) ; 
determinant := - determinant 

fi; 
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pivot:= kaLk] ; 
for j from k + 1 to n1 
doak[j] -:=(lkxu[ ,j) )/:=pivotod; 
determinant x:= pivot 

od; 
determinant 

else 0 
fi; 

(7) op det = ( [, ] real a ) real: 
4' the determinant of a square matrix 4' 

( int m1 = 1 lwb a, n1 = 1 upb a; 
[m1:n1, m1:nJ] reallu := a; 
crout ( lu, loc[m1 :n1] int) ) ; 

(8) op invert = ( ref [, ] real a) ref [, 1 real: 
4' a reference to the inverted matrix a whose triangularly 

decomposed form I x u and pivotal indices 
[m1 :n1] int p are obtained by a call of the procedure 
crout (6); the inverse matrix supersedes the given 
matrix a 4' 
if int m1 = 1lwb a, n1 = 1 upb a; [m1 :nJ] int p ; 

crout ( a, p ) :j: 0 
then [m1 :n1] real"; cc; 

for k from n1 by -1 to m1 
do int k1 = k + 1 ; 

ref [ .. ] real as :;; a [k1 : n1, k1 : n1] ; 
ref [] realar=a[k, k1: n1J,ac=a[k1: n1, k] ; 
refrealakk=a[k, k] ; 
int m = n1 - k; . 
for i from m1 to m 
do "[i] := - (ar xas[ , i] ); 

. cc[i] := - (as[i, ]x ac) / akk 
od; 
ar:=rr[ : m] ; 
akk := (1 - ar x ac ) / akk ; 
ac:= cc[ : m] 
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(9) op inv 
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od; 
for k from n1 by -1 to m1 
dointpk=p[k] ; 

if pk :j: k then icol ( a, k, pk ) fi 
od; 
a 

else error; skip 
fi; 

= ( [, ] real a ) [, ] real: 
¢ an inverted copy of the given matrix a, which itself 

remains unchanged ¢ 
( int m1 = llwb a, n1 = 1 upb a, 

m2 = 2 lwb a, n2 = 2 upb a ; 
loc [m1 :n1, m2:n2] real copya := a; 
invert copya ) ; 

Vertical readers, please turn to 1.6. 

8.6. Examples of transput 

8.6.1. The happy family 
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This example is intended to show some of the things that can be done with 
formatted trans put. The techniques shown are not necessarily the best ways 
of producing the particular outputs of this program, but they exemplify -
methods which may well be valid in more. realistic situations. 

The example concerns the history of the Fitzwilliam family, and the 
relationships between its members (or at least those relationships which they 
were disposed to publicise). We have eschewed the use of generators (in case, 
being a vertical reader, you have not yet come upon 5.7.2), but we did find it 
necessary to use identity-relations (5.7.4), and these are explained to you at 
their first occurrence. 

begin 
comment This example concerns people: comment 

mode person = struct ( string surname, given ¢ name ¢, 
ref person father, mother, wife ¢ or husband ¢, 
flex [1 :0] ref person children, 
bool dead, male ); 

bool male = true, female = false, alive = false, dead = true; 
ref person nobody = nil; 

------ ----------- -------- ------ ----------- --_._-----_._---
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comment Sometimes it will be convenient to have a person's given name and 
surname together: comment 

proc names = (ref person pers) struct (string given, surname): 
( given of pers, surname of pers ),; 

comment All our formal-parameters will be of mode ref person rather 
than person, to save making unnecessary. copies of persons (which are 
rather large) at run time. comment' 
comment Here is a procedure that will be used to add a little random spice 
to the messages that we shall produce. It yields a random integer in the 
range specified by its parameter. comment 

proc randint = ( int range) int :. 
1 + entier ( random x range) ; 

read(last random); 4' to start it off 4' 
comment This program is goingtoprint texts of variable length. We 
therefore have to take a newline whenever a line is full (after 80 characters, 
say), but before doing this we must go back to the last space and transfer 
the whole of the word which was about to be split onto the next lirie. 
Therefore, we shall output into a [ ] char instead of directly to the book. 
comment 

file file; [1 :80] char buffer; 
for i to upb buffer do buffer [i] :=":." od; 
associate(file, buffer); . 

comment Whenever the buffer becomes full, its contents (except for the 
split word) must be printed in t~e real book. comment 

procempty buffer = (reffilef )bool: 
( int j := upb buffer; 

if char number ( f) > j 
then while buffer [j] :j:":." doj -:= 1 od 
fi; 
print ( ( buffer [ :j], newline) ) ; 
reset (I); 
put (f, buffer [j + 1: ] ); 
for i from upb buffer - j +1to upb buffer 
do buffer [i] :=":." od; 
true); , 

online end (file, empty buffer); 

comment The [] char associated with file is like a: book containing one page 
containing one line. As soon as we call newline(/ile), therefore, We shall find 
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that the page has overflowed (the current position will actually be at 
(1,2,1)). comment 

on page end(file, empty buffer); 

struct(int day, [1:3] char month, intyear) date; 
comment We shall frequently have occasion to print dates. Here is a 
format to do it. comment 

format datef = $ g(O)x, 3ax, 2d $; 

proc generate = ( ref person infant, father, mother, 
string given name, bool male) void: 

if male of father 1\ I male of mother 1\ I dead of mother 
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then op plusab = ( ref flex [] ref person names, ref person pers ) void: 
names := 

infant := 

( int upb = upb names; 
[1 :upb + 1] ref person new names; 
new names [1 :upb] := names; 
new names [upb + 1] := pers; new names); 

( s'urname of mother, 
given name, 
father, 
mother, 
nil, 
( ), ¢ not yet! 4' 
alive, 
male); 

children of father plusab infant; 
children of mother plusab infant; 
if wife of father :=: mother 

comment That was an identity-relation. If you have not yet read 5.7.4, please 
accept our assurance that" :=: " is a sort of operator which yields true-if the 
two names which are its operands in fact are the same name. In this case, the 
operands were of mode ref person, and if the persons refed to turn out to be 
the same person comment 

then putf(file, 
( $ 21 "Birth. " 

I 4x g $, surname of infant, 
$ ". On " f( datef) $, date, 
$ " to " g $, given of mother,. 
$ ", wife of " g $, given of father, 

I.LA.-ll 

-------.-.----------------------------------------------
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$ ", a " c ( "darling", 
"bouncing", 
"beautiful", 
"tiny" ) $, ran din t( 4), 

$ x b("son", "daughter") 
"-" $, mate, 

$g". "$, given name)) 

else no comment comment 
fi 

Ch.8.6.1 

comment The above call of putfis intended to produce messages such as: 

Birth. 
Fitzwilliam. On 3 MAR 28 to Eleanor, wife of 

Ebenezer, a beautiful son - Japhet. comment 

else ,stop ¢ the birth was quite impossible ¢ 
fi; ¢ end of generate ¢ 

comment The following procedure is intended to print the name of some 
person, together with details of his parents. However, if there is some doubt 
about the marital state of the parents, then we shall draw a discreet veil 
over the matter by using a different format. comment 

proc details = ( ref person pers) void: 
if mother of pers :=: ref person(wife of father of pers) 
then bool sex = male of pers; 

putf(file, 
( $ g ", " $, given of pers, 

$ c("only", "youngest", "younger", 
" eldest", "elder", '/1' ) x $, 

(intj := 0, k; 
ref flex [ ] ref p~rson children = 

children of father of pers; 
int upb = upb children; 
for i to upb ¢ each brother/sister of pers ¢ 
do ref person child = children [i] ; 

(male of child = sex Ij +:= 1); 
(given of child = given of pers \ k : = j) 

od; 
( j = 1 \1 ¢ only ¢ 
\: k= j \ 2 + abs (j = 2) ¢youngest or younger ¢ 
I: k=114 + abs (j=2)¢eldest or elder¢ 
\ 6)), 
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$ b("son", "daughter") 
"of" $, 

$ "d'i, $ g an ,gx, g , 

else putf(file, ($ g x, g $, 
fi; 4' end of details 4' 

sex, 
given of father of pers, 
names(mother of pers) )) 
names( pers) )) 

proc marry = ( ref person bride, groom) void: 
if male of groom A I dead of groom 

A I male of bride A I dead of bride 
A (wife of groom :=: nobody I true 

I dead of wife 9f groom) 
A (wife of bride 4' sic 4' :=: nobody I true 

I dead of wife of bride) 
then wife of groom := bride; 

wife of bride := groom; 

comment We are now going to produce a message such as: 

Marriage. 
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Fitzwilliam/Jones. On 1 APR 24, Eleanor, only 
qaugt1ter of Emrys and IVJyfanwy Jones to Ebenezer, 
eldersnn of Aloysius and Anastasia Fitzwilliam. 

comment 

putf(file, 
( S 21"Marriage." 

I 4x g "/", g". On " $, surname (If groom, surname of bride, 
$ f( datef) ", " $, date) ); 

details(bride); 
put(file, " to "); 
details( groom); 

('{','/ "") put/,e,. ; 
surname of bride := surname of groom 

else stop 4' the marriage is impossible, or illegal, or both 4' 
fi; 4' end of marry 4' 

proc kill = (ref person bloke) void: 

I.I.A.-Il* 

if I dead of'bloke 
then dead of bloke := true; 

bool sex = male of bloke; 
bool wa4' wife alive 4' = 

(wife of bloke :=: nobody I false 
II dead of wife of bloke); 
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string 4' name of 4' wife = (wa I given of wife of bloke I "" ); 

comment The following call of putf is intended to produce messages such as: 

Death. 
On 21 DEC 68, Ebenezer, elder son of Aloysius 

and Anastasia Fitzwilliam, mourned by his devoted 
wife Eleanor comment 

putf(file, 
($ 21 "Death." 

14x 'il On" f(datef) ", "$, date)); 
details( bloke); 
if wa 
then putf(file,' 

fL-

($ ", mourned by " 
b("his", "her") x, 
c(." everloving", "devoted", 

" thankful") x, 
b("wife", "husband"), 
xg$,' 

sex, randint( 3), sex, wife)) 

comment If bloke has surviving descendants, the dirge continues in the 
following vein: 

and his children Shem, Ham and Japhet aYJ.d his 
grandchildren Ananias, Azarias and Misael and his 
great-grandchild Tom. comment 

bool mp 4' mourners printed,4' := wa; 

comment The following proc calls itself recursively for each generation. 
comment 

proc print children of= ( [] ref person parents, 
intgeneration) void: 

begin int i := 0, j := 0; 
[1:( inti :=0; 

for j to upb parents 
do i +:= upb children of parents [j] od; 
i)] ref person children, living children; 

for k to upb parents 
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do for l to upb children of parents [k] 
do ref person child = 
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(children of parents [k] ) [l] ; 

od 

children [i +:= 1] := 
( I dead of child 
I living children [j +:= 1] := child 
I child) 

od; 
ifj:j: 0 
then 4' there are living children to be printed 4' 

putf(file, 

fi; 

( $ f( mp I $ " and" $ I: wa I $ "," $ 
1$ " mourned by" $), 

x b( "his", "her" ) x, 
n( generation-I) "great-" 
f(generation :j: 0 I $ "grand" $ I $ $), 
"child" f(j:j: 1 1$ "ren" $ 1$ $) x, 
n( j ) (g,f ((j -:= 1) + 1 

sex, 

I $ $, $ " and" $ 
I $ ", " $) ) $, 

( [1: j] string names; 
for ito j do names [i] 

given of living children [i] od; 
names) )); 

mp := true 

if upb children :j: 0 
then print children of (children, generation + 1) 
fi 

end 4' ofprint children of 4'; 
print children of (bloke, 0); 
put(file, ".") 

else stop ¢ the bloke was dead already 4' 
fi; ¢ end of kill ¢ 

comment Now we are ready to start our tale. Since we do not wish to go right 
back to Adam, we shall start by declaring the story so far: comment 

person aloysius := , 
. ("Fitzwilliam", "Aloysius", skip, skip, skip, ( ), dead, male); 
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person anastasia := 
("Fitzwilliam", "Anastasia", skip, skip, aloysius, ( ), dead, female); 

person ebenezer := 
("Fitzwilliam", "Ebenezer", aloysius, anastasia, nil, ( ), alive, male); 

person alaric : = 
("Fitzwilliam"; "Alaric", aloysius, anastasia, nil, ( ), alive, male); 

comment We were unable to include anastasia as aloysius; wife when initializing 
him, because her declaration had not been elaborated at that time (cf. 3.2.E7). 
We can rectify this, and the similar case of their children, now comment 

wife of aloysius := anastasia; 
children of aloysius := children of anastasia := (ebenezer, alaric); 

comment We shall declare the next family differently, so avoiding this 
problem: comment 

person emrys, myfanwy, frederick, eleanor; 
emrys := ("Jones", "Emrys", skip, skip, myfanwy, (frederick, eleanor), 

dead, male); 
myfanwy := ("Jones", "Myfanw)/', skip, skip, em'rys, children of emrys, 

alive, female); 
frederick:= ("Jones", "Frederick", emrys, myfanwy, nil, ( ), 

alive, male); 
eleanor := ("Jones", "Eleanor", emrys, myfanwy, nil, ( ), 

alive, female); 
person shem, ham, japhet, ananias, azarias, misael; tom; 

comment These are the unborn generations, and are therefore undefined. 
comment 

date := (1, "APR", 24); marry(eleanor, ebenezer); 
date := (1, "JAN", 25); generate(shem, ebenezer, eleanor, 

, "'Shem", male); 
comment We don't waste much tiine in this program. comment 

date := (31, "MAR", 26); generate(ham, ebenezer, eleanor, 
"Ham", male); 

date := (3, "MAR", 28); generate(japhet, ebenezer, eleanor, 
"Japhet", male); 

comment This will produce the example given 'in the proc generate. comment 
date := (14, "JUL", 48); , ' 

comment Now we need to declare some eligible young ladies. comment 
person a, b, josie, rosie; 
josie := ("Smith", "Josephine", a, b, nil, ( ), alive, female); 
rosie := ("Smith", "Rose", a, b, nil, ( ), alive, female),' 
marry(josie, shem); 



Ch.8.7 EXAMPLES 

date := (23, "JAN", 49); generate(ananias, shem, josie, 
"Ananias", male); 

comment Well, perhaps it was premature. comment 
. date := (14, "DEC", 50); generate(azarias, shem, josie, 

"Azar/as", male); 
date := (29, "FEB", 52);,kill(josie); 

comment Alas! But ... comment 
date := (28, "DEC:', 52); marry(rosie, shem); 

comment There are some interesting ecclesiastical problems in that one. 
comment 

date := (14, "JAN", 54); generate(misael, shem, rosie, 
"Misael", male); 

comment Here is a not-so-eligible young lady: comment 
person x := (skip, skip, skip, skip, nil, skip, alive, female); . 
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date':= (20, "DEC", 68); generate(tom, azarias, x, " Tom", male); 
comment And so the permissive society has arrived. Nothing will be printed. 
comment 

date := (21, "DEC", 68); kill(ebenezer); 
comment Poor chap! This will produce the example given in the pro<: kill. 
comment 

newline(file); newline(ftle) ¢ to ensure that the final contents of buffer get 
printed ¢ 

end 

Vertical readers, please turn to 1. 7. 

8.7. Examples of everything 

8.7.1. Analytic differentiation 

This example is intended to illustrate how generators can be used to 
achieve more efficiently results which would formerly have necessitated the 
use of some list-processing language. 

The following program will accept a series of expressions punched in a 
convenient notation, differentiate each one, and print the result in the same 
notation. 

begin 
mode formula = struct(operand left, int operator, operand right); 
intplus = 1, minus = 2, times = 3, over = 4, to = 5; 
mode operand = union(ref formula, var, const); 
mode var = ref struct(string s, var next); 
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comment We propose to ensure below that all var values refer to structures 
containing distinct strings. Hence equality of two such strings implies identity 
of their vars. comment 

mode const = struct(real r); 

comment The mode const is different from the mode real in order that 
the operator + to be declared between operands should not be confused 
with the already existing operator + between reals. I.e. const, declared 
thus, is not firmly related to operand (4.3.3), and neither is var. comment 

op con = (real a)const: (const b; r of b := a; b); 
op = = (consta, b)bool: (r of a = r of b); 
const zero = con 0.0, one = con 1.0; 
op + = (operand a, b) operand: 

begin 
case a in 
(const c): 

case bin 
( const d): con (r of c + r of d) 

t This is the one case where we can use the 
standard version of + (between two reals) 
to do some real arithmetic. ~ 

out (c = zero I b I gotoformula) ~ 0 + b = b ~ 
esac 

out case b in 

esac 
exit 

(const d): (d = zero I a I goto formula) ~ a + 0 = a t 
out goto formula 
esac 

formula: t No simplification was possible. We now have no alternative 
but to generate a new piece of tree on the heap ¢ 

heap formula:= (a, plus, b) 
end 4' of+ t; 

op - = (operand a, b) operand: 
begin 
case bin 
(const d): 

case a in 
(const c): 

(real x := r of c - r of d; 
(x > 0 I con x I goto formula) ) 
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out (d = zero' a , goto formula) ¢ a - 0 = a ¢ 
. esac , 

(var t): 
case a in 
(var s): (s :=: t , zero' go to formula) ¢ a - a = 0 ¢ 
out go to formula 
esac 

out goto formula 
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4' We do not attempt to produce the value -b here when a is zero, 
because our system has no provision for a monadic minus. 4' 

esac 
exit 

formula: heap formula:= (a, minus, b) 
end ¢ of - 4'; 

op x = ( operand a, b) operand: 
begin 
case a in 
(const c): 

case bin 
(const d): con (r of c.x r of d) 
out (c = zero' zero ¢ 0 x b = 0 ¢ 

,: c = one' b ¢ 1 x b = b ¢ 
, go to fo~mula) 

esac 
out case bin 

esac 
exit 

(const d): 
(d = zero' zero ¢ a x 0 = 0 ¢ 
,: d = one' a ¢ a x 1 = a ¢ 
, goto formula) 

out go to formula 
esac 

formula: heap formula := (a, times, b) 
end ¢ ofx 4'; 

op / = (operand a, b )operand: 
begin 
case a in 
(const c): 

case bin 
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(const d): con (r of c / r of d) 
out (c = zero I zero I go to formula) 4' 0 / b = 04' 
esac 

out case bin 

esac 
exit 

(const d): 
(d = zero I goto help 4' a/O is undefined 4' 
I: d = one 1 a 4' a/I = a 4' 
1 go to formula) 

out got%rmula 
esac 

formula: heap formula:= (a, over, b) 
end 4' of /4'; 

op t = (operand a, b)operand: 
begin 
case b in 
(const d): 

case a in 
(const c): con exp(ln(r of c) x r of d) 
out (d = zero lone 4' at 0 = 1 4' 

esac 

I: d = one 1 a 4' at 1 = a 4' 
1 goto formula) 

out goto formula 
esac 
exit 

formula: heap formula := (a, to, b) 
end 4' of t 4'; 
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comment We shall now arrange to read in expressions consisting of strings 
(for variables), constants, the operators +, -, x, /, and t, and pairs of 
parentheses, each expression being terminated by a semicolon. Spaces and 
newlines will be ignored in plausible places. Each expression read in is to 
be stored, on the heap, as an operand. comment 

make term (stand in, "+-x/t( ) ... ;"); 
comment These will be regarded as terminating a variable. comment 

on logical file end (stand in, (ref file f)bool: goto stop); 
comment When we have read all the expressions, we shall have finished the 
program. comment 
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var string list: = nil; 
comment We shall use this to record all the variables met so far. Initially, 
it points to an empty chain. comment 

proc get var or canst = union(var, const, void): 
begin string s, real x, file fool := stand in, 

var pointer := string list; 
on char error( fool, 

(ref file f, ref char c )void: 
(backspace( f); goto notreal) ); 

comment We had to invent fool, for local use, to avoid scope troubles. 
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We are now going to try to read a real. If the next thing on the input stream 
(ignoring any spaces and newlines) is not a constant, in some readable format 
(see 7.1.2), the char error event will be called, and we shall presume it was a 
variable. comment 

get (fool, x); 
con x exit ¢ con x is now united to union(var, const, void) ¢ 

notrea/: read( s); ¢ up to one of the tenn chars, or end of line. ¢ 
if s = "', then empty 

--! comment We met a term char straight away. comment 
elif while (var(pointer) ::j:: nil 

I s of pointer :j: s I false) 
do pointer :=.next of pointer od; 

comment We see if we have had this string before. comment 
var(pointer) ::j:: nil then pointer 

comment We have, so we yield the old var containing it. comment 
else string list := heap struct(string s, var next) 

:= (s, string list) 
comment It is a newcomer. We have made a copy of it on the heap and 
inserted it at the start of the chain. comment 

fi 
comment The value of this conditional·clause is either a var or is empty. 
It is now united to union (var, const, void) comment 

end 4' of get var or const 4'; 

comment The next procedure is going to read an operand. It reads the 
first variable or constant itself, with the following operator, and then 
calls itself recursively to deal with the rest. Its int formal-parameter is 
u~ed to convey the priority of the operator currently being processed. 
comment 



324 EXAMPLES 

proc read operand = (int priority)operand: 
begin operand operand, char c, int operator; 
case get var or const in 
(constx): operand :=x, 
(var s): operand := s, 
(void): 

if read( c); c =1= " ( " then go to help 
else operand := read operand(1) 
fi 

comment If we meet an opening parenthesis, we are to start again at 
priority one. comment 

esac; 
loop: while read(c); 

comment get the operator after the first operand. comment 
if I char in string (c, operator, "-,- ;)+-x/t") 
then go to help 
fi; 
operator = 1 

do skip od ¢ ignore spaces ¢; 
operator -:= 2; 

¢ ; = a 
)=1 
+=2 
-=3 
x=4 
/=5 
t=6¢ 

if operator";;; priority 
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then (operator> 1 V operator <priority I backspace(stand in)); 
operand 

comment If the next operator is of lower or equal priority to the one 
currently on hand, we ignore it for the time being, and yield what we 
have got so far. This is in fact the only exit from this procedure. Note 
that; and) are bound to take this path. comment 

else operand:= case operator-1 in 
operand + read operand(2), 
operand - read operand( 3), 
operand x read operand( 4), 
operand / read operand( 5), 
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fi 

EXAMPLES 

operand tread operand(6) esa~; 
goto loop 

end k o!read operand 4'; 
comment Suppose we were now to write: 

var x := (read operand(O) I (var s): s I help); 
operand!= read operand(O) 

and suppose that the book being read contained, at its current position: 

ex; 
e:x1'2 x(ex-2)j (fred-bill); 

then, after elaboration of these phrases, we should have the following 
situation: 

string list 

ref var ref var 

operand 
ref formula 
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---------, 

I 
• - - - - - - - - - - _I 

f 
I ....---,.......,..-----., 

'--------~ 

L ___ ~ _______________________ .1 

Note that everything inside the dotted line is on the heap. 
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Now we shall write our procedure to differentiate an operand with respect 
to a variable. comment 

proc diff= (operand d, ¢ wrt ¢ var x)operand: 
case d in 
(const): zero, 
(var s): (s :=: x lone I zero) , 

comment The use of an identity-relation is quick and safe here because we 
ensured, during get var or const, that if s and x refer to structures 
containing identical strings, then they do in fact refer to the same 
structure comment 

(ref formula form): 
begin ref operand left = left of form, 

right = right of form; 
case operator of form in 

¢ + 4' diff(left, x) + diff(right, x), 
¢ - 4' diff(left, x) - diff(right, x), 
¢ x 4' diff(left, x) x right + diff(right, x) x left, 
4' / ¢ (diff(left, x) - diff(right, x) x d) / right, 
4' t 4' begin 

proc checkforx = (operand!, var x)bool: 
(fl 
(ref formula form): 

checkforx(left of form, x) V. 
checkforx(right of form, x), 

(var s): s :=: x 
I false); 

comment That was a conformity-clause, in case you didn't notice. 
This proc yields true if f is a function of x. comment 

if checkforx(right, x) then goto help 
comment The present program does not purport to cope with this case. 
comment 

esac; 

esac 
end 

else right x left t (right - one) x diff(left, x) 
fi 
end 

comnient Now we ought to have a procedure to print our results comment 
proc print operand = (operand operand, int priority)void: 

case operand in 
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(const x): printf(($2zd.3d$, r of x)), 
(var s): print(s of s), 
(ref formula f): 
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if int i; (i := entier ((operator of f + 1) /2) ) <priority 

esac; 

then print(" (1/ ); 
print operand(f, 0); 
print(" )" ) 

else print operand(left off, i); 
print(" +-x/t" [operator of fl ); 
print operand(right of f, i) 

fi 

comment Now we come to the rest of the body of Ollr program (you will 
have noticed that it actually started when we caned make term a little 
way back). comment 

do ~ ad nauseam, or at least until the logical file end event happens ~ 
newline(stand out); 

od; 

case read operalJd( 0) in 
(var x): print operand(difffread operand(O), x), 0) 

out go to help 
esac 

help: print(" This is not a legitimate case for this program") 
comment In the best circles, the program should here print out some more 
informative diagnostic message, but to include such in our present example 
would be tedious rather than instructive. comment 

end 

Suppose, now, that this program were to be offered as input the piece of 
text we discussed earlier. Then, during the elaboration of the print operand, 
its formal-parameter operand would be as in the scheme on the next page. 

The bottom part of the picture is, of course, that which you saw in the 
previous diagram. 

Note that all the items shown here are on the heap, and that at this instant 
there is only one of them that is pOinted to, and which is therefore available 
for garbage colle,ction. As soon as print operand has been elaborated, they 
will all become garbage. 

If you follow through the operation of the program on this example, you 
will see that the number of items generated would have been much greater 
had it not been for the facilities for dealing with singular cases (1 x x, a + 0, 
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etc.) in the operation-declarations. When the elaboration of print operand is 
over, it will have printed the following: 

2.000x ex x (ex-'- 2.ooo)t (fred-bill) + (fred-bill) 
x (ex- 2.000) t (fred-bill- 1.000) x ex t 2 

For a slightly different treatment of problems of this nature, you might 
now like to study example R 11.10 in the Report. 

----------------------------------------------
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APPENDIX 1. Alternative Representations 

As explained in 0.2 and 1.3.3, the Report provides representations for all 
the symbols needed to construct an ALGOL 68 program, and in this 
Introduction we have adhered to these (as indeed will most implementations). 
In many cases, however, the Report provides two or more representations for 
the one symbol. Usually, one is a bold word (1.3.2) and the other a distinct 
graphic mark. These bold words are described as "reserved", which means 
that you are forbidden to redeclare them as mode-indications or operators of 
your own (imagine the ambiguities that would arise if you could declare begin 
to be an operator). Here then is a list of all the reserved bold words, together 
with their graphic alternatives, if any. 

begin end 
if then elif else fi 
case in ouse out esac 
for from by to while do od 
par 
exit 
at 
is 
isnt 
of 
goto go to 
skip 
comment co 
pragmat pr 
true false empty 
nil 

() 
( I I: I) 
( II: I) 

@ 

::j:: :j=: 

¢# 

o 

3.2.4.1 
3.2.4.2 
3.2.4.3,3.6 
3.5.2 
3.7.2 
3.1.4 
5.5.1.3 
5.7.4 
5.7.4 
5.4.2 
4.7.1 
5.1.4.2 
1.3.2 
1.3.2 
5.1.1.1,5.6.1 
5.2.3 

long short refloc heap struet flex proc union 2 
mode prio op 2.3,4.3.1,4.3.2 
int real bool char compl bits bytes string 2 
serna file channel format 3.7.2,7.2.1,7.6.2 
void 1.2.3 
[] ( ) 5.5.1.3 
10 \ 5.5.1.1 

(Le. a blank) .: 5.5.1.1 

The bold words defined in the standard-prelude as operators, however, are 

330 
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not reserved (you can redeclare ,them if you like). Moreover, where several 
symbols are declared as operators with the same function, they really ought 
not to be regarded as alternative versions of the same symbol for, if you 
redec1are the meaning of not, for example, the meaning ofl and of­
remains unchanged, unless you redeclare them too. Bearing this in mind, we 
give now a list of all those functions for which several operators are defined: 

I not 6.1.1 
entier L 6.1.1 

1 +x +* 6.1.2 
t ** up 6.1.2 
shl up t 6.1.2 
shr down .j. 6.1.2 

% over 6.1.2 
mod -';-x %x -.;-* %* 6.1.2 
x * 6.1.2 
elem 0 6.1.2 
< It 6.1.2 
< <= Ie 6.1.2 
;;;. >= ge 6.1.2 
> gt 6.1.2 

eq 6.1.2 
:j: j= ne 6.1.2 
1\ & and 6.1.2 
V or 6.1.2 
timesab x:= *:= 6.3 
overab .. %:= 6.3 
divab j:= 6.3 
modab -';-x:= %x:= -.;-*:= %*:= 6.3 
plusab +:= 6.3 
plus to +=: 6.3 
minusab -:= 6.3 
Iwb L 6.3 
upb I 6.5 

.. _ .. _ .... _------------------
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APPENDlX2. Sample Declarations 

The following is a summary of the sample declarations introduced in 
Chapter 0, with some others from R 1.1.2. 

int i, j, k, m, n; 
real a, b, x, y; 
real e =.c a real value close to the base of natural logarithms, 

i.e. 2.718281828 ... c; 
bool p, q, overflow; 
char c; 
ref real xx, yy; 
compl w, z; 
fonnatf; 
bytes r; 
bits t; 
mode vec = struct (real xcoord, ycoord, zcoord); 
vec v1, v2, v3; 
mode rational = struct (int numerator, denominator); 
rational r1, r2, r3; 
string s; 
union (int, real) uir; 
proc void task1, task2; 
[1 : n] realx1,y1; 
flex [1 : n] real a1; 
[1 : m, 1 : n] real x2; 
[1 : n, 1 : n] realy2; 
[1 : n] int il; 
[1 : m, 1 : n] int i2; 
[1 : n] compl zl; 
proc x or y = ref real: (random <. 5 I x I y); 
proc ncos = (int i) real: cos (2 x pi x iln); 
proc nsin = (int i) real: sin (2 x pi x iln); 
procfinish = void: go to stop; 
mode book = struct (string text, ref book next); 
book draft; 
op i = (int a) compl: (0, a); 
op i = (real a) compl: (0, a); 
princeton: grenoble: st pierre de chartreuse: kootwijk: 
warsaw: zandvoort: amsterdam: tirrenia: north berwick: munich: 

Ap.2 
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APPENDIX 3. Glossary 

The Report defines a vast number of new technical terms. In this Informal 
Introduction we have used those of them which we think could or should 
come into general use within the computing community. We have also 
inven ted one or two of our own (we hope they will be acceptable to you -
they are marked with an * in the lists below), and occasionally the meaning 
of one of our terms differs slightly from its meaning in the Report (as marked 
with a t below). 

We define below the meaning of the principal terms. For the others, you 
may foHow the references given to their "defining occurrences" in our text. 
Usually, there are two such references - one to the basic concept in 
Chapter I, and one toits practical realisation in Chapters 2 through 7. 

1. Internal objects and modes 

internal object 1.1.1 

* instance (of a value) 1.1.1 

mode 1.1.1 1.2.3 

value 1.1.1 

An object which is stored and 
manipulated inside the computer; 
i.e. an instance of a value. 

a:=2: b:=2; There are now two 
instances of the value "2". If 
we assign to b a "J", then we 
may say "an instance of 2 has 
been superseded by an instance 
of J", but not that "the value 
of b, which was 2, is now 3". 

The property of a value (and 
therefore of an instance) which 
defines the class to which it 
belongs, i.e. the amount of 
storage space it requires, its 
compatibility with other values 
with which it may be con­
fronted, etc. A mode Can also 
be a property of an ex ternal 
object if that object yields a 
value of that mode. 

The ultimate object processed 
by the operations of the 
language; c.g. a number, a 
character. a structure, etc. 

In our text, yve use formal~dec1arers (e.g. int, ref real, [ J ref comp!) to 
specify modes, and also to indicate values of those modes. There is no 

I.I.A.-12 
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ambiguity. If we use such a declarer as a noun,it indicates (an instance of) a 
value. If we use it as an adjective, it is a mode - "The mode of an int is int". 

primitive modes 1.2.3 2.1.1 The built-in modes in terms 
of which all other modes may 
be constructed. 

int 
real 
bool 
char 
bits 
bytes 
void 
ref 

'row or } 
rowed 
[ ] 
struct 
union 
proc 
long 
slrort 
string 
serna 
file 
channel 
format 
primitive value 

name 

sub name 

fixed name 

flexible name 

tranSient name 

2.1.1 
2.1.1 
2.1.1 
2.1.1 
2.7.1 
2.7.1 
1.2.3 

1.2.3 
1.4.0 2.5.1 

1.2.3 2.4.1 
1.2.3 2.6.1 
1.2.3 4.2.1 
1.2.32.7.2 
1.2.32.7.2" 
2.5.3 

} 3.7.2 
7.2.1 
7.2.1 
7.6.2 

1.1.1 

1.4.1.2 

2.5.2.1 

1.5.3 2.5 .2.1 

5.5.1.3 

Prefixes used to construct de­
clarers (e.g. ref real, union 
(int, real), proc (real) int) or to 
specify all the modes of the 
appropriate class (e.g. proc 
modes., 'row of' modes, etc.), or 
to indicate values of those 
classes of modes. 

Derived modes built into the 
language. 

A value of mode int, real, 
bool, char, bits or bytes. 

A value whose mode is ref 
some other mode, and which 
refers to a value of that other 
mode. 

If a name N refers to a multiple 
(a structure) V then the sub­
names of N refer to the sub­
values (the fields) of V. 

The bounds of a multiple 
assigned to a fixed name must 
match the existing bounds. 

Assignation of a multiple to a 
flexible name may change the 
existing bounds. 

A subname of a flexible name. 
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* structure } 
structured value 
struct 

field 
multiple value } 

* multiple 

element 
subvalue 

descriptor 
routine 

t constant 

t variable 

subscript 
boundpair 

2. External objects 

APPENDICES 

1.4.0 2.4.1 

1.4.0 
1.4.0.1.5.l 

1.4.0 1.5.1 
1.5.25.5.1.3 

1.5.1 
1.1.44.2.2 

1.1.1 1.2.2.1 

1.1.2.l 1.2.2.4 

1.5,1 
1.5.l 

A value consisting of several 
fields, each being a value of 
some other mode. 
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A value consisting of a se­
quence of values, its "elements", 
of some (same) mode, to-
gether with a descriptor. 

A subset of the elements of a 
multiple, as specified by a 
different descriptor. 

See under external objects. 

The internal equivalent of a 
routine-text .- a value of a 
proc mode. 

A value which has been ascribed 
to an external object. Therefore, 
no name refers to it, and it 
cannot be changed. See also 
under external objects. 

An instance of a value to 
which a name refers (so that 
it can be changed), together 
with that name. 

Most of the terms defined below are in fact what the Report would class 
as "paranotions" (see R 1.1.4.2). For this reason, at their defining occurrences 
in our text they are enclosed between single quotes (e.g. 'serial-clause') and 
they are hyphenated, whereas our defining occurrences of other technical 
terms are in double quotes. 

construct (or external 
object) 

program 

particular-program 

1.1.1 

1.1 

1.1 3.1 

--_. ---------- -----

A part of a program text, as 
classified below. 

The program text provided by 
the user, together with the 
standard- and library-preludes 
and the standard-postlude. 

The program text provided by 
the user, on its own. 
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standard-prelude 

library-prelude 

* standard-postlude 

phrase 
dedaration 

* collateral-declaration 

identifIer-declaration 
identity-declaration 
variable-declaration 
routine-identity-

declaration 
routine-variable­

declaration 
mode-declaration 

mode-indication 

priority-declaration 
operation-declaration 

declarer 

actual-declarer 
formal-declarer 

t descriptor 

APPENDICES 

1.1 4.1 6 

1.1 

1.1 

1.1.3 
1.1.32 
1.1.3 2.1.2 

1.1.22.2 
1.2.22.2.1 
1.1.2.1 2.1.2 

1.2.3.1 4.2.2.1 

4.2.2.1 
1.3.3.1 

1.3.3.1 

1.3.3.3 4.3.1 
1.3.3.24.3.2 

2.1.22.2.22.5.2.2 
1.2.22.2.1 
1.5.1 

Ap.3.2 

The declarations already built 
into the language. 

Additional built in declara­
tions, peculiar to the particu­
lar implementation. 
The administration of thc 
completion of the program, 
following the label stop. 

A declaration or a clause. 

A list of declarations, separated 
by commas. 

Ascribes a value to an identifier 

Causes a mode-indication to 
specify a mode. 

A bold word that has been 
declared to specify a mode. 

Ascribes a routine to an 
operator. 

An externa:1 object which 
specifies some mode. 

At run time, an internal object 
has to be kept for each mul­
tiple value and subvalue to 
record· the values of its bounds. 
This is called, in the Report, a 
"descriptor". We also apply this 
term to that .external object 
which conveys the same 
information, viz. the list of 
boundpairs enclosed between 
" [" and "I " which appears in 
the actual-declarer of a 'row of 
mode. 
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boundpair 1.5.1 
bound 1.5.1 

parameter 
formal-parameter 1.2.22.2.1 
actual-parameter 1.2.2 2.2.1 

clause 
ENCLOSED-clause 3.2.4 

closed-clause 1.1.33.2.4.1 A serial-clause enclosed be-
tween begin and end or "(" 
and ")". 

collateral-clause 3.7.1 
row-display 3.5.1 
vacuum 3.5.1 
structure-display 3.4 

and-also-symbol 1.1.3 
parallel-clause 3.7.2 A void-collateral-clause 

preceded by par. 

conditional-clause 3.2.4.2 if XXXX then XXXX else 
XXXXfi 

case-clause 3.2.4.3 case XXXX in XXXx, XXXX 

~ out XXXX esac 

I 

conformity-clause 1.6.23.6 
specification 3.6 

loop-clause 3.5.2 
serial-cla use 1.1.33.1 3.1.5 

completer 3.1.4 } Constituents of serial-clauses. 
label 3.1.2 
go-on-symbol 1.1.3 3.1 A semicolon. 

enquiry-clause 3.2.4.2 
range 1.1.3 3.2.1 A piece of program text 

(usually a serial-clause) which 
demarcates the scope of the 
variables which are locally 
generated during its elabora-
tion. 

reach 3.2.1 A range, with the exclusion of 
all ranges contained within it. 

unit 1.1.35.1 
coercend 5.1.0.1 

* quaternary 5.1.0.1 The same thing as a unit. 

assignation 1.1.2.25.1.4.1 
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destination 1.1.2.2 The LHS of an assignation 

source 1.1.2.2 The RHS of an assignation 

identity.relation 1.7.25.7.4 :=: or :*: 

routine-text 1.1.44.2.2.1 
tertiary 5.1.0.1 

formula 1.1.45.1.0.1 5.1.3 
operator 1.1.4 6.1 

monadic-operator 1.3.3.2 5.1.3 With one following operand. 

dyadic-operator 1.3.3.2 5.1.3 Between two operands. 

operand 1.1.45.1.3 A secondary or another 
formula. 

secondary 5.1.0.1 
selection 5.4.2 of 

field-selector 1.4.12.4.1 
generator 1.2.2.3 5.7.2 The means of making storage 

space available for variables. 

loc generator 1.2.2.3 5.7.2.1 
heap generator 5.7.2.2 

primary 5.1.0.1 
denotation 5.1.1.1 Denotations are provided for 

ints, reals, bools, chars, 
strings, bits, and the long(s) 
versions (if any) of these. 

cast 1.2.2.5 5.1.1.3 
format-text 7.6.1 The specification of the layout 

of the characters produced or 
expected during transput. 

picture 7.6.1 To be matched against a 
single value. 

insertion· 7.6.1 
literal 7.6.1.1 
alignment 7.6.1.2 

frame 7.6.1.3 
replicator 7.6.1.4 
dynamic 7.6.1.4 

replicator 
t collection 7.6.1.4 A collection of pictures, to be 

replicated. 
identifier 1.1.25.1.1.2 
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defining-identifier 3.2.3 
applied-identifier 3.2.3 5.1.1.2 

call 5.2.1 Of a procedure with parame-
ters. 

slice 1.5,4 5.5.1.3 
t indexer 1.5.2 5.5.1.3 

trimscript 1.5.2.1 5.5.1.3 
trimmer 1.5.2.1 5.5.1.3 
subscript 1.5.2.1 5.5.1.3 
revised-Iower-

bound 5.5.1.3 
expression 3.1 5.1.0.1 A unit which yields a value. 

statement 3.1 5.1.0.1 A unit which yields void. 

t constant 1.2.2.1 A coercend (usually an identi-
fier) which yields a value which 
is not a name. See also under 
in ternal objects. 

variable 1.2.2,4 A coercend (usually an identi-
fier) which yields a name. See 
also under internal objects. 

* procedure 4.2.1 A coercend (usually an iden ti-I 
fier or a routine-text) which 
yields a value of a PIOC mode. 

* LHS 1.1.2.2 The left hand side of an 
assignation or identity-declara-
tion. 

* RHS 1.1.2.2 The right hand side. 

symbol 1.3.1- The smallest external object, 
out of which all the others are 
constructed, e.g. a, +, begin, 
etc. 

* bold word 1.3.2 A symbol, made up of under-
lined or bold faced characters 
(or otherwise), invented for use 
as a mode-indication or an 
operator. 

indicator 1.1.1 an identifier, a mode-indication 
or an operator. 

comment 1.3.2 May be inserted between any 
two symbols (except within a 
denotation or an identifier). 

pragmat 1.3.2 

---------_. -----_._----
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3. Technical terms 

contraction 1.1.3 2.1.2 Omission of redundant declarers, 
as in real a, b. 

sUblanguage Appendix 4 A language (not ALGOL 68) 
all of whose particular-pro-
grams are also particular-pro-
grams of ALGOL 68 and have 
the same meaning [see R 2.2.2.c]. 

superlanguage Appendix 4 
* to stop 1.3.2 To construct bold words out of 

sequences of letters and digits 
by underlining, prefixing with 
a point, etc. 

firmly related modes 4.3.3 
* instance 1.1.1 Values have instances 

occurrence 1.1.5 Constructs have occurrences. 

defining occurrence 1.1.53.2.3 
applied occurrence 1.1.5 3.2.3 

scope 1.1.3 3.2.2 The scope of a value is the 
range (possibly the whole 
program) in which it is avail-
able for use. 

reach (of a defining- The part of a program text from 

indicator) 3.2.3 which the given defining-
indicator may be identified. 

to yield 1.1.1 A construct yields a value. 

to refer to 1.1.1 A name refers to a value. 

to conform to 1.6.23.6 The yield of a union conforms 
to the mode actually in 
residence. 

to identify 1.1.53.2.3 An applied occurrence identi-
fies a defining occurrence. 

to specify 1.4.1 A declarer specifies a mode. 

to select 5.4.2 A field-selector selects a field 
from a structure. 

to develop 1.3.3.1 To derive the mode specified 
by a mode-indication. 

elaboration 1.1.1 The process of inspecting a 
construct and causing the 
corresponding actions (as 
specified by the seman tics of 
the Report) to take place. 
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actions 1.1.1 The elementary operations 
(how elementary is not de-
fined) which, when performed 
in the appropriate sequence, 
constitute the elaboration of 
a construct. 

collateral elaboration 1.l.2.23.7.1 An elaboration in which the 
actions required to elaborate 
certain phrases are merged in 
time, in a manner left unde-
fined. 

* to supersede l.l.2.2 To replace an instance of a 
value by another instance of 
a value. 

to call 1.1.4 4.2.2 To initiate the elaboration of 
a procedure. 

to parametrize l.2.3.2.1 To substitute actual-parame-
ters for formal ones: 

to complete 3.l.4 To finish the elaboration of a 
serial-clause by yielding a 
value, or void (from its final 
unit, or from an exit). 

to terminate 3.l.4 To finish the elaboration of a 
serial-clause abruptly, as when 
a jump is made out of it, or 
when some other elaboration 
collateral with it is terminated. 

to halt 3.7.2 To suspend the elaboration of 
a serial-clause temporarily, as 
in the operator down. 

to resume 3.7.2 To resume the elaboration of 
a clause that had been halted, 
as in the operator up. 

to ascribe l.1.1 A value is ascribed to a,n 
indicator. 

to assign l.l.2.2 A value is assigned to (the 
location addressed by) a name. 

coercion 1.l.65.1.0 The changing of the mode of a 
coercend to that required by 
its context, with a correspond-
ing modification to the actions 
performed upon elaboration 
of tha t coercend. 

de referencing l.l.6 5.1.0.3 
widening 5.1.0.4 

-------------------------------
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deproceduring 4.2.2;2 5.2.0.2 
rowing 5.5.0 
uniting 5.6.0 
voiding 5.7.0.1 
balancing 5.2.0.1 

context 5.1.0.2 The context of a coercend is 
its relationship to the clause 
in which it occurs. With each 
such context is associated a 
strength. 

strong 5.1.0.2 
firm 5.1.0.2 
weak 5.1.0.2 
meek 5.1.0.2 
soft 5.1.0.2 

STOWED 1.4.0 Structured or rowed. 

stack (the) 1.2.2.3 That part of the storage of 
the computer where internal 
objects crea ted by loc genera-
tors are kept. 

heap (the) 5.7.2.2 That part of the storage of the 
computer where internal ob-
jects that cannot be held on 
the stack are kept. 

flat descriptor 1.5.1 2.5.2.2 A descriptor in which a t least 
one upper-bound is less than its 
matching lower-bound. 

acceptable 1.6.1.1 A value is acceptable to a union 
mode if its mode can be united 
to that union. 

garbage collection 5.7.2.2 The process of recovering 
storage space on the heap from 
internal objects that are no 
longer accessible to the pro-
gram. 

undefined 1.1.2.2 If the result of some elabora-
tion is said to be undefined, 
then the Report does not 
oblige an ALGOL 68 imple-
mentation to produce any 
specific result. In practice, 
implementations may produce 
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diagnostic message, or go com-
pletely haywire. 

environment enquiry 6.2.1 A constant made available by 
the standard or library prelude 
to convey information about 
some property of a particular 
implementation. 

transput 7.1 Input and output and trans-
fers to backing media. 

formatless transput 7.1 
formatted transput 7.6 
binary transput 7.7 
book 7.2.1 The input/output medium in 

use, together with its contents. 
current position 7.2.1 The current page, line and 

character number of the book; 
logical end of file 7.2.1 The last used page, line and 

character number of the book. 

physical end of file 7.2.1 The last existing page, line and 
character number of the. book. 

I 

channel 7.2.1 The facility through which 
-, transput to (from) the book 

takes place. 
data list 7.1.1 7.1.2 A row-display of values used as 

a parameter of a transput 
procedure. 

to open 7.2.1 7.2.3 To attach a book to a file 
through a channel. 

to close 7.2.3 To dis'c(mnect a book from a 
file. 

to straighten 7.4.1 7.5.1 To cause the elements of a 
multiple value or the fields of 
a structure to be presented in 
sequence as a stream of primi-
tive (also compl or string) 
values. 
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APPENDIX 4. The Suhlanguage 

The language realised by a particular implementation may differ from 
ALGOL 68 as defined by the Report. The differences may be of two sorts: 

Sublanguages. If we omit some features of the language, or impose 
extra restrictions, then we have a "sublanguage" [R 2.2.2.c] . A 
particular-program written in a sublanguage should run without further 
ado on an implementation of the full language. 

SUperianguages.lf we add new features, or define the results of 
programs whose results are at present left undefined, then we have a 
"supedanguage". A particular-program written in canonical ALGOL 68 
is therefore automatically correct in any superlanguage. 

Although many sublanguages of ALGOL 68 are possible, there is one 
particular sublanguage that has been accorded official recognition by IFIP 
Working Group 2.1*, and which is usually referred to as "ALGOL 68S". 

ALGOL68S is intended for use primarily in numerical and related areas. 
In spite of the various features of full ALGOL 68 that have been left out of 
it, it is still a viable language in its own right, within its field of application. 

The omitted features have been chosen principally with a view to 
simplifying the compilation process, enabling the sUblanguage to be 
implemented on mini computers with as little store as 16K words of 16 bits. 
Another design aim was to ensure that programs could be parsed and object 
code generated in- one pass through the source text. Although this, of course, 
aids compilation on small machines, it has the further advantage, even on 
large machines with complex operating systems, that overlaying of the 
compiler is avoided. Since the operating-system overhead associated \vith 
bringing the compiler and/or its overlays into store may account for the bulk 
of the compilation cost for sufficiently small programs, it is expected that 
implementations of this subhinguage will be used for teaching purposes, since 
students' programs are typically small, but large in number. 

* P.G. Hibbard, A. Sublanguage of ALGOL 68, SIGPLAN Notices 12 (5) (1977). 
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Restrictions 

1. Modes 

There are fewer modes than in the full language: 

There are no unions. 
There is no flex (but there are special provisions for string).· 
Structures may not contain multiples (e.g. no struct(int no, [ ] real elems)) 

and multiples of multiples (such as [] [] int) are forbidden. 
In an actual-declarer, you may not write [3] int meaning [1 :3] int (see 

2.5.2.2.E7*), and quirks like mode a = [1:( a b = (4, 6, 8); b [i])] int 
(observe how a is used in the actual-bounds before its declaration is 
complete) are forbidden. 

You must not expect standard-prelude operators to work (even with 
restricted precision) on long or short modes (2.7.2) beyond those implied 
by int lengths, int shorths, etc. (6.7.1). 

If your implementation forces you to use "(" and ")" in place of" [" and 
"]", you are not allowed to omit the loc in variable-declarations such as 
loc (l:n) realx1. 

~ 2. Omitted constructs 

No heap generators (5.7.2.2) (this immediately rules out all applications of a 
"list processing" nature, but it simplifies the run-time system considerably 
by removing the need for a garbage collector). 

No parallel-clauses (3.7.2) (i.e. no up, down or serna). 
No void-collateral-clauses (3.7.1). 
No vacuums (3.5.l.E4) (you don't really need them, because of the absence 

of flex). 
Jumps must be explicit (i.e. go to t or goto t, but not just t - see 4.7.l.E2). 
No conformity-clauses (3.6) (because there are no unions). 
No empty (5.6.l) (no unions again). 
No 10 (or its alternative \). This is no hardship because you just use 1230e-1 

in place of 123010-1 (5.l.1.1). (See also Appendix 5). 
No procedured jumps (4.7.2). 

3. Textual order 

The following restrictions arise because of the requirement for one-pass 
compilation: 

All declarations of indicators (i.e. of identifiers, operators and mode­
indications) must precede the first applied occurrences (3.2.3) which 
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identify them. This is normally good programming practice anyway 
(moreover, see 3.2.3.E7) and the only case where you might regret the 
restriction is that of mutually recursive pairs of procedures (you would 
have to declare one of them as a proc variable in the sublanguage) or of 
mode-indications (but, the sublanguage not being suitable for list 
processing anyway, the need for these is less likely to arise). 

Priority-declarations of operators (4.3.1) must precede their corresponding 
operation-declarations (4.3.2) and, once a priority has heen given for an 
operator, it may not be changed again within ari. inner range (which 
prevents you, among other things, from altering the priority of the 
standard-prelude operators). Also, a bold word declared as an operator 
may not subsequently be used as a mode~indication in an inner range, and 
vice-versa. 

The "firmly related" restriction oh declaring a given operator to apply 
separately to. not-too-different modes, as given in 4.3.3, is made more 
severe. The new "meekly related" condition applies whenever there exists 
a commonlTIode to which the two modes in question can be meekly 
coerced (e.g. proc real and ref real are meekly related) *. 

Structure- and roW-displays (3.4 and 3.5.1) may not be used in the strong 
~position of a firm (or weaker) balance (5.2.0.1). I.e. although z +:= (p Ix I w) 
would be accepted in the sublanguage (because of the balancing, x gets 
widened to compl even though the conditional-clause is in a firm context), 
z +:= (p I (+1, -1) I w) would not. Likewise, structure- and roW-displays 
may not occur as the first (effectively the only) unit of a closed-clause (as 
in (( + 1, -1))). These restrictions are no great hindrance to .the programmer 
(a cast (5.1.1.3) can always resolve the matter) but, for the compiler 
writer, they mean that as soon as he starts to compile such a display, he 
knows what its mode is meant to be. 

loc generators (5.7.2.1) may not precede the first declaration in their range 
(the compiler must be able to know, at the time it encounters the loc, 
whether the range in question is going to be a local one or not (5.7.2.1), 
they may not stand as bounds in actual-declarers (but who would want to 
write [1:loc int] real anyway), and they may not be operands (as in 
loc int + 1 - again not in the least useful). 

Ajump may not cause the elaboration of a declaration to be bypassed (as in 
((p I goto I); real x; c statements involving x c; I: c statements not involving 
x c) which is legal, though hardly good style, in the full language). 

* Moreover, the new operator may not be meekly related even to mother operator de­
clared in an outer reach. 
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4. Strings 

string is actually a different mode from [ ] char in the sUblanguage. 
However, many operations (e.g. slicing) work with both modes and a strong 
coercion from string to [ ] char is provided, so that you will hardly notice the 
difference. The following are the few cases which might arise: 
The operators <,~, =,:J:,;;:', >, +, x, plusab and plusto work as usual for 

string, but not for [ ] char. 
Slices work for both modes, but in the case of string the slice cannot yield a 

name (thus s[2] := "A" is excluded, but not char c := s[2]). 
The lower-bound of a string is always 1 (and hence revised-lower-bounds 

(5.5.1.3) are never needed). 
Contexts·(even strong ones) expecting a string cannot accept a [ ] char (as in 

procp = (strings) void: skip; [l:n, l:m] char rrc; p(rrc[i, ] )). The 
converse (string where [ ] char is expected) is all right, because of the 
extra strong coercion (as in rrc[i, ] :=.s). 

The rowing coercion can never yield a name (see 5.5.1.3.E20). 

5. Transput 

Many of the less used and more exotic transput features are omitted, as 
follows: 
There are no formats. 
Omitted procedures are stand conv (7.4.3), make conv, make term (7.4.2), on 

format end (7.4.4.5), on value error (7.4.4.6), on char error (7.4.4.7), 
reidf, lock, scratch, create (7.2.3), backspace, set char number (7.2.5) and 
char in string (7.5.2). 

All the environment enquiries given in 6.2.1, 6.7.1, 7.2.2 and 7.5.3 are 
omitted, with the exception of max int, max real, small real (and their 
long(s) versions), chan, stand in channel, stand out channel and stand back 
channel. 

Conclusion 

It will thus be seen that most of the restrictions in ALGOL 68S will hardly 
be noticed by' the average programmer (although they all help the compiler 
writer considerably). It will be noticed that, in the lists above, those 
restrictions likely to be of practical importance have been given first. These 
include the lack' of unions, flex, parallel-clauses, heap generators, the 
requirement for defining before applying and formats. Even without all these, 
you still have· a very powerful language. 

-----------------
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APPENDIX 5. The Standard Hardware Representation 

Of the large number of symbols that could be used in an ALGOL 68 
program (see Appendix 1), most computer installations will be able to use but 
a few due to the limitations of their character codes. Indeed, the symbols 
used in this book (especially those such as x, V A, I and 10 and the bold 
words) have been cho·sen, from amongst those permitted by the Report, for 
their clarity and conciseness rather than for their ready availability on real 
computers. . 

It is thus the responsibility of each implementor to choose ~hich symbols 
he will represent (where there are alternatives he is not obliged to provide 
more than one) al.1d how he will represent them. In order to give guidance to 
implementors and to facilitate the portability of programs betwe.en different 
implementations, IFIP Working Group2.1 has approved a standard 
representation * to which it is expected that many imph~mentations will 
adhere. 

The standard seeks to represent all ALGOL 68 programs using only 60 
"worthy characters", which have been chosen because of their ready 

. availability in the majority of modern character codes, such as ISO (including 
its American version ASCII) and EBCDIC (although even these are not as well 
standardized as is popularly imagined, there being problems with specialized 
Natonal Characters in ISO and various positions for (or even a complete 
absence of) [ and] in EBCDIC). The 60 worthy characters are: 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
o 1 2 3 4 56 7 8 9 . 
space ,,# $ % 'e ) * + , -. I: ; < = > @[ t_ I 

This is not to say that all these will appear on your keyboard. A local 
convention may tell you to punch II +-" for" _" and "a" for" A". The . 
important thing is that there should be a one-to-one correspondence between 
the worthy .characters anq the codes recognized by your machil.1e so that, at 
the worst, transferring a program to another machine should require only a 
one-to-one. transliteration of codes. To these 60 worthy characters may be 
added, optionally, a second alphabet ("a" to "zit) but, except in the case of 

* 'wilfred J. Hansen and Hendrik Boom, The Report on the Standard Hardware 
Representation for ALGOL 68, ALGOL Bulletin, AB40, also in SIGPLAN Notices 
12 (5) (1977). 

I 
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UPPER stropping and strings (see below), "a" means the same as "A" and 
" z" means the same as "z". 

The manner in which these worthy characters are used to represent 
ALGOL 68symbols such as ":=", ":=:" and "+:=" is quite obvious. For the 
symbols not immediately representable (e.g.:j:, x, ~, +) Appendix 1 gives 
representable alternatives (e.g. /=, *, <=, %) and for 10 or \ you can always 
write "e" (5.1.1.1). The letters A to Z can obviously be used to represent 
identifiers, which leaves us with just the "stropping convention" (1.3.2) to be 
used for the bold words - i.e. for mode-indications such as real and int, for 
operators such as abs and entier, and for delimiter words such as begin and 
end. For this, three distinct conventions, "POINT", "UPPER" and "RES", 
are prescribed. 

I. POINT stropping 

Each bold word is preceded by a point and followed by a "disjunctor".A 
"disjunctor" is anything other than a letter of,a digit or an underscore (so 
that, if the bold word is to be followed by an identifier (which starts, of 
course, with a letter) you had better insert a space in between to act as the 
disjunctor- so that. REAL X means real x but • REALX means realx). Even 
if a second alphabet ofletters (" a" to" z") is provided, no distinction is made 
between" a" and "A", so that. real x is no different from. REAL X. 

Example: 

• BEGI:J • REF • LONG . REAL X : = • LOC • LONG • REAL .­
.LONG 3.141592654; X .MINUSAB LONG PI; 
PRINT(X) 
• END 

If you want to see which spaces were actually essential as disjunctors, observe 
that the following is exactly (but confusingly) equivalent: 

.BEGIN.REF.LONG.RF~ X:=.LOC.U1~G.REAL:= 

• LONG 3.141592654; X. MINUSAB LONG!;>I; PRINT (X ) • END 

The POINT stropping regime is introduced by the pragmat (1.3.2) pr point 
pr (which will usually appear as • PR POINT • PR) but, since point 
stropping continues to be valid even in the other two regimes about to be 
introduced, the chief effect of this pragmat is to turn those other regimes off. 

~------ -----------
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2. UPPER stropping 

Assuming the extra alphabet of lower-case letters (" a" to "z") to have 
been provided, all words written in upper case are deemed to be bold words 
in this r()gime, and so identifiers must be rewritten using the new lower-case 
facility. Example: 

BEGIN REF LONG REAL X : = IDC LONG REAL : = 
LONG 3.141592654; X MINUSAB long pi; 
print (x) 

END 

Disjunctors are now needed between two adjacent bold words, of course, but 
no longer between a bold word and an identifier. The shortest way of writing 
the above example is therefore: 

BEGIN REF LONG RF~Lx:=LOC LONG REAL:=LONG 3.141592654; 
xMINUSABlongpi;print(x)END 

You may still introduce bold words with a point, so that in this regime REAL, 
REAL and • real but not real) are all bold words. Also, digits appearing in 

upper-case words are presumed to be "upper-case digits": 

MODE ROW23 = [1:23] INT; LOC RON23 row23; 
This regime is introduced by the pragmat pr upper pr (which will usually 

appear as. PR UPPER . PR since, presumably, UPPER stropping was not in 
force before the pragmat). 

3. RES stropping 

RES stands for "reserved word", and in this regime the following 61 words 
are presumed to be bold whether they are preceded by a point or not (see 
also the first list in Appendix 1). 

at, begin, bits, bool, by, bytes, case, channel, char, co, comment, 
compl, do, elif, else, e~pty, end, esac, exit, false, fi, file, flex, for, 
format, from, go, goto, heap, if, in, int, is, isnt, loc, long, mode, nil, od, 
of, op, ouse, out, par, pr, pragmat, prio, proc, real, ref, serna, short, 
skip, string, struct, then, to, true, union, void, while. 

Note that this list includes all the delimiter words and all the standard 
mode-indications - but none of the standard-prelude operators which must 
still, tberefore, be stropped with a point. Since, for example, LONG is 
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automatically a bold word in this regime, we have a problem when 
representing the identifier long, or even long pi if we are not prepared to 
represent it as longpi. Whereas in the POINT regime we needed the point as 
an "emboldening" symbol to turn long into long, we now need an 
"intimidating" symbol to turn long into long. For this purpose we use the 
underscore "_", and it may be placed either after the word to be intimidated, 
or between two such words. Thus, althoughEND ,OF andFIIE are all bold 
words in this regime,END OF FIlE is a single identifier, since all its words are 
either preceded or followed bY-an underscore. For our identifier long, then, 
we write LONG and for long pi eitherLONGPIor LONG PI .Our example now 
appears as follows: -

BEGIN REF LONG REAL X : = LOC LONG REAL : = 
LONG 3.141592654;X .MINUSAB LONG PI; 
PRINT(X) -

and the minimum number of disjunctors is shown by 

BEGIN REF LONG REAL X: =LOC LONG REAL: =LONG 3.141592654 
X.MINUSAB LONGPIjPRINT(X)END 

Of course POINT stropping may still be used (.REAL means the same as REAL 
and of course. HEAL is illegal - remember that underscore is not a 
disjunctor). -

This regime is introduced by the pragmat pr res pr (usually appearing as 
• PR RSS • PR). 

strings 
Within a character- or string-denotation the worthy characters may be used 

freely to represent themselves with the exception of quote (II) and 
apostrophe (,). These must appear in pairs. Thus II "" II is a character­
denotation for a single quote-symbol (as already explained in 5.1.1.1) and 
'" '" is similarly a character-denotation for a single apostrophe-symbol. This is 
a new feature, and its purpose is to enable a single apostrophe to be used, in 
some implementations, to escape into some other notation (e.g., in some 
implementation, 'BS' might represent the oth~rwise unrepresentable 
character "backspace" (a character not recognized by the Report) and might 
appear in string-denotations such as II = , BS' I" . 

If the additional alphabet of lower-case letters is provided then, within 
character- and string-denotations they are distinct from the upper-case letters 
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(remember that outside such denotations they are not distinguished, except 
in UPPER stropping). If some non-worthy characters are available in your 
implementation (e.g, ~, { , }, etc.), they may be used in character- and 
string-denotations, but whether such programs could be transferred to 
another implementation is another matter. 

An' extra feature, entitled the "string break", is provided to reduce 
confusions arising when string-denotations occupy more than one line. 
Remember that two quotes (" II) together stand for one quote-symbol. If, 
however, they are separated by a space, or a change to a new line, then they 
are ignored altogether: 

PRINT ( "This is a ,very long strin~-denotation which " 
"occupies more than one line of our program " 
"text) even though we want it to appear as one " 
"line in our output") 

Possible confusion 

Since a point can sometimes mean a point, and sometimes the start of a 
bold word, is there any situation in which you cannot tell which is meant? It 
turns out that there is only one situation in legal ALGOL 68 where a genuine 
point-symbol can be followed by a bold word, and that is in the following 
format-text: 

$ 2zd. comment format for 3 digit real number with decimal point but 
no decimal digits comment $ 

Suppose we are in UPPER stropping and we write: 

$ 2 ZD. COMMENT FORMAT FOR • • • ·COJVlMEt\JT $ 
COMMENT could be a representation of comment and so could. COMMENT 
(POINT stropping is valid in all regimes), so is the point a point or not? The 
answer is that it is not, because of the general rule [R 9 .4.2.2.b 1 that, in any 
case of doubt, any sequence of marks is to be regarded as a single symbol 
wherever such an interpretation is possible. Thus. COMJVlENT always means 
comment, whether in UPPER or not. Clearly, the format-text in question 
should have been wri tten as 

$ 2ZD. COMM8~T,FORMAT FOR ••• COMMENT $ 
(which is much clearer to the human reader anyway). 
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APPENDIX 6. Syntax Charts 

The following charts show exactly which sequences of symbols from a le­
gal ALGOL 68 particular-program and. which do not. To see what you may 
legally write, start where it says "particular-program" in the first chart below, 
and follow the line. Where the line diverges, you have a choice. You may either 
write an "ENCLOSED-clause", or you may write a "label" followed by a":". 
If you write a label, then you get back where you started so, following the 
same lines again, you may now write an "ENCLOSED-clause" or you may go 
for another label. Eventually, you must write an ENCLOSED-clause in order 
to reach the outgoing arrow on the right, which signifies that your particular­
program is complete. 

In order to write any construct enclosed in a rectangle (such as an 
"ENCLOSED-clause"), you must find the start of that construct (usually on 
another chart) and follow the line from there, writing such constructs as you 
meet on the way, until you escape via an outgoing arrow. Then you have com­
pleted the construct in question and may continue following lines in the orig­
inal chart. If you encounter a circle (or an oval), simply write the symbol in­
side it. So, to write an ENCLOSED-clause, find the start on the ENCLOSED­
clauses chart. Immediately you are faced with a choice. Suppose you follow 
the route marked "closed-clause". Now you must write either "begin" or 
"{", and after that a "serial-clause" (which is on yet another chart). When 
your serial-clause is complete, you write "end" or ")", whereupon you reach 
the outgoing arrow and your ENCLOSED-clause is complete. Although the 
chart does not show it (it would have been just too complicated), if you write 
"begin" (rather than "(") before the serial-clause, then you must write "end" 
(rather than ")") after it, and vice-versa. 

Every construct written inside a rectangle will thus be found as an entry 
point somewhere in one of the charts. The only exceptions are some very sim­
ple ones such as "label", "defining-identifier", "field-selector", "mode-indica­
tion", "operator", "character" and "digit". The first three of these are the 
same as "applied-identifier" (on the units chart). For mode-indications and 
operators see 1.3.2 and 4.3. 

Above some of the rectangles there appears an indication of the mode that 
the construct inside is expected to yield, and the strength of its context 
(5.1.0.2) or whether it may be balanced (5.2.0.1). The mode written under­
neath an outgoing arrow tells you the mode of the construct you have just 
written. "MOlD" stands for any mode including void, and "MODE" for any 
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PARTICULAR-PROGRAM 

mode other than void. On anyone pass through a particular chart,the 
MODEs etc. encountered must, however, always stand for the same mode. 

Generally speaking in ALGOL 68, comments and pragmats (I .3.2) may ap­
pear in between any two symbols, but there are some exceptions - notably in 
identifiers, denotations and format-texts. In these charts, you may insert a 
comment or a pragmat anywhere where you are following a continuous line, 
but if your route between two symbols is entirely over dotted lines, then you 
may not write comments or pragmats although blanks and newlines are still 
permitted (but see 5.5.1.1 for the dangers of doing this in string-denotations 
and see Appendix 5 for a commonly used solution to the problem). 

In "collection-lists" in the format-texts chart, an indication is given of the 
modes in the data list of get! and put! which are compatible with the various 
patterns. For example, the chart shows that for a real-pattern the mode in the 
data list on output may be int or real, but than on input it may only be ref 
real. See 7.6.1.3 for further details on this point. 



ENClOSED- closed-clause ~ 

clause 

condit iona.t­

o t au 5 e 

s t ron 9 
po Sit Ion s 

on \ y 

o .... -ciisola 

s t ron 9 

po Sit Ion s -

on I y 

- ---" 

b n I an C Ii! d 

field TAGl. .... MODEn field TAGn) 

of MODE 
MODE (if MODE was alrl;!ody rowQd) 

> 
'" '" 

W 
til 
til 



SERIAL-CLAUSES 
ba.t ancC!d 

MOlD 

serIQl-olQus.--~~~-------------r--~------------~~ 

mQQ t. MODE 

." qu I r 'J -0 I au S I: -,.--___ ------------------------------------j 

DECLARATI ONS 

d It C 1 Ilr- a. t 10 n--.,-------------------------{ 

\la.r lab 1 e-
dec lor-a.'\; ion 

Idudlt -

deolarCltlon 

rout I nlll­
"Qr lab 1 e-

dec I ar-a.t Ion 

rout i ne-
t de nt It -

dec I Qr-Cot ion 

rout, ne­
operat i on-

dec I a.-a.t Ion 

dec I u":o.t I on 

dec tarat Ion 

mode-

dec 1 arat Ion 

MOlD 

mode 

MOlD 



Ap.6 APPENDICES 357 

DECLARERS 
actual-declare '1lrtuQ\-declarer 

formal-deolorl!: 

TAG 

MODE field TAG • 
... 1 

MODE field TAG, 
••• 1 

MODE field TAG • 
... 1 



358 

unit 

tel" t i ary 

50ft ..!:.!i MODE 
as, i gna.t ion 

tart iury 

soft ref 
5tl"'01'l9 ~:£l 

~:~:::!n- tertiary 

I"out I ne­
text 

s~ i 

strong 
only 

sl-<ng 
POSitions 
only 

APPENDICES 

UNITS 
strong MODE 

~n~;n~;~' ________________ -(~ 

MODE strong POSitions 
only 

~ 

firm MODEl E!..~!!JMODEl.MDDE2)MOID firm MODE2 

"1~1~-~'~'~'~mu~'~a~~~~~ I-operan.... -operand 

2- 0 per an dl-.d'.;.2--,-'e..>,""",m,,-u ',-,a,--

f II"'" MODEl E!...t2.s{MODEl.MOD(2)MOID f Irrn MODE2 

n-opftrand--.. "-opera" ,-t~n~-'~'~'~m~u~'~a-t~~~3 

nott-operan 
n+l-formulCl 

E!...t2.S(MODE2) MOlD 

1 0 - 0 P Iiii" a n d-.d'"m,,-, n",a",d,-,;",'.:--,-f"-"",m,-,u,-,'-,,a~ ______ -1 :: ~ ~: ~ :; 

secondary ref ROWS 
-- ROVS 

TAG 
seleotion fleld-

selector 

ener-a.to,... 

field TAG. ... ) 
field TAG • ... ) 
field TAG • ... ) 

TAG • ••• J 

MODE 
MODE 

t:..!..f.. MODE 
MODE 

Ap.6 



Ap.6 

pI" i mar", 

APPENDICES 359 

meel:. 
E!..!..!!..£. PARAMETE.R.S MOlD stronq MODE paramllter-

oed I 

!:..!..f... n 

I I e.d-

i dent ff i er 

dtnotat i 0" 

ENCLOSED-
01 Quse 

""'-rTrni-nisn-1 MODi : lethr d 19 It 

'----- -----..(---

(where m ma~ be 0) 

MODE 

LONGSETY :: Q. sequ\lncQ (u:;;uQ.11 y 

empty 1 of i.£.!:!..9...s or shorts 

---------------------



360 APPENDICES Ap.6 

FORMAT-TEXTS 

format-tli':xt-----\ 

~-L---~--0-~---~------------0~:~~=~=~=~-----/1 
I: r:..~~ ~£.£.L 

/Eh.;~T0\ 
I /1 " \ 0: £..b..~r:.. ! I £.b..~r:.. 
---------J--'-------L'--------'--0-,-~---~------=='----==-__'l 

1 I: r:..~f... £..b..~!:... c...~~ [) £.b..~r:.. r:..~f.. ~~r:...!...f1...9... L __________________ + _______________________ J 

0: 
: 4 : 

0: ~.!...t.~ 

I : r:..~L ~--'---~~ 

0: ~£...£...l.. 
I : !:..!..f.. ~~l.. 

0: ..!....~~ 

I : c..~L .'-r:..~ 

0: ANY 



Ap.6 APPENDICES 361 

I nt egral-patt u"n w. ______________ ~ 

~--~ i 
,j _______ J:~ __________ :.~ 
~------T----------<-----------1 

: ~ : ~--,.@--~ 
:,: \~: ,: :.: ;.: \~ 
G------------- V L-r ---------J----------L'--------'0Il ,~ 

- l __________________ ... ____________________ : _____ Ll _______ ____ ~ 

r II a.l -p ott arn-------------------.----, 

~--~ : 

(!:~-;--~---~::~~~~~~~~~~~ 
: ~ : ~--rB--~ 
:,: \{}: ,: :.: ;.: \~ G_____________ _ ""'i~-r---------J---------...L'--------

: ~ , ..J i r------------r-------------""--------------

: ____________ <------------..1 i L::~:_:~~>.~ 

i ~--~ i --B--"@--~ i 

LL-----)'--\Olt':_::~(~:~'~:::-~12J 
i ~--~ i~ 
L---/-------J:~--------:·'0-';~:i:~; _LL ________ \ _______ !> 

In, (". I on I ,----------------------, "p (, 'c.," I!------~---------.~!> 

.. ~."9nm.n.k~~~.. m .. ' ~ 
L ___________ <---- .. ~:::::::::::::::::')"------!> ~ENCC,L.O"S,E.D-~ 

~
-----------------------""-------------------1 

rep , 
/ : 

(,.".,"- ' " ----r-------,--------O.J-------!> 

~ 1 ch·,:·",,1 
\... _______ .J 

<0, 
~ :",: 

':~\{3}M 
~ I 'gnme n t --'------------- ____ woo> 

: y : 

~ 
\Q 



INDEX 

a, 277 
abs, 211, 237, 248 
Acceptable, 123, 342 
Action, 64, 341 
Actual declarer - see declarer, actual 
Actual parameter - see parameter, 

actual 
ALGOL 60,152,157,159,173,182 
ALGOL 68S, 344 
Alignment, 273, 274, 275 
amode, 84 
and, 240, 331 
And also symbol, 69, 337 
Applied identifier, 158, 198, 209, 213 
Applied occurrence, 73, 188, 198, 346 
arccos, 242, 247 
arcsin, 242,247 
arctan, 242, 247 
arg, 211, 237 
Array, 101 
Ascribe, to, 64,65,66,70,74, 132, 133, 

341 
Assign, to, 341 
Assignation, 67, 74, 172, 194, 195,201, 

337 
Assignation (example - names), 207 
Assignation (of multiples), 142, 219, 

223 
Assignation (scope restriction), 157, 185 
Assignation (to unions), 126 
Assignation (value yielded), 69 
associate, 259,312 
at, 116, 215, 330 
b, 277 
Backspace, 351 
backspace, 251,253,261,276,347 
Balancing, 162, 163, 194, 203, 204, 233, 

346, 
begin, 69, 150, i54, 160, 166, 167, 172, 

330 
bin, 237 
bin possible, 255, 257, 258, 285 
Binary, 226 
Binary transput - see transput, binary 
bits, 131, 148, 225, 226, 330 

bits (input), 254 
bits (output), 252 
bits lengths, 246 
bits shorths, 246 
bits width, 225,241,246 
bitspack, 242,247 
blank,241 
Blank space, 91 
Block,157 
Bold word, 93, 137, 165, 185, 186, 339, 

349 
Book,255, 259,263,343 
bool, 131, 330 
bool (input), 253 
bool (output), 252 
"Boundpair, 115,219, 335, 337 
Bounds, 151, 215, 337 
Bounds (after rowing), 212 
Bounds (binary transput), 284 
Bounds (in assignations), 219, 220 
Bounds (in unions), 223 
Bounds (interrogations), 218 
Bounds (of row display), 167 
Bounds (of string denotation), 213 
by, 168,330 
bytes, 131, 148, 225, 330 
bytes (input), 254 
bytes (output), 252 
bytes lengths, 246 
bytes shorths, 246 
bytes width, 226,241,246 
bytespack, 242,247 
c,94 
Call, 70, 172, 177, 182,194, 195,205, 

206,339 
Call by name, 182 
Call by reference, 87, 182 
Call by'value, 86, 182 
Call, to, 341 
case, 154, 163, 170, 330 
Case clause - see clause, case 
Cast, 81, 182, 194, 197, 198,218,338 
Cast (example), 187, 226 
Cast (on LHS of assignation), 201, 208 
Chaining, 108 

362 
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chan, 258 
channel, 255, 263, 330, 334, 343 
char, 131, 330 
char (input), 254 
char (output), 252 
char in string, 271,347 
char in string (example), 324 
char number, 260 
Character, 265 
Character transput - see transput, 

character 
Check,185 
Choice, 279, 283 
Choice clause - see clause, choice 
Clause, 337 
Clause, case, 160, 163, 204,205,337 
Clause, choice, 156, 160 
Clause, closed, 69, 156, 160, 200, 337 
Clause, collateral, 160, 172,337, 345 
Clause, conditional, 160, 161, 204, 205, 

337 
Clause, conformity, 126,160,170,205, 

222, 223, 337, 345 
Clause, conformity (example), 320 
Clause, ENCLOSED, .l50, 160, 166, 

167,193,198,203,207,217,280, 
337 

Clause, enquiry, 161, 163, 168, 195, 
227,337 

Clause, loop, 156, 160, 168, 337 
Clause, parallel, 160, 172, 174,337,345 
Clause, serial, 68,150,204,227,337 
Clause, serial (coercion 00, 203 
Clause, serial (in closed clause), 160 
Clause, serial (in conditional clause), 161 
Clause, serial (in loop clause), 168 
Clause, serial (range), 156 
Clause, serial (value 00, 152 
Clause, serial (where used), 154 
Clause; unitary - see unit 
close, 259, 261 
Close, to, 343 
Closed clause - see clause, closed 
co,330 
Code conversion, 263, 265 
Coercend, 193, 337 
Coercion, 73, 183, 188, 194, 203, 209, 

212,222,225,341 

Coercion chart, 196 
Collateral clause - see clause, collateral 

Collateral declaration - see declaration, 
collateral 

Collateral elaboration, 68, 69, 71, 166, 
167,169,172,182,232,341 

Collection, 280 
Colunm, 167,215 
Comma, 69 
Comment, 94, 213, 339 
comment, 330 
Common sub-expressions, 174 
Comorf,196 
compl, 140, 209,211,261,330 
compl (input), 253 
compl (output), 251 
Complete, to, 154, 172, 204, 341 
Completer, 153,337 
Completer (example), 320 
compressible, 258,260 
Computer word, 148 
Concatenation, 239, 244 
Conditional clause - see clause, 

conditional 
Conform, to, 126, 170,340 
Conformity clause - see clause, 

conformity 
conj, 211, 237 
Constant, 65, 74, 75, 134, 198, 335, 339 
Constants (standard prelude), 241 
Construct, 64, 335 
Context, 194, 342 
Contraction, 69, 135, 137, 138, 180, 

181,186,187,340 
Conversion procedures, 270 
Copying, 190, 301 
cos, 242, 247 
create, 259,265,347 
Cube root, 151 
Current position, 256, 260, 263, 343 
Cyclic permutation, 220 
d, 276 
Data list, 250, 253, 282, 343 
Declaration, 66, 68, 150, 157, 336, 

346 
Declaration, collateral, 132,135,172, 

186,336 
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Declaration, collateral (contraction), 
135,137 

Declaration, heap, 149 
Declaration, identifier, 66, 133 
Declaration, identifier (and mUltiples), 

118,121 
Declaration, identifier (and structures), 

102 
Declaration, identifier (and unions), 123, 

146 
Declaration, identity, 74, 75, 133, 194, 

336 
Declaration, identity (and multiples), 

142 
Declaration, identity (formal/actual 

correspondence), 182 
Declaration, mode, 95, 108, 137,138, 

143,165,186,336 
Declaration, operation, 97, 165, 186, 

188, 336, 346 
Declaration, operation (example), 291, 

320 
Declaration, priority, 99, 185, 186, 188, 

227,336,346 
Declaration, procedu~e, 85, 179, 
Declaration, routine identity, 181, 336 
Declaration, routine variable, 181, 336 
Declaration, row, 141 
Declaration, sample, 132 
Declaration, struct, 139 
Declaration, union, 146 
Declaration, variable, 66, 74, 79, 131, 

134,336,345 
Declaration, variable (and multiples), 

141, 143 
Declaration, variable (initialized), 135, 

194 
Declarer, 336 
Declarer, actual, 77, 114, 135, 137, 143, 

144,227,345,346 
Declarer, formal, 75, 133, 144, 146, 

179, 180, 198, 223, 333 
Declarer, proc, 85, 144, 179 
Declarer, row, 141 
Declarer, struct, 138 
Declarer, union, 146 
Defining identifier, 158, 170 
Defining occurrence, 73, 188, 346 

Delimiters, 154 
Denotation, 198,338 
Denotation, bits, 226 
Denotation, character, 213 
Denotation, long, 226 
Denotation, short, 226 
Denotation, string, 212, 217, 275 
Denotation, void, 223 
Deproceduring, 183, 196, 205, 206, 225 
Dereferencing, 196, 197,203,210,216 
Descriptor, 114, 141,213,335,336 
Destination, 68, 201,338 
Develop, to, 96, 340 
Dijkstra, E.W., 176 
Dimension, 101 
Disc, 284 
Disjunctor, 349 
Display, row, 160, 167, 172, 212, 250, 

253, 337, 346 
Display, structure, 160, 166, 172, 337, 

346 
divab, 243, 331 
do, 154, 168, 330 
down, 175, 238, 331,345 
Drum, 284 
Dummy statement, 202 
Dyadic operator - see operator, dyadic 
Dynamic replicator, 279 
e,276 
elaboration, 64, 340 
Elaboration, collateral -- see collateral 

elaboration 
elem, 238,248,331 
Element, 101, 114, 141, 167, 212,335 
elif, 154, 162, 330 
else, 154, 161,330 
empty, 223, 330,345 
empty (example), 323 
ENCLOSED clause - see clause, 

ENCLOSED 
end, 69,150,154,160,166,167,172, 

330 
Enq uiry clause - see clause, enq uiry 
entier, 237, 331 
Environment enquiry, 129,241,246, 

258,265,272,294,343,347 
eq, 240, 331 
Equivalence, 76 
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error character, 272 
e~~ 154,163,170,330 
estab possible, 258 
establish, 259, 265 
Event routine, 191, 263, 266, 283 
exit, 153,204,330 
exit (example), 320 
exp, 242, 247 
exp width, 246,272 
Expect, to, 275, 276, 279, 283 
Expression, 150, 160, 194, 339 
External object, 64, 335 
f,277 
false, 131, 330 
fl, 154, 161, 330 
Field, 101, 138, 166, 209, 261, 335 
Field selector, 101,138,209,338 
file, 256, 261, 263, 282, 330, 334 
Firm context, 195, 196, 200, 222, 250, 

252 
Firmly related modes, 188, 340, 346 
fixed,271 
Fixed name, 142, 190, 216, 334 
Flat descriptor, 115, 143, 342 
flex, 142, 143, 144, 190,212, 217, 330, 

345 
Flexible name, 120, 142,190,216, 219, 

334 
Flexible name (transput), 280 
flip, 272 
float, 271 
flop, 272 
for, 168, 330 
Formal declarer - see declarer, formal 
Formal parameter - see parameter, 

formal 
format, 281, 282, 330, 334, 347 
format, (transput), 250, 253 
format pointer, 263,282 
Format text, 273, 274, 281, 338 
Formatless transput - see transput, 

formatless . 
Formatted transput - see transput, 

formatted 
Formula, 70, 177, 187, 188, 195, 199, 

211,338 
FORTRAN, 159 
Frame, 273 274, 276 

from, 168, 330 
g,277 
Garbage collection, 230, 327, 342 
ge, 240, 331 
Generator, 227, 338 
Generator, heap, 149, 229, 345 
Generator, heap, (example), 319 
Generator, loc, 77, 89, 135, 227, 346 
get, 257,260,285 
get bin, 285 
get pOSSible, 255,257,258 
getf, 282 
Go on symbol, 68, 132,150, 337 
go to, 330 
go to statement, 151 
go to statement - see also jump 
goto, 191, 330 
gt, 239, 331 
Halt, to, 175, 341 
Hardware representation, 348 
Reap, 230, 325, 342 
heap, 149,227, 229, 231, 330 
heap (example), 320 
heap declaration - see declaration, heap 
heap generator - see generator, heap 
i 211, 237, 331, 332 
i,276 
Identification, 158, 346 
Identification (of books), 256, 259 
Identification (of modes), 165 
Identification (of operators), 188 
Identifier, 66, 133, 158, 168, 185, 336, 

338 
Identifier declaration - see declaration, 

. identifier 
Identifier, applied - see applied 

identifier 
Identifier, defining - see defiriing 

identifier 
Identify, to, 73, 158, 340 
Identity declaration - see declara tion; 

identity 
Identity relation, 129, 172, 194, 195, 

205,232,338 
Identity relation (example), 313, 321,·· 

326 
if, 154, 161, 330 
im, 211,237 

----- --. ---------------------------_. __ ..... -
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Implied bracketing, 202, 243 
Implies, 239 
i~ 154, 163, 170, 330 
Indexer, 116, 120, 214 
Indication, mode - see mode indication 
Indicator, 64, 65, 339 
Indirect addressing, 81 
Initialization, 80, 135 
Initialized declaration - see declaration, 

initialized 
Input, formatless, 252 
Insertion, 274 
Instance, 64, 65, 202, 333, 340 
int, 131, 330 
int (input), 253 
int (output), 251 
int lengths, 246 
int shorths, 246 
int width, 246, 272 
Internal object, 64, 133, 333 
Interrogations, 121, 218, 245 
Intimidation, 351 
is, 129, 330 
isnt, 129, 330 
Jensen's device, 183 
Jump, 191, 345,346 
Jump - see also go to statement 
k, 276 
I, 276 
Label, 151, 153, 159, 191, 337 
last random, 242, 247 
Layout routines, 260 
Ie, 239, 331 
leng, 248 
level, 175, 248 
LHS, 67,339 
Library prelude, 64, 200, 258, 265, 292, 

300,336 
line number, 260 
Lisp, 230 
List, i 08 
List processing, 230, 234, 319 
Literal, 198, 273, 274,275,279 
In, 242, 247 
~~77,79, 157,227,330, 345 
Local generator - see generator, loc 
Local range - see range, local 
lock, 259,261,347 

INDEX 

Logical book, 256 
Logical end of file, 256, 259, 263, 283, 

286, 343 
long, 84, 196, 226, 246, 248, 330, 334 
long modes, 128, 148, 345 
long modes (example), 297 
long operators, 247 
long, 246, 247 
Loop cause - see clause, loop 
It, 239, 331 
lwb, 122,219, 224, 245, 331 
Machineword, 128 
Magnetic tape, 258, 284, 286 
make conv, 264,265,347 
make term, 254,264,347 
Matrioes, 300 
max abs char, 241 
max int, 241,246,269,272 
max real, 187,241,246,272 
maze, 184 
Meek context, 143, 195, 196, 206, 215 
Meekly related modes, 346 
Metanotion, 75, 83 
min, 186,188 
minusab, 244, 331 
mod, 238, 331 
modab, 243, 331 
Mode, 64, 83, 333 
mode, 330 
Mode declaration - see declaration, 

mode 
Mode indication, 137, 143, 185, 336 
Monadic operator - see operator, 

monadic 
Mood, 122 
Morf,196 
Multilength arithmetic, 128 
Multiple, 335 
Multiple selection, 218 
Multiple value, 100, 114, 141, 151, 167, 

218, 335, 345 
Multiple value (as parameter), 190 
Multiple value (assignation of), 219 
Multiple value (binary transput), 284 
Multiple value (in unions), 223 
Multiple value (rowing), 212 
Multiple value (slicing), 214 
Multiple value (transput), 270 
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n,279 
Name, 65, 80, 134,201, 207,227,229, 

232, 334 
Name (assignation 00, 207 
Name (dereferencing), 197 
Name (scope 00, 157 
Name (transput), 250, 253 
Names 'of fields of structures, 105, 210 
Names of slices, 121, 216 
neos, 332 
ne, 240,331 
New line, 91 
newline, 251,253,260,261,276 
newpage, 251, 253, 260, 261, 276 
next random, 242,247 
nil, 110, 207, 208, 233, 330 
nonproc, 196 
not, 236, 331 
Notion, 83 
nsin, 332 
null character, 241,248 
Occurrence, 340 
Octal,226 
od, 154, 168, 330 
odd, 237 
of, 209, 330 
on char error, 254,264,269,275,283, 

347 
on char error (example), 323 
on format end, 264,.268, 282, 283, 347 
on line end, 254, 264, 268, 283, 284 
on logical file end, 264, 267, 283, 286 
on page end, 264,267,283,284 
on physical file end, 264, 268, 283 
on value error, 264, 268, 279, 283, 347 
op, 186, 330 
open, 259, 265 
Open, to, 256, 259, 343 
Operand, 71, 187, 195, 199,232,338 
Operation declaration - see declaration, 

operation 
Operator, 70, 97, 177, 186, 188, 199, 

218,338 
Operator, dyadic, 99, 172, 187 
Operator, monadic, 100, 175, 187 
Operators (assigning), 243 
Operators (complex), 211 
Operators (standard prelude), 236, 247 

Operators, dyadic (standard prelude), 
237,245 

Operators, monadic (standard prelude), 
236, 245 

or, 240, 331 
Order of elaboration, 232 
ous~ 154, 164, 171, 330 
out, 154, 163, 170, 205, 330 
Output, formatiess, 250 
over, 238, 331 
overab, 243, 331 
p, 276 
page number, 260 
Paper tape, 274, 284 
par, 174, 330 
Parallel clause - see clause, parallel 
Parameter, 337 
Parameter, actual, 75, 85, 86, 133, 172, 

182,186,194,206 
Parameter, formal, 70, 75, 85, 133, 180 
Parameter, formal (formal/actual 

correspondence), 182, 187 
Parametrize, to, 86, 341 
Paranotion, 335 
Parity error, 269 
Particular program, 64, 150, 151, 335 
Phrase, 68, 336 
Physical book, 256, 283, 284 
Physical end of file, 343 
pi, 241,246 
Picture, 268, 273, 274, 280 
pie, 160 
plusab, 244, 331 
plusto, 244, 331 
Position enquiries, 260 
Power, 199 
pr,330 
Pragmat, 94, 339, 349 
pragmat, 330 
Precision, 148 
Primary, 160, 193,195,197,205,206, 

212,214,223,226,338 
Primitive modes, 83, 131, 148, 334 
Primitive value, 334 
print, 250, 257, 260, 272 
printf, 274 
prio, 186, 330 
Priority, 161, 186, 199 
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Priority declaration - see declaration, 
priority 

proc, 84, 179, 330,334 
proc declarer - see declarer, proc 
proc modes, 84 
Procedure, 177, 179,205,339 
Procedure declaration - see declaration, 

procedure 
Proceduredjump, 191, 345 
Procedures (standard prelude), 241, 247, 

259,260,270,281,284 
Program, 64, 335 
Pseudo comment, 94 
Punched cards, 274, 284 
put, 257, 260, 272, 285 
put bin, 285 
put possible, 255,257,258 
putf, 282 
q,276 
Quaternary, 181,193,201,207,219, 

232, 337 
Queue, 108 
Quote symbol, 213 
r,277 
Radix, 277 
Random access, 258 
random, 242,247 
Range, 69, 133,135,137,156,157, 

158,185, 228, 337 
Range, local, 227, 228 
Ra tionals, 297 
re, 211, 237 
Reach, 156, 158,169, 186, 337, 340 
read, 252, 257, 260 
read bin, 285 
readf,273 
real, 131, 330 
real (input), 253 
real (output), 251 
real lengths, 246 
real shorths, 246 
real width, 246, 272 
Real time, 174 
Record,101 
Recursion, 183 
Recursion (example), 316, 323 
ref, 65, 84, 144, 330, 334 
Refer, to, 65, 340 

reidf, 258, 259, 347 
reidf possib Ie, 256, 258, 259 
Related - see firmly related nodes & 

meekly related modes 
Replication, 238, 243 
Replicator, 275, 279 
repr, 237, 248 
Representation, 91, 330, 348 
Reserved bold words, 330 
Reserved word, 350 
reset, 260, 261, 284, 286 
reset possible, 255, 257, 258, 260,284, 

286 
Resume, to, 175, 341 
Revised lower bound, 116,215 
Rewind,258 
RHS, 67,339 
round,237 
Routine, 70, 84, 177, 179, 180, 335 
Routine (and operators), 186 
Routine (calling),205 
Routine (recursion), 183 
Routine (scope), 185 
Routine (transput), 250, 253 
Routine identity declaration - see 

declaration, routine identity 
Routine text, 70, 84, 156, 177, 180, 

186,194,227,338 
Routine variable declaration - see 

declaration, routine variable 
Row declaration - see declaration, row 
Row declarer - see declarer, row 
Row display - see display, row 
'Row of', 334 
Rowed, 334 
Rowing, 196, 212, 213,216, 217, 347 
s, 276,277 
Sample declaration - see declaration, 

sample ' 
Scope, 69,149,157,158,202,227, 

229,266,340 
Scope (of formats), 281 
Scope (ofroutines), 185, 323 
scratch, 259, 261, 347 
Secondary, 193,195, 209,218,227, 

338 
Select, to, 340 
Sclection, 195,209i 218, 338 



Selector, field - see field selector 
serna, 175, 330, 334, 345 
Semaphore, 175 
Semicolon, t;.11 
Serial clause - see clause, serial 
set, 260, 284 
set char number, 260,276,347 
set possible, 255,257,258,260,284, 

285 
Shield, to, 108, 139 
Shift,238 
shl, 238, 331 
IDort,84,196,226,330, 334 
short modes, 128, 148, 345 
IDolt operators, 247 
shorten, 248 
shl, 238, 331 
Side effect, 68, 172 
sign, 237 
sin, 242, 247 
skip, 89, 202,330 
Slice, 120, 195, 214, 220, 223, 229, 

339, 347 
Slices, overlapping, 220 
small real, 151,160,,241,246,272 
Soft context, 195, 196,201,233 
Source, 68, 201, 338 
Space, 91 
Space character, 213 
space, 251,253, 261,274,276 
Specification, 170, 337 
Specify, to, 101, 340 
sqrt, 242, 247 
Stack, 228, 230, 342 
stand back, 256 
stand back channel, 256, 258 
stand conv, 265, 347 
stand in, 253,256,257 
stand in channel, 256, 258 
stand out, 251,256,257 
stand out channel, 256,258 
Standard postlude, 64, 236, 256, 336 
Standard prelude, 64, 140, 145, 177, 

186,200,236,256,261,292,336 
Statement, 150, 151, 160, 194, 202, 

225,339 
stop, 236 
STOWED,342 
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STOWED value, 100 
Straighten, to, 343 
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Straightening, 252, 255, 273, 282, 284 
Straightening (example), 280 
Straightening (of mUltiple values), 270 
Straightening (of structures), 261 
string, 145, 212, 270, 330, 334, 347 
string (input), 254 
string (output), 252 
string (straightening), 270 
String denotation - see denotation, 

string 
Strong context, 133, 194, 196, 202, 

203,204,207,212,225,233,346 
Strop, to, 340 
Stropping, 93, 349 
struct, 84, 330, 334, 335 
struct declaration - see declaration, 

struct 
StIllct declarer - see declarer, stIllct ' 
Structure, 138, 166, 209, 335, 345 
Structure (binary transput), 284 
Structure (transput), 261 
Structure display - see display, structure 
Structured value, 100, 101,335 
Sublanguage, 209, 340, 344 
Subname, 105, 109, 121, 210, 216, 334 
Subscript, 114, 116, 214, 335 
Subvalue, 116,215,216,335 
Superlanguage, 340, 344 
Supersede, to, 67, 341 
switch, 192 
Symbol, 91, 92, 330, 339 
Synchronisation, 174 
Syntax, 204 
tan, 242,247 
Tenninate, to, 154, 159, 172, 236, 341 
Tertiary, 193,200,201,207,211,218, 

232, 233, 338 
Textual order, 345 
then, 154, 161, 330 
timesab, 243, 248, 331 
to, 168~ 330 
Transient name, 217, 218, 334 
Transput, 195, 198, 343 
Transput procedures, binary, 284 
Transput procedures, formatted, 281 
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Transput, binary, 255, 258, 284 
Transput, character, 255 
Transput, formatless, 250 
Transput, formatted, 273 
Transput, formatted (example), 311 
Tree, 108 
triangle, 228 
Trimmer, 116, 214 
Trimscript, 116, 195, 214 
true, 131, 330 
Truncation, 238, 248 
Typographical display feature, 91 
Undefined, 68, 162, 163, 172, 179, 202, 

224,248,254,266,268,269,286, 
342 

union, 84, 122, 144, 146, 222, 330, 334, 
345 

union (example), 319 
union (of multiples), 223 
union (transput), 253 
union declaration - see declaration, 

union 
union declarer - see declarer, union 
Unit, 68, 181, 193, 203, 215, 337 
Unit (in case clause), 163 
Unit (in identity declaration), 133 
Unit (in loop clause); 168 
Unit (in serial clause), 150, 152 
Unit (in structure display), 166, 167 
Unitary clause - see unit 
United modes, 122 
Uniting, 196, 222, 223 
Uniting (example), 323 
up, 175, 238, 331,345 

upb, 122, 219, 224, 245,331 
Vacuum, 167, 337, 345 
Value, 64, 69, 84, 333 
Value (of serial clause), 69 
Variable, 65, 74, 80, 131,132, 134, 335, 

339 
Variable declaration - see declaration,. 

variable 
vec, 332 
Vectors, 300 
Vectors (example), 293 
void,69,17~ 181,194,330 
void (example), 323 
Void denotation - see denotation, void 
Voiding, 196, 225 
Weak context, 195, 196, 210, 214, 216 
Well formed, 97, 113, 139 
while, 154, 168,330 
whole, 271 
Widening, 194, 196, 197, 200, 204, 209, 

222, 225 
Word, computer - see computer word 
Worthy character, 348 
write, 252 
write bin, 285 
write!. 282 
x,276 
xory,332 
y,276 
Yang, 139 
Yield, 64, 152 
Yield, to, 340 
Yin, 139 
z,276 
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