
HAL Id: hal-03027689
https://inria.hal.science/hal-03027689

Submitted on 27 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Informal Introduction to ALGOL 68
C. H. Lindsey, S. G. van Der Meulen

To cite this version:
C. H. Lindsey, S. G. van Der Meulen. Informal Introduction to ALGOL 68. North-Holland, pp.370,
1977, 0720407265. �hal-03027689�

https://inria.hal.science/hal-03027689
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

INFORMAL INTRODUCTION TO ALGOL 68

REVISED EDITION

INFORMAL INTRODUCTION
to ALGOL 68

c. H. LINDSEY
Depart(h'ent of Computer Science, University of Manchester

S. G. van der MEULEN
Department of Informatics, University of Utrecht

Revised Edition

~c 1,--
--

\

NORTH-HOLLAND PUBUSHING COMPANY

AMSTERDAM· NEW YORK· OXFORD

© IFIP, 1977

All rights reserved. No part of this publication may be reproduced, stored in.a
retrieval system, or transmitted, in any form or by any means" electronic,
mechanical, photocopying, recording or otherwise, without the prior permission of
the copyright owner.

North-Holland ISBN 0720407265

First edition 1971
Revised reprint 1973
Second completely revised edition 1977 '
Revised reprint 1980, second printing 1981

Published by:

NORTH-HOLLAND PUBLISHING COMPANY,
AMSTERDAM, NEW YORK, OXFORD.

Sole distributors for the U.S.A. and Canada:

Elsevier/North-H()lIand Inc.
52, Vanderbilt Avenue
New York, NY 10017

Library of Congress Cataloging in Publication Data

Lindsey, C.H.

Informal introduction to ALGOL 68.

Authors' names in reverse order in previous ed.
Includes index.
1. ALGOL (Computer program language)

2. Electronic digital computers·-Programming.
I. Meulen, S.G. van der, joint author. II. Title .

• eA76·;'73;A-24M4"i:::;:'::f9·7'7~ 001.6'424 78-148532
ISBN 0-7204·0504-1
ISBN 0-7204-0726-5 pbk.

PRINTED IN THE NETHERLANDS

To the uninitiated reader

ACKNOWLEDGEMENTS

The Authors wish to thank Prof. Dr. A. van Wijngaarden and the other
authors of th~ ALGOL 68 Report, and also the many members of WG 2.1

. and others in the computing community who read this Introduction in draft
form and in its first edition, for their encouragement and helpful criticisms of
the text. The Mathematical Centre, Amsterdam are particularly thanked for
their assistance in reproducing the drafts of the first edition. The authors also
wish to acknowledge the official support accorded to this work by IFIP TC-2
and WG~2.1.

PREFACE

Publication of this volume represents a major step in. making accessible to
the international computing community the operational. content of the
"Revised Report on the Algorithmic LanguageALGOL 68". The Report itself
is, of course, an unparalleled accomplishment in. the literature of programming
languages as a defining document. The complexity of the topic, however,
necessarily disqualifies such a completely rigorous treatment from considera­
tion as a general pedagogical device; hence the present volume.

As noted by the authors, this book "is not - and is not intended to be -
a primer for the programming novice". This is as it should be·. The Revised
Report addresses those who must unde.rstand every nuance of the language;
primarily limguage designers and compiler implementers. If implementations
of ALGOL 68 are. to be other than academic exercises, there is a pressing
need to acquaint the set of people who write computer programs as a routine
part of their daily lives with the essential elements of the language. This book
can do just that.

The algorithmic language, ALGOL 68, stands as a major product of the
International Federation for Information Processing, an organization now in
its second decade, counting among its members the national information
processing societies from thirty-four countries spread over all six of the
world's inhabited continents. Among the principal activities of the Federa-

. tion is the work of Technical Committee 2, Programming Languages,and its
Working Group 2.1, ALGOL. The initial effort ofWG 2.1 stemmed from the
development of the algorithmic language ALGOL 60, and since 1964 under
the Chairmanships of Prof. Dr. W.L. van der. Poel, Prof. Dr~ M. Paul and current­
ly Prof. J .E.L. Peck, this group of international experts, including the authors
of the present work, has been engaged in the design apd development of
ALGOL 68.

While the present book is wholly the work of the two authors, it has been
extensively reviewed in manuscript by the Working Group and has the status
of a working paper within the group. Jt follows that the accuracy with Which
it represents ALGOL 68 is far higher than might be apparent from its cover.
Every effort has been made to ensure that the book contains a comprehensive,
accurate andreadable introduction to the language. Having had the oppor­
tunity to observe this effort closely from my position as Chairman of TC-2,
I can assure the reader that the authors have been successful in this endeavor.

T.B. Steel, Jr.
New York,May 20,1976

FOREWORD

The algorithmic language ALGOL 68 was designed by Working Group 2.1
of the International Federation for Information Processing, and formally
defined ina Report * published early in 1969. The first edition orthe present
text was a companion volume to that Report.

Since that time the language, in whole or in part, has been implemented
on a variety of computers and substantial experience has been gained of its
use. One leading computer manufacturer has released an implementation in
virtual complete agreement with the current official definition, and it should
only bea matter of time before others follow.

The experience of implementation and use led to many proposals for
changes to the language and these were incorporated in the text of a Revised
Report approved at the Los Angeles meeting of the Working Group in 1973.
The "Revised Report on the Algorithmic Language ALGOL 68"t (hereafter
referred to as simply "the Report") is now the official, rigorous and final
definition of the machine-independent programming language ALGOL 68.

This "Informal Introduction to ALGOL 68" seeks to describe, rather than
to define,the revised language. If you have some difficulty in understanding
the Report, it is our hope that you will find our informal treatment more
pafatable, even though this may have been achieved at the expense of rigour.
It is the companion volume referred to in Section R.O.I.l of the Report. (We
shall always precede Qur references to the Report with such an R. All other
references are to the present text.)

This introduction, however, is not - and is not intended to be - a primer
for the programming novice. The "user" to whom we address ourselves is
assumed to be a "programmer", i.e. someone who is able to write, or at
least to read, a text in: some machine-independent programming language
which is on a level not too much below, for instance, ALGOL 60. Our aim
has been to describe the whole of ALGOL 68, and tltis Introduction may
alsb therefore have 'some merit as a work of reference - provided it is always
understood that the official Report is the final arbiter in all cases of doubt.

* A. van Wijngaarden (ed.), B.l. Mailloux, 1.E.L. Peck, C.B.A. Koster, Report on the
algorithmic language ALGOL 68, Numer. Math. 14 (1969) 79-218; also in Kibenietika
6 (1969) and 7 (1970) ..

t A. van Wijngaarden, B.l. Mailloux, 1.E.L. Peck, C.B.A. Koster, M: Sintzoff, C.B.
Lindsey, L.G.L. T. Meertens and R.G. Fisker, Revised report on the algorithmic language
ALGOL 68, Acta Informat. 5 (1975) parts 1-3 (reprints published by Springer, Berlin,
and also as Mathematical Centre Tract 50 by the Mathematisch Centrum, Amsterdam);
also in SIGPLAN Notices 12 (5) (1977).

TABLE OF CONTENTS
PREFACE
FOREWORD
O. A VERY INFORMAL

INTRODUcnON

x.1. FUNDAMENTALS

I",. 1.1. FUNDAMENTALS
BASIC 1.1.1. Objects
CONCEPTS 1.1.2. Identifiers

1.1.2.1. Variable declarations
1.1.2.2. Assignation, collateral

elaboration
1.1.3. Phrases, serial and

collateral elaboration
1.1.4. Routines
1.1.5. Defining and applied

occurrences
1.1.6. Coercion

2.y. 2.1. PRIMITIVE
DECLARA- DECLARATIONS
TIONS 2.1.1. Primitives

2.1.2. Variable declarations
2.1.3. Sample declarations

3",. 3.1. SERIAL CLAUSES
CLAUSES 3.1.1. The declarations

3.1.2. The statements
3.1.3. The yield
3.1.4. Completers
3.1.5. Delimiters

4",. 4.1. PROCEDURES AND
ROUTINES OPERATORS

4.1.1. Standard prelude
routines

x. 1. FUNDAMENTALS

5",. 5.1. SIMPLE UNITS
UNITS

{ 5.1.0.1. Coercends
5.y.0. 5.1.0.2. Coercion
Coercion 5.1.0.3. Dereferencing

5.1.0.4. Widening

5.y.1. { 5.1.1.1. Denotations
Primaries 5.1.1.2. Applied identifiers

5.1.1.3. Casts

5.y.2. { 5. I. 2. Secondaries
Secondaries

5.y.3. { 5.1.3. Formulas
Tertiaries

5.y.4. { 5.1.4.1. Assignations
Quartern- 5.1.4.2. skip
aries

6",. 6.1 OPERATORS
STANDARD 6.1.1. Monadic operators
PRELUDE 6.1.2. Dyadic operators

7.y. 7.1 FORMATLESS
TRANSPUT TRANSPUT

7.1.1. Formatless output
7.1.2. Forrnatless input

S.y. 8.1. SIMPLE EXAMPLES
EXAMPLES

APPENDICES APPENDIX I
Alternative representations

(

x.2. PROCEDURES AND x.3. OPERATIONS
NAMES

1.2. NAMES AND 1.3. SYMBOLS, MODES AND
DECLARERS OPERATORS

1:2.1. Ascription and assigna- 1.3.1., Representations
tion 1. 3.2. Symbols, bold words

1.2.2. Identity declarations and comments
1.2.2.1. Constants 1.3.3. Other declarations
1.2.2.2. Equivalences 1.3.3.1. Mode declarations
1.2.2.3. Local generators 1.3.3.2. Operation declarations
1.2.2.4. Variables and names 1.3.3.3. Priority declarations
1.2.2.5. Casts
1.2.3. The metanation MODE
1.2.3.1. proc modes
1.2.3.2. The supply of the

actual parameters
1.2.4. Summary

2.2. IDENTITY DECLARA- 2.3. MODE DECLARATIONS
TIONS

2.2.1. Identity declarations
2.2.2. Another look at

variable declarations
2.2.3. Initialised variable

declarations

3.2 CLOSED CLAUSES 3.3. BOLD WORDS
3.2.1. Ranges and reaches 3.3.1. Identification of mode
3.2.2. Scopes of names indications
3.2.3. Identification
3.2.4. ENCLOSED clauses
3.2.4. I. Closed clauses
3.2.4.2. Conditional clauses
3.2.4.3. Case clauses

4.2. PROCEDURE 4.3. OPERATION DECLARA-
DECLARATIONS TIONS

4.2.1. proc declarers 4.3.1. Priority declarations
4.2.2. Routines 4.3.2. Operation declarations
4.2.2.1. Routine texts 4.3.3. Identification of
4.2.2.2. Calling operators
4.2.2.3. Recursion
4.2.3. Scopes of routines

x.2. PROCEDURES AND x.3. OPERATIONS
NAMES

5.2 BALANCE AND CALL 5.3. skip

5.2.0.1. ENCLOSED clauses
and balancing

5.2.0.2. l>eproceduring

5.2.1. Procedure calls

5.2.3. nil

5.2.4. Assignations involving
names

6.2. CONSTANTS AND 6.3. ASSIGNING
PROCEDURES OPERATORS

6.2.1. Constants
6.2.2. Procedures

7.2. FILES
7.2.1. Channels, books and

7.3. skip

files
7.2.2. Environment enquiries
7.2.3. Procedures for opening

and closing
7.2.4. Position enquiries
7.2.5. Layout routines

8.2. PROCEDURE 8.3. EXAMPLES OF
EXAMPLES . OPERATORS

8.2.1. Easter 8.3.1. Parallel plus

APPENDIX 2 APPENDIX 3
Sample declarations Glossary

1. Internal objects and modes
2. External objects
3. Technical terms

x.4. STRUCTURES x.5. MUl-TIPLE VALUES x.6. UNIONS x. 7. DISTINcnVE
FEATURES

1.4. STOWED VALUES, 1.5. STOWED VALUES, 1.6. UNIONS 1.7. DISTINCTIVE
STRUCTURES MULTIPLES 1.6.1. United modes FEATURES

1.4.0. STOWED values 1.5.1. Multiple values and 1.6.1.1. United constants 1. 7.1. The long and short
1.4.1. Enumeration by tagging descriptors 1.6.1.2. Equivalence of unions modes
1.4.1.1. Structured constants 1. 5.2. Indexing 1.6.1.3. Local united generation 1.7.2. Identity relations
1.4.1.2. Names of structures 1.5.2.1. Indexers 1.6.2. Assignations and
1.4.1.3. Creation of new 1.5.2.2. Subscripting conformity clauses

structures 1.5.2.3. Trimming
1.4.2. Different objects in one 1.5.3. Identifier declarations

box for multiples
1.4.3. Chaining 1.5.4. Slices
1.4.4. Pandora's boxes 1.5.5. Interrogations

2.4. STRUCTURE DECLARA- 2.5.MULTIPLE DEC LARA- 2.6. UNION DECLARATIONS 2.7. BITS, BYTES, LONGS
TIONS TIONS 2.6.1. union declarers AND SHORTS

2.4.1. slmct declarers 2.5.1. Row declarers 2.6.2. union declarations 2.7.1. bits and bytes
2.4.2. slmct declarations 2.5.2. Row declarations 2.7.2. long and short modes
2.4.3. Well formed modes 2.5.2.1. Fixed and flexible 2.7.3. heap declarations
2.4.4. The mode compl names

2.5.2.2. Actual 'row or
declarers

2.5.2.3. Summary
2.5.3. The mode string

3.4. STRUCTURE DISPLAYS 3.5. ROW DISPLAYS AND 3.6. CONFORMITY 3.7. COLLATERALITY
LOOPS CLAUSES 3.7.1. Collateral clauses

3.5.1. Row displays 3.7.2. Parallel clauses
3.5.2. Loop clauses

4.4. skip 4.5. ROW-OF PARAMETERS 4.6. skip 4.7. JUMPS
4.7.1. Simple jumps
4.7.2. Proceduredjumps

x.4. STRUCTURES x.5. MULTIPLE VALUES x.6. UNIONS x.7. DISTINCTIVE
FEATURES

5.4. UNITS AND 5.5. UNITS AND MULTIPLES 5.6. UNITS AND UNIONS 5.7. BITS AND PIECES OF
STRUCTURES GARBAGE

5.4.0. Complex widening 5.5.0. Rowing 5.6.0. Uniting 5.7.0.1. Voiding
5.7.0.2. bits and. bytes widening

I
5.4.1. Atplied identifiers 5.5.1.1. String denotations 5.7.1.1. bits denotations

5.5.1.2. Applied identifiers 5.7.1.2. long and short
5.5.1.3. Slices denotations

5.4.2. siections 5.5.2. Multiple selections 5. 7.2.1.loc generators
5.7.2.2. heap generators

5.4.3. F ' rmulas with 5.5.3. Bound interrogations 5.7.3. Order of elaboration of
cOfllplex operators operands

5.5.4.1. Flexible assignations 5.6.4. Assignations of unions 5.7.4. Identity relations
5.5.4.2. Assignation to slices of rows
5.5.4.3. Overlapping slices

6.4. ski~ 6.5. INTERROGATIONS 6.6. skip 6.7. LONG OPERATORS
6.5.1. Dyadic operators 6.7.1. Environment enquiries
6.5.2. Monadic operators 6.7.2. Procedures

6.7.3. Operators
6.7.4.leng and shorten
6.7.5. up and down

7.4. STRUCTURES AND 7.5. ROWS AND STRINGS 7.6. FORMA TIED TRANSPUT 7.7. BINARY TRANSPUT
EVIINTS 7.5.1. Straightening of 7.6.1. tormat texts 7.7.1. Binary transput "'r-m

multiple values 7.6.1.1. Literals procedures
st uctures 7.5.2. Conversion procedures 7.6.1.2. Alignments 7.7.2. Some restriction.

7.4.2. F' es 7.5.3. Conversion environment 7.6.1.3. Frames
7.4.3. C de conversion enquiries 7.6.1.4. Replicators and
7.4.4. E ent routines collections
7.4.4.1. n logical file end 7.6.2. formats
7.4.4.2. n physical file end 7.6.3. The formatted transput
7.4.4.3. pn page end procedures
7.4.4.4.)n line end 7.6.4. Events
7.4.4.5.)n format end
7.4.4.6. ~n value error
7.4.4.7.)n char error

8.4.TW< EXAMPLES OF 8.5. A LIBRARY PRELUDE 8.6. EXAMPLES OF 8.7. EXAMPLES OF EVERY-
LI~ ARY PRELUDES FOR VECTOR AND TRANSPUT THING

8.4.1. ~ elations on vectors MATRIX OPERATIONS 8.6.1. The happy family 8:7.1. Analytic differentiation
10 E. INER

8.4.1.1. omments on 8.4.1. 8.5.1. Operations on vectors in
8.4.1.2. n example of the use En

f vees 8.5.2. Operations on matrices
8.4.2. operations on rational and vectors

o erands 8.5.3. Operations on square
8.4.2.1. omments on the matrices

'brary prelude 8.4.2.
8.4.2.2. orne remarks on the

se of rationals

APPENI X4 APPENDIX 5 APPENDIX 6
The subl nguage The standard hardware Syntax charts

representation

I

o. VERY INFORMAL INTRODUCTION TO ALGOL 68

Contents

0.0

0.1

0.2
0.2 .1
0.2 .2
0.2 .3
0.2 .4
0.2 .5

0.3

0.4
0.4 .1
0.4 .2
0.4 .3

0.5
0.5 .1
0.5 .2
0.5 .3
O.S .4
O.S .S

0.6

0.7
0.7 .1
0.7 .2
0.7 .3

0.8
0.8 .1.
0.8 .2
0.8 .3
0.8 .4
0.8 .S

0.9
0.9 .1
0.9 .2

Introduction

A simple program

The primitive modes, denotations
bool
int
real
char
bool, int, real and char

Loops

The creation of new modes, multiples
Multiples
New mode indications

Multiples with flexible bounds, strings

The value of a unit
The value of a formula
The value of a conditional clause
The value of a serial clause
The value of a closed clause
The value of a constant

A more involved program

Routines and procedures
Procedures without parameters
Procedures with parameters
Examples of procedure declarations

The creation of new modes, names and values referred to
Variable declarations revisited
Procedures, values and references
Procedures as formal parameters
Pointers (variable names)
Identity relators, the cast, coercion

Structures and other new modes
complex values, vectors etc.
Structures with mixed mode fields, chams etc.

2

0.10
0.10.1
0.10.2
0.10.3
0.10.4
0.10.5
0.10.6
0.10.7

0.11
0.11.1
0.11.2

0.12

0.13

0.14

VERY INFORMAL INTRODUCTION TO ALGOL 68

Routines and operators
Operations on boolean operands
Formulae
Operations on arithmetic operands, the standard prelude
Operations on complex operands
Operations combined with assignations
Operations on strings
The library prelude

bits and bytes, longs and shorts
The modes bits and bytes
The long and short modes

Unions

Local and global generators, stack and heap

What to do next

0.0. Aims and methods

Ch.O.O

Since ALGOL 68 is a highly recursively structured language, it is quite
impossible to describe it until it has been described. So that you can read this
Introduction without tying your own mental processes into a recursive knot,
it has been laid out to a certain pattern, which we ask you to follow. Please,
therefore, start by reading once or twice "Very Informal Introduction", in
which we try to give a broad survey of what is in this language - mainly by
the way of small examples and plain explanations. Aft~r that, we shall tell you
what to do next.

if you think you know it all already .
then read (what to do next) comment Section 0.14 comment

fi

Ch.O.1 VERY INFORMAL INTRODUCTION TO ALGOL 68 3

0.1. A simple program

(EI) begin loc real x , y , z ;
read (x) ; read (y) ;

end

z := (x + y) / 2 - sqrt (x x y) ;
print (z)

This piece of text represents a program, and as such it defines a sequence
of actions to be performed by a computer. This sequence of actions is termed
"the elaboration of the program". We shall briefly outline the elaboration of
EI :

1. Three identifiers x ,y and z for real variables are declared. That is to say
that somewhere in the memory of our computer, in the "stack", three
locations for real values are reserved. These values are referred to by the
names x, y and z (Le. by their "addresses") which are also entities (values) in
the computer. It thus appears that a 'variable' consists of a value associated
with the name which refers to it. You may consider the identifiers x , y and z
as the representatives in the programtext of the names x , y and z.

loc real

Y i

The addresses x , y and z
in the machine are ascribed
to the identifiers x , y and z
in the program text

real

~D
real

"----D
real

1--.----0

three
real values are
generated
on the stack

The names x , y and z "refer to" real values (see also Section 0.8).

4 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.O.l

2. Next, from a punched tape, or punched card or some other medium, two
numbers are read in and assigned to x and y. That is to say, these numbers are
converted into the proper bit-patterns in the private internal number-system
of the computer, which subsequently are stored in the locations
corresponding to the names x and y :

read (rll)
real

< x) ~ first number read

read (rfl) ; real

< y) ·1 ~second number read

3. Then, the difference between the arithmetic and geometric mean of these
values is calculated and assigned to z, so that we find this difference in the
location corresponding to z:

i+---,-.

real

(x + y) / 2 - sqrt (x X y)

We say:
the formula yields
a real value which is assigned

'-------' to z
real

4. Finally, this value, referred to by z , is reconverted into humanly
recognizable graphics and is'printed by some device:

real

< i -)r--. L __ ~--' number printed

Summing up we have:

1. Three variable-declarations.

2. Two input statements.

Ch.O.! VERY INFORMAL INTRODUCTION TO ALGOL 68

3. An assignation. To the left of the becomes-symbol := we find the
destination Z, and to the right a 'formula' whose value is to be assigned to
that destination.

4. An output statement.

The three variable-declarations in the first line are separated by
and-also-symbols, represented by commas. This means that they are
elaborated "collaterally", which is a technical term stating that the order of
their elaboration is not prescribed.

5

The collateral declaration in the first line, the input statements in the
second, the assignation in the third, and the output statement in the last line
are separated by go-on-symbols (represented by semicolons). This means that
they are elaborated "serially". This again is a technical term stating that the
order in which these phrases are elaborated is explicitly prescribed to be the
textual order: one after the other. They form a 'serial-clause'.

The piece of text El might very well be part of a larger program. The
meaning of the identifiers x, y and Z (and consequently the existence of the
names x , y and z and of the real values referred to by them) is, however,
local: i.e. the "reach" of their declarations is limited to the serial-clause
between begin and end, which delimit a 'closed-clause'. If outside this
closed-clause (or inside another closed-clause contained within it) other
identifiers x, y and z should be declared, then these have nothing to do with
those declared in example El. We say, therefore, that the original meaning of
x , y and z applies only to that part of the program text.

The standard input procedure read accepts as actual parameter not only
the name of a real value, but also (amongst many others) a 'row-display' like
(x,y).

Consequently, line 2may be replaced by:

read ((x,Y)) .. Observe that we again give precisely one actual­
parameter to read; instead of one name, one
row-display of names.

Instead of the two phrases 3 and 4 we might write, in one statement:

print (z := (x +y)/2-sqrt (x xy))

Instead of the begin and end we may write (and). Thus EI * below is, at
least in its effect, completely equivalent to EI:

(EI *). (loe real x, y , z .. read ((x,Y)) ..
. print (z := (x + y)/2 - sqrt (x x y))

)

6 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.O.2

And now we discover that zbecame superfluous, so that we can write:

(E1 **) (loc real x, y ; read ((x,y)) ; .
print ((x+y)/2 - sqrt (x xy))

)

0.2. The primitive modes, denotations

The real in El specifies a mode (i.e. it spe~ifies that x , y and z will refer to
values which belong to a certain class). An infinite number of distinct modes
(disjoint classes of values) is provided in this language. They are, however,
derived from the primitive modes (which form the basis of the entire mode
system): boolean (bool), integral (int), real (real), character (char) and a few
others (see 0.11).

For these primitive modes we have 'denotations': symbols or sequences of
symbols yielding a specific value in such a mode.

0.2.1. boo I

There are two boolean values, denoted by the symbols true and false.
If (in E2 below) C is a piece of program yielding a boolean value, then this

value is either true or false. In a 'conditional-clause' like:

(E2) if C then Ctrue else ClaIse fi

first of all C is elaborated, being the condition between if and then. The
then-part Ctrue between then and else is elaborated only if the condition
yielded true. The else-part ClaIse between else and fi is elaborated only if the
condition yielded false.

The symbols if and then, then and else, else and fi enclose clauses in which
new identifiers of local reach may be declared as in a closed-clause (they form
pairs of brackets, so to speak). Observe that the whole conditional-clause is
enclosed between if and fi. The else-part may be absent, in which case the
then-part is closed by fi; the then-clause must always be there.

For E2 we may also write:

(E2*) (C I Ctrue I ClaIse)

which may be a fine notation to use in a formula, where either the value of
Ctrue or the value of ClaIse is to be yielded (see 0.5.2).

Ch.O.2.2 VERY INFORMAL INTRODUCTION TO ALGOL 68

0.2.2. int

There will be many integral values, denoted by:

o 1 2345 6 78 9 10 11 12 --- ---,2147483647

How far can we go? The Report does not answer this question. It depends
entirely on the implementation. It is, however, prescribed that we can always
know the largest integral value by an "environment enquiry" max int , which
is a standard identifier yielding the largest integral value in a specific
implementation (see also 0.11.2).

Observe that there is no sign preceding an integral-denotation. Of course
you may write:

+1 '-37 -1000 +534711 -513617 etc.

7

but then the + and the - are monadic-operators applied to the value denoted.
Let (in E3 below) I be a piece of program yielding an integral value and let

S be another piece of program; let Il, 12, 13, - - - - ,Ik be certain phrases. In a
'case-clause'like:

(E3) case I in Il, 12, 13, - - - -, Ik
outS

esac

first ofallIis elaborated. Ifits yield is less than 1 (Le. 0 or -lor -'2 etc) or
greater than k (i.e. k + 1 etc), then the out-part S will be elaborated; if, to the
contrary, the yield of I is one of the values 1 or 2 or 3 or - - - " or k, then the
corresponding phrase in the in-part will be elaborated.

The symbols case and in and also out and esac enclose clauses in which
new identifiers of local reach may be declared as in a closed-clause or
conditional-clause. The whole case-clause is enclosed between case and esac.
The out-part (in E3 out S) may be absent, in which case the in-part is closed
by esac; the in-part must always be there containing at least two phrases.

For E3 we may also write:

(E3*) (I Ill, 12, 13, - - - - ,/k IS)

0.2.3. real

There are many real values, which can be denoted in many styles:

3.1415927 or 3141592710 -7 or 0.3141592710 +1 or .31415927101

8 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.O.2.4

instead of the symbol 10 you may also use e : 31415927e-7

O. 9 . 9 9. 0 100. 0 O. 0 110 2 1 010 1 0 110 ,-1 0 110 0 --

The class of real values in the finite memory of a concrete computer is
finite by necessity; it is an implementation dependent image of the
mathematical concept "real number system". The largest real value in a
certain implementation can be obtained by the environmental enquiry max
real and the smallest real value which can be usefully compared with 1.0 from
small real. (See also 0.11).

Observe again that there is no sign preceding a real-denotation. Of course
you may write:

+1.0 -3710-4 -3141592710-7 etc.

but then the + and - preceding the real-denotation are monadic-operators
applied to the value denoted.

0.2.4. char

There is a prescribed minimal set of graphics in which we find all (small)
letters, the digits and some other tokens. The class of character values is at
least this minimal set; specific implementations, however, may extend it.

A character-denotation consists of the character denoted between two
quote-symbols:

" " "b" " " " " " " " " a c x y z
"0" "1" "2" "3" "4" "5" "6" "1' "8" "9"

" " " " " " "(" ")" "+" " " 10 -

Specific character-denotations are:

" " or
";,,, "

" " .:. representing the space-symbol
representing the quote-symbol itself

(see 0.4.3)
(see 5.1.1.1)

0.2.5. bool, int, real and char

(01) loc bool p , q ; bool p,q;
loc int i,j,k,m,n; int i,j,k,m,n;
loc real a,b,x,y;

or
real a,b,x,y;

loc char c; char c;

In these declarations boolean variables are "ascribed" to the identifiers p
and q; correspondingly integral variables are ascribed to i, j , k, m and n,

Ch.D.2.S VERY INFORMAL INTRODUCTION TO ALGOL 68

real variables to a, b, x and y and a character variable to c. That is to say
these identifiers are made to yield the names p , q , I, j , k , fu , fi , a , 1) , x ,
Y , and c referring to boolean- , integral- , real- or character-values
respectively. loc bool , loc int , loc real and loc char are "local generators"
and signify that the lifetime of the values generated is restricted. However,
since loc is the default situation, this symbol may be omitted here thus
preserving some similarity to ALGOL60.

In this Informal Introduction, identifiers will occasionally occur out of
context from their declarations. Unless otherwise specified, these identifiers
will be assumed to have been declared as listed in Dl (or D2, D3, - -
hereafter). The complete set is listed in Appendix 2.

9

For boolean values operators are defined: V or or, 1\ or and, ""1 or not,
yielding boolean values. Boolean values can be compared =, :j: or /=; the result
of a comparison is also a boolean value. The monadic-operator abs, however,
when applied to a boolean value, yields an int : abs p is 1 if P is true, abs pis
a if p is false. This can be expressed concisely as the conditional-clause
(pilla).

Many operators are defined for integral and real values: + , - , x or * , / , -:­
or % or over (implying integral division), mod or -:-x (for the modulo
operation), t or ** (for raising to the power) , etc. The result is an integral
value when both operands are integral (except division which always yields a
real value); in all other cases the result is real.

Integral and real values can be- compared: < ,,,;;; or <= , = , :j: or /= ,~ or
>= ,> ; the result is a boolean value.

The monadic operator abs , when applied to an int or a real ir , yields
(ir < a r -ir I ir) .

The monadic operators round and entier (integral part of) serve to transfer
a real into an int. The transfer of an int into a real is implicit in the language
(no operator is needed to control this transfer); you may write:

x:=i

but you must write:

i := round x or i:= en tier x

Each character value corresponds to an integral value; no two different
characters correspond to the same int; the actual correspondence is to be
defined by the implementation. The int corresponding to a char is obtained
by applying the monadic operator abs (abs c yields the integral value
corresponding to c), and the converse operation by repro

---- --------------------

10 VERY INFORMAL INTRODUCTION TO ALGOL 68 01.0.3

Character values can be compared as if they were integral values and by
the same operators; in fact their abs values are then compared.

Character values are the materials from which strings are composed (see
Section 0.4.3).

0.3. Loops

Suppose we want to input many pairs of numbers x and y and we want to
do the algorithm El that many times. Let the input start with an integral
number greater than zero, which fixes the number of pairs following.
Then-in a very old-fashioned way-the program might be:

(E4) begin loc int n ," read (n) ," loc int count := n ,"
loe real x , y ,"

again: read ((x,y)) ,"

end

print ((x+y)/2 - sqrt (x xy));
count := count -1 ,"
ifcount > 0 then goto again fi

1. The reason we declared n was to hold the number of pairs; it is quite
natural to read this n immediately after its declaration. In this language it is
allowable to put statements between declarations. The counting will be done
via the identifier count; the counter is initialized at its very declaration.
3. The identifier again defines a 'label' sign posting a point in the program
where we want to go to from elsewhere. Labels are only allowed beyond the
declarations (i.e. it is not allowed to write a label in a serial-clause where a
declaration follows).

5. The counter is decreased by 1. Operations of this kind occur so often in
the practice of programming that we have got special operators for them;

. they combine subtraction (or addition, multiplication, division etc.) with
assignation. We thus may write:

count minusab 1 or count -:= 1

6. We may combine the phrases 5 and 6 into one, also omitting the
redundant go-to-symbol goto:

if (count -:= 1) > 0 then again fi

which can be abbreviated into:

((count -:= 1) > 0 I again)

01.0.4 VERY INFORMAL INTRODUCTION TO ALGOL 68

The use of labels and gotos leads in many cases to badly structured
programs and should be avoided wherever it is possible. In this language we
have alternative constructs to structure the program in such cases, avoiding
the goto entirely.

In particular, a cycle like E4 can be put in a more concise form in which
the counting will be done behind the screens. The result is a much safer and
also more transparent program:

(E4*) begin loc int n ; read (n) ;
to n

end

do loc real x, y ; read ((x, y)) ;
print ((x+y)!2-sqrt(x xy))

od

11

1. Where the countingis done behind the screens we do not have to declare a
count.
2. The serial-clause following, between do and od, will be repeated n times.
3,4,5. Between do and od we find a serial-clause, establishing a reach in
which, consequently, variables oflocal scope can be generated (here ascribed
to x and y). This construct to n do - - - - od is a particular case of a much
more general construction (see 0.6).

0.4. The creation of new modes.' multiples

One of the interesting features of this language is the possibility of deriving
new modes from the primitive ones, as many as you need. The method
whereby new modes are created is such that they can, in their turn, be used
to create further modes in a perfectly systematic manner. Some of these
derived modes, such as string and compl (complex) are standard in the
language (i.e. being declared in the standard-prelude, they are permanently
built in).

In this section, we shall briefly outline the construction of multiple values
(multiples). Other constructions (procedures, structures, references, unions
and further derived modes) will be outlined in following sections. You will
fmd a more systematic treatment in Chapters 1 and 2.

0.4.1. Multiples

Suppose you want to use a row of n reals named u , then you may declare,
for instance:
(E5) loc [1 : n] real u ; The lower -bound of the row is 1 ,

the upper-bound of the row is the value of n.

12 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.0.4.1

Now you haveat your disposal n real values on the stack:

u [1] , u [2], - - - , u [n]

In fact you have got more than this, yClj have got n "subnames":

u[1], u[2], - - -, u[n]

to which you can assign new values as in the case of simple variables:

u [i] := u [i] + x
u[i] :=u[n-i]/u[j] etc.

If you want to use a square matrix of n x n reals (a row-row-of-real) named
a , then you may declare, for instance:

(E6) loc [1: n,1: n] real a;

Now you have at your disposal n x n real values on the stack:

a[1,1]' a[1,2], - - -, a[1,n], a [2,1], a [2,2], - - -, - - - - - -, a[n,n]

In fact you have got n xn subnames to which you can assign new real
values:

(D2)

a[i,j] := a [i,k] x a [k,j]
a[i,j] := aU,i] / (i+j) etc.

[1:n] realx1 ,y1;
[1:m,1:n] realx2;
[1: n,1: n] realy2 ;

[1: n] int il ;
[1: m,1: n] inti2 ;

Observe how the optional
loc has been omitted as
we shall often do in the
sequel

By E4 and ES we declared the identifiers u and a to yield the names u and
a respectively (see also 0.1). The name u refers' to a [] real, a row-of-real, the
name a refers to a [,] real, a row-row-of-real. That is to say that u yields a
[] real, variable and a yields a [,] real variable in much the same way as, for
instance, x yields a real variable and p a bool variable.

Ch.0.4.1 VERY INFORMAL INTRODUCTION TO ALGOL 68

[l:n] real [1 : n, 1 : n] real a ;

il

Now the question arises as to whether we may assign, for instance:

u :=xl
a := y2

the answer is yes, and it does exactly what you should expect it to do:

u[l] :=xl[l],u[2] :=xl[2]'---,u[n] :=xl[n]

and:

13

a[J,I] :=y2[1,I],a[J,2] :=y2[J,2],---,--- ---,a[n,n] :=y2[n,n]

provided, of course, that the bounds to the left and to the right of the
becomes-symbol are equal. Also an input-statement like:

read (y2)

does what you would expect:

read ((y2[1,I],y2[1,2], - - - ,y2[I,nJ, - - -, - - - - - - ,y2[n,n]))

14 VERY INFORMAL INTRODUCTION TO ALGOL 68

Where u is a name referring to the whole of the multiple value:

u[l], u[2], - - -, u[n]

Ch.OA.1

the 'slice' u [2:5] yields a subname referring to a part (a slice) of that multiple
value, namely:

(u [2], u [3], u [4], u [5])

In much the same way a [i,] yields a sub name referring to the multiple
value:

(a[i,1],a[i,2]' - - -, a[i,n])

Therefore, even assignations like:

Ch.0.4.2 VERY INFORMAL INTRODUCTION TO ALGOL 68

u[2:5] :=x1[n-3:n];
a [i,] := u ;
ali,] := y2[,j)

etc. do exactly what they suggest. For further discussion see 1.5.1 and
5.5.l.3.

Moreover, operators acting upon multiple values and slices may also be
defined (see, for example, 8.5), so that we can then write clauses like:

u :=x1 + y1 ;
a := y2 x a

0.4.2. New mode indications

IS

Once you have decided to create a new mode, you may wanUo give this
new class of values a distinguishing mark (we do not say "name", because
that is a technical term in this language with a very specific meaning, see 0.1
and 0.8). You may define a new 'mode-indication' by declaring:

(E7) mode vector = [1: n] real;
mode matrix = [1: n,1 : n] real;

And now, in the context of these mode-declarations:

(E5*) loc vector u; is equivalent to E5 : loc [1: n] real u ,.

(E6*) loc matrix a,. is equivalent to E6 : loc [1: n,1: n] real a ,.

0.4.3. Multiples with flexible bounds, strings

In E5 and E6 the bounds of the variables (the lower-bounds 1, and the
upper -bounds n) are fixed at the elaboration of the declaration and cannot be
changed afterwards, but on some occasions you might wish to do just that,
although this may be expensive in some implementations (the storage
allocation at run time is more complicated than in the case of fixed bounds).

Variables whose bounds may be changed after the declaration of the
multiple are termed "flexible" (flex):

(E8) loc flex [m : n] real fu ; the bounds of fu are initially
[m : n] but may be changed later.

Flexible bounds are particularly useful in the case of strings, which are
built into the standard-declarations of the language (which is why one may
expect a reasonably efficient implementation of, in particular, this flexible
bound application). A string is a row-df-character with flexible bounds:

(D3) mode string = flex [1: 0] char,.
loc string s ,.

16 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.O.S

The variable-declaration loc string s (which is equivalent to loc flex [1 :0]
char s) declares s to yield a flexible name s referring to a row-of-character,
which is empty to begin with. As soon as you assign to s, the bounds get the
new values required:

(E9) s := "the upper-bound becomes 26";
s := "the flexible upper-bound now becomes 39" ;
s := " " the string is empty again

. By the way, you have just met three string-denotations, the lower-bound
of a string-denotation is always 1. Observe that the denotation for the empty
string is ,/II ,and for the space is " " (or may also be " .:.. IT).

For string, being a built-in mode, several operators are defined, such as < ,
.;;; , = , :j: ,;> ,> (to compare them) and + and x(to concatenate them).

If the value of s is 11 this is the begin", then the outcome of the assignation:

(ElO) s:= s + " and this is the end."

or (which is the same):

(EIO*) s +:= " and this is the end. "

may speak for itself.

0.5. The value of a unit

So far we have met identifiers and denotations as the objects in this
language that yield a value of some mode. They are, however, only specific
cases of a 'unit'. In this section we shall show you over some units and pay
some attention to the values they may yield. The complete and systematic
treatment will be found in Chapter 5.

0.5.1. The value of a formula

A formula is a unit. For example:

x+y, (x+y)/2, (x+y)/2-sqrt(xxy)

A formula defines a (more or less compound) computation, which usually
yields (i.e. delivers on the stack) a value of some mode. We then say: "the
formula yields (upon elaboration) the value".

In the example above, we met:

identifiers x and y, units yielding variables,

C'h.O.S.2 VERY INFORMAL INTRODUCTION TO ALGOL 68

a denotation 2, a unit yielding a constant; ,
and another kind of unit sqrt (x x y) , which is the 'call' of a procedure

returning a value: the square root of the value of the formula x x y (for
procedure calls see Section 0:7).

Different operators may have different priorities. The implied bracketing
in the example above is:

(x + y) / 2 - sqrt (x x y)

left-operand right-operand

17

The 'left-operand' and the 'right-operand' of the subtraction are elaborated
collatera~ly. That is to say that there is no prescribed order for getting the
value of the left-operand and getting the value of the right-operand (see also,
0.1). The same applies again to the elaboration of the left-and the
right-operand in the formula (x + y) / 2 .

Hence, an implementor is perfectly entitled to optimize the elaboration of
formulae. For example:

y1 [round sqrt(a x b)] + ii [round sqrt(a x b)] x xl [round sqrt(a x b)]

The implementor may elaborate round sqrt (a x b) only once (for reasons
explained in 3.7.1), and elaborate the multiplication i1 [k] x xl [k] before
accessing y 1 [k] ; that is to say that there is no prescribed order of elaboration
"from left to right".

0.5.2. The value of a conditional clause

A conditional-clause is a unit:

if p then 3141592710-7 else 27182818 10-7 fi

yields upon elaboration the real value of its then-part or of its else-part,
depending upon the value of its condition. You may assign it to a real
variable, or use it in a formula:

x:= 1 / (p 13141592710 -712718281810-7)

If a conditional~clause yields a variable then you are perfectly entitled to
use it in a destination (to the left of a becomes-symbol):

if p then x elsey fi := 3.1415927

or:
(p 1 x Iy):= 3.1415927

18 yERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.O.S.3

0.5.3. The value of a serial clause

A serial-clause (see 0.1) may also yield a value, although it is not (yet) a
unit. It may be used, however; to make a unit. For example, a closed-clause,
which is a unit (see 0.5.4), contains a serial-clause, and a conditional-clause
(another unit) may contain several of them.

The value of a serial-clause, then, is the value of its final (completing) unit.
The serial-clause:

read (x) .. x :j: 0

(see Ell below) yields the value of its final unit x :j: 0, which is a bool value.
Now consider the program: ..

(Ell) begin
int num := 0 ,pos := 0, neg:= 0, realabsum := 0, x ..
while read (x) .. x :j: 0

do absum plusab if num +:= 1 ," x> 0

od ,"

thenpos +:= 1 ," +x
else neg +:= 1 .. -x

fi

print ((num, pos, neg, absum))
end

Here we meet another form of a loop-clause (see 0.3 E4). In a loop of the
form:

while C do S od

first of all the condition Cwill be elaborated, yielding a bool value; as long as
this condition yields true, the serial-clause S between do and od will be
elaborated, followed by a new elaboration of C. That is to say: depending on
the boollastly yielded by C. the elaboration of while C do S od results in

C or C," S .. C or C," S .. C," S ," C or C," S ," C," S ; c .. S .. C etc.

3. Now, in Ell above, the construct after while is the serial-clause

read (x),"x:j: 0

yielding the bool value yielded by its last unit x :j: O. Hence, if the first
number read is 0, the clause between do and od will never be elaborated; if,
on the contrary, this number is unequal to 0, then the formula

Ch.U.S.4 VERY INFORMAL INTRODUCTION TO ALGOL 68

4-7. absum plusab if num +:= 1 ; x> a

will be elaborated.

then pas +:= 1 ; +x
else neg +:= 1 ; -x

fi

19

The right operand of plusab is a conditional-clause, the condition of which
is a serial-clause increasing the counter num by 1 and yielding the bool value
x > O. Depending on this condition the then-part pas +:= 1 ; +x or the
else-part neg +:= 1 ; -x will be elaborated, yielding either +x or -x after
having increased either pas or neg by 1. That is to say; the serial-clause
between do and od (here a formula) results in adding abs x to absum.
3. After that the serial-clause after while is revisited, repeating the story
(looping the clause) as long as the number read is found to be unequal to O.

It may happen that a serial-clause does not yield a value, because its fmal
unit does not leave a value on the stack (the root of this will be shown in
0.7). We then say: "this serial-clause yields void". For example:

real x ,y, z; read ((x,y)); print (z := (x + y)/2 -sqrt (x xy))

yields void, because the output statement print (although it delivers humanly
recognizable graphics on some printing device) does not leave a value on the
stack. If, however, we want this serial-clause to yield, for example, the name
of the value printed (from which that value may then be obtained), then we
simply make z its final unit:

real x , y , z ; read ((x,y)) ; print (z := (x + y}f 2 - sqrt (x x y)) ; z

0.5.4. The value of a closed clause

A closed-clause (see 0.1) is a unit and as such it may be used in formulae
and in assignations. The value of a closed-clause is that of its constituent
serial-clause: .

x2[i,il:= (realx, y, z; read ((x,y));
. print (z := (x + y)/2 -sqrt(x xy));

z)
\

The value of a closed-clause may also be a name, and then you are entitled
to use it in a destination (see also 0.5.2); provided, of course, that the name
yielded does not happen to be local to the clause:

(real x, y , z ; read ((x,y)) ;
print (z := (x + y)/2 - sqrt (x xy)) ;
if z > 1 then m else n fi) +:= 1

-----_ .. _------------- ------

20 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.O.S.S

\Juder certain circumstances it may be annoying to have to arrange a
cl6sJt-clause in such a way as to deliver the value required, because there may
be ~6re than one candidate for the final unit. In such cases a 'completer' may
help. A completer is the symbol exit; the unit preceding a completer is (by
definition) a completing (final) unit of the closed-clause. You may take a
completer as a suppositious close-symbol.

For example, suppose you want a closed-clause to read a block of n pairs
of real numbers and to deliver false if there is no pair in the block in which
the difference between the arithmetic and geometric mean is greater than 1,
but to deliver true and to print the first such pair if this is the case. This may
be programmed as follows:

(El2) p:=(realx,y,z,"
to n do read ((x,y))," Z := (x + y)/2-sqrt (x xy),"

if Z > 1 then finish fi
od ,"

false exit
finish: print ((x,y)) ,"
true)

(For another example in which a completer is used, see E28* in 0.7.3).

0.5.5. The value of a constant

To conclude this bird's-eye view, we consider an extremely simple kind of
unit, the constant. You may declare:

(El3) real pi = 3.1415927

The thus declared identifier pi yields a real value (and not a real variable), in
much the same way as the denotation 3.1415927 yields that value. You
cannot assign to pi (it not being a variable): pi := 2. 7182818 would be as
nonsensical as is 3.1415927 := 2. 7182818. Beware of the slight notational
distinction between E12 and:

(E13*) realpivar:= 3.1415927

This distinction would have been clearer if we had written:

(E13**) loe realpivar:= 3.1415927

To pivar you may assign any other real value (pivar being a real variable). For
the notational matter, see 0.8.

Ch.O.6 VERY INFORMAL INTRODUCTION TO ALGOL 68

Declarations of constants enable the programmer to enforce efficient
compilation, for example in accessing the elements of multiple values.
Compare El4 and E14* below:

(EI4) sw
swx
swx2
swx3

+:= w[i] ;

+:= w[i] xx[i] ..
+:= w[i] xx[i] xx[i] ;
+:= w[i] xx[i] xx[i] xx[i])

In El4 an element such as w [i] and x [i] has to be pulled many times out
of a multiple value, which may be rather time consuming.

21

(EI4*) (real wi= w[i], xi=x[i] ; real wixi= wix xi .. real wixi2 = wixix xi ..
sw·
swx
swx2
swx3

+:= wi;
+:= wixi;
+:= wixi2;
+:= wixi2 x xi) (see also E15)

In EI4*, an element is never taken out of a multiple more than once. Of
course, you could have achieved most of this efficiency equallywell by
declaring the proper local variables: real wi := w [i] ,xi := x [i]; etc, but then
you would still have to go via the names when getting the values referred to
(which may take longer iIi some implementations). In the form of a constant,
you have the desired values most readily at hand.

The importance of the declaration of constants, however, is to be found at
another level; in Chapter· 1 , we shall see that in all identity-declarations a
constant is declared (see also 0.7 and 0.8), and this mechanism is nothing
more nor less than the life-line of the formal - actual correspondence.

0.6. A more involved program

Before embarking upon routines and other new modes that actually make
the new language, it is worthwhile to dwell on the subject of primitive
declarations and multiple values for just one section more. Many of the (until
now only) newly dressed features of the language will be found in full swing
in the more involved example E15 below. Although it is the program that
matters here, it may acquire a not too artificial setting in the following
context:

Suppose the input starts with an integral number n, which fixes the
number of pairs of measurements following. The first real f of each pair is a
factor, accounting for environmental influences on the target measurement,
which is the second real x of the pair. There may be other (not measured)

22 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.O.6

influences on x, which is why we are not particularly interested in the
correlation of the two. We therefore confine ourselves to the computation of
the mean, dispersion and momental skewness of the x's, weighted by the
(more or less normal) distribution of the fs. Preceding the If,x)-couples, but
following n, we input another pair of reals eps and ups; all x's below eps or
above ups are to be discarded as being certainly out of range (as a result of
punching errors, for instance).

We briefly survey the program E15 (the numbers in the margin refer, as
usual, to the linenumbers in the program text):

1- - - . In any place in a program text (except within identifiers and
denotations) comments may be inserted. A comment begins and ends with
the comment-symbol comment. Alternatively co, ~ or # can be used in
matched pairs:

~ this was the beginning of a comment and this is the end:¢

3,9,24-25 for ito n do (as well as for ito n while C do etc.)are specific cases
of the general construction of a loop-clause:

for i from start by step to finish while. condition do doclause od

The integral counter i is impliCitly local to the construction (it has nothing
to do with a possibly declared other i). If the counter i does not occur in the
do clause or in the condition, then you may omit for i. If start is 1, you may
omit from start: If step is 1, you may omit by step. If you do not want to
fmish at a certain value of i, you may omit to finish (see also Ell *). If it is
true, you may omit while condition.

11-13 The construction :

if Cl then Cl true
elif C2 then C2true
elif C3 then C3true

else C3false
fi

or, in the abbreviated notation:

(Cli Cltrue
I: C2 I C2trile
I: C31 C3true

I C3false
)

is shorthand for the nested conditional-clauses: .

if Cl then Cl true

fi

else if C2 then C2true

fi

else if C3 then C3true
else C3false

fi

Ch.O.6 VERY INFORMAL INTRODUCTION TO ALGOL 68

38-46. The statement print is a very accommodating output carrier_It
accepts almost everything you may invent to output,

be it a lay-out procedure like:
or a string denotation like:
or a variable like:
or a unit like:
or a row-display of them all.

new line
"number of measurements: "
n , below, above
sqrt (varf)

23

1-46. In the example E1S we are very strict about the use of variables and
constants: we never use a variable when a constant suffices (Le. when we do
not assign to it). Of course, you could declare all identifiers to yield variables;
in some implementations, however, a constant might be slightly more
efficient. Pay also some attention to the use of and-also-symbols (collateral
elaboration of declaration and row-displays) and go-on-symbols (serial elabo­
ration).

(E1S) begin
1) int n ; read (n) ; 4' number of measurements 4'
2)
3)
4)
5)
6)
7)
8)
9)

10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)

real eps,ups; read((eps,ups)); 4'eps';:;;;x[i]';:;;;ups4'
[J: n] real f, x; for i to n

do read ((4'factor4' f[i] , 4'measurementr: x [i])) od ;
int below := 0, 4' number of measurements rejected: too small 4'

above := 0, 4' number ofmeasurements rejected: too large 4'
real sf := 0, 4' sum factors accepted 4'

s/2 := 0; 4' sum squared factors accepted 4'
for i to n
do realxi=x[i];

od;
int
real

real

sf +:= if xi < eps
elif xi';:;;; ups

fi;
s/2 +:= f[i] t 2

then below +:= 1 ; f [i] := °
then f[i]
else above +:= 1 .. f[i] := °

in = n ~ below - above;
af = sflm , 4' mean factor 4'
varf = s/2lm - af x af; 4' variance of the factors 4'
sw := 0, 4' total weight 4'
swx := 0, 4'sum weighted measurements 4'
swx2 := 0, 4' sum squared weighted measurements 4'
swx3 := 0; If sum cubed weighted measurements 4'

24 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.O.7

24) for i to n
25) while real fi = f[i] ; fi :1= 0
26) do realxi=x[i],wi=exp(-((fi--af)t2)j(2xvarf));
27) real wixi , wixi2 ;
28) sw +:= wi;
29) swx +:= (wixi := wi x xi) ;
30) swx2+:= (wixi2 := wixi x xi) ;
31) swx3+:=wixi2xxi
32) od; .
33) ¢ first , second , third moment about 0 4'
34) real ax = swx/w , ax2 = swx2/w , ax3 = swx3/w ;
35) real varx = ax2-axt 2;
36) real sdx = sqrt (varx) ;
37) reill skx = (ax3 - 3 x ax x ax2 + 2 x ax t 3)/(2 x vane x sdx);
38) print ((newline,
39) "number of measurements: " , n, "below: " , below, "above: " , above,
40) newline, .

. 41) newline, .
42) "mean factor: " , af, "dispersion: " , sqrt (varf),
43) newline,
44) newline,
45) "normal mean:'/ , ax , "dispersion: " , sdx , "skewness: " , skx
46)))

end

0.7. Routines and procedures

A concept of fundamental impo.rtance in programming is the "routine", a
unit that can be activated from different. places in the program, under
different circumstances and in different incarnations when elaborated
recursively. Moreover, routines may have a provision for formal-paraJ;neters,
to which the actual-parameters are then supplied· when the routine is
activated.

Routines, and also their names, may be ascribed to identifiers; we then
speak about 'procedures'. In this language, a routine may also be ascribed to
an operator. Proceduresandoperatorsare to be distinguished in that they are
activated differently. Procedures are activated by "calling" them, and
operators by applying them in formulae.In this section we sha11consider
procedures; for operators see 0.10. .

Ch.O.7.1 VER Y INFORMAL INTRODUCTION TO ALGOL 68

0.7.1. Procedures without parameters

With the aid of the symbol proc we can derive new modes from already
defined ones (as we did with the aid of the symbols [and] in 0.4). We thus
obtain one of many possible proc modes, the simplest of which is the proc
void (without parameters, not returning any value).

25

Suppose we want to turn the algorithm EI * into a procedure. This
algorithm is defined by a unit (a closed~clause); we declare it as a proc void in
the following way:

(EI6) procp = void: (realx. y, z; read ((x, y));
print (z := (x + y) / 2 -sqrt (x x y))

);

The right hand side of this identity-declaration is a routine-text. It yields a
corresponding routine - a value of mode proc void - which is now ascribed
to the identifier p. The unit to the right of void: is not, of course, elaborated
at this stage.

The procedure p does something for you: it reads two numbers, does some
computation with them and finally prints the result. However, it does not ,
and it cannot, return any value; p is declared to be a procedure returning
void.

For those who are accustomed to the "procedure body" (a well known
concept in some other programming languages), the alternative writing:

(EI6*) proc p = void: begin real x , y , z ;
read ((x, y)) ;
print (z := (x + y) / 2-sqrt(x xy))

end;

may be more familiar.
Within the context of the declaration E16, we can call this procedure.

Consider:

(EI7) begin int n ; read (n) ; to n do p od end

Between do and od we find p. By virtue of its declaration, p is a unit of
the mode proc void. The elaboration of a unit of the mode proc void is (in
this syntactic position) the elaboration of its unit. Therefore, the piece of
program above is, at least in its effect, equivalent to E4 (see 0.3).

We often want a procedu;e to return a value. For example, p could do just
a little more an.d return the value printed. Inside the closed-clause this value is
referred to by z. We already know how to get a closed-clause to yield a

1.1.A.-2

26 VERY INFORMAL INTRODUCTION TO ALGOL 68

specific value (O.S.4). Now, by prefacing it with real: , we arrive at the
declaration of a proc real:

(EI8) procpz = real: (realx, y, z; read ((x, y));
print (z := (x + y) /2 -sqrt (x x y)) ;
z);

Ch.O.7.2

The mode proc real is derived from real as, for instance, was [1:n] real.
Within the context of El9, it is not difficult to understand the effect of

the following piece of program:

(E19) begin int n ; read (n) ;

end

int less := 0, morequal := 0 ;
to n do (print (newline) ; pz < 1 I less I morequal) +:= 1 od;
pn'nt ((newline, newline, less, morequal))

The pz in the formula pz < 1 is a unit of the mode proc real. The
elaboration of a proc real unit is (in this syntactic position) the elaboration of
the routine it yields; that routine returns a real value, and consequently pz
yields that real value.

0.7.2. Procedures with parameters

Even more important than procedures without, are procedures with
formal-parameters. The actual-parameters are.then supplied when the
procedure is called, as we have already done on several occasions when calling
the standard procedures read, print and sqrt .

We now declare a procedure d with two real parameters returning a real
value, a proc (real, real) real:

(E20) proc d = (real a, b) real: (a + b)/2-sqrt (a x b) ;

I 1 II 2 I I
l_-_-_-_-_-_-_-_-_-_-_-_-_-_~ _________________ _

1. These are the formal-parameters a and b which are both specified to be of
mode real. The actual-parameters have to match this mode. There are,
however, certain facilities in this respect. If, for instance, a ref real is supplied,
then its real value will be taken; if an int is supplied, then it will be
"widened" into a real.
2. The prefix real:. requires that the routine is to return a real value, when
called.

Ch.O.7.3 VERY INFORMAL INTRODUCTION TO ALGOL 68 27

3. The whole sequence of symbols to the right of the = is a 'routine-text'. It
yields a routine, which requires two real parameters. The elaboration of a call
in which actual-parameters are then supplied to match these formal­
parameters, is the subject matter of 1.2.3 and 4.2.2.2. It will suffice, here, to
state that a and b, as formally declared in our example E20, will be real
constants in the routine (when, for instance, x andy are supplied as
actual-parameters, then the identity-declarations real a = x , b = y ; will be
elaborated). That is to say, the actual-parameters are elaborated once, to
supply their real values. In other programming languages this phenomenon
may be known as "call by value" (see also 0.8.2 and 0.8.3).

Within the context of the declaration E20, the algorithm E 1, for example,
could be programmed in the following way:

(E21) begin real x , y , Z ; read ((x, y));
print(z :=d(x,y))

end

The assignation El2 (see 0.5.4) could look like:

(EI2*) p:=(realx,y,z;

)

to n do read ((x, y)) ;
if d(x, y) > 1 then finish fi

od;
false exit
finish: print ((x, y)) ;
true

An example of a procedure with a parameter but not returning a value is:

(E22) proc skip = (int n) void:
(realx," to n do read (x) od),"

which skips n numbers on the input tape.

0.7.:? Examples of procedure declarations

We have four kinds of procedures:

1) without parameters, not returning any value;
2) without parameters, returning a value;
3) with parameters, not returning any value;
4) with parameters, returning a value.

28 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.O.7.3 .

Examples:

proc skiptozero = void: (loc real x :=; 1 ;
while x =1= 0 do read (x) od)

4' which was a proc void 4' ;
proc nexttozero = real: (skiptozero;

loc real x; read (x) ; x)
4' which was a proc real ¢ ;

procskipto =(reala) void: (locrealx:=a-1 ..
while x =1= a do read (x) od)

¢ which was a proc (real) void ¢ ;
proc nextto = (real a) real: (skipto (a) ..

loc real x .. read (x) ; x)
¢ which was a proc(real) real ¢ ..

In the standard prelude of the language, we find declarations for the proc
(real) reals sqrt , exp, In (the natural logarithm) , cos, arccos, sin, arcsin,
tan, arctan. Moreover there is a proc real random, which returns the next
pseudo-random real value from a uniformly distributed sequence on the
interval [0,1) (Le. 0 ~ random < 1). Finally we find in the standard prelude
an1dentity-declaration real pi =ca real value close to 'IT c. (See 1.3.2 for the
significance of the special comment-symbol c).

To these we subjoin:

(D4) proc ncos = (int i) real: cos (2 x pi x i/n) ; ¢ a proc (int) real if
proc nsin = (int i) real: sin (2 x pi x i/n) ; ¢ a proc (int) real ¢
real e = c a real value close to the base of natural logarithms,

i.e. 2.718281828459045 c ..

Another example of a proc(int)real declaration is:

(E23) procfac = (int n) real:
if n > nmaxfac

then faclarge (n)
else intf:= 1 ..

for i from 2 to n dofx:= i od; f
fi; .

where nmaxfac is an implementation dependent integral constant which is'
related to maxint in the following way:

(E23*) int nmaxfac = (int n ,f:= 1 ;
for i whilef~ maxint+ i d9 n := i .. fx := nod .. n);

and faclarge is another proc(int)real:

Ch.O.7.3 VERY INFORMAL INTRODUcTION TO ALGOL 68

(E23**) procfaclarge = (int n) real:
c depending on nmaxfac :

stirlings formula with correction factor,
sqrt (2 x pi x n) x (n/e) t n x carr (nj
or some series expansion for l/gamma (n) ;
see "Handbook of Mathematical Functions"
edited by Milton Abramowitz and I. E. Stegun
Sections 6.1.37/38 and 6.1.34 c;

The proc(intjreal fac , as declared in E23, attempts to return the exact

29

real equivalent of n! as long as this value remains ~ maxint (the critical value of n
is yielded by the constant nmaxfac); otherwise, a proc(int)realfaclalge is
called to give a reasonable approximation.

Formal-parameters may be of any mode and procedures may return a
value of any mode. The time has not yet collie for the more arresting
examples, which is why we confine ourselves to two simple ones. Both of
them will put in another appearance in 0.8.2, because their efficiency can be
improved. The starred example numbers refer to the unstarred numbers in
Section 0.8.2.
(E27*) proc maxindex = ([] real a) int:

(intj:= lwb a
for i fromj + 1 to upb a
do if a[i] > a[j] thenj := i fi od; j j;

In E27* we see the declaration ofa procedure with a 'row of real'
parameter, returning an int, a proc([] real)int ; maxindex returns the index
of the maximal element in a given row (if there are more "maximal
elements", then the lowest of their indices is returned).

The monadic-operators upb and lwb return the values of the upper-bound
and lower-bound respectively; being declared in the standard-prelude of the
language, they are permanently built in and are applicable to all kinds of
multiples. If the multiple has several subscripts, they are dyadic-operators (so
that, for instance, 2 upb x2 returns the second upper-bound of the row-row­
of-real x2).

The proc(char,stringjbool match, declared below , returns true if the
character ascribed to the formal-parameter c occurs in the given string; if not,
then the value returned by match will be false. In this procedure we make use
of a completer (see 0.5 A):
(E28*) proc match = (char c, string s) bool:

(for i from lwb s to upb s
do if c = s [i] then yes fi od ; no: faIse exit

yes: true j;

-------------------_._----_._---_.

30 VERY INFORMAL INTRODUCTION TO ALGOL 68

0.8. The creation of new modes, names and values referred to

0.8.1. Variable declarations revisited

It is time to reconsider the variable-declaration:

(E24) loc real x ;

because it is not so innocent as it looks.

Ch.0.8

You might already have suspected this, knowing what its elaboration
achieves (see 0.1):

a location for a real value is reserved in the memory
of our computer (on the stack);
this real value is referred to by a name x (Le. its address);
this name x is now ascribed to the identifier x.

In the program text, the identifier x thus represents a real variable, which
is a real value associated with the name referring to it. What is "variable", of
course, is not the name (the location, the address) but the value referred to.
The name cannot be changed by the program, it has been ascribed to x and
this relation is an indissoluble alliance. Nevertheless, a "name" is a value as
wen, and consequently it must have a mode. The mode, then, of the name x
is ref real ('reference to rea1').

The symbol ref plays a role in declarations as do the symbols [and] and
proc (and some others which we shall meet soon): they assist in the creation
of new modes. We now come to the unmasking of E24. Consider the
identity -declaration:

(E24*) ref real x = loc real;

which expresses more precisely what happens during the elaboration of E24:

1) loc real is a loc generator which yields a ref real
2) this ref real value is ascribed to the identifier x.

Thus the effect of E24* is the same as that of E24 and, indeed, every
variable-declaration has an equivalent identity-declaration hiding behind it.

The point to remember is the hidden fact that, on declaring a real variable,
two values are involved:

1) a real which is variable.
2) a ref real which is constantly yielded by the identifier,

Getting ahead of Section 1.2.2.3 we may depict a variable-declaration
happening as follows:

ch.d.8.1 VERY INFORMAL INTRODUCfION TO ALGOL 68

a new real
value is generated
on the stack

ref real

real

which is the same as the situation depicted in 0.1. For a more systematic
treatment see Chapter I.

31

The result of the declarations EI3 and E13* (see 0.5.5) can be depicted as
follows:

pi

real

To pi no other value can
be assigned, pi being a
constant.

pivor

ref real

13.14159271

real

To pivor any other value can
be assigned, pivor being a
variable.

Finally, we give some declarations in their three equivalent forms. The first
indicates most clearly what is actually happening, although in practice one
will always use one of the others (which are also more similar to declarations
in other programming languages).

identity-declaration:

ref bool
ref int

p = loc bool;
n = loc int;

ref real x = loc real,
y = loc real;

ref char c = loc char;
ref [] real xl = loc [1: n] real;

variable-declaration :

loc bool p;
loc int n ;
loc real x ,y;

loc char c;
loc [1: n] real xl ;

boot p;
int n;
realx,y;

char c;
[1: nJ real xl ;

------------------.-~--~----~~--~.-. -

32 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.O.8.2

0.8.2. Procedures, values and references

One of the implications of the extremely fruitful concept of a reference
("name") as a value in this language is that we have been given a quite natural
way of declaring (amongst many other very useful constructions):

I variable procedures,
II formal-parameters which refer to, rather than yield, the values

which are topical ("actual") when the procedure will be called,
III procedures returning a name (a reference to a value).

We discuss briefly these three applications of the concept of a name by
giving some examples.

I)
By declaring:

(E2S) mode fun = proc (real) real;
loc funf;

the identifier f is declared to be a variable fun (to yield the name referring to
a routine of the mode proc(real)real).

Within the context of this declaration, we may assign any fun routine to
this fun variable. For example:

f:= In

Now the call:

y := f(x) is the call y := In(x)

while after the assignation:

f:= (real a) real: a x In(a)-a

the same call becomes:

y := x x In(x)-x

II)
Even more important is the specification of a formal-parameter to be a .

name:

(E26) proc read fun = (ref real a) real: (read(a); a := f(a));

E26 declares the formal-parameter to be a ref real (the name of a real) to
which, consequently, a real value can be assigned. This happens two times in
the procedure: first the value of the number read is assigned to a (by the call

Ch.O.8.2 VERY INFORMAL INTRODUCTION TO ALGOL 68 33

of the procedure read), and then the f of that value is assigned to a. If we now
call this procedure, for example:

y:=readfun(x)--y

then the formal - actual correspondence results in:

ref real a = x ;

i.e. the formal name Ii is made to refer to the same real value as the actual
name x. The call read fun (x) thus results in assigning to x the f of the value
read. Which fun is then applied depends (in the context of E2S) on the fun
assigned to f

In other programming languages, a'ref parameter may be known as an
"output parameter". In contradistinction to the more or less domesticated
term "call by value" in ALGOL 60 (see 0.7.2), this could be termed "call by
reference". For an equivalent of the ALGOL 60 term "call by name" see
0.8.3.

We are now in a position to improve on the examples at the end of 0.7.3.
There, the value parameters imply that a copy 9f the actual rows is to be
passed to the routine. Unfortunately, not all implementors have been able to
avoid actually making this copy. We now show how to avoid the problem
altogether.

(E27) proc maxindex = (ref [] real a) int :
(intj:= Iwba;

for i fromj + I to upb a
do if ali] > a[j] thenj := Hi od;
j);

Now, in the call maxindex(xl), only the name xl is given to the
procedure: ref [] real a = xl. The access to the [] real referred to by x I thus
runs via the formal name Ii to that very [] real and not (as was the cas~ in
0.7.3) to a copy of it.

(E28) proc match = (char c , ref string s) bool:
(for i from Iwb s to upb s

do if c = s [i] then yes fi ; no : false exit
yes: true);

Now, in the call match(" ?", text) , in the context of the declaration string
text, the character /I?" is copied onto the stack, but the name text is given to

'the procedure instead of a copy of its value.

34 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.O.8.3

III)

An example of a procedure returning a name is:

(05) proc xory = ref real: if random < 0.5 then x else y fi;

If we now assign:

xory := 3.1415927

then it depends on the value returned by random to what destination we
actually assigned.

A more substantial example is:

(E29) proc maxelmnt = (ref [] real a) ref real:
(intj := lwb a ;

for i fromj + 1 to upb a
do if a[i] > a[j] thenj := i fi od;
a [j]) ;

Compare E29 with E27. In E29, a [j] is a name referring to a maximal
element of the actual row, when the procedure is called. If you want to assign
a new value to the maximal element of, for instance, the row xl, then you
could do it by a call of maxindex :

xl [maxindex(x1)] :=y

but also, and more directly, by a call of maxelmnt :

maxelmnt (xl) := y

0.8.3. Procedures as formal parameters

Compare:

(E30)

with:

(E3l)

proc choice1 = (real a) void: (a < 0;5 I x I y) +:= a ;
choice1 (random) ;

proc choice2 = (proc real a) void: (a < 0.5 I x I y) +:= a ;
choice2 (random) ;

In the call choice 1 (random), the identity-declaration real a = random will
be elaborated. Hence, the proc real random is called only once and its value
(<0.5 or):0.5) is added to x or to y.

Ch.O.8.3 VERY INFORMAL INTRODUCTION TO ALGOL 68 35

In the call choice2 (random), the identity-declaration proc real a = random
will be elaborated. Hence, the proc real random is ascribed to a inside the
routine and will be called once in the conditional-clause and again as the right
operand of the +:= (i.e. random will be called twice in E31).

The construction E31 is similar to what in ALGOL 60 is known as "call by
name"; it has, nevertheless, nothing to do with the concept of a name in
ALGOL 68 (in which it is an application of the principle that any mode may
occur in a formal-parameter, in particular also a proc real).

Compare also:

(E30*) choice1 (x-y + ncos(k))

and:

(E31 *) choice2 (real: x-y + ncos(k)) ¢ see D4 in 0.7.3 ¢

In E30*, the formula x - y + ncos(k) will be elaborated once in the
elaboration of the identity-declaration real a = x - y + ncos(kj. Depending on
the condition, this value (inside the routine ascribed to a) will be added to x
or to y, so that the result of the call will be: .

x +:=a i.e. x +:= ¢ the value of ¢ x - y + ncos(k)

or

y +:=a i.e.y +:= ¢ the value of ¢x-y + ncos(k)

In E31 *, on the contrary, the formula x - y + ncos(k) appears in a
routine-text (the mode of which is proc real) and it is the routine yielded by
real: x - y + ncos(k) which is ascribed to the proc real identifier a at the
elaboration of the procedure-call. Hence, the formula will be elaborated twice
(once in the conditional-clause and again as the right operand of the +:=). The
two successive elaborations, however, yield the same value, which is why the
two calls E30* and E31 * have the same result (though E30* is the more
efficient one).

However, compare now:

(E30**) choice1 (x - y + ncos(k +:= 1) j

and:

(E31 **) choice2 (real: x - y + ncos (k +:= 1))

Each elaboration of the formula x - y + ncos(k +:= 1) has a side effect on
k (k := k + 1) and therefore the two calls will not have the same result; in
E30** the formula being elaborated once, and in E31 ** twice.

36 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.O.8.4

Another construction in which we find a procedure as formal-parameter
(in ALGOL 60 circles known as "Jensen's device") is:

(E32) proe sigma = (int a , b , proe(int)real fun) real :
(r~al value:= 0 ;

for i from a to b do value+:= fun (i) od;
value) ;

calls of which may be:

y := sigma (I , n, (intj) real: xl [j)) ;
y := sigma (-m, +m , ncos)

It is worth your while to find out why we have to give the proe(int)real
routine-text (int j)real: xlii] as actual-parameter in the first call, and why
ncos would do in the second call.

0.8.4. Pointers (variable names)

Until now, names have always appeared as being constantly yielded by
identifiers. By:

loe real x ;

or:

refreal x = loe real.;

we declared x to yield constantly a tef real (the name of a real). Only the real
value referred to· could be changed and never the name x.

You may, however, also want to declare identifiers to yield variable names,
i.e. references to names. Itinay be clear immediately that such an identifier
will then· yield a reference-to-reference. We thus declare:

, (D6) ref real xx , yy ;

or equivalently

(D6*) ref ref real xx = loe ref real ,
yy = loe ref real ;

This collateral-declaration generates on the stack two ref reals (two
locations for names of reals), which simply means that via such values on the
stack you can refer to other values (reals):

Ch.O.8.4 VERY INFORMAL INTRODUCTION TO ALGOL 68

I toe ref real I yy

ref ref real ref ref real

Consider now:

(E33) xx :=y

After this assignation, the value of xx (Le. the ref real referred to by xx) is
the name Y (Le. the ref real yielded by y):

xx y

ref ref real

ref real ref real

~D
real

Observe that an assignation always takes place at the highest level possible.
Now the call:

y := sqrt(xx)

results in: y := sqrt(y) • while after the assignation:

(E33*) x-x :=x

- -_ _-----.---_ ... _--

37

38 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.O.8.S

the same call results in

y := sqrt(x)

In computer oriented programming this is known as "indirect addressing"
(in a certain location in the memory one finds the address of another value).
In some other programming languages (in particular in assembly languages) a
ref ref may be known as a "pointer" (i.e. by D6, xx and yy yield "pointers"
to real variables, addresses of addresses of real values).

0.8.5. Identity relators, the cast, coercion

Where names are values in this language and may be manipulated as all
other values (see 0.8.4), you may want to ask whether two names of the same
mode are the same name. Neither the equals-symbol =, nor its negation :\: can
serve this purpose, because they are operators defined to compare valu,es of
certain modes only (and these values are mostly not names). To compare
names, we have the identity-relators :=: (or is) and ::\:: (or :/=: or isnt). For

, example, after the assignation:

y:=x

it is Inost certainly true that

y=x

but it is also true that nevertheless:

(E34) y isntx or y::\::x

because y and x yield different names (references to different locations on
the stack).

(E35) Y isxory or y :=: xory

however, is true or false depending on the value lastly yielded by random (see
D5 in 0.8.2) and independently of whether y = x or y :\: x .

Observe also that after the assignations:

xx:= y ;yy :=xx

or, in one phrase:

yy :=xx:= y

nevertheless:

yy ::\:: xx or yy isntxx

Ch.O.8.S VERY INFORMAL INTRODUCTION TO ALGOL 68

because yy and xx yield different names (the mode of which is ref ref real);
reconsider E34 and its motivation.

One might now be disappointed that after the assignation yy := xx := y,
nevertheless yy isnt xx. In the nature of things it must be possible to get an
answer to whether names assigned to different pointers are the same. But
then the right question must be asked, and this question lies one level of
reference below the question yy :=: xx.

We could go down one level in reference by declaring, for instance, the
proc(ref ref real)ref real

proc the name assigned to = (ref ref real aa) ref real: aa;

and then we get undoubtedly the proper answer when we call this procedure
to the left 'and to the right of the identity-relator:

the name assigned to (xx) : =: the name assigned to (yy)

39

The ref real: in front of the reference-to-reference-to-real-unit aa "coerces"
this unit to yield its reference-to-real value. Fortunately, it is not necessary to
declare such a monstrosity of a procedure. You may write:

(E36) ref real (xx) :=: refreal(yy)

The technical term for ref real (xx) is 'cast'. A cast, in general, coerces its
body to yield a value of the mode it dictates (if possible).

The cast may also be used to assign a value to the name assigned to a
pointer:

(E37) refreal (xx) := y

comes, in the context of E33*, to the same as:

x :=y

You might ask now why we did not meet the cast at a much earlier stage;
why, for example, we did not have to write:

a : = real (b) , which, by the way, is correct ALGOL 68

The answer is that in all current situations where it is clear from the context
what you want, your computer will be so kind as to coerce your units to your
will. As a matter of fact, "coercion" is the technical term for the provision
that:

when no ambiguities make trouble,
your units will be impliCitly coerced to the mode you
apparently require.

40 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.0.9

The time has not yet come to discuss all the slings and arrows of coercion.
Here we set a pointer to 1.1.6 and another one to 5.1.0.

0.9. Structures and other new modes

Besides the multiple, you. will find in this language another system that
gives you control of a collection of values, and that is in the form of a
structured value (or "structure" for short). The individual values in a multiple
are its "elements", the individual values in a structure are its "fields". The
elements in a multiple are all of the same mode, [J:n] real, [1 :80] char,
[1 :5] proc void etc.; the fields of a structure on the contrary may be of
different modes, although there are very useful (even standard) applications
where the field modes are the same.

0.9.1. complex values, vectors etc.

By declaring:

(D7) mode compl = struct (real re , real im) ;
4' another built in mode like string 4'

or

mode compl = struct (real re , im) ;
. If an obvious contraction 4'

a new mode compl (complex) is defined consisting of two real values; one of
them is selected by the field-selector re, the other by im. Although field­
selectors look the same as identifiers, you must not confuse them.

Now the variable-declarations:

(D8) compl w , z ;

ascribe to wand z the names wand z which refer to structures as defined in
D7 (i.e. wand z are compl variables).

The fields of wand z (the real and imaginary part of these complex
variables) may be selected as follows:

(E38) x := re of z ; y := im of z ;

The re of and im of select the field in much the same way as, for instance,
[i] , [i,j] etc. select the element in a multiple. There is, however, an
important distinction: the selection of a field may be done at compile time,
whilst the selection of an element in a multiple usually involves computation
and, consequently, can then only be done at run time.

Ch.O.9.l VERY INFORMAL INTRODUCTION TO ALGOL 68

After the declarations D8, the identifiers wand z yield ref compls; the
situation may be depicted as follows:

w z

ref compl ref compl

compl compl

real real

0 0
real real

0 0
The result of the assignation:

z:= w

should be obvious. You may, however, also assign:

(E39) z := (x, y)

which amounts to:

re of z := x, im of z := y

The (x, y) in this context is a structure-display, the counterpart of a
row-display.

The mode compl is built into the standard declarations of the language,
and operators = , ":j: , + , - , x , I , t , and a monadic operator conj are
declared for it with the meanings to be expected. Moreover, we have
(monadic) operators re , im , abs and arg which return a real when applied to
a compl, and an operator 1 (or i or +x), which may be pronounced as
plus-i-times, which makes a compl of two real operands:

z :=x ly or z :=x +xy

41

42 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.O.9.2

amounts to:

z := (X, y)

(see also 0.10.4).
As from int to real, there is automatic widening from real to compi (and

via real, from int to compI). The assignation:

z :=x := i:= 1

results in i = 1 , x = 1.0 , z = (1.0 , 0.0)
Other examples of new modes defined by structures with fields of the

same mode might be:

(D9) mode vec = struct (real xcoord , ycoord , zcoord) ;
mode rational = struct (int numerator, denominator) ;
vec v1 , v2, v3 ;
rational r 1 , r2 , r3 ;

These modes, however, are not built into the standard declarations. If you
want to use them for new kinds of operands, then you have to declare
operators for them; this can easily be done (see 0.10.7,8.4.1 and 8.4.2).

0.9.2. Structures with mixed mode fields, chains etc.

The really interesting feature of struct ured modes is, however, that you
can collect values of different modes into them. For example:

(E40) mode book = struct (string text, int index) ;
book revised report on the algorithmic language algol 68;

Now the field:

text of revised report on the algorithmic language algol 68

contains the string: "may be difficult for the uninitiated reader" [see
R 0.1.1 }, and:

index of revised report on the algorithmic language algol 68

might be the point where you really got stuck.
There is, however, another

book informal introduction to algol 68 revised edition

which also contains the string denoted, but tn quite another context. May this
other book help you to proceed at the index of referred to above.

Ch.O.9.2 VERY INFORMAL INTRODUCTION TO ALGOL 68 43

An important implication of the concept of mixed mode fields is that you
can make a field refer to another structure of that same mode. In this way
chains (lists, queues, etc.) can be defined in a most natural manner. For
example:

(E41) mode volume = struct (string text, int index,
ref volume companion, next) ;

volume report, informal introduction,
revised report, informal introduction revised;

The assignations:

(E42) companion of report := informal introduction;
companion of revised report := informal introduction revised;

have been made. Moreover we can report that:

(E43) next of report := revised report;
next of informal introduction := informal introduction revised;

There will be no next of revised report, neither a companion of informal
introduction nor of informal introduction revised nor a next of informal
introduction revised. To express this, we assign:

(E44) next of revised report :=
companion of informal introduction :=
companion of informal introduction revised :=
next of informal introduction revised := nil ;

where nil is the same as "a reference to no value at all".
We may speak about:

text of companion of revised report

which is the text under your very eyes at this moment.
It is important to comprehend the mode of the companion and next fields

of, for example, revised report and informal introduction revised. To these
identifiers volume variables have been ascribed and their mode is,
consequently, ref volume. Likewise, and this is the important point,
companion of revised report yields a ref volume variable, and so its mode is
ref ref volume; hence, companion of revised report is a "pointer" as are
companion of report, next of report and next of informal introduction.

From this it follows that in E42 and E43 names have been assigned to
pointers rather than (non ref) values - you will not find the text of informal
introduction revised in the revised report, but via the pointer companion of

44 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.O.9.2

revised report you find a reference to that text. A more complete discussion
of this rather delicate matter will be found in Sections 1.4.3 and 5.4.2.

To conclude, we consider an example in which names will be assigned to
ref fields.

(E45) mode card = struct (int value, string colour, picture,
ref card nex t) ;

mode deck= struct (int number, ref card one) ;
[0:51] card card;
deck myhand, yourhand ;

In E45 we declared 52 cards and two decks, each of which may refer to a
certain card by its field one of myhand (one of yourhand). Which cards you
and I then have in our hands may now follow from the fields next of card [i] ;
number of yourhand may be the number of cards you have in your hand.

Leaving the value, colour and picture of the cards for what they are, we
may assign:

(E46) for i from 0 to 51 do next of card[i] := card [(i + 1) mod 52] od;
yourhand := (52, card [0]) ; myhand := (0 , nil)

where mod is the standard operator yielding the value of the left-operand
modulo the right-operand. We thus arranged our 52 cards in a circular chain
and you have them all in your hand.

You may now remove a card, say card [37] ,by:

next of card [36] := card [38]

and give it to me:

one of myhand := card [37] ;
next of card [37] := card [37]

which you could have done in one statement:

¢ we made card [37]
selfreferring ¢

one of my hand := next of card [37] := card [37]

You may give me another card:

next of card [28] := card [30] ;
next of card [37] := card [29] ;
next of card [29] := card [37]

We may administer these two events by:

number of your hand -:= 2;
number of my hand +:= 2

Ch.O.9.2 VERY INFORMAL INTRODUCTION TO ALGOL 68 45

Icard[ill

~'d_
card card

int

B D
string

EJ
"..

D
string

I picture I D
ref card

next < nil > ,
I
I

myhand

ref deck

deck

int

I number I
ref card

one ,
I
l

46 VERY INFORMAL INTRODUCTION TO ALGOL 68

0.10. Routines and operators

A routine may be ascdbed to an operator (see 0.7). An operator is
represented by a symbol, such as:

+-x/7ttVAll«=*~>

<= >= +x Ix
+:= -:= x:= j:= etc.

or by a bold word (representing a symbol), such as:

over up down or and not i It Ie eq ne ge gt

Ch.O.lO

plusab minusab timesab divab upb lwb re im etc.

You can make as many operators as you need:

plus minus times div pow
nor impl pari perp abc m n 0 p

We have to distinguish between two kinds of operators:

1) monadic: the routine has one formal-parameter;

etc.

a monadic-operator is always applied to the operand to its
right (prefix notation) ,

2) dyadic: the routine has two formal-parameters;
a dyadic-operator is always applied to the operand to its
left (the left-operand) and to its right (the right-operand),
(infix notation).

The monadic operators always have a higher priority than all the dyadic
ones; for the latter nine priority levels are provided_ The priority of a newly
defined operator is declared by a priority-declaration:

prio 0 = 3 ;

An operator will normally be used to return a value. The natural use of
operators is in formulae. Routines yielded by operators are therefore always
routines with either one or two formal-parameters, usually returning a value.
Operation-declarations look like procedure-declarations; the only difference
lies in the use of op instead of proc.

In this section we shall confine ourselves to taking over some of the
operation-declarations from the standard-prelude [R 10.2] . They may speak
for themselves and reading them is one of the ways of learning the language.
At this point (or at a point a little further on in this section), you might

---------------- ----

ch.D.ID.I VERY INFORMAL INTRODUCTION TO ALGOL 68 47

decide to try some close reading in R 10.2.3. Anyhow, the examples we give
here illustrate how to declare and use your own operators.

0.10.1. Operations on boolean operands

R 10.2.3.2

opabs
opi
op V

op 1\

op=
op :j:

= (bool a) int:
= (bool a) bool:
= (bool a, b) bool:
= (bool a, b) bool:
= (bool a, b) bool:
= (bool a, b) bool:

if a then 1 else 0 fi ;
if a then false else true fi ..
if a then true else b fi ..
if 'a then b else false fi ..
(a 1\ b) v (ia 1\ ib) ..
i(a = b) ..

These declarations express neither more nor less than the fundamental
truth tables of elementary boolean algebra. You might subjoin in your own
library (it is not in the standard-prelude):

prio impl = 5 ..
op impl = (bool a, b) bool: i(a 1\ ib) ..

Pay some attention to the definition of equality of two boolean operands:
the first occurrence of the symbol = is the operator to be defined; the second
occurrence is the is-defmed-as-symbol which is part of all identity- and
operation-declarations.

0.10.2. Formulae

Routines ascribed to operators are activated by the formulae in which
those operators occur. Compare, for instance:

(E47) op V = (bool a, b) bool: if a then true else b fi ..
proc or = (bool a, b) bool: if a then true else b fi ..

Both v and or yield (different instances of) the same routine. Therefore, the
formula p v q returns the same value as the call orr p,q) .

There is, however, a very important distinction between the elaboration of
a formula and that of a call. In a procedure-call it is the procedure-identifier
(irrespective of the actual-parameters) which appoints the routine to be
activated. In a formula, the mode of the operands, as well as the operator
itself, is taken into account. In a procedure-call your computer will be so
kind. as to coerce (if possible) your actual-parameters until they match the·

48 VERY INFORMAL INTRODUCTION TO ALGOL 68 01.0.10.2

modes required by the formal-parameters (ints may be widened into reals and
reals into compls etc.). In formulae this kindness is restricted. There may be
many different occurrences of the same operator token, yielding different
routines depending on the (then necessarily different) modes of the
formal-parameters. Therefore, the modes of the actual operands have a firm
vote in the election of one of the routines nominated under the same
operator.

Moreover, the same symbol may occur as a monadic- as well as a dyadic­
operator, even in the same formula. It is always immediately clear from the
context whIch of these two possibilities applies.

Let there be declared:

proceq = (compla, b)bool: absa=absb;
op = (compl a, b) bool: (re of a = re of b) A(im of a = im of b);
op = (real a, b) bool: a ~ b A a ~ b ;
op = (int a,b)bool:a~b"a~b;

(E48.0)
(E48.1)
(E48.2)
(E48.3)
(E48.4)
(E48.5)

op = = (bool a,b)bool:(aAb)v(laAlb);
··op I = (bool a) bool: (a I false I true) ;

prio I = 3;
(E48.6) op. I = (bool a,b)bool:aAlb;

Now:

but:

w=z
x =y
i = j
p =q

eq(w,z)]
eq(x,y)
eq(i, j)

however:

eq(p,q)

but:

invokes E48.1
invokes E48.2
invokes E48.3
invokes E48.4

all three call E48.0 [
because wand z are ref compls
x and y will be Widened} to
i and j will be widened compl

is undefined, because a boot cannot be coerced to compl

eq(absp, abs q) calls E48.0 , because abs p and abs q yield
ints which will be widened to compl

Ch.O.l0.3 VERY INFORMAL INTRODUCTION TO ALGOL 68 49

and in:

Ipllq }
or

(lp)I(lq)

the first occurring I is monadic, and invokes E48.5
the second occurring I is dyadic ,and invokes E48.6
the third occurring I is monadic, and invokes E48.5

Apart from owning a routine, operators also have a certain priority which
determines the parsing of the formula in which they occur. By inserting
brackets in a formula, a different parsing can be obtained from that required
by the "natural" priorities; in fact, priorities serve to avoid brackets.

Take, for instance, the formula ((1/\ b) V (Ia /, Ib). The operators /\
and v have different priorities (prio /\ = 3 , v = 2); consequently, the
brackets are superfluous: a /\ b Via /\ Ib yields the same value, though in a
less transparent manner.

The monadic I is of higher priority than any dyadic-operator and
therefore the brackets in, for instance I(a 1\ Ib) are essential.

0.l0.3. Operations on arithmetic operands, the standard prelude

. Maybe a certain amazement will fall upon you in Section 10.2.3 of the
Report. You will find there declarations such as:
[R 10.2.3.3.i] op += (int a, b) int: a - - b ;
[R 10.2.3.3.m] op += (int a, b) int:

if b:j: 0
then int q := 0, r := abs a ;

while (r -:= abs b) ~ 0 do q +:= 1 od;
if (a < 0 and b ~ 0) or (a ~ 0 and b < 0)
then -q else q fi

fi;

and even worse, because you will also meet tokens not belonging to the
language such as L ,P ,Q ,R ,E etc. which provide a kind of shorthand for
the standard-prelude only.

These definitions of arithmetic operations (the meaning of which will be
known to every programmer) have rio thing to do with machine efficiency. To
the contrary, their jUstification lies in the fact that they "fix the semantics"
by defining all operations in terms of a certain minimal set of primitive
operations. Agreement with the choice of this set and whether you like this
method or not is a matter of taste (maybe even of philosophy); it has nothing
to do, however, with the language defined. This is entirely a problem of how
to define a language.

Moreover, a routine defines a series of actions in a computer and it is
explicitly stated in the Report [R2.l.4.1.a] that any of these actions may be

50 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.0.l0.4

replaced by any other action which causes the same effect. Consequently, an
implementor is perfectly free to supply means for generating (more) efficient
machine code, whenever he is able to do so. In particular, for the routines
occurring in the standard-prelude (and also in the library-preludes, see
0.1 0.7), he can generate efficient machine code himself, taking advantage of
every specific machine feature (most machines will have single commands for
addition and integer division and, unless he is a maniac, your implementor
will not follow the routines in the standard-prelude to the letter).

0.1004. Operations on complex operands

mode compl = struct (real re , im) "

[R 10.2.3.7]

op 1 = (real a,b)compl: (a,b);

op re = (compl a) real: re of a;
op im = (compl a) real: im of a ;

op abs = (compl a) real: sqrt (re at 2 + im at 2) ;

op arg = (compl a) real:

op conj

op
op :j:

op +
op

op +
op

op x

if real re = re a , im = im a ;
re:j: 0 or im :j: 0

then if abs re > abs im
then arctan (im/re) +

pi/2 x (im < 0 I sign re - 1 11 - Sign re)
else -arctan (re/im) + pi/2 x sign im

fi
fi,'

= (compl a) compl:

= (com pi a, b) bool:
= (com pi a, b) bool:

= (compl a) compl:
= (compl a) com pi:

real-ima;

rea=rebl\ima=imb;
i(a = b);

a' ,
-rea l-ima;

= (compl a, b) compl: (re a + re b) l(im a + im b) "
= (compl a, b) com pi: (re a - re b) 1 (im a - im b) ;

= (com pi a, b) com pi: (re a x re b - im a x im b) 1
(re a x im b + im a x re b) ;

Ch.O.lO.5

op /

op t

VERY INFORMAL INTRODUCTION TO ALGOL 68

= (compl a, b) compl: (real d = re (b x conj b);
compl n = a x conj b ;

(re n I d) 1.(im n I d)) ;

= (compl a , int b) com pi:
(complp := 1 ;

to abs b do p : = p x a od ;
(b ~ 0 I pilip));

We could subjoin another operator to this set, which the authors seem to
have forgotten: the monadic i (or 1 which is, however, a less appropriate
representation in this case):

(DIO) op i = (int a) compl: (0, a);
op i = (real a) compl: (0, a) ;

51

Instead of xl y (or x iy) you could then also write x + iy, which is closer
still to the usual mathematical notation.

0.10.5. Operations combined with assignations

[R 10.2.3.11]

op +: = = (refreal a, real b) refreal: a := a + b ; 4' or plusab 4'
op -:= = (ref real a , real b) ref real: a := a - b ; 4' or minusab 4'
op x: = = (ref real a, real bj ref relll: a := a x b ; 4' or timesab 4'
op /: = = (ref real a, real b) refreal: a := a I b ; 4' or divab 4'

The first formal-parameter has to be ref, because we want to assign to it.
The value returned has also been declared to be ref, and some consequences
of this are shown in 6.3. These operators are declared for all arithmetic
operands (int , real and com pl).

0.10.6. Operations on strings

The standard mode string is defined as follows: .

[R 10.2.2] mode. string = flex [J : 0] char;

The flex in front of the [1 : 0] means that the bounds of a string may be
reset by assignation (compare 5.5.4.1) - i.e. a string is a multiple which is
allowed to "breathe" - initially a string is empty, which is expressed by
[J : 0], the upper-bound being less than the lower-bound.

It is instructive to unravel the operations on strings. In doing so we meet

-----------_._ ... _._-_ .. _ .. __

52 VERY INFORMAL INTRODUCTION TO ALGOL 68 CIt.O.lO.7

the at-symbol @ (or at) which arranges for the bounds of the actual strings to
be considered (by "sliding" them) to have a lower-bound 1.

[R 10.2.3.10]

op < = (string a , b) bool:
begin int m = upb a [@1] ,. n = upb b [@1] ,. int e : = 0 :

for i to ifm < n then m else n fi

end:

while (e := abs a [@1] [i] -abs b [@1] [i]) = 0
do skip od;
if c = 0 then m < nand n > 0 else· e < 0 fi

op ~ = (string a , b) bool: "1 (b < a)
op = = (string a , b) bool: a ~ b and b ~ a
op =1= = (string a , b) bool: "1 (a = b)
op ;;.. = (string a , b) bool: b ~ a
op > = (string a , b) bool: b < a
op + = (string a , b) string:

beginint m = if int la = upb a [@1]; la < 0 then 0 elsela fi ,

end;

n = if int lb = upb b[@l]; lb <0 then 0 else lb {i;
[1:m +n] chare;
e[l: m] :=a[@l];e[m + l:m + n] := b[@l];
c

op x = (string a , int b) string: (string e.; to b do e := e + a od ; e) ;
op x = (int a , string b) string: b x a

0.10.7. The library prelude

The operation-declarations considered thus far belong to the standard­
prelude of the language, Le. they are built in. You will also find in the
standard-prelude all environment enquiries and .all declarations for formatless
and formatted input and output (which therefore are also built into this
language).

Nothing, however, prevents you from subjoining to this standard-prelude a
set of home made declarations. Of course you are free to declare such new
things in your own particular-program; but, as soon as you want to apply >

them in several programs,or you want to enable others to use them, or you
have reason to expect that more efficiency may be acquired, then you can go
to your implementor and ask him to make the whole set an as efficient as

------------------._._-----

Ch.O.11 VERY INFORMAL INTRODUCTION TO ALGOL 68 53

possible extension of the standard-prelude, i.e. 'it 'library-prelude'. In that way
an arbitrary number of problem oriented dialects may be defined. For some
possible examples see 8.4 and 8.5.

The possibility of subjoining library-preludes to the standard-prelude
contributes in no small measure to the flexibility of this language and this is
one of the basic concepts of ALGOL 68.

You should, therefore, never accept an implementation in which
library-preludes cannot be coded efficiently or. in which the attachment of
one or more library-prelude(s) to the standard-prelude cannot easily be done.

0.11. bits and bytes, longs and shorts

On most modern computers you will find, if not in the hardware then in
the standard software, provision for the manipulation of single bits in a
machine word, of parts of machine words (byte-addressing) and also for
double and maybe even multilength arithmetic.

In a concrete computer, all instances of values of all modes will be stored
as bit-patterns. Whether a specific bit-pattern may correspond to a value of a
specific mode or not is mainly a matter of how the standard software may
interpret that piece of binary information. That is to say the interpretation of
bit-patterns and also the arrangement, size and structure of their locations in
the memory is almost entirely a matter of software.

In this language, the possibility. of considering (a part of) a machine word
as a mere sequence of bits is reflected in the mode bits (0.11.1), the particular
interpretation of a "byte" as a char (i.e. the interpretation of one or more
machine words as representing a fixed sequence of chars) is reflected in the
mode bytes (O.ILl) and the possibility of multilength arithmetic is reflected
in the long - - -long modes (0.11.2). To what extent available hardware
features will be used for these further modes and to what extent (and how)
they will be simulated by software provisions is entirely a matter of
implementation.

0.11.1. The modes bits and bytes

Both bits and bytes are defined to enable the programmer to take
advantage of certain (hardware-) features of the machine on which the
language is implemented. A bits will be something pretty close to a machine
word and the environment enquiry bits width is then the wordlength. A bytes
may be a memory unit In which a certain number of characters can efficiently
be stored; a bytes may be considered as a string of fixed length bytes width.

54 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.O.ll.1

Operators are defined for bits and bytes reflecting the most current
machine operations.

For bits we have = and =1= to compare them, and V (disjunction), A

(conjunction), shl (shift left), shr (shift right), abs (from bits to int), bin
(from int to bits), an operator elem (selects a certain bit from a bits) and
some others.

For bytes we have the comparison operators as for strings, elem as for bits
and a transfer from string to bytes.

(DIl) bits t ,. bytes r ,.

declares t to be a bits variable, and r to be a bytes variable.
For bits we have a separate denotation, consisting of a sequence of digits 1

(the equivalent of true) and 0 (the equivalent of false), preceded by 2 r to
indicate that the sequence following is to be understood as a number in
binary representation (radix 2). Ifwe assign:

(E49) . t:=2r1011100100001

and bits width is, say, 32 then! refers to a machineword(abits):

2 r 00000000000000000001011100100001

The value of abs t is now 5921 (conversely, the value of t is bin 5921).
If we now assign:

t;= t.A2 r 111111

then the value of t becomes 2 r 100001. Then; after the assignation:

. t := t shl3

. the value of t is 2 r 100001000, so that 29 elem t, i.e. (bitswidth-3) elem t, is
true, but 30 elem t is false. .

If we want to consider the bytes r as a string, then we may apply ai:ast,
e.g.

S plusab string (r)

Just to demonstrate bits and bytes, we consider the following example:

Ch.O.l1.2 VERY INFORMAL INTRODUCTION TO ALGOL 68 55

(ESO) proc compose string =
(bits select, ref [1: bits width] bytes phrase) string:

(string s ; 4 initialization is not necessary, because
the flexible bounds are set to 0 and 1 at
the declaration (see D3 in 0.4.3) 4

for ito bitswidth
do if i elem select then s plusab string (phrase [i]) fi od ;
s);

0.11.2. The long and short modes'

The prefices long and short playa role in the creation of new modes in
much the same way as [] ,struct, proc and ref do; the long or short,
however, may stand only in front of int ,real, compl , bits and bytes and of
all long and short modes derived from these.

In the standard-prelude you will find environment enquiries such as:

int int lengths = c the number of different lengths of integers c;
int int shorths = c the number of different shorths of integers c;

stating to what extent the long and short feature is implemented for ints, and
correspondingly for reals, bits and bytes.

Now, if we declare, for instance:
long long long long long long long int iiiiiiiint ;

but int lengths = 3 , then the value of our iiiiiiiint will be treated as if it had
been declared:

long long int iiiiiiiint ;

Hence, int lengths = 3 means that your implementor will distinguish only
three kinds of integral values: int , long int and long long int . The same
applies to real (and, consequently, to compl), bits and bytes. The number of
longs characterizes the degree of discrimination with which the value is kept
in the computer.

In the language the prefices long and short also tum up in denotations:

iiiiiiiint := long long long long long long long 0

In the standard-prelude you will also find the environment enquiries:

long int long max int = c the largest long integral value c;
short int short max int = c the largest short integral value c;

long long int long long max int = c the largest long long integral value c;

etc.

56 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.O.12

= c the largest short real value c " short real short max real
short real short small real = c the smallest short real value which can be

usefully compared with short 1.0 c,'
long real long max real
long real long small real

etc.

= c the largest long real value c "
= c the smallest long real value which can be

usefully compared with long 1. 0 c,'

For the arithmetic modes.(int , real, compl and their longs and shorts) we
have a monadic-operator leng which makes the operand one longer, and a
monadic-operator shorten which takes away one long or adds one short.
There is no automatic transfer between different longs and shorts of the same
basic mode.

For example:

(E51) proc inprod = (ref [] real a , b) real:
(long real value: = long 0.0 "

for i
from (lwh a < lwh b Ilwh b Ilwh a)

to (uph a > uph b I uph b I uph a)
do value +: = leng a [i] x leng b [i] od.,'

shorten value) "

If, in a call of E51, the bounds of the actual rows are not equal, then the
routine will compute the innerproduct as if the rows had been supplemented
with zero elements until their bounds matched.

0.12. Unions

United modes (unions for short) are brought into existence to enable the
programmer to specify locations in which values of different modes can be
stored, and to dispose of the names which refer to such accommodating
locations.. In particular, with the aid of unions you can define routines which
accept actual-parameters and (or) return a value of one of several possible
modes.

The mode-declaration:

(E52) mode strint = union (string, int) "

declares strint to be a new mode encompassing both the mode string and the
mode into It is important to know that this does not define a new kind of
value; a new mode has been declared. The values in this mode, however, are
still strings or ints (see also Section l.6.1).

---_._----

Ch.O.12 VERY INFORMAL INTRODUCTION TO ALGOL 68 57

The variable~declaration:

(ES3) loc strintyear ..

ascribes to year the name of either a string or an into Thus year is a ref strint
identifier.

A ref strint is, most certainly, a new kind of value (Le. it is neither a ref
string, nor a ref int), it is a ref union (string, int), but it 'does not refer to a
"strint" because there is no such thing.

You may now assign to year:

(ES4) year := "1968"

as on another occasion:

(ES4*) year:= 1968

Observe, that in the context of:

(ESS) string text, int numb ..

neither the assignation text := 1968, nor the assignation numb := "1968", is
allowed.

The assignations ES4 arid ES4* may be depicted as follows:

I.I.A.-3

\
\

58 VERY INFORMAL INTRODUCTION TO ALGOL 68 Ch.O.12

string

Once you have declared a united variable, you may want to ask the mode
of the value assigned to it. It may be clear that this requires mode checking at
run time. However, this is in fact the only situation where, in this language,
run time mode checking is inevitable and for no other reason than that the
programmer has explicitly asked for it.

In the context of E52 - - - E55 you may write:

(E56) case year
in (string) : true ,

(int) : false
esac

This unit is a 'conformity-clause'. It yields upon elaboration the value true if
year refers to a string (which is the case, for instance, after the assignation
E54): otherwise its value is false (which is the case after E54*).

The expressions text := year and numb := year are not correct assignations
in this language, not even when the modes conform. Therefore we have a
slightly more extended form of the conformity-clause:

(E57) case year
in (string s) : text := s ,

(inti) : numb : = i
esac

If we want to know which of the two assignations has been elaborated we
might declare:

01.0.12

(ES8)

VERY INFORMAL INTRODUCTION TO ALGOL 68

proc deliver = (ref string t, ref int n , strint tn) bool:
case tn

in (string s): (t : = s ; true) ,
(inti):(n:=i;false)

esac;
deliver (text, numb, year)

The call deliver (text, numb, year) delivers the actual value of year to the
right destination. The value of deliver is true or false depending upon the
mood of the year.

An example of a procedure yielding a value of one of two possible modes
may be (in the context of the declarations E23 * and E23**, see 0.7.3):

(ES9*) mode intreal = union (int, real) ;

(ES9) proc factorial = (int n) intreal:
if n > nmaxfac

thenfaclarge (n)
¢ in which cas~ a real value is yielded ¢

else int f := 1 ;
for i from 2 to n do fx:= i od; f
¢ in which case an int value is yielded 4'

fi;

The difference with E23 is that any call of the there declared

59

proc(int)realfac yields a real (the int computed in the else-part is widened
to real because such is required), so that you can not know whether the value
returned was an exact factorial or not. A call of the proc(int)intreal
factorial, on the contrary, yields an int or a real and you can find out which
of the two was the case.

Beware, however, of a pitfall.
You cannot assign:

y := factorial (m)
nor:

i := factorial (m)

because an ~'intreal" can neither be assigned to a ref real nor to a ref into
The way to achieve this, of course, is:

case factorial (m)
in (real r): y := r,

(int n): i := n
esac

60 VERY INFORMAL INTRODUCTION TO ALGOL 68

As a final example consider:

(E60) mode numb = union (int ,real, eompl) ;
proegamma = (numb u) numb:

case u
in (inti):

ifi>O
then case i

in 1, 1 , 2, 6 , 24 , 120, 720, 5040,
40320 , 362880 , 3628800 , 39916800,
479001600

outfaclarge (i-1)
esae

fi,
(realr): e algorithm for the gamma function with

Ch.O.I3

a real argument r ,yielding a real value e ,
(eompl c): e algorithm for the gamma function with

a eompl argument c, yielding a eompl value c
esae

0.13. Local and global generators, stack and heap

We know that by a variable-declaration like

loe real x;

a real value is generated on the stack. To put it more precisely:

The "local-generator" loe real generates on the stack a new real value
(its "side-effect" so to speak) and it yields upon elaboration the ref real
name x which is then ascribed to the identifier x.

A less concise way to formulate this happening is:

ref real x = loe real ;

in which we meet the local-generator as a unit.

An interesting example of the use of a local-generator outside a variable­
declaration or an identity-declaration is given by the following phrases in
which a triangular matrix is generated:

(E61) loe [1: n] ref [] real triang;
for ito n
do triang [i] := loe [1: i] real od;

Ch.O.13 VERY INFORMAL INTRODUCTION TO ALGOL 68 61

Observe that triang is declared to yield a singly subscripted row of names:
triang[i] yields the name of a [] real; triang [i,j] is undefined. If you want to
access the [i,j] th element of triang, you must write:

triang [i] [j]

You then access the jth element of the row referred to by the ith element of
triang (for further discussion, see 5.7 .2.EIO).

The generator loe real is a local-generator because the real value it
generates ceases to exist as soon as the range to which the value was loeal is
completed (i.e. as soon as we leave that range). Not only the relation between
the identifier x and the ref real ascribed to it ceases to hold, but also the real
value it referred to vanishes as the stack contracts. We must know that a
serial-clause is a local range when it contains at least one declaration -
therefore the clause between do and od in E61 was not a local range and we
could take the ref [] real value with us outside the do and od.

Now, what can we do when we want to take a value and its name outside a
local range, for example when the serial-clause between do and od contains a
declaration? Or, to put it differently, how can a location (a box) survive a
contracting stack?

The solution in this language is the presupposition of the "heap": another
storage allocation regime besides the stack, in which values may be generated
which remain there as long as some name refers to them.

By a variable-declaration like:

heap real hx ;

or an identity-declaration:

ref real hx = heap real;

a real value is again generated, and the global, or "heap", generator heap real
yields its name.

For example:

(E62) loe [1: n] ref [] real zigzag;
for i to n
do loe int length; read (length) ;

zigzag [i] := heap [1: length] real
od;

Here the local-generator loe [1 : length] real would not work, because the
stack will contract at the completion of the serial-clause between do and od
which now is a local range because it contains the declaration loe int length;.

----------- ---------

62 VERY INFORMAL INTRODUcrION TO ALGOL 68

For an example of a heap variable-declaration consider:
(E63) mode record = struct (string name, int date of b(rth,

real value, refrecotd next),
mode society = struct (ref record first, last);
loc society high;

Ch.O.13

Now assume a large file of records defining potential members for the high
society. We want a procedure try to scan that file and try every record for
acceptability on the ground of age and minimal value required. The procedure
try has to yield false when the record under consideration is not acceptable; if
it is (the rare cases) it must generate a seat in the society and yield true. A
procedure always defines a local range. so we must apply a heap-generator:

proc try = (int date, real minimum) bool:
if heap record new;

read ((name of new, date ofbirth of new,
value of new)) ;

next of new := nil;
date of birth of new < date and value of new> minimum

then last of high := next of last of high := new;
ct in which case new survives ct

true
else false ct in which case new is thrown away ct

fi;
Now let us generate the founder member:

first of high := last of high :=
heap record := ('Methuselah", 0, 1000.0, nil);

and examine the first hundred candidates, who are apparently required to be
no more than 50 years younger than Methuselah, and to be not much lower
in value than their predecessors.

to 100
do if try ((date of birth of first of high) + 50,

od

.95 x (value of last of high))
then print ((name of last of high, newline))

fi

0.14. What to do next

The remainder of this Introduction contains, in a two-dimensional way,
eight (or seven) chapters (please now refer to the table of contents). The eight

-_ .. _------

Ch.O.14 VER Y INFORMAL INTRODUCTION TO ALGOL 68

horizon tal chapters are:

1. BASIC CONCEPTS
2. DECLARATIONS
3. CLAUSES
4. ROUTINES
5. UNITS
6. STANDARD PRELUDE
7. TRANSPUT
8. EXAMPLES

The seven vertical chapters are:

.1 FUNDAMENTALS

.2 PROCEDURES AND NAMES

.3 OPERATIONS

.4 STRUCTURES
;5 MULTIPLE VALUES .
. 6 UNIONS
.7 DISTINCTIVE FEATURES

Thus the horizontal chapters are subdivided into seven sections ".1"
through ".7". Likewise, the vertical chapters are subdivided into eight
sections "1." through "8.".

You may read row-wise:

for ito 8
do for j to 7 do elaborate section ri.il od od

or you may read column-wise:

for i to 7
do for j to 8 do elaborate section If.i] od od

63

The latter (vertical) route is the more didactic one, for those who wish to
learn the language. The horizontal one (along which this Introduction has
been bound) is more appropriate for those who wish to survey the essential
principles of the language as a whole. In particular, the first chapter on
BASIC CONCEPTS is a survey of the main part of the basis on which the
language was "orthogonally designed" [R 0.1.2]; i.e. the generalized concept
of "mode", and all its consequences.

If you are now in some doubt as to which route iS'for you, then take our
suggestion - read horizontally in Chapter I Until you find the waters
beginning to get a little deep: then return to 2.1 and read by the vertical
route thereafter.

1. BASIC CONCEPTS

I.I.Fundamentals

You write or read a 'particular-program' which is embedded in an
environment consisting of the 'standard-prelude' (and '-postlude') and a
'library-prelude' .

The standard-prelude is a comprehensive selection of features, generally
accepted as a standard environment for a modern programming language. A
library-prelude is a continuation of the standard-prelude. It may contain more
specific features you would like to have at your disposal in certain classes of
problem. The implementation is supposed to cater for some provision which
enables you to subjoin one or, ideally, a selection of library-preludes.

The whole constitutes a 'program'.

1. 1. 1.0bjects

A program may be parsed into a tree of "constructs", such as identifiers,
denotations, formulas, procedures, declarations, clauses, etc. These are all
classified as "external objects", since they comprise the written, external
form of the program. A construct (or for that matter the whole program)
may be "elaborated" by a "computer" (be it a human being or an
automaton), whereupon a defined sequence of "actions" takes place and,
upon the completion of these, a "value" is "yielded". With some constructs,
the sequence of actions is the prime reason for the elaboration. With others, it
is the value yielded which is important-indeed, in the case of identifiers and
other such "indicators" there are no actions at all, and the value yielded is
simply that which had previously been "ascribed" to that indicator in a
declaration.

A "value" (or, more precisely, an "instance" of that value) must
presumably be kept somewhere, either in the human's mind or in the memory
of his automaton. A value is therefore classified as an "internal object". Each
internal object (in the sequel often "object" for short) has three relevant
attributes:

1) it is of some "mode",
2) it is a particular instance of a value of that mode,
3) it has some location.

1) The mode specifies how the object is built up from basic material (bits, or

64

Ch. 1. 1.1 BASIC CONCEPTS 65

the little grey cells in your brain) and to what kind of entities (numbers,
characters, records, names, etc.) it -is related. Partly this is a matter of
implementation (the buildi~g of a real number for example), partly this
construction may be specified by the program in terms of modes already
defined (for example the bliilding of a complex number as an ordered pair of
real numbers). In the program text a mode may be indicated by a bold faced
word, which is then to be considered as one indivisible symbol (e.g. amode).
Such a mode-indication may be regarded as the badge of some class of values.
2) Some modes define but a few values (e.g. a bool can only be true or false),
some quite a lot (e.g. int and real), some in principle an infinity (e.g. string);
but there may be any number of instances of any particular value within the
automaton, and such an "instance of a value" of some mode is an internal
object.
3) An object is to be found somewhere, and this somewhere is its location (its
address in the memory). The physical address is none of your business, but in
many cases you will certainly want to have control of that location (for
example you may wish to supersede the object by another instance of a value,
or to enter its location in some chain), that is' you may wish to "refer to" that
object. As far as the location is concerned, there are two possibilities:
3a) The internal object was, in some previous declaration, "ascribed" to an
external object (specifically, an indicator). Now you can always obtain the
internal object by elaboratirig that indicator and inspecting its yield, but you
still have no control over its location (because it may well be concealed in the
object code) and you have to take it as it arises in the elaboration of the
program, in which it is a "constant".
3b) The internal object is "referred to" by a second internal object
(specifically, a "name"). In that case, its location is at your disposal in the
form of that name. This gives you the right to supersede it, and it is therefore
not a constant but a "variable". A name is an object of another (!) related
mode-a 'reference to' (ref) mode. A ref amode object (a name) refers to an
amode object.

You may visualize the interrelation of the concepts mode, value and name
(which are of fundamental importance in this language) by drawing boxes in a
"paper computer". '

Boxes of the same shape then represent intern1l1 objects of the same mode.
Each box holds an instance 9f a value (not necessarily different from the
instance in another box). Names may come into the picture by drawing boxes
of another shape, holding tQose names.

The relation "to refer" between two internal objects is depicted by an
arrow pointing from the name to the object referred to by that name:

66 BASIC CONCEPTS Ch. 1. 1.2

refamode ref amode ref amode

cp
D D D

amode amode amode

. We shall presently show you how actions may be depicted in our paper
computer. They will always achieve the effects defined by the hypothetical
computer in the Report (but sometimes by a different method).

1.1.2.1dentlfiers

In order to discuss internal objects, we need 'identifiers'. An identifier is a
sequence ofletters and digits with a leading letter, like marllyn and unlike
Jmarlyn.

The meaning of an identifier is defined in an 'identifier-declaration', of
which there are two sorts-the variable-declaration (1.1.2.1) and the identity­
declaration (l.2.2). (Alternatively, a label-identifier is defined as such when it
occurs as a label in the program text.)

1.1.2.1.Variable declarations

By declaring:

(E1) loc amode objectl , object2, object3 ;

three internal objects are generated in the memory, each of them being an
amode. Three names (ref amode objects) referring to the amode objects
generated are then ascribed to the three identifiers. Therefore they are known
as ref amode identifiers and the generated amode objects are 'variables'. In a
picture: three boxes come about, each of them holding the name (location)
of another box of the mode amode.

Now, objectl , object2 and object3 are external objects, being constituents
of the program. By the variable-declaration E1 an internal object is ascribed
to each of them. The relationship between an identifier and the object
ascribed to it cannot be changed; and the object ascribed (in this case a name)
cannot be changed.

Ch.1.1.2.2 BASIC CONCEPTS 67

loc amode

ref amode ref am ode ref amode

D D D
amode amode amode

We preferably draw external objects at the top of the diagrams in our
paper computer (to separate them from the boxes, which are internal) and, if
the elaboration of one of the external objects yields one of the internal ones
(at the instant of time under discussion), we depict this by a line joining the
two. The diagram above shows that, since ref amode objects have been
ascribed to the identifiers objectl, object2 and object3, the yields of these
identifiers will henceforth be the three objects drawn immediately below
them. These objects are constant (the top row of boxes in our diagrams will
generally depict constants). The boxes in the bottom row, however, are
variable (we can see that this is so, because we can see that there exist names
referring to them).

Thus, objectl, for example, yields a constant name (mode ref amode)
which refers to a variable amode. In the sequel we shall abbreviate this by
saying, simply, that objectl refers to that variable.

This is nothing new. In many other programming languages the proper
relation between an identifier and its variable value is exactly the same,
although perhaps you were never aware of it.

1.1.2.2.Assignation, collateral elaboration

If marllyn and mar21yn are likewise declared to be ref amode identifiers
(consequently yielding ref amode objects), then by assigning:

(E2) object1 := marllyn ; object2 := mar21yn

the object referred to by ob,ectl (object2) is "superseded" by an instance of
the value referred to by m arllyn (mar21yn). Nothing happens to the names
ascribed to the identifiers. The value referred to by the LHS (Left Hand Side)
becomes a copy of the value referred to by the RHS (Right Hand Side). The
copy-action "to assign" is depicted below by a bowed arrow originating from

68 BASIC CONCEPTS Ch.l.1.3

the object to be copied and pointing into the location of the copy:

marll~

ref amode ref am ode refamode ref amode

I ,U/ I
amode amode

~'LJ/ I
amode am ode

Again this is nothing new. In most other programming languages the
process of "assignment to a variable" takes place in exactly the same way.

In an assignation the LHS (the 'destination') and the RHS (the 'source')
are elaborated "collaterally", i.e. there is no prescribed order for the actions
of getting the name (the ref am ode) in the LHS and getting the value (the
amode) in the RHS. Consequently, if these two actions should happen to
have any side effect upon each other (in the case of more involved
assignations this could occur), then the result of the assignations is
"undefined" (i.e. not defined by the Report alone).

In El also we met a collateral elaboration. In fact El involves three
variable-declarations, the declaration of objectl, of object2 and of object3;
and these three declarations are elaborated collaterally.

1.1.3.Phrases, serial and collateral elaboration

The piece of program text:

(E3) amode objectl, object2, object3 ;
objectl := marllyn ;
object2 := mar21yn

is a simple case of a 'serial-clause'. The "constituents" separated by
semicolons are 'phrases' which may be either 'declarations' or 'units'. The
semicolons represent the 'go-an-symbol'. The action defined by the phrase
following a go-on-symbol begins after the completion of the action defined
by the phrase preceding it.

As we have already pointed out, the variable-declaration:

--- --------------

Ch.1.1.3 BASIC CONCEPTS

loc amode objectl , object2, object3

is a collateral-declaration. In fact it is a "contraction" of the phrase:

loc amode objectl , loc amode object2 , loc amode object3

Tne commas represent the 'and-also-symbol' and achieve the collateral
creation of the objects.

The symbolloc expresses the act of generation of the variable (1.2.2.3),
but it is optional in this context and is frequently omitted.

Besides collateral-declarations we may have serial-declarations, for
example:

amode objectl .. amode object2 .. amode object3

69

and the go-on-symbols achieve serial creation of the objects (one by one).
Eventual' side effects (which in the case of more involved declarations could
occur) now'act precisely as prescribed by the order of elaboration thus
defined.

Enclosing a serial-clause between "(" and ")" or "begin" and "end", we
obtain a 'closed-clause':

(E4) (amodeobjectl, object2, object3 ..
object 1 := mar llyn .. object2 := mar2lyn ..
XXXXX) ,

By "XXXXX" we denote here and in the sequel an arbitrary constituent
valid in the context.

By enclosing a serial-clause, a 'range' is demarcated (see also 3.1.5). A
range has much in common with what in some other programming languages
is known as a block: in particular it defines the "scope" of the values (names)
created by the declarations within it.

A unit always yields a value of some mode (which may, however, be void
if no value is actually required). For example, the unit:

objectl := marllyn

yields the value yielded by its LHS (and not, as you might have expected, the
value yielded by its RHS), that is the ref amode object yielded by objectl. An
assignation yields the name in its LHS.

Correspondingly, a serial-clause yields a value of some mode, namely the
value yielded by the unit which completes its action.

The same applies to closed-clauses.
For example, if XXXXX in E4 yields by elaboration an amode object,

70 BASIC CONCEPTS

(and marilyn is declared to be a ref amode identifier) then:

(ES) marilyn := (amode objectl, object2, object3 ..

Ch. 1. 1.4

object 1 : = mar llyn .. object2 : = mar2lyn ..
XXXXX)

is a perfectly sound assignation. It assigns the value yielded by E4, which is
the value yielded by XXXXX, to marilyn.

ref amode

amode

1.1.4.Routines

An internal object of fundamental importance is the ~'routine", which is
the internal equivalent to the sequence of symbols which comprises a
'routine-text'. A routine mayor may not have formal-parameters, and mayor
may not return a value of some mode. A routine-text is rather close to what
in some other programming languages is known as "a procedure-heading with
procedure-body" .

In this language a routine may be ascribed, not only to an identifier, but
also to an 'operator'.

A routine rnay be "called":
a) in a 'formula' by means of a operator yielding the routine,
b) or else by means of an identifier yielding (or, which may also be the case,
referring to) the routine, i.e. by a 'call'.

By declaring:

(E6) op 0 = (amode formall ,formal2) amode: XXXXX ..

the symbol "0" is declared to be an operator, and the routine yielded by the
routine-text on the RHS is ascribed to it. In this routine-text, XXXXX is
some unit defming the action, using the formal-parameters formall and

Ch. 1. 1.4 BASIC CONCEPTS 71

formal2. The amode: preceding it expresses that the routine is to return an
amode value.

By virtue of this declaration, the unit:

(E7) object3 := objectl Oobject2

results in:

o

refamode ref amode ref amode

The routine ascribed to 0 is depicted by a circle.
In E7 again, the LHS and the RHS are elaborated collaterally. The RHS is

a formula in which both 'operands', objectl and object2, are in their turn
elaborated collaterally (corresponding to the fact that the formal-parameters
in E6 are separated by a comma). Formulas are described more fully in 1.3
and 5.1.3.

By declaring:

(E8) proc function = (am ode formall, formal2, formal3) amode: XXXXX ;

the identifier function is declared, and the routine yielded by the RHS is
ascribed to it. In this routine-text, XXXXX is some unit defining the action,
using the formal-parameters formall, formal2 and formal3.

By virtue of this declaration, the unit:

(E9) marilyn := function (objectl , object2, object3)

72 BASIC CONCEPTS Ch.1.1.S

results in:

:= ~ect3)

refamode ref amode ref am ode ref amode

amode

Again, the LHS and the RHS are elaborated collaterally, as are the three
actual-parameters objectl, object2 and object3 on the RHS, by virtue of the
commas between the formal-parameters in the routine.

1.1.5. Defining and applied occurrences

Consider the assignation:

(E5*) marilyn := (amode objectl, object2, object3;
objectl := mar llyn ;
object2 := mar2lyn ;
object3 := objectl 0 object2 ;
function (objectl, object2, object3))

To marilyn is assigned the value of a closed-clause. The outmost "(" and
")" enclose a serial-clause consisting of a collateral-declaration, followed by
three consecutive assignations, in the last of which the RHS is a formula,
followed by the call of a procedure returning an amode value. This value
returned by function is now the value yielded by the closed-clause and
consequently the value assigned to marilyn.

Ch. 1. 1.6 BASIC CONCEPTS 73

It might be worth your while to try to visualize the elaboration of E5* in
one picture, in the same way as we did for .the separate constituent phrases.
You will meet then several "occurrences" of the identifiers object 1, object2
and object3, the first of which are the "defining occurrences" in the
declaration amode objectl, object2, object3; All other occurrences of these
identifiers are "applied occurrences". Here we have a relation between two
external objects, the technical term for this relation is "to identify": the
second occurrence of objectl identifies its defining occurrence. You might
depict this relation by an arrow pointing from the applied occurrence to its
defining occurrence.

1.1.6.Coercion

Every external object has, independent from the particular syntactic
position in which it stands, an "a priori" value of some a priori mode. In
order to make it fit its particular context, the external object may be
"coerced", that is "forced to yield a value of another mode": its "a
posteriori" mode and a posteriori value.

For example, the a priori mode of marilyn in E2 is ref amode (by virtue
of its declaration), and thus its a priori value is a name (of an amode object).
Now, by the assignation process as described in 1.1.2.2 ("getting the value"
on the RHS), the a posteriori mode of marilyn must here be amode (we want
the amode value referred to, and not the name). In this particular context
marilyn must be "dereferenced"., which is one of the six basic coercions in
this language.

Observe that objectl in E2 (the LHS of this assignation) is not
dereferenced, but in E7 (in the syntactic position of an amode operand) as in
E9 (in the syntactic position of an amode actual-parameter) it is.

Another example of coercion is "widening", implicit change from mode
int to mode real, mode real to mode compl, and some others. Once you know
what the term is about, you will find quite a lot of coercions in other pro­
gramming languages, although perhaps they are not always so well defined if
at all [see R6].

In a language in which the basic concepts are extended as far as possible,
one must inevitably be very clear and precise on the subject of the actions
concealed in the language. It is dangerous to presume actions to be implicit
without stating exactly why, where and how. Of course, one could have
supplied a certain number of operators, expressing explicitly the desired
transitions from a priori to a posteriori mode and value. But then you would
have been coerced into writing objectl := DEREFERENCE marilyn and

74 BASIC CONCEPTS Ch.1.2

object3 := DEREFERENCE objectl 0 DEREFERENCE object2 or some·
such, and very soon you would encounter much more miserable constructions
(see 5.1.0.2).

In ALGOL 68 at least six rather offensive monadic operators of this kind
are incorporated in the syntax, being implied by the syntactic position of the
external object to which they otherwise ought to have been explicitly
applied. This, indeed, complicates in no small measure the syntax. However,
once you have mastered that part of it [the whole of R 6] ,you will
appreciate that the burden is taken away from your shoulders. Apart from
that, coercion has one great charm: it does exactly for you what you want,
but could easily have forgotten. You will feel happy that you can write x := i
instead of x := WlDENTOREAL DEREFERENCE i. For a systematic
discussion of all the coercions, see Chapter 5.

Vertical readers, please tum to 2.1.

1.2.Names and declarers

1.2.1.Ascription and assignation

We have already introduced- variables to you. They are internal objects and
new values can be "assigned" to them at any time and as often as you like.
This is natura,l, for why should it be called a "variable" if you cannot vary it?

A constant is, of course, quite a different thing. Obviously it cannot be
, varied: it is an external object which is given a value once and for all, and the

process of giving it its once only value is termed "ascription". This process
can be brought about in identity-declarations (1.2.2) and in procedure calls
(1.2.3.2.1). It also arises in variable-declarations (as we have seen in 1.1.2.1),
but for a different reason. Behind each amode variable there hides a constant
ref amode name (it has to be a constant name, for otherwise you might lose
the variable). It is this constant name which is ascribed to the ref amode
identifier in a variable-declaration.

Often, when creating a new object, you have the choice of declaring it as a
constant or as a variable. Which should you do? (You might say thatit does
not matter, since it will work either way, but this is a dangerous belief.) Take
our advice. If you db not intend to vary it again (at least within the lifetime
of the relevant range-see 2.2.1), declare it as a constant and ascribe its only
value to it. Variables are dangerous objects, and assignation is a dangerous tool.

Ch.1.2.2 BASIC CONCEPTS 75

1.2.2.Identity declarations

An 'identity-declaration' (defining the meaning of an identifier within its
range) consists of an equals-symbol "=" with a 'formal parameter' on its left
and an 'actual-parameter' on its right:

formal-MODE-parameter = actual-MODE-parameter

(The "MODE" stands for an arbitrary mode. In the syntax you will find a
number of production rules starting with MODE, generating an infinity of
different constructs. MODE is a so-called "metanotion"; the capitals express
that there are separate metaproduction rules for it. You may forget this
remark; everything will become clear in the sequel.)

A formal-MODE-parameter consists of a formal-MODE-declarer followed
by a MODE-identifier. The formal-MODE-declarer determines the mode of
the internal object which will be ascribed to that identifier:

formal-parameter
declarer: identifier:

amode
ref amode

ref ref amode

etc.

thing
name
pointer

this identifier is a:

amode-iden tifier
reference-to-amode- identifier
reference-to-reference-to-amode- .
identifier

The actual-MODE-parameter yields an internal object to be ascribed to the
MODE-identifier of the formal-parameter. We shall consider several
possibilities for the actual-parameter:
1) a unit yielding the required mode (1.2.2.1 and 2)
2) a local-generator (1.2:2.3)
3) an initialized local-generator (1.2.2.3).

1.2.2.1.Constants

(E1) am ode thing = marllyn;

The actual-parameter mar llyn is a simple case o~ a unit and it yields a ref
amode; thing, however, is declared to be an amode-identifier (by the formal­
declarer amode). Consequently, marllyn must be dereferencedto yield an
amode value and what happens is:

76 BASIC CONCEPTS Ch.1.2.2.2

amode

am ode ref amode

Now, by this declaration, a copy of the value currently referred to by
mar llyn is ascribed to thing. You can never assign to such a thing, because it
is not a name. You may consider thing as a constant and indeed, whatever
may happen to the amode value referred to by marilyn, thing always yields
the instance of an amode value it got from marIlyn at its declaration.
"Constant" is to be understood as "constant until next elaboration of the
declaration"; then it may get a different value from marIlyn.

Instead of marilyn we may write any unit yielding, after the proper
coercions, the required mode:

(EI *) amode thing = XXXXX ;

which may be depicted as follows:

XXXXXI;

amode

1.2.2.2.Equivalences

(E2) ref amode name = marIlyn;

Although here again, as in E I, the actual-parameter is a strong unit, this is
a story completely different from El.

The formal-declarer in E2 is ref amode; and the formal-declarer determines

-----~--

Ch.1.2.2.3 BASIC CONCEPTS 77

the mode of the object to be ascribed to the newly declared identifier, in this
case a 'reference to amode' value is required from the actual-parameter.

The a priori mode of mar llyn happens to be reference-to-amode.
Consequently no dereferencing of the actual-parameter is needed. A copy of
the name yielded by marIlyn is ascribed to the identifier name.

What happens is:

ref amode

refamode refamode

L.....-.-----D
amode

The result of the elaboration of E2 is that we have got two different
identifiers, name and marllyn, yielding different instances of the same name
and consequently referring to the same internal amode object.

Assigning to name or to marllyn has the same result (supersedes the same
amode value); different identifiers but the same variable value.

In some other programming languages this phenomenon is known as
"equivalence". In this language "equivalence" is only a particular case of a
general (and extremely fruitful) construction.

1.2.2.3.Local generators

We may want an identity-declaration to create the name of a new object
(we want to define a new variable). Then we choose for the actual-parameter
a 'generator'. A generator "generates" a new object; a local-generator creates
a new object on the "stack"; an amode-Iocal-generator creates a new amode
object on the stack. On creating a new object, the generator yields its name.

The new object created by a local-generator ceases to exist when the range
in which it occurs has been elaborated up to the hilt.

A MODE-local-generator consists of the local-symbol "loc", followed by
an actual-MaDE-declarer; the amode-Iocal-generator is loc amode. loc amode
generates an amode object on the stack and yields its name on that special
occurrence. We shall depict the creation of the amode object by a special kind

78 BASIC CONCEPTS Ch.1.2.2.3

of arrow:

ref amode

am ode

Now conSlUer the identity-declaration:

(E3) ref amode aname = loe amode ;

What happens is essentially the same as in E2:

ref am ode

amode

The name yielded by loe amode is ascribed to the identifier aname, which
consequently refers to the newly created amode object on the stack.

When the local-generator has done its work, the picture we are left with
looks like this:

refamode

arnode

Ch.1.2.2.3 BASIC CONCEPTS 79

But we have seen many pictures like this before. They were brought about by
variable-declarations such as:

(E3*) amode aname "

It seems that E3* means exactly the same thing as E3. Every variable­
declaration has an identity-declaration hiding behind it. Moreover, the amode
in E3* is really a disguise for the generator loc amode in E3. Indeed, as was
explained in 1.1.3, you may write the loc in E3* if you prefer:

(E3**) loc amode aname "

which goes to show why the amode in E3* must be regarded as an actual­
declarer (remember that the ref amode in E3 was a formal one). We can
show how the process of generation enters into our pictures of variable­
declarations in the following way:

I loc amode I aname

(a new
amode
object is
generated
on the
stack)

refamode

amode

We often wish to assign an initial value to a newly generated variable.
Now consider the assignation:

(E4) loc amode := marllyn

This is, of course, a perfectly correct assignation. What happens is:

ref amode

80 BASIC CONCEPTS . Ch.1. 2. 2.4

The local-generator yields the name of the newly created amode object,
which is initialized to the value referred to by marllyn; marllyn, of course, is
dereferenced (compare 1.1.E2). So far so good, but we cannot do much with
it, because no external objectin the whole program yields the name of our
newamode.

However, an assignation yields the value yielded by its LHS (see 1.1.3)
which is ref amode. We may how consider E4 as a special case of a reference­
to-amode-unit (compare E2) and write:

(E4') ref amode aname = loc amode : = marilyn;

And see what happens:

~--I ,I I; I
amod~amode

We should expect there to be a variable-declaration corresponding to this,
and indeed there is:

(E4*) loc amode aname := marllyn ..

in which the loc is, as before, optional.

1.2.2.4. Variables and names

Please, do not confuse this with
amode thing = marilyn ..
(seeEl)

Syntactically, a 'variable' is a reference-to-MODE; a name.
Semantically, the object which is in fact "variable" is the object referred

to.
Informally, we may choose an intermediate position and regard the pair of

objects, consisting of an instance of a value and the name referring to it, as a
variable:

Ch.1.2.2.S BASIC CONCEPTS 81

var

ref amode this one is constant

--
a "variable" is the association of {

a name

and

a value D ----------
- - thO . . bl am ode - - IS one IS varIa e

Going up one stair of references, we can generate variable names:

(ES) ref ref amode pointer = loc ref amode ;

or the corresponding variable-declaration:

(ES*) ref amode pointer; Observe that again one ref is embezzled;
it is a ref ref am ode value that is ascribed
to pointer.

What happens is:

~
ref ref arnode ref ref amode

ref amode

This is essentially the same as E3. The generator loc ref amode generates a
name on the stack. Such a ref amode on the stack may, by assignation to
pointer, become an instance of a name referring to an amode object on the
stack. In this way, "indirect addressing" is another fruit of the general
concept of an identifier-declaration.

1.2.2.S. Casts

Consider the assignation:

82 BASIC CONCEPTS Ch.1.2.2.5

(E6) pointer := marIlyn;

Here the value referred to by pointer (a ref amode object) is superseded by
the value yielded by marIlyn (its a priori value; of course there is no
dereferencing in this syntactic position; the required mode is ref amode).

What happens is:

L!!!!!,llyn

ref ref amode ref amode

ref amode

I
amode

Now the value referred to by pointer refers to the value referred to by
marIlyn (describing indirect addressing in a natural language always leads to
muddling sentences). Observe the resemblance with the situation in E2, we do
the same thing at one reference level higher.

We could also have achieved this in the declaration of pointer, again by an
initialized declaration.

(E6*) ref amode pointer := marIlyn;

To make things workable on the higher reference-to-something levels, we
often need dereferencing in syntactic positions where coercion cannot do
it for us; for example in the LHS of an assignation. In a reference-to­
reference-to-MODE, we have at least two name levels, and we have to make
clear which name is meant (how far down we want to assign). In E6*
(pointer := marIlyn) the value assigned is the ref amode.

Now suppose we want to assign the amode value of object1 0 object2 to
the variable referred to by pointer (which is, after E6, the variable marIlyn).
We cannot do it without further preface. pointer is one ref above the level at
which we want to assign.

Now the "preface" is a remarkable little magic wand termed a 'cast', which
provides in many situations where coercion fails.

Ch.1.2.3 BASIC CONCEPTS 83

If we now write:

(E7) ref amode (pointer) := objectl 0 object 2

the LHS is a cast obtaining a ref am ode value from pointer (dereferencing it
once), which is (after E6) the variable yielded by marllyn.

What happens is:

ref ref amode

1.2.3. The metanotion MODE

In this language a mode is something you can define (declare) yourself in
terms of other, already defined, modes (see 1.3.3.1). In the Report [R 1.2.1]
you will find a set of metaproduction rules for "MODE", defining an infinite
number of possible modes. They are all derived from the primitive modes:

bool ,char, int, real, bits, bytes (see also Section 2.1.1)

There is also a special mode void (implying no value at all) which can turn up
as the yield of a procedure (4.2.1) and also as the resident value of a union
(5.6.1).

(Occasionally, we shall follow the syntatic style of the Report, as we
already did on some occasions, writing for instance "reference-to-reference-

. ----------- -------

84 BASIC CONCEPTS Ch.1.2.3.1

to-MODE-identifier". We do so just to point out that for these "notions"
exist certain production rules in the syntax, by which they are defined·
ultimately as sequences of symbols. You can have some confidence that the
intuitive meaning of these notions is in good accordance with their
syntactic coherence and the meaning imposed upon them by the semantics
of the language. Certain parts of notions are written in capital letters. For
such "metanotions" exist separate metaproduction rules, defining them in
terms of other notions. Some of these metanotions stand for an infinite
number of other notions, which is the case with "MODE". Some others
cover only a finite number.

There is no reason to worry about the syntax, but in the long run you
might appreciate our attempts to break you softly to the syntactic saddle
and the metanotional stirrups of the Report.
In this informal Introduction "amode" stands for "a mode" (you may

conceive amode as a declarer for some, not specified, MODE). We shall also
use indications like bmode, umode, zmode. For all these declarers you may
substitute any MODE-declarer derived from the primitives, with the assistance
ofthe symbols:

ref
proc
struct
"[" arid "] "
union
long and short

(1.2.2)
(1.2.3 and 4.2.1)
(Sections 1.4.1 and 2.4.1)
(Sections 1.5.1 and 2.5.1)
(Sections 1.6.1 and 2.6.1)
(Sections 1.7.1. and 2.7.2)

We have already met marilyn and her sisters marl,2,3Iyn who all yield ref
amode objects. We shall soon meet also their cousins mar u lyn mar v lyn and
other mar-vellous ladies. However, we shall in the sequel substitute for.amode
other declarers (even ref amode), and all the girls will then follow the new
fashions. We trust that you will recognise them in their other moods.

1.2.3 .1. 'proc modes

In this section we consider the case in which we substitute for amode the
declarer of a procedure with parameters delivering a value or not. We mainly
do so to elucidate further the principle of identity, which is the main subject
of 1.2. A more complete discussion of declarations in which procedures are
involved will be found in 4.2.

All values of mode PROCEDURE are routines. A routine is the internal
equivalent of the sequence of symbols which comprises some routine-text. In

----- -------- ------------------

Ch.1.2.3.1 BASIC CONCEPTS 85

a call this routine is activated. In a routine we can make use of formal­
parameters; the actual-parameters are then supplied when the routine is
called. It is not without reason that the LHS of an identity-declaration is
denominated as the "formal-parameter", and the RHS as the "actual­
parameter". The fact is that the identity-declaration states very precisely
what happens when an actual-parameter is supplied, be it in a procedure call
or in a formula.

A routine can be denoted by a routine-text, in much the same way as, for
instance, "true" may denote the value of this sentence. In the denotation of a
routine with formal-parameters we find the formal-PARAMETERS-pack, a
sequence of formal-parameters separated by commas" ,".

Declarers for procedures with parameters (see also 4.2.1) have the form:

not returning a useful value: returning a zmode value:

proc (umode) void proc (umode) zmode
proc (umode , vmode) void
proc (umode , vmode , wmode)

proc (umode , vmode) zmode
proc (umode , vmode , wmode)

void zmode

etc. etc.

We now reconsider:

(E1) amode thing = marIlyn;

We take for amode the declarer:

(E8.1) proc (umode , vmode) zmode

and for marIlyn the routine-text:

(E8.2) (umode u, vmode v) zmode: XXXXX

in which we find the formal-PARAMETERS-pack (umode U , vmode v),
corresponding to the (umode , vmode) in E8.1.

We thus obtain the identity-declaration:

(E8) proc (umode , vmode) zmode thing =
(umode U , vmode v) zmode: XXXXX;

This, however, seems to contain some redundancy, and it may therefore be
replaced by the contracted form:

(E8*) proc thing = (umode u , vmode v) zmode: XXXXX;

86 BASIC CONCEPTS Ch.1.2.3.2.1

The result of the elaboration of the 'routine-identity-declaration' E8* is
that (a copy of) the routine E8.2 is ascribed to thing. Observe that the
XXXXX is not elaborated at this stage. The result of the elaboration of E8*
may be depicted as below:

proc (urnode , vrnode) zrnode

(urnode u , vrnode v)

zrnode: XXXXX

1.2.3.2.1. The supply of the actual parameters (call by value)

Calling the thing of E8 *, we have to supply an actual-umode-parameter
and an actual-vmode-parameter. Let mar u lyn be a umode variable and
mar v lyn a vmode variable. If we now "parametrize" thing by writing the
actual-PARAMETERS-pack (mar u lyn, marv lyn) right behind thing, we
obtain the procedure call:

(E9) thing (mar u lyn, mar v lyn)

To elaborate this, we must first do some transformation of the routine
(E8.2) yielded by thing:

(E8.2*) zmode (umode u = ~, vmode v = ~; XXXXX)

The "~"s are only there as locum tenens for the actual-MODE-parameters;
we will now get rid of them by replacement with the corresponding actual­
parameters.

The result is the cast:

(EIO) zmode (umode u = mar u lyn , vmode v = mar v lyn ; XXXXX)

This cast is then elaborated, yielding a zmode value which is then the value
returned by the call:

Ch.1.2.3.2.2 BASIC CONCEPTS

I thing
r '----.---J
I
I
I
I
I
I

I
I
I
I
I

zmode (umode u J

umode

refumode

1- '---,---J

I
I
I
I
I
I

I
I
I

vmode Lr ~ "~n{
\2].

I X,XX I

zmode

)

~---~ .. -{=:J

87

If, for instance, mar z lyn is declared to be a zmode variable, then you may
assign:

(E9*) mar z lyn := thing (mar u lyn , mar v lyn)

which, in fact, elaborates into:

(ElO*) mar z lyn := zmode (umode u = mar u lyn , vmode v = mar v lyn ;
XXXXX)

1.2.3.2.2. The supply of the actual parameters (call by reference)

Observe that in EIO you cannot assign to the formal-parameters u and v;
the identity-declarations in ElO are of type EI; u and v are constants, copies
of the values referred to by mar u lyn and mar v lyn respectively. This
situation has some similarity to "call by value" in some other programming
languages.

assign thing

88 BASIC CONCEPTS Ch.1.2.3.2.2

If you want to assign a formal-parameter, you have to declare it to be a
reference-to-MODE; the replacement action then leads to an identity­
declaratton of type E2 (equivalence, two names referring to the same instance
ofa vahle).

Consider, for example, the procedure declaration:

(Ell) proc (ref zmode , umode , vmode) void assign thing =
(ref zmode z , umode u , vmode v) void: z := XXXXX

or, contracted:

(Ell *)

The call:

(EI2)

proc assign thing = (ref zmode z , umode u , vmode v) void:
z :=XXXXX;

assign thing (mar z /yn , mar u /yn , mar v /yn)

elaborates into:

r­
I
I
I

I
I
I
I
I L ________ -,

I
vmode I

z xxxxx
\1

zmode

Ch.1.2.3.2.3 BASIC CONCEPTS

The call El2 is equivalent to the cast:

(E12*) void (ref zmode z = mar z lyn , umode u = mar u lyn ,
vmode v = mar v lyn .. z := XXXXX)

89

It is important to observe that the first identity-declaration is of the type
E2. Its effect is that, by its elaboration, a copy of the name yielded by the
actual-parameter mar z lyn is ascribed to the formal-parameter z. The result is
that z and mar z lyn both refer to the same zmode value. Consequently,
assignation to z within the routine has the same result as assignation to
mar z lyn. This is exactly what we wanted to achieve.

Conforming to the domesticated terminology of a "call by value", we
might refer to the elaboration of a reference-to-MODE-parameter as a "call by
reference" .

The second and third declarations ascribe constants to u and v, copies of
the values referred to by mar u lyn and mar v lyn respectively; these actual­
parameters are "called by value".

1.2.3.2.3. The supply of the actual parameters (other possibilities)

Now we know exactly what happens to the actual-parameters in a
procedure call, we shall find no difficulties in other applications of the
principle of identity. For example:

Suppose you want to call assign thing, but you are only interested in the
elaboration of the routine (for its side effects, for instance) but not in the
implied assignation to the first parameter. Then you may call:

(EI3) assign thing (loe zmode , mar u lyn , mar v lyn)

which elaborates into:

(E13*) void f ref zmode z = loe zmode , umode u = mar u lyn ,
vmode v = mar v lyn ,. z :=XXXXX)

and see what happens. The first identity-declaration is now of type E3; a
variable oflocal scope is ascribed to z. The value in which you were not
interested is assigned to this local variable and disappears when the
elaboration of the routine is completed.

Suppose the value of, for instance, mar v lyn does not matter under some
circumstances, and you have no vmode value at hand in the range where you
want to call assign thing. Then you may call:

(E14) assign thing (mar z lyn , mar u lyn , skip)
I.I.A.-4

--~--~--~-~--------~

90 BASIC CONCEPTS Ch.1.:l.4

Now, when this call is elaborated, the textually third "-" in the
transformed routine is replaced by skip. A skip happen~ to be a very docile
little dud: i! always delivers an undefined value of the required mode without
any further action.

1.2.4. Summary

For their importance in this language, we review briefly the constructions
El, ---, E6. Ascribe them to identifiers in your own memory:

recommended form: extended form:

amode thing = marIlyn; amode thing marllyn (E1)

ref amode name = marIlyn; ref amodename marllyn (E2)

loc amode aname ref amodeaname loc amode (E3)

loc amode aname := marIlyn; ref amodeaname loc amode ;=

marllyn (E4)

loc ref amodepointer ; ref ref amode pointer = loc ref amode ; (E5)

Ioc ref amode pointer ;= marIlyn; ref ref amode pointer = loc ref am ode :=

marllyn (E6)

where the locs in the left hand column may be omitted.

And remember:

(E1) thing does not yield a name and you cannot assign to it (provided,
however, that amode does not happen to be a mode-indication for a
refbmode). .

(E2) name yields .the same name as marllyn; assignation to name has the
same result as assignation tomarllyn and vice versa.

(E3) aname yields a new name, different from all other names (that is
what the local-generator achieves) and you can assign to it.

(E4) aname yields a new name (variable) and is initialized by assigning the
value referred to by marllyn to it.

(E5) pointer yields a reference to a name (a variable name or name of a
name); you can assign a name to it.

(E6) pointer yieldsa.reference to a name and is initialized to refer to the
name yielded by mar llyn.

Vertical readers, please tum to 2.2.

Ch.l.3 BASIC CONCEPTS 91

1.3. Symbols, modes and operators

1.3.1. Representations

A 'program' is defined to be a sequence of 'symbols'. Consider for
example:

begin real x, y, z;

end

read (x); read (y); x := abs x; y := abs y;
z := (x + y)/2 - sqrt(x xy);
pn'nt (z)

This piece of program begins with the symbol "begin" followed by the
sequence "real" "x" "," "y" "," "z" ";" "read" "(" "x" ")" ";" and so on.
Typographical display features, such as blank space, change to new line, and
change to new page have no significance in the language. Strictly speaking
"begin", "real", "x", "," etc. are not themselves symbols; they rather
represent them.

In the Report the representation(s) of symbols is strongly recommended,
rather than explicitly prescribed. For the benefit of available charactersets,
other repres(;1ntations may be chosen for a specific implementation of the
language; one and the same implementation might even accept different
representations from different input-devices. The given piece of program
could for example look like:

or even:

'BEGIN' 'REAL' X, Y, Z;

'END'

READ(X); READ(Y); X:= 'ABS' X;Y:= ABS' Y;
Z := (X + Y)j2 - SQRT(X x Y);
PRINT(Z)

.BEGIN .REAL X, Y, Z;

.END

READ(X); READ(Y); X : = .ABS X; Y:=.ARS Y;
Z : = (X+Y)/2-SQRT(X*Y);
PRINr(Z)

On the other hand, if small letters and capitals are both available, one
could for instance reserve the capitals for the construction of representations

92 BASIC CONCEPTS Ch.1.3.2

for special symbols such as the begin-symbol, the real-symbol etc. If suitable
tokens are available one could also choose other representations for the
go-on-symbol and the becomes-symbol and the example might then look like:

BEGIN REAL x, y, z ~

END

read(x) ~ read (y) ~ x +- ABSx ~ Y +-ABSy ~
z +-(x + y)/2 - sqrt(x xy) ~
print(z)

In this Informal Introduction we shall always follow the recommendations
of the Report [see R 9.4]. Where the Report suggest alternatives, we shall
follow our own taste which may, however, depend upon the context. A
complete list of the alternatives recommended by the Report is given in
Appendix I and a particular recommended standard is given in Appendix 5.

1.3.2. Symbols, bold words and comments

In this language a rather extensive set of symbols is required, and
moreover, we need some expedient for constructing aI). arbitrary number of
new symbols.

A decisive point of course is the set of characters, types and marks
producible by your input equipment; or, to, state it more precisely,
distinguishable by the input devices on your computer. If this happens to be
you, then there is hardly any problem, thanks to the productive power of
human handwriting and the perceptive qualities of the human eye. With an
automaton there may, however, be some difficulty. Usually its senses are only
able to distinguish a rather small set (some power of two) of different
combinations of punched holes or magnetized spots in some material. In that
binary form usually at least one font of letters (we represent them in lower
case), ten digits, the punctuation marks".", ",", ":''.. ";" and "''', one pair of
brackets "(" and ")" and a more or less generally accepted set of marks, such
as "+", "-", "x" (or "*"), "I" and "=", can be represented. In more
favourable cases, the equipment may afford more luxury in the form of a
second case ofletters andlor some selection of types such as "<", ">", "[",
"]", "V", "A" and perhaps even "i", "t", "10" etc. In particular an
underlining" _" and a vertical stroke" I" may be available and can be used to
assist in the construction of other tokens like, for instance, "=1=". ""';;", "~"
etc.

Nevertheless, this language needs much more than all the marks'

Ch.1.3.2 BASIC CONCEPTS 93

mentioned, and thus, even for the representation of the finite set of required
symbols, an expedient to construct symbols from available marks appears to
be essential. The Report recommends [R 9.4.2.2.b] that the extra symbols,
or "bold words", be constructed similarly to identifiers, but distinguished
from them by means of a "stropping" convention. The strop mechanism may
be open- and close-apostrophes, or a period used as "boldface shift", or
underlining, or bold type face, or the use of upper case letters (Le. the
capitals):

"begin" is an identifier or 'tag' (see 1.4)

but:

. "'begin''', ".begin", "begin", "begin" or "BEGIN'

might be used as a stropped word to represent the begin-symbol.
Here we adopt stropping by bold type face. In this notational convention,

a sequence of marks like "notification" is to be considered as one indivisible
symbol and definitely not as a sequence of the symbols "not", "if", "i", "c",
"at", "i" and "on", even though "not", "if", "i" and "at" happen to be
proposed representations for required symbols, and "c" and "on" very well
might be operators or mode-indications. Whether you want to consider such a
construct as an ill chosen representation (in particular if such a splitting
happens to make sense) or not is related to your inclination to meditate on
problems concerning the amount of blank paper needed to separate spots of
ink. Anyhow, you will be wasting your time, because the Report dictates
[R 9.4.2.2.b] that, even though blank space, change to a new line and the
like normally have no meaning in this language, you must use them to resolve
this ambiguity by writing not if i c at i on if that is what you really want.
Otherwise, the bold word notification is to be assumed.

We are thus able to construct as many symbols as we need. For example
"isnt" for "::j::" and "at" for "@" if we are unable or unwilling to produce or
use "::j::" and "@" on our input equipment. In particular we are now in the
position to introduce as many bold words as we want, and we really need
them for:

1) MODE-mode-indications (see 1.3.3.1)

for example we used am ode as an amode-mode-indication

2) operators (see 1.3.3.2 and 3)

For the representation of an operator, it will be appropriate to use "+", "x",
"1\" etc. if the action defined can be considered as an "addition",

... _---_._---_ _-------

94 BASIC CONCEPTS Ch.1.3.2

"multiplication" or "conjunction" in some technical sense. Moreover,
composite symbols such as +x, >=, +:=, +x:= are admissible [R 9.4.2.1]. For
the rest we shall use bold words for operators as well.

A particular role is played by the comment-symbol represented by
"comment", "co", "#" or "f' and also, for special puposes, by "pr" or
"pragmat". These symbols serve to step outside the language for a while.

A 'comment' consists of two matched comment-symbols enclosing an
arbitrary sequence of characters, marks and types, not containing that
comment-symbol. Thus comment this is a comment comment and co 4' co are
comments, but co this is not a commentd'. is not. Comments can be inserted
at any place in a program except inside an identifier, a bold word or a
denotation (S.1.1.1 and S.S.1.1).

A specific implementation may distinguish human comments, between
two comments or 4's, from pragmats between two pragmats or prs.

A (human) comment then serves to supply additional human information
for the possibly human reader.

A pragmat may contain a message for a specific compiler (for instance to
inform it to compile in some special mode or sub-language or to subjoin the
program to some library or something), or for an operating system (for
instance to inform it concerning certain required equipment or availability of
hardware features, certain libraries etc.). A pragmat will usually be subject to
the rules of a specific command language.

Consider the following program:

pr ALGOL 68 pr
. begin comment this example is based on the revised

report on the algorithmic language
algol68 section 9.2; end of comment

proc pr NONREC pr pr = void: pr;
pr
comment if NONREC means "nonrecursive compilation",

whatever that may be, then we got into
trouble comment

end pr RUN pr 4'??? 4'

In the standard-prelude (the standard declarations) of the Report a special
comment-symbol "c" is used to express that the so called "pseudo-comment"
should be replaced by a representation of a declarer or closed-clause suggested
by that comment [R 10.1.2 Step 7] . In this Informal Introduction we shall
follow this convention (e.g. in 3.7.2.ES).

Ch.1.3.3 BASIC CONCEPTS

1.3.3. Other declarations

Besides the identifier-declarations (1.1.2) we have:

1) mode-declarations
2) operation-declarations
3) priority-declarations

1.3.3.1. Mode-declarations

(1.3.3.1)
(1.3.3.2)
(1.3.3.3).

A mode-declaration has the form:

mode MODE-mode-indication = actual-MODE-declarer

For example, in:

(E1) mode pram = proc (umode, vmode) zmode;

95

the pram-mode-indication pram is declared to stand for the actual-declarer,
which is proc (umode ,vmode) zmode, and now, by declaring for example:

(E2) loe pram puvz ;

you ascribe to puvz a name referring to a value of the mode pram. which is a
routine with a umode and a vmode as parameters, returning a zmode value:

We may now assign to the procedure variable puvz, for example:

(E3) puvz := thing

where thing ~s declared as in 1.2.3.1.E8 to yield a proc (umode ,vmode)
zmode. What happens in the elaboration of E3 is:

96 BASIC CONCEPTS

thing

zmode: XXXXX

In fact we are now repeating the things we discussed in 1.2.
By virtue of the mode-declaration E1, the variable-de,claration E2

"develops" into:

(E2*) loe proe (umode , vrnode) zmode puvz ..

Ch.1.3.3.1

"to develop" is a technical term, which should be distinguished from
"to elaborate".
In "elaboration" actions on internal objects are performed.
In "development", a mode-indication is replaced by its actual-declarer.

(One could say that "elaboration" is performed by the object code (at run
time). while "development',' is an action of the compiler.)

(In E3 the semantics of the lanugage state that the pram yielded by thing
is copied into the pram referred to by puvz. As in other situations where
copying is prescribed, one should remember an important remark in Section
2.1.4.1.a of the Report: "Any of these actions ... may 'be replaced by any
action ... which causes the same effect". In particular where routines are
manipulated, the implementor usually has other expedients at his disposal
which "cause the same effect" as copying. The same applies to many other
situations of this kind, particularly whl;:re copying might appear to be
involved.)

You may declare a mode-indication as a convenient abbreviation for
~ertain declarers (as, for instance, was the case in E1 and E2). You could do
without them in these situations, at the price of time and ink.

There are, however, very interesting and important situations in which
mode-declarations are indispensable for expressing certain essential

Ch.1.3.3.2 BASIC CONCEPTS

interrelations of objects in the memory. Some of these more involved
mode-declarations will be 4sed in qther sections (see 1.4).

Circular mode-declarations like:

mode amode = amode.;
mode amode = bmode ,. mode bmode = cmode ;

mode cmode = amode ,.
mode amode = ref amode ;

97

might bring the compiler into difficulties and are apparently of no use.
Consequently, they are regarded as not well-formed (2.4.3). However, there
are constructions which might puzzle you at first sight, because they have an
appearance of circularity (in fact are circular in some aspect), but nevertheless
are very useful and can (easily) be implemented. Of course, such mode­
declarations are well-formed and are not excluded.

1.3.3.2. Operation declarations

There are two kinds of operators:
monadic, declared as:

(E4) op (umode) zmode m = (umode u) zmode: XXXXX;

or, by contraction:

(E4*) op m = (umode u) zmode: XXXXX;

and dyadic, declared as:

(ES) op (umode , vmode) zmode 0 =

(umode u , vmode v) zmode: XXXXX,.

or, by the same contraction:

(ES*) op 0 = (umode u , vmode v) zmode: XXXXX ;

Observe the resemblance to procedure declarations. Instead of declarers
like proc (umode) zmode and proc (umode , vmode) zmode we have here
op (umode) zmode and op (umode , vmode) zmode.

The result of the elaboration of an operation-declaration is that (a copy
of) the routine is ascribed to the operator. For example, E5 (ES*) elaborates
into:

98

o

BASIC CONCEPTS

op (umode , vmode) zmode

(umodeu. ,

vmode v)

zmode: XXXXX

Ch.1.3.3.2

In contrast to procedures, an operator can only be defined to yield a
routine and not to refer to one. Consequently, the uncontracted forms (as in
E5) are rarely of practical use, and we shall never write one again.

If mar z lyn is declared to be a zmode variable; then the assignation:

(E6) . mar z lyn := mar u lyn o mar v lyn

elaborates into:

(E6*) mar z lyn := zmode (umode u = mar u lyn , vrnode v = mar v lyn;
XXXXX)

The cast in E6* is then elaborated, yielding a zmode value which is
returned by the formula:

~ode(wnode~--~._~4

~
, vmode .

Observe that this picture is almost identical to the pi9ture of Section
1.2.3.2.1.

Ch.1.3.3.3 BASIC CONCEPTS 99

There is, however, a fundamental contradistinction to procedures. For one
and the same operator more than one declaration may occur within the same
range. Which one then applies depends entirely on the mode(s) of the
operand(s) in the particular formula in which the operator is applied.

For example:

(E7) op m = (amode a) amode: XXXXX ..
(ES) op m = (bmode b) bmode: w.v.w«WW ..
(E9) op 0 = (amode aI, a2) amode: W~ ..
(EIO) op 0 = (bmode bI; b2) bmode: ~ ..

amode am, amI, am2 .. bmode bm, bmI, bm2 ..

amI := m am2.. ~ E7 applies
bmI := m bm2.. ~ ES applies
am := amI Oam2;· ~ E9 applies
bm := bmI Obm2 ~ EIO applies

Observe that it is determined during the compilation of the formula which
operator, i.e. which routine, applies.

l.3.3.3. Priority declarations

All monadic-operators have the same, the highest, priority.
For dyadic-operators nine priority levels can be declared by a priority­

declaration of the form:

prio 0 = DIGIT-token

in which "DIGIT-token" produces one of the nine digits" I" to "9".
In a formula with dyadic-operators of equal priority like:

(Ell) am 0 amlO am2 0 am

the implied bracketing is:

(Ell *) ((am o amI) Oam2) Oam

Priority-declarations may impose another (implied) bracketing:

(EI2) prio 0 = 6, 0 = 7, x = S ;

the bracketing implied in th!) formula:

. (E13) a x b 0 c x dOe 0 fO g x hOi x j x k 0 I

100 BASIC CONCEPTS

is:

(E13*) ((((a x b)O(c x d)) o(eOf))o((g x h)O((ixj)x k))) of

Unless explicit bracketing requires otherwise, monadic-operators are
elaborated first, i.e. they have the highest priority:

(EI4) am := m amI 0 m am2

is parsed like:

(EI4*) am := (m amI) 0 (m am2)

Ch.1.4

Of course it would have been possible (and in fact has been investigated)
to declare different priority levels for different monadic-operators. However,
it makes matters very awkward without much gain. The main root of this
smallness of gain is that, if ml, m2, ---, mn were monadic-operators with
different priorities, nevertheless only one parsing is conceivable for the
formula ml m2 --- mn operand, Namely:

(ml (m2 (--- (mn operand) ---)))

The gain can thus be found only in combination with dyadic-operators. There
is only one situation in which you might feel sorry (see 5.1.3).

Vertical readers, please tum to 2.3.

1.4. Stowed values, structures

1.4.0. STOWED values

In this language values (one or more) can be STOWED (Le. collected) to
form a value of a new mode. The metanotion "STOWED~' stands for:

1) 'structured with FIELDS mode'

or

2) 'ROWS of MODE'

corresponding to two entirely different systems of collecting:

1) into a "structured value"
2) into a "multiple value"

(this section)
(section 1.5).

Ch.1.4.1 BASIC CONCEPTS 101

In a multiple value you collect values of essentially the same mode, its
"elements", each of which can be selected by a specific set of subscripts. The
mode of a multiple value is 'ROWS of MODE' and covers the concept of
"array" (or "vector", "matrix". "dimension", etc.) in other programming
languages.

In a structure you collect values of (not necessarily) different modes, the
"fields" of the structure, each of which can be selected by a specific field­
selector. Structured values cover what in other programming languages are
known under a variety of names like "records", "lists", "trees", "queues",
"chains", etc.

The important feature of structures is that values of different modes may
be collect~d into them. In particular, one or more of the fields may be
references to other values, in which way lists and trees of all kinds may be
constructed.

Anotherimportant feature, however, is that the selection ofa field in a
structure may very well take place at compile time, whereas the"subscripts of
an element in a multiple value are usually determined (computed) at run
time. Therefore, even in situations in which multiple values are the only
possibility in many other programming languages, in this language you will
often use structures instead. A good example is the compl (see Section 2.4.4).

Finally, the general concept of MODE allows you to build multiple values
the elements of which are structures, and vice versa to build structures the
fields of which are multiple values.

1.4.1. Enumeration by tagging

By a mode-declaration like:

(EO) mode triple = struct (umode first, vrnode second, wmode third) ;

triple is declared to "specify" a new class (mode) of values, each of which is
structured with three fields, a umode field first, a vrnode field second and a
wmode field third. first, second and third are the 'field-selectors'.

Syntactically a field-selector is a sequence ofletters and digits with a
leading letter. It may look like an identifier but it is not. It is important to
recognize clearly its function:

A field-selector as such does not ¥ield any internal object.
A field-selector is part of a declarer or of a selection;

A triple object, as declared by EO, may be visualized as a box with a
umode, a vmode and a wmode box within it, the fields of the triple. These

102 BASIC CONCEPTS Ch.1.4.1.1

fields can be "pulled up" by their field-selectors first, second and third. We
might imagine a piece of cord between the field and its tag:

triple

vrnode

wrnode

~L __________ ~

It is important to
bear in mind that
first, second and
third are not names
referring to the
fields (see 1.4.1.1)

Merely -to simplify our drawings we shall often write the selectors inside
the boxes:

_ triple

umode

[first

vrnode

I second I
wmode

third

1.4.1.1. Structured constants

warning: our drawings serve
to visualize internal
objects and matters
of elaboration;

please do not
confuse the selector
in the box with the
instance of a value
in it.

We now reconsider the three fundamental identity-declarations El, E2 and
E3 of Section 1.2, in which we substitute systematically triple (as declared in
EO) for amode:

(E 1) triple thing = mar llyn ..

Ch. 1.4. 1.1 BASIC CONCEPTS 103

By El, a copy of the triple value referred to by marIlyn (which is itself of
mode ref triple) is ascribed to thing:

triple thing

triple
ref triple

wmode
\

third

After this declaration thing yields a triple object and its fields can be
selected separately by pulling them up by their tags:

first of thing
second of thing
third -of thing

selects
selects
selects -

the umode object,
the vrnode object ,
the wmode ~bject .

Because thing does not refer to a triple, you cannot assign to it.
Consequently you cannot assign to its fields first of thing, second of thing and
third of thing, which in their turn yield the fields of thing.

In the declaration El, marIlyn is dereferenced, because thing is required
to be of triple mode, and its fields are copied into the triple thing thus
defined; the supersession is a triple action (three'fields are copied). But, in the
reach of this aeclaration, whatever may happen to the fields of the triple

--_._._-- -----------

104 BASIC CONCEPTS Ch.1.4.1.2

referred to by marllyn, nothing can happen to the fields of the triple yielded
by thing. You may select them, you cannot change them;first of thing etc.
are not names.

1.4.1.2. Names of structures

By the declaration:

. (E2) ref triple name

-triple

urnode

I first

vrnode

I second I

wrnode

I third

mar llyn is not dereferenced (see 1.2.E2) as in EI, because the formal­
parameter requires a ref triple value.

Clearly, name is a name, referring to the same triple object as marIlyn
(two identifiers referring to the same internal triple).

You may assign to name, for example:

(E2*) name := mar2lyn

by which assignation the triple object referred to by mar2lyn is copied into
the triple object referred to by name (and by marllyn).

Ch.1.4.1.3 BASIC CONCEPTS 105

Moreover you can assign to the names:

first of name, second of name and third of name.

For example, the assignation E2* is equivalent to the collateral assignation:

(E2**) (first of name:= first of mar2lyn ,
second of name := second of mar2lyn ,

third of name . third of mar2lyn)

Recapitulating:

but:

first of thing, second of thing and third of thing
yield the fields of the triple yielded by thing,

first of name, second of name and third of name
yield names which refer to the fields of the triple referred
toby name. These are known as the "subnames" of name.

1.4.1.3. Creation of new structures

A new triple variable can be declared (see 1.2.E3) by means of a local­
generator:

(E3) ref triple ·ample = loc triple;

or by the more usual variable-declaration:

(E3*) triple ample,' or loe triple ample,'

What happens is essentially the same as in 1.2.E3**:

umode

I first

vmode

I second I

wmode

I third

106 BASIC CONCEPTS Ch.1.4.2

Of course you can also initialize a thus declared neW triple:

(E4) ref triple atriple = loc triple :=marllyn ;

or more usually:

(E4*) triple atriple : = mar llyn;

You are not required by the syntax to declare a new mode like triple (EO)
before you give identifier-declarations; that is, you may very well declare:

(E3**) struct (umode first, vmode second, wmode third) atriple ;

In most cases, however, you will spare time and ink by a mode-declaration.
Moreover, if you use structures to construct lists etc., the mode-declaration is
indispensable (see 1.4.3).

1.4.2. Different objects in one box

The fields of a structure may be of different modes, but could also be the
same. In the latter case it is often a matter of efficiency (or even convenience)
whether you declare them in a structure or in a multiple value. You can stow
as many values in a structure as you wish, but you have to enumerate them in
the declaration by tagging the fields explicitly. The number of fields in a
structure is determined statically (at compile time). The minimum number is
one, the maximum depends only on your perseverance in writing them down.

Of course the field-selectors in one structure must all be different.
However, if it suits you, you may very well use the same sequence of symbols
as a field-selector in different structures or even elsewhere as an identifier.

Just to give you some impressions, consider:

(ES) mode threeofakind = struct (amode one, two , three) ;

which is a contraction of:

(ES*) mode threeofakind = struct (amode one, amode two, amode three) ;

And consider further:

(E6) mode couple = struct (man one, wife two) ;

(E7) mode largebox = struct (amode one, two , three,
bmode first, second, third, fourth,

fifth, sixth,

Ch.1.4.2 BASIC CONCEPTS 107

cmode a , b , c , d , e , f, g , h , i , j , k ,
l,m,n,o,p,q,r,s, t,u,
v,w,x,y,z);

Now consider the variable-declarations:

(E8) threeofakind one, two, three, four, five, six, seven, eight;
couple romeo and juliet, tristan und isolde,

daphnis et chloe;
largebox a, b , c , d , e , f, g , h , i , j , k , I , m , n , 0 , p , q , r ,

s,t,u,v,w,x,Y,z;

and observe that there are no ambiguities in:

(E9) one of two, two of three, one of one,
two of romeo and juliet, one of daphnis et chloe,
one of t, t of t, 0 of 0, a of b ,
etc.

There is no restriction on the modes of the fields in a structure; every
mode is allowed (including structures, see 1.4.4). Consider, for example:

(EIO) mode surprisepacket =
struct (umode umode , vmode vmode , zmode zmode ,

proc (ref zmode , umode , vmode) void proc) ;

and the variable-declaration:

(Ell) surprisepacket s , sl , s2 , s3 ..

and the assignations:

(EI2) umode of sl := mar u lyn ;
vmode of s2 : = mar v lyn ;
proc of s := assign thing;

By virtue of Ell, proc of s is a procedure variable, a reference to a proc
(ref zmode , umode , vmode) void to which we assign in E 12 the compatible
routine yielded by assign thing (see 1.2.Ell *). If we now parametrize proc of s
(1.2.3.2.1), it will be dereferenced to yield a routine which can be called (this
will be discussed in 4.2.2.2). For reasons to be discussed later (5.5.1.3.E30)
we must put brackets around proc of s before parametrizing it.

Now you may fish out what happens by elaboration of the call:

(EI3) (proc of s) (zmode of s3, umode of sl, vmode of s2)

108 BASIC CONCEPTS Ch.l.4.3

1.4.3. Chaining

By declaring a field of a structure to refer to (to be the name of) another
value, you can chain this structure to that other value. If, in particular, this
other value is of the same mode as the structure, we are able to chain values
of the same mode (i.e. to construct "queues", "lists", "trees" etc.).

Consider:

(E14) mode box = struct (amode value, ref box next) ;

This mode-declaration is one of those which have an appearance of
circularity (see 1.3.3.1). You might think that it develops into:

mode box = struct (amode value,
ref struct (amode value,
ref struct (amode value,
ref struct (etc. ad infinitum

This, however, is not the case. The box textually contained in ref box next
in E14, is "shielded" by the struct and the ref (see 2.4.3 for the details).
Therefore the compiler does not develop box (in this syntactic position).

Consider the identity-declarations:

(E1S) box a , b ,c , d ;

The result of their elaboration will be:

arnode amode amode amode

B B ~ B
ref box ref box ref box ref box

8 8 8 8

Observe that the field tagged next is of the same mode as the name
ascribed to a , b , etc. There is not a tittle of infinity about the size of these
boxes.

C'h.1.4.3 BASIC CONCEPTS

Let us first assign:

(EI6) value of a := marllyn ;
value of b := mar2lyn ;
value of c := mar3lyn ;
value of d := mar4lyn ..

mar3 and 4lyn are ref amodes
like their sisters (see 1.1.2.2).

109

Because a refers to a box, value of a is the subname referring to its amode
field. Consequently, value of a yields a ref amode value and thus is an amode
variable, which is why we can assign marllyn to it. The four mar lyns are
dereferenced and their amode vruues are copied into the value of fields of the
boxes referred to by a , b , c and d respectively.

Much more interesting is to see what happens when we assign:

(EI7J) nex t of a : = b ..

By the same reasoning as above, next of a is the subname referring to the
ref box field of the box referred to by a. Consequently, next of a yields a ref
ref box value and thus is a ref box variable (is a variable name) (see ruso
5.4.2). Therefore b in the RHS of the assignation is not dereferenced and the
value yielded by b is copied into the field next of the box referred to by a:

box box

amode

B
ref box

< next >
The result is that we have chained the box referred toby a to the box

referred· to by b via the nex t of field of the box a .

. _---------_ ... _----_ ...

110

Similarly:

(EI7.2)

(EI7.3)

nex t of b : = c ;

nextofc:= d;

BASIC CONCEPTS Ch.1.4.3

Finally, we want to express that d is the last box in the chain. Then we
must give a special value to its next of field, recording this fact. Such a value
is nil, which is "a name referring to no value":

(EI7.4) next of d := nil ;

What we have achieved by the assignations El7 is:

a b c

ref box ref box ref box

box box -box

am ode

EJ

Let us now consider the assignation:

(EIS) value of next of next of next ofa := marilyn

next of a refers to b ,
next of b refers to c ,
next of c refers to d ,

box

nil

consequently, value of nex t of next of next of a refers to the amode field of
the box referred to by d. It thus appears that EIS was a rather complicated

I

I

I
I.

Ch.1.4.3 BASIC CONCEPTS 111

way of prescribing:

(EI8*) value of d := marilyn

In a mode as declared in El4 we can build single threaded lists. Of course
we can chain in much more complicated ways.

For example:

(EI9) mode node = struct (amode mainvalue ,
proc (amode) amode function,
ref node north, east, south, west) ;

(E20) node p, q, r, s, t, u, v, w;

We may assign:

(E21) mainvalue of p : = marilyn;
etc.
function of p := (amode a) amode: XXXXX;
etc.

(E22) north of p := q ; east of p := r ; south of p := s ; west of p := t ;
north of r := u ; east of r := v ; south of r := w; west of v := r ;
northofs :=p; east oft :=p; southofq:=p; westofu :=q;
north of w := r ; east of q := u; south of u := r; west of r := p;

east of s :=w ; west of w := s ;

[]-"--~ -+----------+--~ [J

You might now like to meditate on expressions like:

112 BASIC CONCEPTS Ch.1.4.4

(E23) [unction of w := (amode a) amode:
if mainvalue of w = a

then mainvalue of north of w
else ([unction of v) (main value of east of w)

fi

1.4.4. Pandora's boxes

A field of a structure may be another structure with a field which may be
another structure and so on:

(E24)
(E2S)
(E26)

mode pandora = struct (amode a , pando p) ;
mode pando = struct (amode a ,pan p) ;
mode pan = struct (amode a , ref pandora next) ;

By virtue of E2S and E26, E24 develops into:

(E24*) mode pandora = struct (amode a ,
struct (amode a ,

);

struct (amode a ,

)p

ref pandora next
)p

Intentionally, we chose the selectors of the fields of pandora and its inner
fields somewhat confusingly, just to point out that such is allowed (though it
may not be wise).

(E27) pandorap;

Now observe that:

but:

as are:

a ofp
a ofp ofp
a ofp ofp ofp

refers to an amode value,
refers to an amode value,
refers to an amode'value ,

a of p of p of p of p is meaningless

next ofp
next ofp ofp

because a pandora has no next of field,
because a pando has no next of field,

I

I

Ch.1.4.4

but:

next ofpofp of p

as do also:

BASIC CONCEPTS

refers to a pandora

next of p of p of next of p of P of p ,
next of p of p of next of p of p of next of p of p of p , etc.

pandora

pandora

arnode

D
pando

amode

D
pan

~
amode

D
Ci>-'- ref pandora

next)

!
pand

The well-formed rule (2.4.3) prohibits circular definitions like:

mode pandoravel = struct (am ode a , pandoravel.p) ;

ora

113

Here pandoravel is not shielded by a ref. The compiler cannot do anything
sensible with this pandoravel. Obeying such a mode-declaration would result
in an endless loop of development.

114 BASIC CONCEPTS Ch.1.S

Observe that, as soon as a ref stands in front of some declarer, the only
thing the compiler has to do is (to be prepared) to reserve a location for
holding a name; that is why a declarer following a ref in a struct can be
shielded.

Vertical readers, please tum to 2.4.

1.5. Stowed values, mUltiples

1.5.1. Multiple values and descriptors

A multiple value (or "multiple" for short) consists of:

1) zero, one or more values, all of the same mode.
These values are the "elements" of the multiple. Each element is

selected by a set of one or more integers, its "subscripts". In this
section, we use h , i, j , k, m , n , ml , nl , ... as units yielding an
integral value.
2) a "descriptor".

A descriptor describes the subSCripts that are required to select an
element-how many of them are needed and what bounds are to be set
on their values.

Examples of the modes of multiple values are:

[] amode [,] amode ["] amode [",] amode

which should be pronounced as 'row of am ode', 'row row of amode', 'row
row row of amode' and so on, or, in general, as some 'ROWS of MODE'
where "ROWS" stands for as many times 'row' as you may require. The
number of 'row's in the mode is the number of subscripts needed to select an
element, and "MODE" (am ode in the examples) specifies the mode of each
element.

Syntactically, [] amode, [,] amode, etc. are formal-ROWS-of-MODE­
declarers (you can use them in formal-parameters). Actual-ROWS-of-MODE­
declarers (for use in generators and therefore also in variable-declarations) are
more complex, since they must contain the descriptor of the value to be
generated. Here"are some examples:

[m : n] amode 4- one 'row' in the mode 4-
[k: k, m : n] amode ¢ two 'row's in the mode d'
rml : nl ,1112: n2, m3 : n3] amode d' three 'row's in the mode 4-

Ch.l.5.! BASIC CONCEPTS 115

and even

[k: k] [m : n] amode ¢ one 'row', but the 'MODE' also has a
'row' in it, giving 'row of row
of amode' II'

m : n, k : k, etc. are "boundpairs"; [k : k, m : n 1 specifies the complete
descriptor. Each boundpair consists of a lower-bound (to determine the
lowest acceptable subscript), a colon, and an upper-bound (to determine the
highest acceptable subscript). If the upper-bound of any boundpair is lower
than the corresponding lower-bound, then the descriptor is "flat" and the
multiple value consists of zero elements.

We shall bring multiple values into our pictures in the following way:

[I amode

k

h

h+l

k-l

k

It is important to realize that the
descriptor belongs to the multiple value.
You even have a certain access to it (see
1.5.5).

n

116 BASIC CONCEPTS Ch. 1.S. 2

1.5.2. Indexing

To select a "subvalue" of a given multiple (Le. a value which is a subset of
that given multiple value), we use 'indexers'. The smallest subvalue is one
individual element of the multiple, which is obtained by "subscripting". All
other subvalues can be obtained by "trimming"; the mode of a subvalue thus
obtained is some 'ROWS of MODE'.

1.5.2.1. Indexers

An indexer consists of a sub-symbol" [", followed by one or more
'trimscripts' separated by comma-symbols followed by a bus-symbol "]" (see
below). A trimscript is a trimmer-option (Le. a 'trimmer' or EMPTY) or a
'subscript'. Examples:

[i] [i,j] [i,j,k]

[i : j]
[i:]
[: j]
[]

[h : j, i : k]
[:j,i:k]
[, i : k]
[i: , : k]
[]

i , j and k are subscripts;
a subscript may be almost any unit
yielding an integral value (see 5.5 .1.3)
all is and h s are lower-bounds ,
all j sand k s are upper-bounds;
all such bounds must again yield
integral values;
i : j , h : j , i : k etc. are trimmers

If a bound is omitted, then its value is that of the corresponding bound in
the descriptor of the given multiple. If both bounds are omitted, then the
colon may be omitted also.

Examples in which we find trimscripts of both kinds in an indexer are:

[h,i:j] [,k] [Ilk]
[h,i:j,k] [:h,i,k:

A special kind of a trimmer is a trimmer with a revised-lower-bound:
,

[i : j at h]

or or (in another notation)

[i:j@h]

the lower-bound of the multiple subvalue
trimmed by i : j gets a new value which
is the value of h ; a revised-lower-bound
must again yield an integral value.

In the absence of a revised-lower-bound (but not when both bounds and
the colon are omitted also), the multiple subvalu~ gets a revised lower-bound
of 1.

Semantically, an indexer is pretty close to a descriptor. In fact, unless all

Ch.1.5.2.2 BASIC CONCEPTS 117

its trimscripts are subscripts, it describes a multiple (sub)value in much the
same way that a descriptor does. We give two examples:

1.5.2.2. Subscripting

the slice [i • i]

m m+l i

mdi"t!~
n-j n

I
I / ,

I I
I

if I
I

I ~
- - --

= =:: :~:: :::-------~ ~: -- - -
- - -- - -- - --

I I

I I
I I
I

k I I

118 BASIC CONCEPTS Ch.'1.5.2.3

1.5.2.3. Trimming

p q

/

[I amode

1.5.3. Identifier declarations for multiples

We could discuss, systematically again, the three fundamental identity­
declarations El, E2 and E3 as elaborated for the general amode in Section
1.2, substituting now for amode all kinds of 'ROWS of MODE'. An
exhaustive discussion would, however, be rather boring without giving
substantially new information. We shall, therefore, confine ourselves to a
brief survey of many possibilities and a few remarks on mixed matters.

(E3.l) ref [] amode arow = loc [m : n] amode ;
t t

formal-declarer actual-declarer

n

Ch.1.S.3 BASIC CONCEPTS 119

or, as usual:

(E3.l *) [m : n] amode arow;

The identifier arow will now yield the name referring to a row of amodes,
the descriptor of which is [m : n] .

(E3.2) ref [, 1 amode arowrow = loc [h : k, m : n] amode;

or:

(E3.2*) [h: k, m : n] amode arowrow;

The identifier arowrow will now yield the name referring to a row row of
am odes, the descriptor of which is [h : k , m : n] .

In both declarations E3.l and E3.2 a new multiple value will be generated
onto the stack; together with these multiple values, their descriptors will be
made.

E3.2 elaborates into:

7"I~ode! ref I, I ~od, "T,oWJ

re~, 1 amode -] --- ref [, 1 amode
./

[,1 amode ~

------ n

\
k

An example of an El-type identity-declaration for multiples is:

(El) [,] amode multipleconstant = arowrow ;

in which the multiple value (and its descriptor) referred to byarowrow is
ascribed to the identifier multipleconstant.

120 BASIC· CONCEPTS Ch.1.S.4

An example of an E2-type identity-declaration for multiples is:

(E2) ref [] amode namultiple = arow ..

in which the name yielded by arow is ascribed to the identifier namultiple
(which is thus made to refer to the mUltiple value referred to by arow).

By virtue of El you cannot assign to multipleconstant (being no name)
and by virtue of E2 an assignation to namultiple results in assigning to arow.

namultiple ~ or arow ~ := anotherow

Here, anotherow must of course yield a [] amode value, but it must do
more than that-the bounds must match also. The bounds of the location
referred to by arow (and so by namultiple) are [m : n]. Therefore the bounds
of another ow must be [m : n] also-otherwise it will not fit.

However, we can declare a "flexible" name to which the restriction does
not apply:

(E3.3) ref flex [] amode arowflex = loc flex [m : k] amode ..

or:

(E3.3*) flex [m : k] amode arowflex;

arowflex is a flexible name, and its mode is ref flex [] amode (different from
the mode of arow). Now, when we assign

arowflex := anotherow

it does not matter that anotherow has n-m+ 1 elements and the location
referred to by arowflex has room for k-m+ 1. It is a flexible location and will
be expanded or contracted to suit.

This flexible feature will, however, be an expensive lUxury in some
implementations. It presupposes a storage allocation regime in which
multiples are allowed to "breathe".

1.5.4. Slices

The external object which yields or refers to a subvalue of a multiple is the
'slice'; it consists of an identifier (yielding or referring to a multiple value)
followed by an indexer:

arow[i]
arow [i:j]
arowrow [i,j]

is an amode variable, arow is subscripted
is a [] amode variable, arow is trimmed
is an amode variable, arowrow is subscripted

Ch.U.S BASIC CONCEPTS 121

arowrow [i,] is a [] amode variable, arowrow is subscripted
I and trimmed

arowrow [i :j,p:q] is a [~] amode variable, arowrow is trimmed

All these slices yield (sub)names (by virtue of E3.1 and E3.2) and you may
assign to them (provided the bounds fit, of course).

arow : = arowrow [i,] ;
arowrow [i:j,p:q] :=anotherrowrow [h:k,r:s] ;
arowrow [i,] := arow ;
arow := arowrow [j,]

In an assignation like:

arowflex := arow [i : j]

nothing can go wrong, because arowflex is flexible. See 5.5.4 for full details
of such assignations.

Slices may also turn up in identity-declarations:

(ELl) [] amode rowcopy = arowrow [i, J

A copy of the ith row of the multi pIe value referred to by arowrow is
ascribed to rowcopy (this copy of a subvalue has got its own descriptor,
which is [m :,n]).

(E1.2) ref [] amode arowname = arowrow [i,]

The name of the ith row of the multiple value referred to by arowrow (for
which subname a new descriptor has been made) is ascribed to arowname_
The element:

arowrow [i,j]

may now also be accessed by:

arowname [j]

Such identity-declarations are of the utmost importance in situations
where you want to have an efficient access to a multiple subvalue. For
applications see 8.5.3.

1.5.5. Interrogations

We already mentioned that its deSCriptor belongs to a multiple (sub)value
and that you have a certain access to it. Bounds of a flexible location, for

I.I.A.-S

- ------------- ----------

122 BASIC CONCEPTS Ch.1.6

example, can be changed by assignation (see 5.5.4.1).
In a formal-row-of-MODE-parameter the lower- and upper-bounds do not

have to be specified. In that case, you cannot in general know the bounds
that will appear in the actual-row-of-MODE-parameter. For example, if you
are'in a routine, then you cannot know the actual bounds from the formal­
parameter(s)_ For this purpose some standard operators, lwb and upb, are
provided:

1 lwb arowrow or Iwb arowrow yields the first lower bound
yields the second upper bound 2 upb arowrow

For further details see 5.5.3 and 6S

Vertical readers, please tum to 2_5.

1.6. Unions

1.6.1. United modes

A MODE may be MOOD or UNITED. Thus far we have considered
MOODs. Every MOOD defines a certain class of values_ A UNITED mode
does not define a new class of values.

If we declare:

(EO) mode abcmode = union (amode , bmode , cmode);

then an abcmode is either an amode value or a bmode value or a cmode value_
There is no such thing as an abcmode value_ Nevertheless we shall bring an
abcmode into our pictures in the following way:

In any given situation, one of
the dotted lines will b~ thick (Le.
one of the possible modes in a
union will be in force).

Ch. 1.6. 1.1 BASIC CONCEPTS

Unions "commute" and "associate":

(EO. I) mode bacmode = union (bmode , amode , cmode) ;

specifies the same united mode as abcmode.

(EO.2) mode abcmodedaemodeuv = union (amode , bmode , cmode ,

123

union (dmode , amode , emode ,
, union (umode ,

specifies the same united mode as:
vmode)));

(EO.2*) mode abcdeuvrnode = union (amode ,bmode ,cmode ,
dmode , emode ,

umode , vmode) ;

Let there be declared:

amode maralyn , bmode marblyn , cmode marclyn ;

1.6.1.1. United constants

Consider the identity-declaration:

(EI) abcmode marlyn = marblyn;

it elaborates'into:

A copy of the bmode value referred to by marblyn is ascribed to the
identifier marlyn. Observe that marlyn is still an abcmode identifier, but she
now yields a bmode value (we say that bmode values are "acceptable" to the
mode abcmode).

124 BASIC CONCEPTS

When we declare:

(El.2) abcmode marlyn = maralyn ;

then she is made to yield an amode value, and in:

(Bl.3) abcmode marlyn = marclyn ;

she is made to yield a cmode value.

Ch.1.6.1.2

In all these cases, marlyn is a constant. Strictly speaking marlyn is either
an amode constant, or a bmode constant, or a cmode constant. So, recalling
the fact that marlyn is declared to be of united mode, we might term marlyn
a "united constant". United constants will be of little (if any) use when
declared in this way, but these identity-declarations can easily arise when
matching an actual-parameter to its formal counterpart in a routine (as in
2.6.2.E8, for example).

1.6.1.2. Equiv.alence of unions

Let nylram be a ref abcmode, i.e. nylram yields the name of a union
(amode , bmode , cmode). Although there is no such thing as an abcmode
value, a ref abcmode is a well shaped internal object as are all names; it is.
simply a name referring to a union.

Consider the identity-declaration:

(E2) ref abcmode marlyn = nylram ;

it elaborates into:

ref abcmode
'---r--'

\'~.............. am ode \,', 0 \, "-

\ ,
\ "-

\ " bmode

\\\\~
\
~ cm()de

\LJ

Ch.1.6.1.3 BASIC CONCEPTS 125

A copy of the name yielded by nylram, which refers to an abcmode, is
ascribed to the identifier marlyn. Now marlyn and nylram both yield names
referring to the same union.

But what about the identity-declaration:

(???) ref abcmode marlyn = maralyn (???)

The actual-parameter refers to an amode value; the formal-parameter,
however, requires a reference to a union. Although in this union there occurs
an amode, this water is too wide. You can assign an amode value to a variable
which is united from amode; you can never make a reference to such a union
refer to a value which occurs in that union. Try drawing the picture, it cannot
be done!'

1.6.1.3. Local united generation

The happening:

(E3) . ref abcmode marlyn = loc abcmode ;

or:

(E3*) abcmode marlyn;

can be depicted as follows:

ref abc mode

------ ----------------------

.... "/,
amode ",'" 1/

'" / / 0 ","" /1
I I

/ , . I,
bmode / /

r=\ III
. / o

\

126 BASIC CONCEPTS Ch.1.6.2

You might askwhat value is, now generated on the stack, because there is
no such a thing as an abcmode value. You have to ask your implementor. His
answer will be something pretty close to "I reserve sufficient locations for an
amode, or a bmode, or a cmode and, for use in conformity-clauses (see 1.6.2),
I also reserve space to record which of these is actually in residence".

1.6.2. Assignations and conformity-clauses

To an abcmode variable you may assign either an amode or a bmode or a
cmode value. For example:

(E4) . marlyn := marblyn

elaborates into:

,
\ " arnode

\\\ "'..r-i
\ ~

\
\

\

\'
\
\ crnode

brnode

After this assignation the name yielded by marlyn now refers to a bmode
value. In order to enable you find out which is the mode in force in a union,
we have the 'conformity-clause'.

An important application of unions will be found in routines. Suppose you
want to switch in a routine ciepending upon the mode of an actual-parameter
when you declared the formal-parameter to be the union of several modes;
then you most likely will want to find out (inSide the routine) the mode of

Ch.1.6.2 BASIC CONCEPTS

the parameter actually supplied, which you may achieve as follows:

(ES) case marlyn in

esac

(amode) : c do this c 1

(bmode) : c do that c ,
(em ode) : c do the other c

127

In many cases it will not suffice to find out the mode actually supplied,
you may also want to know its value. Now you cannot assign:

marblyn := marlyn

not even.when the modes confonn. The proper tool in such cases is the
conformity-clause again:

(E6) case marlyn in
(bmode bvalue) : marblyn := bvalue

out c marlyn's mode was not bmode; some alternative action can be
taken here c

esac

Here, we have declared a bmode identifier bvalue to which, provided marlyn
"conforms" to bmode, her bmode value can be ascribed. The assignation
marblyn := bvalue is then quite straightforward:

case
'---""':--1

,'
\ " arnode

\ '-'0
\
\

\
\

D

128 BASIC CONCEPTS Ch.l.7

Contrariwise, if marlyn does not conform to bmode, no assignation takes
place and, since no specific alternative modes have been mentioned (as they
were in ES), the clause in the out part will be taken.

Vertical readers, please tum to 2.6.

1. 7. Distinctive features

As we pointed out in 1.2.3, all modes in this language are derived from th(
primitive modes with the assistance of the symbols ref, proc , struct ,
"[" and "]", union, long and short. Until now we have not discussed long
and short, and we have not discussed the identity-relation for ref modes
(names); these are the subject matter of this section.

1.7.1. The long and short modes

Going down to the level of a concrete computer, the values of all primitive
modes (I .2.3) will be mapped into bit-patterns. A bool will most likely be a
single bit, a char may be stored in at least six bits (more likely seven or eight,
i.e. a "byte"), an int may occupy an entire machineword (a bits, see 2.7.1), a
real one or two machinewords.

On most modern computers you will find provision for (if not in the
hardware, then in the standard software) multi length arithmetic. That is to
say, apart from an int occupying a single machineword, we may also be
enabled to add, subtract, multiply and divide integers occupying, say, two
machinewords, and maybe even larger ones (occupying three or more
machine words). The same may apply to reals and also to the primitive modes
bits and bytes (discussed in 2.7.1), and there may in addition be further
versions of all these occupying half, or even a quarter, of a machineword.

To distinguish between the various sizes of such values we have the
long-symbol "long" and the short-symbol "short".

Thus we may distinguish an infinity of different modes

For integers:

int long int
short int

long long int
short short int

long long long int

Ch.1.7.2

for real numbers:

real long real
short real

BASIC CONCEPTS

long long real
short short real

and similarly for bits and bytes.

129

long long long real

In a specific implementation, only a few of these will in fact be
distinguishable as values of different length. The effective riumber of longs or
shorts is not necessarily the same for int, real, bits and iJytes. It may be
acquired from correspondi1)g environment enquiries (see 6.7.1).

Modes of different longth and shorth derived from the same primitive
mode are different modes and it is therefore quite proper to unite from
different longths and shorths derived from the same (or different)
primitives:

mode integral = union (short int , int , long int) ;
mode number = union (real , long real , long long real) ..

1.7.2. Identity relations

As was pOinted out in 1.2, a 'reference to MODE' value is also an internal
object in the compu ter, i.e. a ref will also be mapped into a certain bit-pattern
(theaddress of the value referred to). Consequently, names may also be
operated upon and, in particular, compared. To compare names of the same
mode we have the identity-relators :=: (or is) and ::j:: (or isnt).

Consider the following picture:

ref ref amode ref ref amode

I mar21yn I

<'--t------'i)>------------,1
ref aiDode ref amode

O.J

130 BASIC CONCEPTS

Apparently, the assignations:

pointerI := marllyn

and

pointer2 := mar2lyn

have been made.
Now:

(El) pointer 1 : =1=: pointer2

but:

(E2) marllyn :=: mar2lyn

We may also write:

because they refer to different
internal objects

because they refer to the same
intetnalobject.

(E3) ref amode (po in terI) is ref amode (pointer2)

which means the same thing.
We might write:

(E4) pointerI = pointer2

or:

(E5) marllyn = mar2lyn

or even:

(E6) pointer1 = mar2lyn

Ch.1.7.2

but, in all of these, the pointers and the marlyns would be dereferenced to
yield the amodes ultimately referred to (assuming the operator "=" to havli(
been declared for a pair of amodes), and it is these that would be compared.
It would not then be possible to declare "=" between ref amodes or ref ref
amodes (for otherwise E4-6 would become ambiguous). This is why ":=:"
and ":=1=:" had to be specially included in the language.

Vertical readers, please tum to 2.7.

2. DECLARATIONS

2.1. Primitive declarations

2.1.1. Primitives

In the previous chapter, we considered values of a hypothetical mode
amode. In ALGOL 68 there is in principle an infinite number of possible
modes which could be substituted for amode, and in the course of the
present chapter we shall show you how to construct them all. They are,
however, all derived from a small number of "primitive" modes (1.2.3). The
primitives are as follows:

int The values of this mode are the integers within some fmite range
dependent upon the implementation (e.g. from _231 to 231 _1 for a
32 bit binary machine). See 6.2.1 for how to fmd the size of the
range. Arithmetic performed upon int values will in general yield
exact results, the same in every implementation.

real The values of this mode will in general be held as floating point
n~mbers by the implementation. Thus the range of numbers that can
be held is much greater than for int, but one pays for this by a
restricted precision (again see 6.2.1 for details).

bool There are only two values of this mode, true and false.

char The values of mode char are characters - i.e. internal representations
of certain graphic inarks on external media. These graphic marks will
include at least the letters a to z, the digits 0 to 9, ", +, -, (,), point,
comma and space. Most implementations will aqd others to this list,
and we shall assume, in our examples, that this has been done (and
in particular we shall use A to Z quite freely).

bits } The values of these modes are computer words, regarded as a
bytes collection of bits or of characters, see 2.7.1.

2.1.2. Variable declarations

Whenever we wish to have, at our disposal, a variable value of some inode,
we must declare it, and proVide an identifier to yield its naine (1.1:1):

131

132 DECLARATIONS Ch.2.1.3

(EI) real x; int i; bool p; char c;

A variable-declaratio.n [R 4.4.I.e] co.nsists o.f:
a) an 'actual-declarer' (real, int, etc.) which specifies the mo.de o.f the

variable value created thereby. Fo.r every mo.de ~hich can be co.n­
structed in the language, an actual-declarer can be written .. Fo.r
example, real, refreal, ref ref real, int, ref char, bo.ol, etc. are all
perfectly go.o.d actual-declarers, and the mo.de that each specifies is

·o.bvio.us. . .

b) an identifier (x, i , etc.) to which the name referririgto. the newly
created yariable is to. be ascribed ..

If we have to. declare several variables of the same mode, we have three
metho.ds:

(E2) real x; realy; real z; int i; intj;
(E3) real x, real y, real z, inti, int j;
(E4) real x, y, z, int i, J~'

E3 and E4 are 'collateral-declarations'. In fact they mean exactly the same
thing, but the "co.ntractio.n" E4 is mo.re convenient to. write. The difference
between E2 (with ";"s) and E3 (with ","s) is that the declaratio.ns take place
serially in the first case and co.llaterally in the second. The difference between
them is quite academic in tne case o.f these simple primitives, but could be of
crucial impo.rtance in more complex situations, such as we shall meet in 2.5.
Declarations are always separated from each other, and from other clauses, by
go-on-symbo.ls (i.e. ";"s), and for this purpose a co.llateral-declaration such as
E4 counts as one declaration:

(ES) bool p, real x, y, z, int i, j; char c;

No.w that we have declared these variables, we are free to use them:

(E6) x := 3.142;
y:=x;
i :=3

2.1.3. Sample declarations

In the chapters that follow, we shall give many examples using identifiers
such as x, y, i, j, etc. To. save co.nfusing yo.u, we shall not declare them each
time we use them, and so whenever you see such an ex;ample, please assume
the declaratio.ns listed in Appendix 2 to. have been already made .. You have

I I

I ,

I '
I ,

! I

Ch.2.2 DEC LARA nONS 133

already met most of them in Chapter 0 (where they were conspicuously
marked with a "D"), and the Report itself also uses most of them in the same
way [R 1.1.2].

Vertical readers, please turn to 3.1.

2.2. Identity declarations

Identifiers are declared in 'identifier-declarations' of which there are two
kinds - the variable-declaration, which has just been described (2.1.2), and
the identity-declaration, which follows.

2.2.1. Identity declarations

An identity-declaration serves to introduce a new identifier, to specify the
mode of the internal object (value) that is to be ascribed to it, and to fix that
value. Thereafter, until the end of the range (3.2.1) in which that identity­
declaration occurs all other occurrences of that identifier are deemed to yield
that same value (see 3.2.3 for the precise mechanism of this).

An identity-declaration [R 4.4.l.a 1 has two sides - its left hand side, or
'formal-parameter', and its right hand side, or 'actual-parameter'. Consider:

(EI) real e = 2. 718281828;

An identity-declaration is constructed as follows: .
Its LHS (the formal-parameter) (real e in the example) consists of:

a) a 'formal-declarer' (real) which simply specifies the mode of the
. internal object. For every mode which can be constructed in the
language, a formal-declarer can be written. For example, real, ref real,
ref ref real, int, ref char, bool, etc. are all perfectly good formal­
declarers, and the mode that each specifies is obvious.

b) an identifier (e) to which the object is to be ascribed.
Its RHS (the actual-parameter) (2.718281828 in the example) consists of:

a unit whose context is strong, and which yields a value whose mode'
(after coercion if necessary) is the same as that specified by the
formal-parameter. This value is now ascribed to the identifier, after
which the identifier will always yield that value.

The whole.of Chapter 5 is devoted to describing what can and cannot
stand as a unit, and to explaining all about the strength of contexts and

134 DECLARA nONS Ch.2.2.2

coercion, so that it would be inappropriate here to do more than give a few
examples that are particularly important. If you have already read 5.1.4.1,
you will have noticed the similarity between the rule just given for an
actual-parameter and that appropriate to the RHS of an assignation.

An identity-declaration is therefore a very simple concept, with a simple
syntax and simple rules. Do not therefore be afraid when you come across a
particular example which seems to go on for page after page. It is simply
because a long and complicated formal-declarer has been used to specify a
long and complicated mode, or because the unit on the RHS happens to be
rather a long one. The effect is just the same. We associate together a
particular mode and a particular identifier, and ascribe to that identifier a
particular value ,of that mode.

Note, however, that once a value has been ascribed to the identifier, this
value cannot be changed (it is a constant (see 1.2.2.1 », and the compiler
should be able to take advantage of this. After El:

(E2) x :.= e

should compile into exactly the same code as:

(E3l x:=2.718281828

Things are slightly more complicated with examples like:

(E4) real xy == x x y

Here, the value to be ascribed to xy is to be calculated (x x y) at the time
when this declaration is encountered during the elaboration of the program,
and if it is encountered several times the values will presumably be different
on each occasion. Nevertheless,although the compilerwill now, presumably,
have to reserve a. word of store to hold this value, it should still be able to
gain some benefit from knowing that it cannot change until the next time.

2.2.2. Another look at variable declarations

(E5) real x; or even loc real x;

We have already seen that real is an actual-declarer which creates a real
variable, and that the name referring to this variable is ascribed to x (making
x a refreal identifier). So it seems that we have two methods of creating a ref
real identifier and ascribing a value (more specifically a name) to it. Let us
therefore try to construct an identity-declaration to do precisely the same job
as the variable-declaration E5. Presumably it will look something like this:

Ch.2.2.3 DECLARA TlONS 135

ref real x' = "something"

In this example, "something" must obviously be a unit that yields a
constant value (a name) of mode ref real, but it must also have the property
that it reserves a space in the store where a real value may be put, and it is the
name referring to this space that it must yield. If you search through
Chapter 5 looking for such a unit, you will find that it is known as a
'generator' and is not described until 5.7.2. This is because the use of
generators is rather specialised. There are two kinds of generator, and we
recommend the loc one for the present purpose (as we have already explained
in 1.2.2.3):

(E5 *) . ref real x = loc real;

loc real is the generator, and the mode it yields is ref real in spite of its
appearance to the contrary. The loc signifies that the real value thus created is
local to the current range, as will be explained in 3.2.2. real is an actual­
declarer.

If you feel like trying a heap generator, then you should read 2.7.3 first.
Of course, we have already met this before in 1.2.2.3 - E5 means exactly

the same as E5*. But please remember the distinction between formal­
declarers (such as refreal in E5*), which merely specify modes, and actual­
declarers (such as real in E5 and on the RHS of E5*), which, in addition,
.generate values of the mode specified. This distinction may not seem
important just now, but you will forget it at you peril when you come to
2.5.2 and even in 2.2.3 it will be relevant.

2.2.3. Initialized variable declarations

We explained in 1.2.2.3 how you could write:

(E6) real ee := 2. 718281828;

which has created a real variable and assigned an initial value to it all in one
go. But beware! E6 (at least in this representation) looks deceptively like El
- the difference is just one ":". We can subsequently assign a different value
to ee (E6), but never to e (El).

Now, if we have the collateral-declaration:

(E7) real x := 1.0, realy := 2.0;

we may appLy qur usual contraction to obtain:

(E8) realx:= 1.0,y :=2.0;

136 DEC LARA TrONS Ch.2.2.3

likewise, if we had had:

(E9) realx=1.0,realy=2.0;

we could have obtained:

(ElO) real x = 1.0, y = 2.0;

which simply goes to show that formal-declarers (the reals in E9) may be
gathered together in just the same way as actual ones (the reals in E7). But:

(Eli) real x = 1.0, realy := 2.0;

which is perfectly good collateral-declaration, creating a real object x and a
refreal object y, cannot be contracted to:

realx=1.0,y:=2.0;

for here we would be gathering together one formal-declarer and one actual
one, and moreover it would be too confusing to have the one declarer real
being used to create objects of two different modes.

Vertical readers, please tum to 3.2;

Ch.2.3 DEC LARA TIONS 137

.2.3. Mode declarations

We introduced mode-declarations to you in 1.3.3.1; Consider:

(El) mode myproc = proc(real, int, ref char) bool;

This is a 'mode:declaration'. On th"e LHS we have introduced the bold word
(1.3.2) myproc as a 'mode-indication'. On the RHS we have an actual-declarer
specifying the required mode. Henceforth, (or at least within this range)
myproc and proc (real, int, ref char) bool may be used in terchangeably. You
may have declarations such as:

(E2) myproc proc;
ref myproc refproc;

and you may now embark upon the construction of even more elaborate
modes such as:

(E3) proc(myproc) void

See 2.5.2.2 for mode-declarations of 'row of modes where bounds must
be specified.

Naturally, a mode-declaration may be combined with other declarations
(whether they be other mode-declarations, or even identifier- (1.1.2),
priority- (4.3.1) or operation- (4.3.2) -declarations) into a collateral­
declaration:

(E4) mode rl = real, mode it = int, mode bo = bool , real x;

to which we may now apply our usual contraction, collecting together all the
modes:

(E5) mode rl = real, it = int, bo = bool , real x;

Vertical readers, please turn to 3.3.

138 DECLARATIONS Ch.2.4

2.4. Declarations of structures

2.4.1. struct declarers

The concept of a "structure" was introduced in 1.4.0. Each structured
value is of some mode, and for each such mode we can write a declarer (and
up to this poin(formal- and actual-declarers are sti1llooking the same):

(El) struct(real first, int second, ref char third)

This is the way you would write a struct declarer [R 4.6.1.d] ; but should you
wish to declaim it in public you would take a deep breath and say*:

"structured -with -(a-)real-field-first -(and -an -)in tegral­
field-second-(and-a-)reference-to-character-field-third-mode"

This is the way in which the Report would specify this mode [R 1.2.1], but
in this Introduction we shall stick to the corresponding declarers - they are
much cleaner.

first, second, and third in E1 are 'field-selectors', not identifiers, and they
are a part of the declarer, which identifiers could never be. Thus:

(E2) struct (real fourth, intfifth, ref char sixth)

specifies a different mode from that specified by E1. A value of one could
not be assigned to a name referring to a value of the other.

The fields inside a structure can be of any mode whatsoever, including of
course other structs:

(E3) struct (proc (real, int, ref char) bool pr,
struct (real first, int second, ref char third) group)

Where two adjacent fields are of the same mode, the usual contraction is
possible, as in:

(E4) struct (real re, im)

The only limitation is that a struct cannot contain itself (2.4.3), although
it can contain a reference to itself. To achieve this, however, we must use a
mode-declaration (2.3):

(ES) mode sequence = struct (int object, ref sequence next);

Modes such as this are particularly useful in conjunction with heap generators

* If some pedant should notice that even this verbosity is not the full story, let him
please keep the secret to himself.

Ch.2.4.2 DECLARATIONS 139

(5.7.2.2), and for a substantial example of their use you are referred to 8.7.1.

2.4.2. struct declarations

Now we can use struct declarers in the formal-parameters of identity­
declarations, or as the actual-declarers in variable-declarations:

(E6) struct (real x, int i) st = (3.14, 123);

in which a constant st is created, and

(E7) struct (real x, int i) ss;

in which a variable ss is created. ss can now be assigned to other variables of
the same mode, or its individual fields may be accessed using their selectors:

(E8) x:=xofss

This subject will be treated more fully in S.4.2.

2.4.3. Well-formed modes

The mode-declaration 2.4.1.ES was circular. However, not all such
circular mode-declarations are valid. There are two dangers to avoid:

a) we must avoid modes whose values would occupy an infmite amount of
storage space (consider the problems of representing a large as specified
by mode large = struct (int large, large larger););

b) we must avoid modes which could be strongly coerced into themselves
(how many times should you dereference the RHS of ref itself who =
loc itself, given that mode itself = ref itself?).

Here is how to distinguish the sheep from the goats [R '7.4.1] .
Start from the mode-indication on the LHS of the suspect declaration.
Now look through the RHS, marking, or "shielding", each ref or proc with

the word "yin", and each struct and each set of parameters of a proc with the
word "yang".

At each mode-indication you encounter, find the mode-declaration that it
identifies (3.3.1), and continue there.

Eventually (because it is circular), you will get back to the mode­
declaration which you started from.
So we have:

(E9) mode sequence = struct (int object, ref sequence next);
yang yin

140 DECLARA TIONS

and, in a more complicated case:

(ElO) mode a = struct (ref b fl, union (int, a) [2),
yang yin

mode b = proc (int, int) a;
yin yang

Ch.2.4.4

Now consider all routes from your starting mode-indication returning to
the same point. Is each route properly shielded by passing through at least
one "yin" and one "yang"? If not, the mode is not well formed and the
mode-declaration is invalid. E9 passes the test. InElO, there are two routes
from a back to a again. One passes by way of "yang-yin-yin-yang" but the
other can only manage "yang". It can be shown that a missing "yin" will land
you in danger (a) above, and a missing "yang" will put you in danger (b).
Keep your yin and yang in the correct balance and you will attain harmony.

2.4.4. The mode compl

The mode compl (for complex) is not a primitive in the language, although
you would not come to much harm if you were to regard it as such, since it is
provided with a complete set of operators and other useful facilities (5.4.0
and 5.4.3). It is, in fact, a struct, being declared in the standard-prelude (1.1)
[R 1O.2.2.f] by:

(Ell) mode compl = struct (real re,im);

Vertical readers, please turn to 3.4.

Ch.2.S DECLARATIONS 141

2.S. Declarations of multiples

2.5.1. Row declarers

The concept of a "multiple value" was introduced in 1.5.1. Each multiple
value is of some mode, and for each such mode we can write a declarer. Now,
however, we are at the point where formal- and actual-declarers beginto look
different. Here is a formal-declarer:

(E1) [, ,] refreal

which is pronounced:

'row row row of reference to real'

This specifies the mode of a multiple value which needs three subscripts
(because there are two ","s between the" [" add the "] "), and whose
elements are names of mode ref real.

Here is an example of a formal-declarer whose interest lies in its com­
plexity, rather than in any use it might have:

(E2) [] struct (proc (in t, ref [] real) [] real p,
[,] [] ref compl q)

The pronunciation of this one is left to the proverbial student as his pro­
verbial exercise. You have enough information to do it, but have you the
stamina? However, this example does show that we may have rows of structs
and of other rows, structs containing rows, and procs that use and yield
rowed modes. Observe the difference between [,] [] real ('row row of row
of real') and [,,] real ('row row row of real'). The first is a doubly subscripted
multiple each element of which is a singly subscripted one. The second is a
straightforward triply subscripted multiple value.

2.5.2. Row declarations

In a variable-declaration involving a 'row of mode we encounter a problem
that did not arise before. A multiple value consists (1.5.1) of a descriptor and
a set of elements, and whenever we create such a value, not only must it be of
the required mode, but its descriptor must fit our requirements as well. It is
the responsibility of the actual-declarer to ensure that both these
requirements are met.

142 DECLARA TlONS Ch.2.S.2.1

2.5.2.1. Fixed and flexible names
A multiple value is simply a row of elements together with a descriptor,

and its mode is something like [,] real. Observe that the mode tells you the
number of subscripts, but not the number of elements. So, you may ask, if I
have a multiple value with 100 elements, may I supersede it with another one
of 200 elements (but of the same mode, of course)?

The answer is that "it all depends". Superseding takes place during
assignation (1.1.2.2), in which the value superseded is that referred to by the
name on the LHS. It is the name which controls the location where the
elements are kept, and so it is the name which determines whether the
location is flexible enough to accommodate the greater number of elements.
If the mode of the name is ref flex [,1 real, well and good, but if its mode is
only ref [,] real the assignation will not be allowed.

Thus we have the situation (which only arises with multiple values) that a
value may be referred to by either a "flexible name" (with a flex after the ref
in its mode) or a "fixed name" (without a flex). Nevertheless, the mode of
the value itself is the same in either case. There is no such mode as flex [,] real.

Suppose that rowvar yields a flexible name of mode ref flex [] real. You
will see presently that rowvar could have been declared as follows:

flex [1 : 0] real rowvar := skip;

where the skip is to signify that we do not at the moment have the slightest
idea what size it is, or what are the values of its elements.

Here now is an identity-declaration:

(E3) [] real xl = rowvar;

Since xl is not a name, no question of flexibility arises. xl now simply yields
the multiple value obtained from rowvar, with whatever number of elements
that had.

Here is another identity-declaration:

(E4) ref flex [] real xlm = rowvar;

Now xlm yields the same flexible name as rowvar, and refers to the same
location in store. The flex was necessary in order to match the mode of
rowvar. If we have a fixed name row[lX of mode ref [] real declared by:

[1 : 10] real rowfix;

then the corresponding declarations are:

(ES) [] real xf= rowfix;

Ch.2.S.2.2 DEC LARA TlONS 143

(E6) ref [] real xfg = rowFzx;

2.5.2.2. Actual 'row of declarers

A 'ROWS of' variable-declaration contains, of course, an actual 'ROWS of'
declarer. This has to reserve a substantial region of store, and so it must know
how much store to reserve, and whether it is likely to be changed later (throUgh
being flexible). This information is provided by bounds in the actual-declarer:

(E7) [1 : 99] real xfgh;

(ES) flex [1 : 99] real xlmn;

Space for 99 reals is reserved, with the option of altering it later in the second
case, and arrangements are made to release the space again when the current
range is left.

Since an actual-declarer is actually going to reserve some actual store, of
some actual size, it follows that the bounds must be actually present. If the
upper-bound is less than the lower-bound, then the descriptor is "flat" and
the number of elements in the multiple is taken as zero (the bounds [1 : 0]
are frequently used when an initially empty multiple is to be created, as in
2.S.EII below. If the lower-bound is I, it may be omitted as in

(E7*) [99] real xfgh;

A bound can be any meek int unit, and you will see in Chapter 5 that this
covers a large number of possibilities. All the bounds in the actual-declarer,
together with the RHS if the declaration is initialized (2.2.3), are elaborated
collaterally each time that the variable-declaration is encountered [R 4.4.2.b] .

Also, since a variable-declaration creates a name whose mode has a. ref in it
(2.2.2) (even though this refdoes not appear in the actual-declarer), itfollows
that an actual-declarer may start with a flex (as in ES) if the name created is
to be a flexible name. This may seem more natural if ES is written in its
alternative form:

(ES*) loe flex [1 : 99] real xlmn;

Next you might like to reflect upon the fact that the RHS of a mode­
declaration (2.3) is an actual-declarer, so that not only maya mode-indication
be made to specify a mode, but it then also specifies bounds and flex, where
relevant, as well. A splendid example of this is the mode string declared in

-------~.----.-.-~---

144 DECLARATIONS Ch.2.S.2.3

2.5.3. If such a mode-indication now appears as or in a formal-declarer, no
harm is done, the actual-bounds and any flex associated with it simplybeing
ignored.

However, if the bounds of a mode-declaration require elaboration, as n in:

(E9) mode a = [1 : n] real;

then they are not elaborated at the time this mode-declaration is encoun­
tered. Instead, it is the value of n in force at the time a is applied that
matters:

(ElO) n := 1;
a a; 4' i.e. [I : 1] real a; 4'
n :=2;
a b; 4' i.e. [1 : 2] real b; 4'

2.5.2.3. Summary

Let us now summarize the differences between actual- and formal­
declarers: A 'row of' actual-declarer must have bounds and may start with
flex:

[I : 99] real flex [1 : 99] real

moreover, if an actual-declarer specifies a ~truct mode, then its fields are also
actual-declarers: .

struct ([1 : 99] real a, struct (int c, flex [I : 99] real d) b)

A formal-declarer never has any bounds, and never starts with a flex:

[] real
struct ([] real a, struct (in t c, [] real d) b)

However, if it starts with a ref, or has a ref anywhere within it, then flex may
occur in parts of the declarer controlled by that ref:

ref [] real ref flex [] real
ref struct ([] real a, struct (int c, flex'[] real d) b)
ref [] flex [] real
ref ref flex [] real

Moreover, certain declarers are always constructed like formal ones, even if
they occur as or inside actual ones. These are declarers beginning with ref,
proc or union, so that the following are all correctly formed actual-declarers:

ref [] real [1 : 99] ref flex [] real

Ch.2.5.3 DECLARA TrONS

struct ([1 : 99] real a, ref struct (int c, flex [] real d) b)
proc ([] real) [] real
union ([] real, [] int)

2.5.3. The mode string

145

The mode string is not a primitive in the language, although you would not
come to much harm if you were to regard it as such, since it is provided with
a complete set of operators and other useful facilities (5.5.1.1, 5.7.0.2, 6.1).
It is, in fact, a [] char, being defined in the standard-prelude (1.1)
[R 10.2.2.i] by:

(E 11) mode string = flex [1 : 0] char;

An interesting consequence of this is that if we declare:

(E12) string t;

we have not created an object with an undefined value as we would have done
in:

real x;

Instead, t has been made to refer to an empty string, which is a very definite
(and useful) entity, and the only thing undefined about it is the value of the
elements which it hasn't got.

Because flex is only meaningful after a ref, the mode string is the same as
the mode [] char, but the mode ref string is equivalent to ref flex [] char.

Vertical readers, please turn to 3.5.

146 DECLARATIONS Ch.2.6

2.6. Union declarations

2.6.1. union declarers

We introduced you to unions in 1.6.1. Although we cannot create values
of united modes, we can talk about such modes, and to do this we need
declarers:

(E1) union ([] real, [] int)

Note how the inside of a union is always formal (2.5.2.3), so that there is no
difference in appearance between formal and actual union declarers
[R4.6.l.s] .

You will remember that (1.6.1) the order in which the modes are specified
inside a union is quite immaterial [R 4.6.1.s, R 7 .3. 10k] , so that:

(E2) union ([] int, [] real)

specifies exactly the same mode as that specified by E1. Moreover:

(E3) union (int, string, union (real, union ([] char, int)}}

could equally well (and with less ink) have been:

(E4) union (int, real, [] char)

However:

union (int,ref int)

is not allowed because, if this mode were required (a posteriori) in a firm
context (e.g. as the operand in a formula), and a ref int were available (a
priori), we should not know whether to dereference it and then unite it
(5.6.0), or whether to unite it straight away. It is therefore forbidden for a
component mode of a union to be firmly coercible to one of the other
component modes or to the union of those others [R 4.7 .1.f] . Thus:

union (ref union (int, real), int, real}

would not be correct either, because ref union (int, real) can be firmly
coerced to union (int, real).

2.6.2. union declarations

Now we can use union declarers in the formal-parameters of identity­
declarations, or as the actual-declarers in variable-declarations:

Ch.2.6.2 DECLARA nONS 147

(ES) union (real, int) ir = (p 1213.14);

in which a constant ir is created (either int or real depending on the yield of
p),and

(E6) union (real, int) ri;

in which a variable ri is created, to which either a real or an int may sub­
sequently be assigned (5.6.0). At the moment, it is not defined whether ri
refers to a real or an int, but it will certainly be one of them [R 4.6.2.a] .

Since there is no such thing as a value of a united mode, there are some
declarations which, whilst being legal, are not at all useful:

(E7) union (bool, real) br = 3.142;

br will now, in fact, always yield a real value, but wherever it is used allow­
ance for both possibilities will nevertheless be made (and, for example,
x := br will not be allowed). This declaration could, however, very reasonably
arise when matching the actual-parameter of a call to the formal-parameter of
a routine-text (1.2.3.2.1):

(E8) proc pbr = (union (bool, real) br): XXXXX;
pbr(3.142)

Here, pbr yields a routine which is prepared to accept either a bool or a real
as its actual-parameter (and occurrences of br within XXXXX will be treated
accordingly).

Vertical readers, please turn to 3.6.

148 DECLARATIONS Ch.2.7

2.7 bits, bytes, longs and shorts

2.7.1. bits and bytes

bits and bytes [R 10.2.2.g,h] are two primitive modes which are intended
to give you access to the actual words in your computer, so that you may
achieve greater efficiency. bits is similar to [] bool and bytes to [] char (or
string), except that the number of bools or chars respectively is limited to
exactly that number which can be fitted into one computer word. rhus
individual bits or bytes values can be passed around inside your program with
great efficiency, at the expense of some additional effort (by widening
(5.7.0.2) or the procedures bitspack and bytespack (6.2.2) and the operator
elem (6.1.2)) whenever you want to get at the individual bools or chars
within them. Environment enquiries are provided (6.2.1) to tell you how
much you can get into a single bits or bytes in your implementation.

bits and bytes are, of course, easily declared:

(E1) bits bits; bytes bytes;

Note that [] bits and [] bytes may be declared and bits and bytes may
appear inside struct, union and proc modes.

2.7.2. long and short modes

Double, triple, etc. length working is used in computers in order to obtain
greater accuracy, or to distinguish between a greater number of possible
values of some mode, or to pack more information into one value. rhe
ALGOL 68 modes where this facility would be useful are:

int, real, compl, bits and bytes

Indeed, it is possible to prefix all of these modes by "long" in order to obtain
new modes of approximately double the precision, by "long long" for triple
precision, and so on. A given implementation does not have to carry this on
indefinitely, however. After some number oflongs (perhaps only one) it will
treat values of longer modes as being of the same precision. Various environ­
ment enquiries are provided to tell you how many longs are effecthre, and
how precise they are (6.7.1), and a full set of operators (6.7.3) and pro­
cedures (6.7.2) is provided for them.

long modes are, of course, easily declared:

(E2) long real reaeal; long long int iiiiiiint;
proc (long int, int) long long int power;

Ch.2.7.3 DECLARATIONS 149

In the same manner, these modes may be prefixed by "short" in order to
take advantage of any facilities in the hardware for manipulating half words
or individual bytes; Again, after some number of shorts (perhaps none at all)
further shorts will make no further difference to the precision. Appropriate
environment enquiries, operators and procedures are provided as before .

. (E3) short real reZ; short short int it;
proc (short int, int) short short int root;

2.7.3. heap declarations

Just as:

(E4) real x;

which may also be written as:

(E4*) loc real x;

means the same thing (2.2.2) as:

(E5) ref real x = loc real;

so:

(E6) heap real x;

means the same as:

(E7) ref real x = heap real;

in which the heap real is a heap generator. The effect of E6js to reserve a
space in the store for the variable x which will not disappear when the current
range is left. (It will not, of course, then be accessible via the identifier x, but
its name may in the meantime have been assigned to a ref real variable with a
larger scope).

This and other uses of heap generators will be described more fully in
5.7.2.2.

Vertical readers, please tum to 3.7.

3. CLAUSES

3.1 Serial clauses

A particular-program (1.1) [R IO.l.l.g] consists of an ENCLOSED-clause
(3.2.4), which is usually a 'serial-clause' enclosed by embedding between
begin and end (or, if you prefer, between "(" and ")", which can be used as
alternatives wherever begin and end may occur).

The bricks out of which a serial-clause is constructed are called 'declara­
tions', 'statements' and 'expressions'. Declarations we have already met (1.1.3
and 2). 'Statements' and 'expressions' [R 3.0.1.b, c] are alternative names for
'void-units' and 'MODE-units' respectively, and units in general will be
discussed in Chapter 5. In the meantime, it will suffice to say that:

x := a+b

is a statement (usually) and:

a+b

is an expression (likewise).
We shall also need 'go-on-symbols' (better known as semicolons) which

constitute the mortar which bind the bricks together, and 'labels' which
enable us to find our way around.

3.1.1. The declarations

The building rules are really quite simple [R 3.2.1] . The foundations,
which come first, consist of declarations (as many as you like) with mortar in
between:

(E1) begin
or the begin is not part of the serial clause proper; it is
the earth in which the foundations are embedded 4-
real a;
int i;
char c,d,e;

The last one is a collateral-declaration (see 1.1.3) meaning the same as:

(E2) char c, char d, char e;

however, it all counts as one brick for our present purpose.

150

Ch.3.1.2 CLAUSES 151

Statements are also allowed within the foundations (but not labels). This is
particularly useful when you are declaring multiple values (as described in
2.5.2) in which the bounds are first to be calculated:

(E3) begin
int i;
read (i); H7.1.2H
[1 : i] real xl; 4' declares a multiple with bounds 1to i 4'

Note that it is perfectly possible for there to be no foundations at all, the
building starting straight away with the walls. This would be rather unusual
for the serial-clause which constituted the body of a particular-program, but
there are plenty of other places where such serial-clauses could occur.

3.1.2. The statements

The walls come next, and these too may be entirely absent. They consist
of statements and semicolons, with labels attached where required (a label
always comes before a statement (or before an expression, or even before the
whole particular-program) and consists of an identifier (1.1.2) followed by a
colon).

(E4) begin
int i; real x, y, z;
comment those were the foundations: now for the walls comment
z : = 1 - 3 x sqrt (small real); ~ for small real see 6.2.1 ~

Iabl: read (i); .
x:= i;

lobi:
lubl: y := i/xt2;

x:= (2 xx + y)/3;
if y/x < z then go to lobi fi;
print (x); 4' (7.1.1) 4'
go to Iabl;

This will compute and print the cube roots of the (nonzero) integers read
in. The conditional statement (if fi) does what you would expect it to do
(see 3.2.4.2 for details).

We now observe (as you have doubtless guessed already) thatwhen a
statement is followed by a ";" the completion of the elaboration of that
statement is followed by the initiation of the elaboration of the following
statement. Only when we come to a go to statement (consisting of go to

- ---------------

152 CLAUSES Ch. 3. 1.3

followed by a label-identifier, or alternatively of just the label-identifier) is
this sequence broken. Note that several labels can precede one statement (as
lobi: and lubl: in E4).

3.1.3. The yield

Finally, we come to the roof. This consists of just one statement (void­
unit) or one expression (MODE-unit) (and there may be some labels before
it).

(ES) begin
int i; read (i); real x, y, z;

4' those were the foundations 4'
z := 1 - 3 x sqrt (small real); x := i;
lobi: y := i/xt2; x := (2 x x + y)/3;

if y/x < z then go to lobi fi;
4' those were the walls ¢

print (x)
end ¢ the end is part of the embedding, too 4'

In this case the roof (print (x)) was a statement - it was, in fact, just the last
statement of the clause, and if there had been any more following it would
have been quite content ro be part of the walls.

Note that, in accordance with the best building practice, there is no mortar
underneath the foundations, and there is none on top of the roof. Also, there
is exactly one ";" between each brick. Contrast this with ALGOL 60 where
extra ";"s mostly did no harm.

Now, if the roof is an expression, then it must yield a value. What happens
to this value?

(E6) a := b + (real x, y, z; z := 1 - 3 x sqrt (small real); x := i;
lobi: y := i/xt2; x := (2 x x + y)/3;

if y /x < z then go to lobi fi;
x)

Her~ tlJ.e piece between the "(" and the ")" is indeed a serial-clause and it
occurs in a place where it is expected to yield a value (it is in fact a real­
serial-clause). x is its roof and is an expression which (after a little dereferenc­
ing - see 1.1.6) yields a real value. This value now becomes the value of the
serial-clause as a whole, and in due course it gets added to b, and the result is
put into a.

Ch.3.1.4 CLAUSES 153

3.1.4. Completers

We. will now consider buildings wi:th several roofs. Suppose, in the example
E6, we only wanted the cube root of i if i was positivefand the cube root was
less than 10.0 (actually, it was rather a poor way of fi~ding cube roots for
largish numbers anyway). In the other cases, we wanted to print a message
and to yield the result 10.0 regardless. Then we could build a house like this:

real x :=i, y:=O, Z:= 1-3xsqrt(small real);

(i~O llibl); libl:
while y/x < z do print (
x:=(2xx+(y:=i/xt2))/3; "ou(,pfdange");
(x~10.01Iibl)od;

10.0
x

We have to make it an Australian house, so that you can read the program
from the top downwards. We also included one or two short cuts in the
program, whi9h you might be able to follow.

Observe that the foundations are common to both roofs. The complete
statement containing the two-roofed serial-clause (and without the short cuts)
will now look like this:

(E7) a := b + (real x, y, z; z := 1 - 3 x sqrt(small real); x := i;
if x ~ 0 then go to libl fi;

lobi: y := i/xt2; x := (2 x x + y)/3;
if y/x < z then go to lobi fi;
if x ~ 10.0 then go to libl fi;
x exit

libl: print (" out of range");
10.0)

exit means that we have come to the first roof, and if this point is reached
during the elaboration, then x is the value of the serial-clause. Otherwise
(there being no more exits in this particular clause) 10.0 is the roof and
provides the value. Inevitably, the exit must by followed by a label (for how
else could the following statement be reached), and so the exit with its label
attached constitute what is known as a 'completer' and the process ofleaving
a serial-clause through the roof (Le. via either the x or the 10.0 in theE7

I.l.A.-6

154 CLAUSES Ch.3.1.5

example) is known as "completing". Contrariwise, if you jump out of the
middle of a serial-clause by means of a go to (oU t of the window perhaps)
then that .is to "terminate" it, and in this case no value is yielded. The mode

. of the value yielded on completing may be coerced and balanced (5.2.0.1)
according to the context in which the serial-clause as a whole appears.

You can try imagining how E7 could have been written without the exit
facility. It would have been necessary to re-arrange it so that the x to be
yielded came right at the end. After libl, it would have been necessary to
assign 10.0 to x, and then to go to another label just before the final x.

Note that, syntactically, a completer is a special type of mortar, so one
does not expect to see any ";"s either before or after it. It might be tempting
to regard it as a statement meaning "and now go to the end of the clause" but
this would be dangerous since you must be quite sure first that you know
which clause it will go to the end of.

3.1.5. Delimiters

In all the examples given above, the serial-clause itself was the part
between the begin and the end (or "(" and ")"). However, serial-clauses can
occur in a variety of contexts, and the complete list of delimiter pairs
applicable is as follows:

between begin and end (in particular-programs
or closed-clauses)

(and)
" *if and then (in conditional-clauses)

r then and else
elif

*elif and then
else and fi

*case and in (in case- and conformity-
clauses)

*ouse and in
out and esac

*while and do (in loop-clauses)
do and od "

* Strictly, the clause between these delimiters is an enquiry-clause rather than a serial­
clause - see 3.2.4.2.

--.. -----

Ch.3.1.5 CLAUSES

Closed- conditional- and case-clauses will be discussed in 3.2 and
conformity-clauses in 3.6.

Vertical readers, please turn to 4.1.

155

-.-----.-.--.- ---------------

156 CLAUSES Ch.3.2

3.2 Closed clauses

3.2.1. Range.s and reaches

A 'range' [R 3.0.1.f] is a piece of source text which constitutes a serial·
clause {or one which constitutes a routine-text (see 4.2.2.1) or certain
portions of choice-clauses and loop-clauses (3.2.4, 3.5.2)). A range can
"contain" further ranges within itself, and so on recursively. Here is a (not
very sensible) particular-program, with all its ranges marked and numbered:

(El)

ReI

begin
i real a, b; int i, J k I , , ,

labl: i := 1; k := 2;
print(i);
begin

1 real X, y;
j:= 0;
i:= 3;

lobI: j:= j+1;
if

Ra i>
then

int i;

j

Ra2 boo
p:
q:
pri
go

lp, q;

Ral
RaS

fi;
,print(i)

end;
print(i);

I begin int i;

Ra3 i:= 4;

end

print(i)
end;
print(i);
go to labl

= true;
=p;
nt(q);
to lobI

•)

A "reach" [R 3.0.2] is a range, with the exclusion of all the ranges

Ch.3.2.2 CLAUSES 157

contained within it. Thus Rei in the above example is a reach.
Note how the ranges in EI are mostly serial-clauses contained between the

delimiters listed in 3.1.5.

3.2.2. Scopes of names

Consider the declaration real x at the head of Ra2, which could also have
been written as:

(E2) loc real x

When this is reached during elaboration of the program (i.e. just after the
beginning of Ra2), a name. is created (a location in the store is reserved) and is
ascribed to the identifier x [R 4.4.2.b]. The loc in E2 means that the "scope"
of this name is local, i.e. restricted to the lifetime of the range Ra2 (in whose
declarations it occurs). Therefore, as soon as we cease elaborating statements
within Ra2 (when we reach the delimiter end which terminates it in this
instance), the name (to all intents and purposes) ceases to exist (the location
in store is relinquished). ..

Thus, anything that you declare at the head of a range is only available to
you inside that range (this is of course exactly the same as in ALGOL 60,
except that there they are termed "blocks" instead of "ranges").

In an assignation (5.1.4.1) the scope of the RHS must be at least as old as
that of the LHS, for otherwise the value referred to by the LHS would be
undefined in some reach:

(E3) begin ref real xx; real y;
begin real x;
read (x); ~ reads a real value (2.0, perhaps) ~
y := x; ~ this is all right because the real value is being as­

signed, and its scope is not limited ¢
xx := x ~ this one is going to cause trouble ~
end;

print(y); ~ no complaints ~
y := xx;
print(y) ¢ now what? ¢
end

In this example, the name x is newer in scope than the names xx and y
(newer in the sense that it was created later than them and will disappear
sooner). Thus the assignation xx := x, in which the name x was supposed to
be assigned, was illegal.

158 CLAUSES Ch.3.2.3

3.2.3. Identification

Identifiers may occur in declarations .:.. these are called "defining­
identifiers". In all other places (in assignations to take the most obvious
example) they are "applied-identifiers". Consider the range Ra5 in El. The
identifier p is defined in:

(E4) boolp

and is applied in:

(E5) p := true and in q:= p

Now it is up to the compiler to correlate each applied~identifier with a
defining one,and when this has been done the former is said to "identify" or
to be "within the reach of' the latter. The two occurrences of p in E5 thus
identify the pin E4 (or E5 is within the reach of E4), still in the context of
the range Ra5, of course, and this means that all these ps yield the same name
(they get hold of the same location in the store) and they are all of the same
mode (ref bool in this case).

Now, what about the identifier i, which has defining occurrences at the
helld of Ral, Ra2 and Ra3 in El, and applied occurrences (notably as
print(i)) allover the place? The rule is quite straightforward [R 7.2] :,

Start at the applied occurrence in question (call it "A")
Look for a defining occurrence in the same reach as A (call it "B")
If none is found,

then look for a defining occurrence in the reach which is immediately
outside the range which contains the reach which you have just been
looking at (call it "B")

If none is found,

A then iden tifies B.

Thus the "reach" of a particular defining-identifier is the range in which it
is declared with the exclusion of all inner ranges within which it is re-declared.
Note that, in some other languages, the term "scope" is used with this static
meaning. In ALGOL 68, however, "scope" has another, dynamic meaning
(3.2.2).

The arrows on the right hand side of example El show how all the applied
occurrences of i are identified, and if you follow through the elaboration of
this particular-program, you will find that what it prints out is:

lTT31411TT31411T •..•

Ch.3.2.3 CLAUSES 159

where T is printed for the value true (see 7.1.1).
Note that, each time a new defining occurrence of i is encountered, then,

until further notice, a new name is ascribed to i. This certainly does not mean
that the old name yielded by i ceases to exist. It simply goes underground,
and cannot be accessed (at least not via i) until after the end of the range in
which i was redefined. It can, of course, be accessed if the programmer has
made provision for some other object to yield or to refer to it.

Labels are identified just like any other identifiers, being defined as in:

labl:

and applied as in:

. go to labl

This means that the go to lobl at the end of RaS can be used to jump out of
RaS (which is then terminated - 3.1.4) into Ra2, which contains it; but it
would be quite impossible to jump into Ra2 at lobl: from anywhere in the
'reach Re 1. The identification just would not work. Thus, a range can only be
entered via its declarations (which is just as well, if you think about it).

Finally, as you might expect, each applied-identifier must identify one,
and only one, defining-identifier [R 7.2.1] . Thus all variables which you use
must be declared (as in ALGOL 60, but not as in FORTRAN) and any given
identifier may only be declared once within a reach. However, an applied­
identifier need not necessarily come after its defining-identifier:

(E6) begin

end

proc a = real: b := c;
realb:= 1, c :=2;
x :=a

is perfectly legitimate (see 4.2.2.1 for further details of routine-texts, of
which real: b := c is one). On the other hand:

(E7) begin

end

real b;
b := c;
real c;
c:= b

is syntactically correct, and the identification of c works, but the assignation
b := c will not work because no name has been ascribed to c at this point of

160 CLAUSES Ch.3.2.4

the elaboration (indeed, no such name has even been generated).
For the identification of modes see 3.3.1, and for operators see 4.3.3.

3.2.4. ENCLOSED clauses

An ENCLOSED-clause is either:

a closed-clause (3.2.4.1)
a collateral-clause (3.7.1)
a parallel-clause (3.7.2)
a structure-display (3.4)
a row-display (3.5.1)
a conditional-clause (3.2.4.2) I
a case-clause (3.2.4.3) ~
a conformity-clause (3.6))

or a loop-clause (3.5.2)

these 3 being known collectively as
choice-clauses

ENCLOSED-clauses occur primarily in primaries (5.1.0.1). This means, inter
alia, that they can stand as statements or as expressions (yielding respectively
either void or some mode).

3.2.4.1. Closed clauses

A closed-clause is a serial-clause enclosed between begin and end, or
between "(" and ")" [R 3.1] . There are two chief reasons for using them.
The first is to create some variables (strictly names) which are to be local to
some range:

(E8) begin
real pie;

begin
real w := 0, int i := 1; real z = sqrt (small real12);

loop: w := w + 2/(i x (i + 2));
i := i + 4;
if Iii> z then go to loop fi;
pie :=4 x w
end;

print(pie)
end

Here, the closed-clause was a statement, and it was created because w, i, z and

Ch.3.2.4.2 CLAUSES 161,

loop were not needed outside it. Here is a similar example in which the
closed-clause is an expression:

(E9) begin
print (4 x (real w := 0, int i := 1; real z = sqrt (small real/2);

loop: w := w + 2/(i x (i + 2)); i := i + 4;
if l/i>z then loop fi;
w))

end

Indeed, 99% of an entire particular-program could be contained within one
such expression. Note here the alternative form of the go to statement in
which the "go to" is omitted.

The second reason why closed-clauses are used is to alter the priority of
operators in formulas (5.1.3):

(E10) y:=xx(a+b)

In these cases, the serial-clause inside the closed-clause often contains just one
unit (the building is nothing but a roof, using the metaphor of 3.1).

3.2.4.2. Conditional clauses

if

Ra1
Ra2 ithen

1 else
Ra31

fi

some meek bool enquiry-clause yields the value true

let us elaborate a serial-clause (and yield a value if one is
asked for)

let us elaborate another serial-clause (and yield its value)

An enquiry-clause is built like a serial-clause (3.1), except that it may
contain no labels (apart from ones nested inside some ENCLOSED-clause
within the enquiry) and hence no completers. The range that commences
with its declarations extends right to the end of the conditional-clause (Ra1
above) and the two serial-clauses are also ranges (Ra2 and Ra3). Each of them
can contain declarations, statements, other ENC~OSED-clauses and all the
rest of the paraphernalia, or it can be as simple as a single unit:

(Ell) if p then r else s fi

. where p would have to be a bool (or a proc bool), and rand s might be labels,

162 CLAUSES Ch.3.2.4.3

or they might be procs. Either way, rand s would be statements and there­
fore the whole conditional-clause would be a statement, and would yield no
value.

In order to save ink, there are alternative representations that may be used
for if, then, else and fi:

(plrls)

It is quite in order to omit the else and its associated clause:

(p I r)

If P is true the statement r is elaborated. Otherwise no statement is elaborated
at all. However, this is not a sensible thing to do if the conditional-clause is
expected to yield a value, for then the value yielded if p were false would be
undefined.

x := (i <jla+b la-b)

That was a slightly more ambitious example. i<j is a formula yielding a bool
value (5.1.3 and 6.1.2). The conditional-clause as a whole is required to yield
real (in order that it may be assigned to x). Both a+b anda-b are formulas
yielding real, and so all is well. As a matter of fact, it would have been
sufficient for them to have been coercible to real, and a phenomenon known
as "balancing" could have been invoked to aid the process. However, we shall
leave discussion of this (and indeed of the coercion of all ENCLOSED­
clauses) to 5.2.0.1.

Ral

if
some bool enquiry-clause is true

. then
Ra2J do this serial-clause

Ra3

1 elif

some other boo I enquiry-clause is true

tthen
Ra41 do this other serial-clause

elif
Ra5 this third bool

then
Ra61 this third clause

else
Ra7-t this last resort

fi

Ch.3.2.4.3 CLAUSES l(i3

This is a piece of syntactic sugar to save you from writing (or forgettirig to
write) too many fis. It has im alternative representation:

(E12) (p \ r \: q \ s \ t)

meaning:

(E13) if p then r else if q then s else t fi fi

3.2.4.3. Case clauses

case
some meek int ehquiry~clause yielding a value, say i

in
a 1st unit

Ral a 2nd unit

a 3rd unit
out

Ra21 an alternative serial-clause
esac

Some number,say n, of units are separated by ","s. If the value ofiis such
ili~ "

i"'- 0 ori> n

then the out clause is elaborated. Otherwise the ith unit is elaborated. If the
case-clause as a whole is required to yield a value, then each unit must be
capable of yielding a value of the required mode (but all legitimate coercions
and balancings may be applied to this end (see 5.2.0.1)).

It is quite in order to omit the out and its associated serial-clause. "If the
clause as a whole is a statement, this means that no action is taken. If it is an
expression, however, the value yielded is undefined:

(E14) begin int days, month, year;
days := case month in

end

31, (year mod 4 = 0 A year mod 100:j: 0 v year mod
400 = 0129128),

31,30, 31,30,31,31,30,31,30, 31 esac

164 CLAUSES Ch.3.2.4.3

As usual, there are alternative represpntations for case, in, out and esac:

(E1S) print((il"SUNDAY", "MONDAY", "TUESDAY", "WEDNESDAY",
"THURSDAY", "FRIDAY", "SATURDAY" I "NODAY"))

Corresponding to elif in conditional-clauses, there is ouse in case-clauses:

case
some int enquiry-clause

in
a 1st unit

Ra1 a 2nd unit
ouse

some other int enquiry-clause
in

Ra2
another 1st unit

another 2nd unit

Ra3
1 out

esac
a last resort

If you think it confusing that "(", ")". "I" and "I:" should be able to
represent so many things, please accept our assurance that no syntactic
ambiguity arises. They are quick and easy to write, although it might be
kinder to use the longer versions in algorithms intended for publication.

Vertical readers, please turn to 4.2.

Ch.3.3 CLAUSES 165

3.3. Bold words

Certain bold words have fixed meanings in this language (e.g. real, begin, if
- see Appendix I for the full list). All other bold words may be used for
mode~indications and for operators. They are declared to yield modes or
routines by means of mode-declarations (2.3) and operation-declarations
(4.3.2). These declarations are valid for some range, and so the question of
identification arises.

3.3.1. Identification of mode-indications

The identification of identifiers was described in 3.2.3. The purpose and
method of identification of mode-indications are exactly the same [R 7.2] ..
Consider the identification of r in:

(EI) begin
mode r = real;

begin
~ m.ode .r = int;
L-rl :=J;

skip
end;

r x := y;
skip
end

An explanation of the identification of operators will be postponed until
4.3.3.

Vertical readers, please turn to 4.3.

166 CLAUSES Ch.3.4

3.4. Structure displays

Structure denotations as such do hot exist in the language. However, the
required effect can be obtained by means of a particular form of
ENCLOSED-clause known as a 'structure-display'. These can stand in any
strong position where a primary yielding a structure would be allowed
(because the position is strong, it follows that the exact mode of the
structure-display is always known). Thus, given the declarations involving the
mode vec in Appendix 2, and the declaration:

(E1) vec vI, v2, v3,

we can write:

(E2) vl:=(I,J,I)

but not:

(???) vI := vI * (1,1,1)

where the context would be firm (see 5.1.0 and 5.1.3).
A structure-display, then, is enclosed between "("and ")" (or between

begin and end) and contains one strong unit (5.1) for each field (of which
theie must be at least two) [R 3.3.1.e, h] . Because each field position is
strong, widening is permitted (as indeed happened in the case of the (1, 1, 1)
in the E2 example above). Because a field position is also a unit, structure­
displays are considerably more than a substitute for structure denotations,
e.g.:

(E3) vI := (x + 2, 3:4, ;-3)

Note that the various fields are elaborated collaterally (1.1.2.2).

Vertical readers, please turn to 5.4.

Ch.3.S CLAUSES 167

3.5. Row displays and loops

3.5.1. Row displays

Multiple denotations as such do not exist in the language (except for the
special case of string (5.5.1.1)). However, as in the case of structures (3.4),
the required effect can be obtained by means of a particular form of
ENCLOSED-clause known as a 'row-display'. These can stand in any strong
position where a primary yielding a multiple would be allowed (because the
position is strong, it follows that the exact mode of the structure-display is
always known). Thus:

(E1) xl := (1.2,2.3,3.4);
(E2) y 1 := (x, y, axb+ 1)

but not:

(???) xl:= yl + (1,2,3,4,5)

A row-display, then, is enclosed between "(" and")" (or between begin
and end) and contains one strong unit (5.1) for each of its elements (of which
there must be at least two) [R 3.3.l.d, i].

Because each element is strong, widening is permitted:

(E3) xl := (1,2,3,4,5)

Note that the various elements are elaborated collaterally (1.1.2.2).
A row-display yields, of course, a multiple value, whose elements are

yielded by its units [R 3.3.2.b] . The lower-bound of this multiple is always 1,
and the upper-bound is the number of units in the row-display. Thus

(1,2,3,4,5)

has bounds [1 :5] , and:

((1,2,3), (4, 5, 6))

has bounds [1 :2, 1:3] . Note how the row~display here contains as many
row-displays as there are rows, each of which contains as many elements as
there are columns.

A special kind of row-display, known as a 'vacuum', has no units at all and
yields a multiple of appropriate mode with bounds [I :0] , [1 :0, 1 :0] , etc.:

(E4) aI':= ()

168 CLAUSES Ch.3.5.2

3.5.2. Loop clauses
for

some int identifier, which is hereby declared (I)
from

some meek int unit (1)

Ral
by

some other meek int unit
to

a third meek int unit

Ra2jl ;:ile a m"k bool enquiry-clau"

1 Ra31 a void serial-clause
od

For example:

(E5) for i from k-2 by 1 to m while real lim = max real/a; x < lim
do x :=x +ati/i od

This sums a certain series from k-2 to m, or until x is getting too large,
whichever happens first.

(K)

(L)

(P)

(S)

Now a loop-clause consists of various parts labelled as I through S above. S
is the serial-clause which is to be repeated. In E5 it was just one unit, but it
will usually contain a substantial amount of program within itself:

(E6) for i from j by k to I while p
do
x := x + xl [i];
p := x < max real/2
od

From inside S you may access I and you may do things which will alter the
yield of P, but you may not alter I because its mode is int and not ref int (this
means that the compiler is at liberty to treat I specially, perhaps keeping it in
some fast access register). You can do what you like to J, K and L, but it will
make no difference to the number of times the loop is obeyed, which is
determined once and for all (effects of P apart) at the beginning. The loop is
obeyed until I> L (or < if K is negative). I.e. the number of times obeyed is

- entier - ((L-J)/K + 1)

or zero if this is negative. The loop will be obeyed zero times if P yields false
upon entry.

Ch.3.S.2 CLAUSES

More precisely, the interpretation of a loop-clause is illustrated by the
following piece of program, which is entirely equivalent to E6:

(E7) begin
int from := j, int by = k, to = I;

4' j, k and 1 are elaborated (collaterally) and their values are
remembered. The counting is going to be done in from 4'

m: if by> 0 Afrom':;:;; to V by < 0 A from ~ to V by = 0
4' i.e. if the count is not yet exhausted &

then int i = from; & the user's i is declared here, and is a copy
of the current value of from 4'

169

if p 4' the user's p, however complex it may be, is
elaborated here, each time the loop is about
to be obeyed 4'

then 4' now comes the user's serial-clause &

fi

x := x + xl [i],' 4' the user may access his i 4'
p := x < max real/2,' 4' the user may change his p 4'

from := from + by; 4' the count is in(de)cremented 4'
go to m

. fi 4' we are now outside the reach of i, so the question of its
value upon exit does not arise ¢

end

You may omit those parts of a loop-clause that you do not need:

if for I
if from J
if by K
if to L
if while P

is omitted, there is no I to be accessed
is omitted, from I is assumed
is omitted, by I is assumed
is omitted, to 00 is assumed
is omitted, while true is assumed

In fact, the only part which has to be there at all times is the do Sod. If this
does stand on its own, then the loop is executed indefinitely, unless you jump
out of it.

170 CLAUSES Ch.3.6

(ES)

ref int h = i; ¢ so that hand i are interchangeable identifiers ¢

i :=-4; for i from 3 by 2 to 3
i :=-4; from 3 by 2 t03
i :=-4; by 2 to 3
i :=-4; to 3
i :=-4;
i :=-4;

Vertical readers, please turn to 4.5.

3.6. Conformity clauses

case

while 1<0
while 1<0
while i<O
while i<O
while 1<0

do h:= h+] od; & obeyed 0 times &
do h:= h+] od; & obeyed] time &
do h:= h+] od; & obeyed 2 times &
do h:= h+] od; & obeyed 3 times &
do h:= h+] od; & obeyed 4 times &
do h:= h+] od; & ad lib &

some meek union (a, b, c, ...) enquiry-clause yielding
a value of one of the modes a, b, c, ...

Ral

in
Ra2i (a a): a 1st unit

Ra3{
Ra41 ,

jout
Ra5 !

esac

(b b): a 2nd unit

(c c): a 3rd unit

an alternative serial-clause

As with case-clauses (3.2.4.3), there is a number of units separated by", "s,
but now each one of them is preceded by a "specification", such as (a a):.
The enquiry-clause yields a value whose mode is of one of the modes in its
union. If the formal-declarer in one of the specifications matches, or
"conforms to", this particular mode, then that specification is chosen and the
value is ascribed to its identifier (which is a defining-identifier), if it has one
(these identifiers being optional). The unit following the chosen specification
is then elaborated, and of course applied occurrences of that same identifier
can make the value available inside it. On the other hand, if none of the
specifications conforms to the mode of the value, then the out clause is
elaborated.

Here is an example of a conformity-clause yielding a bool:

-----.----

Ch.3.6 CLAUSES

(El) union (char, bool, int, real) cbira;
if case cbira

in (bool b): b,
(int i): i> 0,
(real r): r> °

out false
esac

then cf we get here if cbira was not a char and was otherwise
true or > 0, as the case may be cf

fi

As in ordinary case-clauses, you may omit the out clause, you may
introduce an ouse followed by a new union to be tested and a new set of
specifications and units, and you may substitute the usual alternatives for
case etc.:

(E2) union (char, bool) cba, union (int, real) ira;
if (cba 1 (char): false, (bool b): b

I: ira 1 (inti): i > 0, (real r): r> 0)
then skip-
fi

171

(Here we must observe that every value referred to by a ref union must
include within itself an indication to show of which of its permitted modes it
currently is. Therefore a union (int, real), whilst being a very convenient
example with which to illustrate the point, is likely to occupy two words of
storage - one for the int or the real, and one to say which it is. Thus there is
no practical benefit in using this mode if the intention is to save storage
space.
A real saving would occur in the following case:

union ([] int, [] real) ir 1;

because the elements in these multiples are all int or all real, and only one
additional word is needed to indicate the mode of the whole lot.)

Vertical readers, please turn to 5.6.

---------- --------

172 CLAUSES Ch.3.7

3.7. Collaterality

3.7.1. Collateral clauses

Collateral-clauses [R 3.3] include such things as structure-displays (3.4)
and row-displays (3.5.1), but the ones we are particularly interested in at the
moment are void-collateral-clauses. These consist of a list of two or more void
units separated by commas, and enclosed between begin and end, or between
"(":and ")":

(El) (x:=1,y:=2,z:=3)

These three statements are elaborated "collaterally". There is not likely to be
much gain in using collateral-clauses in this way unless your hardware
contains three central processors (so that they can do a statement each), or
unless you have reason to believe that your compiler is sufficiently clever to
discover that they can be done more efficiently in an order other than that in
which they were written down. Alternatively, it might be the case that one of
the statements was likely to get held up awaiting some event in real time
(transput perhaps), in which case the others would be carrying on. This
situation is more likely to arise when parallel-clauses are used (see next
section). In the meantime we must consider exactly what "collateral" means.

Collateral elaboration occurs, inter alia, in the following situations:

collateral-declara tions
collateral- and parallel-clauses
structure- and row-displays
between the two sides of an assignation or an identity-relation
between the two operands of a dyadic-operator
amongst the primary and the actual-parameters of a procedure call.

Suppose two phrases A and B (it could be more) are to be elaborated
collaterally. Then the elaboration of A may be merged in time with that of B
in a manner left quite undefined by the Report [R 2.1.4.2.e] . So long as the
elaboration of A has no side effect upon that of B, and vice versa, then the
manner of this merging has no effect on the result - otherwise, anything
might happen. Normally, the two elaborations would proceed until both were
completed (3.1.4), but if one were terminated by a go to, then the other
would be stopped abruptly at whatever stage (if any) it had reached.

In practical compilers, it is probable that A would be elaborated first and
then B, or vice versa, but one is not entitled to make any assumptions based
on this. Consider the following:

Ch.3.7 CLAUSES

(E2) begin int i;
proc side = int: (i := 1; i := 2; i);
proc add = (int ii, int jj)int: ii+jj;
prin t (add(side, side))
end

173

The two calls on side are elaborated collaterally. If one were elaborated
entirely before the other (in either order), each would yield the value 2, and 4
would be printed. In the corresponding ALGOL 60 program, this would be
the guaranteed result. However, this ALGOL 68 program is perfectly entitled
to print 3 as its answer, because i is global to side and the collateral elabora­
tion of the two calls is quite entitled to be merged [R 2.1A.2.e 1 in the
following manner:

'i := 1;
i:= 2;

4' on behalf of the first side 4'
4' likewise 4'

i : = 1; 4' this is the second side starting up 4'
4' on behalf of the first side, which therefore

yields the value 1, as set by the second side 4'
i : = 2; 4' the second side 4'

4' the second side yields 2 4'

Here is another example:

(E3) i := 0;
x1[(i+:=1;j-2)] :=x2[(i+:=1;j-2)];
print (i)

The two subscripts are to be elaborated collaterally. Suppose their
elaborations were merged as follows:

Take i (=0)
Add 1 (=1)

Store in i (1)

Takej

subtract 2

use to index xl

Take i (=0)
Add 1 (=1)

(because the operator +:= in­
Store in i (1) eludes assignation)

Takej

subtract 2

use to index x2

174 CLAUSES Ch.3.7.2

Thus 1 is printed, even though i +:=1 has been elaborated twice. In general it
may be said that if two identical clauses are to be elaborated collaterally, then
the implementation is quite entitled (but not of course bound) to perform
the elaboration of only one of them and to assume that the other yields the
same result. In other words, a compiler may detect common sub-expressions
(such as the (i +:= 1; i -- 2) in E3), and optimise its code accordingly, and if a
user has put side effects into these sub-expressions, he has no right to
complain if they do not behave as he expected.

So the moral of this story, if you were thinking of use side effects and
collaterality is involved, is "Don't".

3.7.2. Parallel clauses

These are like collateral-clauses, except that you are provided with some
control over the synchronisation of the constituent statements. They consist
[R 3.3.l.c] of par followed by a void-collateral-clause:

(E4) par(x:=1, y:=2, z:=3)

However, this example, although legitimate, does not take advantage of the
synchronisation facilities provided. To take a more realistic example, suppose
we have a procedure which generates lines of output at random intervals:

(ES) proc item generate = (e computes the next item of output,
taking a random length of time to do so e);

mode item = struet (e a collection of values intended to be printed e);

We wish to print these items of output on a lineprinter which operates in real
time (i.e. not disguised by an operating system), and at some fixed number of
lines per minute. In order to smooth out the irregular periods between the
generation of items (so as, hopefully, to keep both the printer and the central
processor busy at all times), we shall put the items into a buffer as they are
generated, and take them out at a rate suited to the printer. First let us
declare our buffer:

(E6) int nmb buffers = e the number of items the buffer can hold e;
[1 : nmb buffers] item buffer;
int index := 0, exdex := 0; ¢ pointers to items within the buffer ¢
bool work to be done := true, printing to be done := true;

ct we shall need these in order to know when to stop ct

Ch.3.7.2 CLAUSES 175

Now we must set up some semaphores so that the generating department
and the printing department can communicate with each other. There is a
special mode provided for this purpose:

(E7) serna free slots, full slots;

A serna has a reference to an int hidden inside it, but you are only allowed to
get at it by means of the special monadic operators level, up and down
[RIO.2.4]:

oper- prior- mode mode meaning
at or ity of a of result

level 10 int serna yields a serna referring to a
copy of the int a

level 10 serna int yields the int referred to by
the serna

down 10 serna void if the int referred to is
zero, then the elaboration
of this part of the parallel
clause is "halted", other-
wise the int is reduced
by 1

up 10 serna void the int ref erred to is in-
creased by 1 and all ela-
borations previously
halted by the operation of
down on this particular
serna are "resumed" by
repeating the tests for zero
in their downs

We shall now initialise our semaphores:

(E8) free slots := level nmb buffers; 4' because we have not generated
any itemsyet 4'

full slots := level 0; 4' because there are no items
waiting for printing 4'

Now we come to our parallel-clause:

(E9) par begin
4- the generating department 4-
while work to be done
do

176

end

CLAUSES Ch.3.7.2

down free slots; 4' halts this department if all the slots
are jUll. initially, there are plenty 4'

index modab nmb buffers +:= 1; ¢ increment index
modulo nmb buffers ¢

buffer [index] := generate;
if c there are no more items to generate c

then work to be done := false fi;
up full slots 4' to enable the other department to get

going~

od
, ~ comma to separate the two statements. 4'

4' the printing department ~
while printing to be done
do
down full slots; 4' halts this department if there is

nothing to print (as initially) ~
exdex modab nmb buffers +:= 1;
print (buffer [exdex]);
printing to be done := work to be done V indext-exdex;
up free slots 4' if the other department was halted,

it may now be resumed ~
od

For a more ambitious example of parallel-clauses see R 11.12. For a
general discussion of the use of these semaphores see:

E.W. Dijkstra, Cooperating Sequential Processes, contained in
"Programming Languages", Ed. F. Genuys, Academic Press.

and E.W. Dijkstra, Comm ACM 11 5 May 1968 p 341.

Vertical readers, please turn to 5.7.

4. ROUTINES

4.1. Procedures and operators

In ALGOL 68, procedures arise ~)Ut of the structure of the language in a
very natural way. Thus routines are values, which therefore have modes. They
become ascribed to identifiers or operators by the elaboration of declarations,
and they are called in the course of a variety of units.

Therefore, there is hardly a topic in this area which could not have been
fitted elsewhere in our orthogonal plan (which is, indeed, why the Report
itself contains no chapter on the subject). However, the chapter which you
are about to read is not entirely redundant, since we thought it proper in view
of their central importance to gather all the information about routines,
procedures and operators into one place.

The necessary concepts were introduced in 1.1.4, which indicated how to
declare a procedure:

(E1) proc reciprocal = (real a) real:1/a;

and how to call it:

(E2) real x;
x := reciprocal (3.14)

Also how to declare an operator:

(E3) op oneover = (real a) real:1/a;

and how to use it in a formula:

(E4) real x;
x := oneover 3.14

All these matters will be discussed at greater length in 4.2 in the case of
procedures, and 4.3 in the case of operators. In particular, note how the right
hand side of E1 is the same as that of E3. This is the part which defines
precisely what the routine, which is being created in either case, is to do, and
is known as a 'routine-text' (4.2.2.1).

4.1.1. Standard prelude routines

However, a large proportion of the operators and procedures which you
will call in the course of your programs will not have been declared by you in

177

178 ROUTINES Ch.4.1.1

this way, because they will be already built in to your program by means of
the 'standard-prelude' (1.1). Amongst these you will find procedures for all
the usual mathematical functions (sine, cosine, square root, etc. - the full list
is given in 6.2.2), and operators for all the usual mathematical operations (+,
-, x, +, etc., and a lot of not-so-obvious ones - all listed in 6.1., 6.3, 6.5 and
6.7).

Although the procedures declared in the standard-prelude will be just that
- when you call them, certain built-in routines will be entered - this may not
be so for the operators. For example, the operator "+", used to add two ints
together, is defined in the Report [R 1O.2.3.3.i] by the following operation-
declaration: .

(ES) op + = (int a, b) int: a - - b;

If you had used this in your own program, it would have compiled a routine
to do (a - - b), and called it in whenever such a "+" was encountered in a
formula. This is not the intention for the standard-prelude operators. When
this "+" appears in a formula, your compiler should produce, on the spot, the
most efficient possible code to do the same job. .

Therefore you need hardly be aware, when using these operators, of the
strange way in which they were introduced into the language, and any such
lack of awareness should be no bar to a full understanding of 5.1.3 where the
use of operators in formulas is fully discussed.

Vertical readers, please tum to 5.1.

ChA.2 ROUTINES 179

4.2. Procedure declarations

4.2.1. proc declarers

The concept of a "routine" was introduced in 1.1.4. Each routine is of
some mode, and for each such mode we can write declarers. There are four
classes of routine, categorised according to whether they require parameters
or not, and whether they return a value or void.

(E1)
(E2)
(E3)
(E4)

proc void
proc int
proc (real, int, ref char) void
proc (real, int, ref char) bool

¢ no parameters, returns void d'
¢ no parameters, returns int ¢
¢ 3 parameters, returns void d'
¢ 3 parameters, returns bool ¢

This last one would be pronounced in public as:

"procedure-with -(a-)real-parameter-(and-an-)in tegral-parameter­
(and-a-)reference-to-character-parameter-yielding-(a-) boolean"

To say that a routine returns "void" is to say that it returns no useful
value.

Formal proc declarers and actual proc declarers look exactly the same
[R 4.6.1.0] . (Note also that the declarers specifying the modes of the
parameters and of the value returned are always formal.)

The parameters and returned value of a routine can be of any mode
whatsoever, including another proc mode:

(ES) proc (real, proc (real, int) void) proc (int) real

A 'procedure' is an external object which upon elaboration yields a
routine:

(E6) proc void proca;

is a variable-declaration declaring a ref proc proca. The value referred to by
proca is at present undefined, since we have not yet prOvided a routine for it.
However, if it had referred to some routine, then:

(E7) proc void proch := proca;

would have created proch, making it refer to the same routine (initially).
Which all goes to show that routines may be assigned and otherwise handled
just like values of any other mode.

180 ROUTINES Ch.4.2.2

4.2.2. Routines

What, then, is a routine? It is a piece of code somewhere within your
program, compiled there as a result of some state men ts written by you (or
maybe it was put there by the standard-prelude (6.2.2)). When a routine is
assigned, as in E7 above, there is of course no question of moving pieces of
code around inside the computer - it is a pointer to the piece of code that is
handled during these operations, but the effect is just the same. Note that
there are.no operations operating on routines defined within the standard­
prelude (with a little ingenuity, you might construct some of your own, but
they would probably not be particularly useful).

There are, therefore, two questions that we have to answer:

1) How do we introduce routines into a program, and cause them to be
yielded by procedures?

2) How do we "call" them - i.e. cause them to be obeyed?

Major discussion of the second question will be deferred until 5.2.1.

4.2.2.1. Routines texts

A 'routine-text' [R 5.4.1] is used to create a routine. It may stand, inter
alia, as the actual-parameter of an identity-declaration, or of a call (see E18
below), or as the RHS of an assignation. Here is a routine-text yielding a
routine of mode proc (real, real) real:

(E8) (real a, real b) real: a+b

Please note that (real a, real b) real is not a declarer such as proc (real,
real)real is (declarers do not contain identifiers). The real a and the real b
occurring in E8 are formal-parameters, such as you would expect to find on
the LHS of an identity-declaration (2.2.1), and the two reals in these formal­
parameters and also the real specifying the mode to be returned are therefore
formal-declarers. The a+b in E8 is a strong unit (5.1.0.2) and forms the body
of the routine.

Now we may use E8 in an identity-declaration, to declare a proc (real,
real) real:

(E9) proc (real, real) real sum = (real a, real b) real: a+b;

Rather a cumbersome way of adding two reals together, and rather a cumber­
some way of declaring it, too. There are two contractions we can use to

ChA.2.2.1 ROUTINES 181

shorten it. Firstly, the reals in the two formal-parameters of the routine-text
may be gatliered together in the familiar (2.1.2) fashion (i.e. (real a, b)).
Then, there still being considerable redundancy, all of the formal-declarer
after the proc may be omitted [R 4.4.1.b 1, leaving:

(ElO) proc sum = (real a, b) real: a+b;

which really is about as short as you could expect. In this form it is known as
a 'routine-identity-declaration'. Likewise:

proc refsum ~ of mode ref proc etc ~ := (real a, b) real: a+b;

which was a 'routine-variable-declaration'.
When there are no formal-parameters, the routine-text becomes very

simple, as in this proc real:

(Ell) real: x + 3.14

which may appear in an identity-declaration with the usual routine
contraction:

(E12) proc xplus = real: x + 3.14;

Finally, there is one more contraction to be used where several procedures are
to be declared (but please use it only for short snappy ones):

(E13) proc iplus = int: i + 3, zplus = compl: z + 1 i 1;

The part after the ":" in a routine-text can be any strong unit (Chapter 5)
yielding the required mode. Most often it will be some form of ENCLOSED­
clause (3.2.4), as in the following example in which we also illustrate a
routine-text returning void:

(E14) procpqrs = (ref real a, b) void: 0<0 1 a := 3.141 b := 3.14);

Note that in a routine-declaration the RHS must always be a routine-text.
If we go back to the uncontracted identity- or variable-declaration, this
restriction does not apply and we can, for example, make the routine to be
ascribed or assigned dependent upon some condition:

(EI5) proc voidpq = (i<O 1 void: a := 3.141 void: b := 3.14);

Here we have two routines available. Which of the two is ascribed to pq will
depend on the value of i at the time El5 is encountered. Please compare this
example carefully with E14, in which there is only one routine which tests i
each time it is called.

A r~utine-text is a quaternary (5.1.0.1), and this determines where it may

"

182 ROUTINES Ch.4.2.2.2

be used (thus ifit was needed as the operand ofa formula (5.1.3) it would
need to be enclosed between "(" and ")".

4.2.2.2. Calling

A routine with formal-parameters can be called by providing it with
actual-parameters to match its formal ones. Within the context of ElO we
could put:

(E16) a := sum (x, y)

x andy are the actual-parameters of this call. What happens next is just as if
the routine-text had been transformed into a cast containing an identity­
declaration to match each formal-parameter with its actual counterpart. The
elaboration of the call is equivalent to the elaboration of that cast. Applying
this process to El6 and EI 0, we get:

real (
real a = x, b = y;

after which comes the body of the routine:

a+b
)

Observe how the (and the) demarcate a new range, so that the formal­
parameters a and b, to which real values have been ascribed for the duration
of this call, may not be confused with any occurrences of a and b elsewhere.
Observe also that real a = x, b = Y is a contracted collateral-declaration, so
that x andy are elaborated collaterally (3.7.1).

In this example, real values were ascribed to the formal-parameters a and
b, and so it would have been illegal to try to assign to them from within the
routine. In ALGOL 60, this would have been known as "call by value". If we
do wish to alter the value referred to by a f~)fmal-parameter,then that
parameter must be of a mode that refers to something, as in E14 which
permits the following call:

(E17) pqrs (x, y)

which will assign 3.14 to either x or y, according to the value oU at the time.,
We term this "call by reference". In ALGOL 60, you would have had to use
(or misuse) "call by name" for that one.

To get some other effects of the ALGOL 60 call by name, however, you
must declare your procedure with proc mode parameters:

Ch.4.2.2.3 ROUTINES 183

(E18) proc series = (int k, proc (int) real term) real:
begin real sum := 0;
for j to k do sum +:= term (j) od;
sum
end;

This sums the terms of some series from 1 to k. When it is called, the actual­
parameter provided for the term can be any unit that yields a proc (int) real,
and very commonly this will be a routine-text.

(E19) x := series (100, (inti) real: 1 Ii)

During a call of this routine, the procedure ascribed to term (in this case the
routine-text) is called once each time round the loop-clause. This is how, in
ALGOL 68, we achieve the effect of Jensen's device.

See 5.2.1 also for other examples and further discussion of calls.
A routine without formal-parameters is called by means of a coercion

known as deproceduring. This is described fully in 5.2.1, but here is a brief
example:

(E20) begin
real x;
proc pp = void: x := 3.14;

begin
real x := 0;
pp; 4' pp is called 4'
print (x) 4' prints 0.0 4'
end;

print (x) 4' prints 3.14 4'
end

Whenpp is called, the routine from void: x := 3.14 is entered. Note, however,
that the name x assigned to by this routine is (as we hope you would expect)
the one declared in the outer range, and not the one declared just before the
call.

4.2.2.3. Recursion

Suppose, now, that a routine happens to contain a call on itself (either
directly, or via a chain of calls on other routines which eventually calls the
same one again). Are there any problems? In some programming languages
there may be, but not in this one. It all works out normally, just like you

184 ROUTINES Ch.4.2.2.3

would expect. You will find several examples of such recursion in this book,
notably in 8.7.1. Here is another one:

(E21) begin
proc blocked = (int x, y) bool: c A description of a maze, centred

at (0, 0) with entrance at (0,100).
Yields true if the point (x, y) is
inaccessible (part of the walls). The
maze is presumed to contain no
cycles. c;

int x := 0, y := 100, d := 0; 4- starting coordinates and direction 4-
proc maze = bool :

if blocked (x, y) then false
elif x = 0/1. y = 0 then true
else int presx := x, presy := y, presd := d, i := 0;
loop: i:= i+ 1;

fi;

x := presx +((d := (presd +2 + i) mod 4) + 1 10, -1, 0, +1);
y := presy + (d + 1 1-1,0, +1, 0);
if maze then true else (i < 3 I go to loop); false fi

print (if maze then "Maze is solved" else "No route to centre "fi)
end

OearJy, maze can call itself recursively to a considerable depth~ Now maze
contains decIiuations for the variables presx, presy, presd and i, which must
be elaborated whenever it is called (two trivial cases apart). This means that
four locations must be reserved on the stack (1.2.2.3). Next, maze calls itself
recursively, and we meet these declarations again. Do we get the same four
locations? Of course not! We reserve another four on the stack, and the first
four become inaccessible until such time as we return to the particular call of
maze in which they were created. Then we will find that their values have not
been touched since we left them.

So, by the time maze has called itself to a depth 'of 20, there are 20
instances of these four variables on the stack, and their values form a
complete record of how we got from the entrance to where we are. So, if we
replace the last line but one of maze by:

if maze then print ((presx, presy, newline)); true else (i < 3 I ...

then we shall get printed a complete set of directions showing how to get out
again.

Ch.4.2.3 ROUTINES

4.2.3. Scopes of routines

The following example should be compared carefully with 3.2.2. E3:

(E22) begin proe void pp; realy;
begin real x; proe p = void: y : = x;
x :=2.0;
p; 4' this is all right. 2.0 is assigned to y 4'
pp := p 4' this one is going to cause trouble 4'
end;

print (y); 4' no complaints 4'
pp; 4' tries to assign x to y, but who is x? 4'
print (y) 4' now what? 4'
end

185

In an assignation, the scope of the RHS must be at least as old as that of the
LHS, and in the case of pp := p above, it was obviously the scope of the
routine ascribed to p (i.e. void: y := x) that was too new.

In fact, the scope of a routine corresponds to the smallest range containing
a declaration of an identifier or a bold word (2.3 or 4.3 .2) which is used
inside that routine [R 7.2.2.c] (i.e. the inner range in the above example
because the routine contained anx). There are two small exceptions. A
mode-indication used inside the routine as a formal-declarer (i.e. not as an
actual one) does not count for this purpose, neither does an applied-operator
whose only crime is to identify a priority-declaration (4.3.1) outside.

In both this example, and in 3.2.2. E3, the trouble could have been caught
by a check at compile time, but in the following example a run time check
would be necessary:

(E23) begin ref real x>f, proc copy = (ref real a) ref real: a;
begin
real x := 2.0;
xx := copy (x)
end;

print (xx)
end

Vertical readers, please turn to 5.2.

I.I.A.-7

186 ROUTINES Ch.4.3

4.3. Operation declarations

The operators used in formulas (5.1.3) are either symbols built in to the
language for. the purpose, or bold words (1.3) invented by the user. (Note
that a bold word used in a mode-declaration (2.3) may not, in that reach
(3.2.1), be used for an operator.) (Note also that the built in symbols may all
be used for either monadic- or dyadic-operators, except for the symbols <,
>, /, =, x, and * which may not be monadic [R 9.4.2.1].)

In order to be used, an operator must yield a routine, and if it is to be used
as a dyadic-operator it must have a priority too. Now several routines may, at
one and the same time (subject to a restriction that will be discussed below in
4.3.3), be ascribed to a given symbol (or bold word), but that symbol (or
bold word) may only have one priority. Therefore, before a symbol can be
used as a dyadic-operator, it must be given a priority (unless it has already
acquired one in the standard-prelude [R 10.2.3.0]).

4.3.1. Priority declarations

There are 9 available priority levels for symbols to be used as dyadic­
operators (for convenience, we classify monadic-operators as having priority
10 in Chapter 6, but this is purely our own convention). We associate a
priority with a symbol (for the duration of some range) thus [R 4.3.1] :

(E1) prio min = 9;

Priority-declarations may be incorporated into collateral-declarations:

(E2) prio min = 9, prio max = 9;

and this may be contracted into:

(E3) prio min = 9, max = 9;

4.3.2. Operation declarations

An operation-declaration looks rather like an identity-declaration:

(E4) op (real, real) real min = (real a, b) real: (a < b I a I b);

The RHS of this one is a routine-text (4.2.2.1), but in general it is an actual­
parameter (2.2.1) - so if you were trying to be very posh you might try to
organise yourself some other unit which (after suitable coercion, of course)
would yield a proc (real, real) real. Normally, however, a routine-text is as far
as you will ever need to go, in which case you may then immediately contract

Ch.4.3.2 ROUTINES 187

it as with routine-declarations (cf 4.2.2.1. ElO):

(E5) op min = (real a, b) real: (a <b I a I b);

The operator min now works for pairs of reals. However, we may wish it
to work for other combinations:

(E6) op min = (int a, b) int: (a < b I a I b),
(E7) min = (int a, real b) real: (a < b I a I b),
(E8) min = (realq, int b) real: a min real (b);

E8 was trying to be clever by using the version of min already declared in E5.
It is an interesting example of the use of a cast (5.1.1.3) but not an efficient
way of doing a job, as E7 was. Note the contraction whereby the ops have
been gathered together (cf 4.2.2.1. EI3).

Now min yields four routines, but this is only the start of it. Now there are
all the combinations of long reals and long ints (2.7.2), and no doubt sensible
meanings could be found for min when operating upon chars, strings and all
sorts of things.

min is a dyadic-operator (so far), and as such yields routines which have
two formal-parameters. Monadic-operators, of course, yield routines with
one formal-parameter:

(E9) OIl min = ([] real al) real:
begin real x := max real 4' 6.2.l q;
for i from lwb al to.upb al do (al [i] <x I x := al [i]) od;
x end;

Routines yielded by operators are entered when those operators are
encountered in the elaboration of formulas [R 5.4.2] . For a full under­
standing offormulas, you should consult 5.1.3. It will suffice here to show
how the operands of the formula are matched up to the formal-parameters of
the yielded routine (having selected the right routine to match the modes of
.the operands, of course). This process is identical to that used when pro­
cedures with parameters are called (4.2.2.2). So, if we have the formula:

(ElO) i minx

we first select the E7 version of min, and then construct the following
colla teral-declara tion:

int a = i, real b = x;

In the reach of this declaration, (a < b I a I b) is elaborated, and the real
result becomes the value yielded by the formula.

188 ROUTINES Ch.4.3.3

4.3.3. Identification of operators

The identification of identifiers was described in 3.2.3, and the purpose
and method of identification of operators are essentially similar. Consider the

. identification of min in:

(Ell) begin
, __ ~prio min = 9;
: op min = (real a, b) real: (a < b I a I b),
I min = (int a, b) int: (a < b I a I b); +---+------...
~, a := x miny; I -_ - - - ...I '.;-'-__________ --/

I begin
I /--+prio min = 8;
I : op min = (ref real a, b)ref real: (a < b I a I b);:-J.

\ xx :=x mmy
I -- - - - - J ,'-'--------------~
I end;
\ k:= i minj
- - end -.-' '-'---------------------'

Firstly, you must identify all the applied occurrendes of min in the
formulas with the defining occurrences of min in the priOrity-declarations.
This results in the dotted lines to the left hand side of Ell.

Secondly, you must identify all the applied occurrences of min in the
formulas with the defining occurrences of min in the operation-declarations.
But you must only accept, in your search,. a defining occurrence the modes of
whose formal-parameters can be firmly coerced from the modes of the
operands of the formula [R 7.2.1] .·This results in the lines on the right of
El1.

However, let us now try to declare another version of min:

(EI2) op min = (ref real a, b) ref real: (.a < b I a I b);

The purpose of this one is to determine which of two names (of mode ref
real) refers to the smaller value. Let us use it in a formula:

(E13) xminy

But Oh dear! Doesn't this also identify the version of min declared in E5 (in a
formula, the operands are firm, and so x and y can be dereferenced in this
example (5.1.0))?

Clearly, it must be forbidden for E5 and E12 to oceur in the same reach.
This is expressed by saying that the modes of the formal-parameters of two
declarations of the same operator in the same reach must not be "firmly

Ch.4.3.3 ROUTINES 189

related" [R 7.1.1] , i.e. one of them, or a component mode of one of them (if
it is a union), must not be firmly coercible to the other. Since ref real (in
E12) is firmly coercible to real (in E5), these certainly do not pass the test.

However, even if two declarations are in different reaches, as they are in
Ell, and they are firmly related, then the one in the inner reach renders
invisible the one in the outer reach. Thus you could not have written,
immediately after xx := x min y in Ell, a := x min 2. O. It certainly could not
have identified the min declared for two ref real parameters, and it is not
allowed to see the other one. On the other hand, k := i min 2 would have
been all right in this position. This additional restriction simplifies implemen­
tation of the language and is unlikely to affect the average user, since it is
more likely that such an identification would indicate an error on his part,
than that it would be his real intent.

Vertical readers, please turn to 6.3.

-----_. --- - --.. -------------~----.---------------------

190 ROUTINES ChA.S

4.5.· Row-of parameters

Consider routines of modes such as proc ([] real) void. When such a
routine is called, the compiler may be obliged to take a copy of the value of
the actual-parameter - in general a time consuming operation - just in case
the body of the routine should contrive in some way to alter the original:

(El) [0: 99] real xl;
proc a2 = ([J real bl) void: for ito 99 do xl [i] := b1 [i-1] od;
a2 (xl)

The intention and effect of this example is not to make every element of xl a
copy of xl [0], which is what would have happened if b1 had not yielded a
copy of the value of xl at the start of the call. .

However, cases such as this are rare, and a decent implementation will
postpone making the copy until the problem actually arises, if at all. But not
all implementations are decent, and so it may be wiser to declare your
formal-parameter as a ref [] real. Then, as call, it is only a name which has
to be passed to the routine, which uses it to access the original multiple value
that it refers to. However, if a routine is provided with a name, it is entitled
to be told whether the multiple value referred to is fixed or flexible:

(E2) proc as = (ref [] real bl) void: XXXXX;
proc a6 = (ref flex [] real bl) void: XXXXX;

For further discussion of this point, see 8.5.

Vertical readers, please turn to 5.5.

Ch.4.7 ROUTINES 191

4.7. Jumps

We have informally been using jumps in this book right from the start, but
mainly only in places where we had not yet introduced choice-clauses (3.2.4)
or loop-clauses (3.5.2). Since these already provide powerful and adequate
facilities for controlling the flow of your program, jumps are hardly necessary
in ALGOL 68. Their main legitimate uses are for premature exits frqm
loop-clauses and from event routines (7.4.4).

4.7.1 . Simple jumps

We have already seen (3.1.2) that labels may appear anywhere in a
serial-clause provided no declarations come afterwards:

(El) labl:

A jump to a label consists of goto (or go to) followed by the label that is to
be identified (3.2.3), or simply just of that label by itself:

(E2) go to labl
go to labl
labl

The effect of the jump is to cause the unit following that label to be elabora­
ted next. A jump may only occur in a strong context (its mode is irrelevant,
but is automatically regarded as the mode expected for syntactical purposes).

4.7.2. Procedured jumps

In some other languages, there is a mode label, and one may assign labels
to label variables and subsequently jump to them. In ALGOL 68, however,
procs are used for this purpose [R 5.4.4.2] :

(E3) proc void ppp;
ppp := go to stop

The elaboration of this constructs the routine

void: goto stop

and assigns it to ppp, just as if we had written

(E4) ppp := void: goto stop

An interesting application of this facility can be used to realise the equivalent
of the ALGOL 60 switch facility:

i92 ROUTINES Ch.4.7.2

(E5) [] proc void switch = (el, e2, e3); ct a multiple of procs.
el, e2 and e3 are labels ct

switch [i] ct jumps to the label selected by i ct

In fact, if a jump appears in any strong context where a procedure without
parameters is expected (no coercions allowed), this is what happens. In all
other contexts, the jump is simply obeyed immediately. Thus we may
distinguish between

(E6) x := if p theny else goto stop fi

and

(E7) taskl := if p then void: print (lip WAS TRUE") else goto stop fi
d' see Appendix 2 for taskl.

if p is false, we assign void: goto stop to taskl,
but we do not go there yet d'

Vertical readers, please tum to 5.7.

S. UNITS

5.1. Simple units

'Units' (also termed 'unitary-clauses') are the entities in the language which
actually get things done. The simplest example of a unit is ·the simple type of
assignation (e.g. x := y + 2.4) which we have used many times already.
However, examples much more complex than this can be constructed in
accordance with a set of rules which it is the purpose of this chapter to
describe. (The corresponding definitions are mostly to be found in RS.)

5.1.0. Coercion

5.1.0.1. Coercends

The basic building blocks out of which units are made are known as
'coercends', of which there are 16 types, arranped in a hierarchy as follows:

quarternaries (or units)

assignations

routine"texts
iden tity-relations

*jumps

*skip tertiaries

formulas

*nil . secondaries

selections

generators primaries

denotations

applied-identifiers

casts

calls

slices

format-texts

I *ENCLOSED-clauses I

* Strictly speaking, these units are not coercends, since they cannot be coerced.

193

194 UNITS Ch.S.1.0.2

A unit can be any quaternary. Right at the bottom are ENCLOSED-clauses
(as (a+b) in x := y x (a+b) which are themselves made up of further units (as
described in 3.2.4), so that the definition of the whole setup is recursive .
. Now the elaboration of a unit (Le. of a coercend or of an ENCLOSED-

clause) has two effects. '
Firstly, it must yield a value (e.g. the value of the formula 2+3 is 5). This

value will be of some mode, possibly void, uniquely determinable at compile
time. If the mode is void, then the unit is a 'statement'; otherwise it is an
'expression'. Secondly, some other actions (independent of what is yielded)
may take place (e .g. in x : = 2. 4, the. value 2.4 is assigned to x);

S.1.0.2. Coercion

Now the a priori mode of a coercend may have to be coerced (see 1.1.6)
into the mode that is required by the "context" in which that coercend
appears [R 6.1] . Thus, the a priori mode of 2 is int. If 2 occurs in the con text
x := 2, then the expected mode (after the x :=) is real. When this assignation
is elaborated, then, the integral value 2 must be coerced into the real value
2. o before the assignation can proceed. Fortunately this particular coercion
(which is known as "widening") is permitted in this particular context and
this assignation is therefore legitimate; The question as to whether anyone of
the 6 permissible coercions may be applied in a particular case depends upon
the context. For this purpose, contexts are divided into S classes:

strong
firm
meek
weak

and soft

All 6 coercions may be applied in strong positions. During the rest of this
chapter, as we describe each form of unit, we shall indicate the strength of
the contexts occurring in it. Here, in the meantime, is a summary:

strong contexts The RHS of identity-declarations (2.2.1)
The actual-parameters of calls (5.2.1)
The RHS of initialized variable-declarations (2.2.3)
The RHS of assignations (S .1.4.1)
The ENCLOSED-clauses of casts (S .1.1.3)
The units of routine-texts (4.2.2.1)
Statements (must yield void) (5.7.0.1)
All constituents but one of a balanced clause (S.2.0.1)
One side of an identity-relation (S.7.4) ~----------~.-

Ch.5.1.0.2 UNITS

firm contexts Operands of formulas (5.1.3)
In effect, the a~tual-parameters of transput

calls (7.1.1, 7.1.2)

meek contexts Trimscripts (must yield int) (5.5.1.3)
Enquiries (3.2.4.2, 3.2.4.3, 3.5.2, 3.6)
Primaries of calls (e.g. sin in sin(x)) (5.2.1)

weak contexts Primaries of slices (e.g. x in x [i]) (5.5.1.3)
Secondaries of selections (e.g. z in re of z) (5.4.2)

soft contexts The LHS of assignations (5.1.4.1)

195

I----------~ The other side of an identity-relation (5.7.4)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ___ J

A complete chart of all the coercions is given below. The way to use this
chart is as follows. Consider first the mode (a priori) of the available coercend
and secondly the mode (a posteriori) required by the context. Then you must
find a route following the arrows on the chart that will, through a sequence
of intermediate modes, take you from the first to the second. If the coercion
is possible, then there will be such a route (if tjlere are several routes, they
will always be found to be equivalent).

Suppose, for example, that in a strong context you have (a priori) a
coercend of mode proc ref bool and what you really need (a posteriori) is a
value ofmod~ [] union (real, int, bool). Then there is indeed a route
between them, but the simplest way of describing it to you will be to
introduce a fictitious operator to represent each coercion on the way, as
suggested in 1.1.6 (of course these opera tors are not really part of ALGOL
68). Thus the required value is obtained by the following operations on the
coercend:

ROW(UNITE(DEREFERENCE(DEPROCEDURE(coercend))))

and you will encounter these operations (from the innermost to the
outermost) as you follow the route. Doubtless you will be relieved to hear
that coercions do not invariably get so complex.

The change of mode brought about by each of these fictitious operators is
given in the chart. Their effect upon the elaboration of the program will be
found at appropriate points in this introduction, as follows:

voiding 5.7.0.1
rowing 5.5.0
widening 5.1.0.4,5.4.0,5.7.0.2
uniting 5.6.0
dereferencing 5.1.0.3,5.4.2,5.5.1.3
deproceduring 4.2.2.2,5.2.0.2,5.2.1

196 UNITS

COERCION CHART

coercend, of the
MODE AVAILABLE (a priori)

c-- deprocedure --- proc amode to amode

c=weakly dereference-ref ref am ode to ref amode

c--- dereference --- ref amode to amode

~ deprocedure --- proc amode to amode -;

(unite
(

amode to union (amodes)

Lunion (amodes) to union (more amodes)

lwiden int ** to real

~~
~ bits** to [] bool ~

'--- bytes** to string-

rmWE~odeto [UJ~od'
ref amode to ref [1: 1] amode-

[] amode to [1 :1,] amode ~

ref [] amode to ref [1:1,] am ode
and so on

,
void nonproc * to v~
morfs *** only

void amode to void
comorfs *** only

* nonproc is all modes except proc amode and refs proc amode.

** The corresponding longs and shorts versions can also be widened.

*** Comorfs are assignations and casts. The rest are morfs. See 5.2.1.

Ch.5.1.0.2

soft con texts

weak co ntexts

meek con texts

fIrm cont exts

strong contexts

Ch.S.1.0.3 UNITS 197

If you cannot find a suitable route through the maze simply because your
context is not strong enough, then all is not lost. A device known as a 'cast'
has been provided wherein you first state the mode you would like to have (a
posteriori), and then strongly coerce yourself into it regardless. Casts are
described in 5.1.1.3 below. They are particularly useful for dereferencing in
soft contexts and for widening in firm ones.

5.1.0.3. Dereferencing

We have already explained in 1.1.2.1 and in 2.1.2 how a declaration such
as real x; causes a location in the memory to be reserved (or "generated") for
a real value, the name which refers to that value being ascribed to the
identifier x. Thus, the value yielded by x is a name of a priori mode ref real.

Now, very frequently, what we want is the real value stored in the location
referred to (as x in the assignation y := x) and what we have got is its name.
We must therefore have resort to the coercion known as "dereferencing".

Dereferencing [R 6.2] is permitted in any con text that is strong, firm,
meek or weak (which is almost everywhere). (A slight restriction in the case
of weak positions will be discussed in 5.4.2.) The effect is to remove one ref
from the a priori mode, and to yield the value of the thing that was named. If
this value is in turn another name, then further dereferencing may be
required.

Thus if the ref real identifier x stands in a context that is strong, firm or
meek, and if the expected mode is real, then the value yielded is the real value
that x refers to.

5.1.0.4. Widening

Consider:

(EI) x := i

Widening [R 6.5] is used to tum an int value into a real value (also a real
value into a compl value (see 5.4.0) and some further cases in 5.7.0.2). In this
example, therefore, the ref int i is first dereferenced to yield an int value,
which is then widened to yield the corresponding real value, which can then
be assigned to the name x.

We shall now consider the simpler forms of coercend, starting with the
primaries:

5.1.1. Primari.es

We shall consider three forms of unit here-denotations, identifiers and casts.

198 UNITS Ch.S.1.l.l

5.1.1.1. Denotations

Denotations are those entities which, in earlier languages, would have been
known as "literals" or "constants". The following examples show some
legitimate denotations, together with the a priori modes of the values that
they yield [R 8.1].

Yielding int 2 ; 1024 ; 123 ; 0123
Yielding real 12.3 ; 1.23101 ; .12310+1 ; 0.123e+l ; 1230e-l

0.00123; .00123; 123.0; but not 123.
Yielding bool
Yielding char

true; false
"a" ; "B" ; "1" ; "," ; ":,." for a space symbol;
" '"' " for a (single) quote symbol

From a study of these examples, you should be able to construct any
other denotation that you might require.

For string denotations see 5.5.1.1, for the void denotation see 5.6.1 and
for bits and long denotations see 5.7.1.

5;1.1.2. Applied identifiers

An identifier standing as a unit constitutes an applied occurrence (1.1.5)
of that identifier. Somewhere, that same identifier will have been declared (at
its defining occurrence). These two occurrences must be correlated since the a
priori mode of the value yielded when it stands as a unit is the same as the
mode with which it was declared. The exact method of correlation is
considered in 3.2.3.

5.1.1.3. Casts

Suppose the operator.<Q had been defined for pairs of reals, but not for
Ints, and suppose you wanted the formula:

(E2) x Oi

which would not then be allowed. i cannot be widened because its context is
only firm. If only it were strong. Let us therefore make a mould the shape of
a real, and melt up our int, and cast it into the required shape:

(E3) x 0 real (i)

This is all right. real(i) is a 'cast' [R 5.5.1]. The formal-declarer real specifies
that it shall yield a real, which suits the 0 operator. Immediately after the

Ch.S.1.2 UNITS 199

formal-declarer the context is strong, and an ENCLOSED-clause is expected.
Thus the int i may be widened to real and everyone is happy.

Other examples of the use of casts will be given in 5.2.4. Ingenious users
will find many other applications. For example, in transput (see 7.1), given
i = 1234:

(E4) print(i);
prin t(rea1(i))

5.1.2. Secondaries

¢ will print + 1234 d'
d' will print + 1. 23410+ 3 d'

Discussion of secondaries will be postponed until Section 5.4.2.

5.1.3. Tertiaries-formulas

(The reason why we sometimes prefer to talk of formulas rather than
formulae is to be found in the Report at 1.1.4.2.a, but we would not
recommend that you should read that just yet.)

The following are examples of 'formulas':

(E5) x - 2 ; x 0 y d' if a meaning for 0 has been declared 4' ;

xxa+b;xx(a+b);-2

It will be seen that the essential feature of formulas is that they contain
operators which operate upon operands [R 5.4.2] .

If a formula contains more than one operator, then there is an implied
bracketing which ensures that each dyadic-operator has two clearly defined
operands, and each monadic has one. In order to assist with the implied
bracketing, each dyadic-operator has an associated priority in the range of 1
through 9, all monadic-operators effectively having priority 10. For example,
"t" has priority 8, "x" and "I" have 7, and "+" and "-" have 6. The rule is
that the operators with the highest priority are always considered firsLThus:

(E6)
(E7)
(E8)
(E9)
(EIO)

xxa+b
-a + b
+4 -2t2
-2t2+4
4 +-2t2

means (xxa) + b
means (-a) + b (because the" -" here is monadic)
means (+4) - (2 t 2) (and yields 0)
means ((-2)t2) + 4 (and yields 8)
means 4 + ((,---2)t2) (and yields 8).

We agree that E8 and E9 are confusing,but it was thought that to have
some dyadic-operators of priority higher than the monadics would have been

200 UNITS Ch.S.1.3

even more so. The operator "t", as in atb, should not be thought of as
equivalent to the usual mathematical notation for "to the power" as in ab ,

which is itself a nota tion for a function such as pow (a, b).
Where several operators of the same priority occur together, an additional

rule is needed. Thus for dyadic-operators:

(Ell) i-j+k-m+n

means

(E12) (((i - j) + k)-m)+n

likewise for monadic-operators:

(E13) + abs entier - x

means

(E14) +(abs(entier (-x)))

The priority and meaning of each operator are either built into the
standard-prelude (6) or library-prelude (I.!) or are defined by the user
(1.3.3.2 and 4.3).

_ The mode(s) of the operand(s) in a formula must match the mode(s) for
which its operator has been defined. For example, the dyadic-operator "+" is
defined (6.1.2) to do a variety of things, amongst which is a definition which
states that if its first operand is real and its second operand is real, then it
yields a real value which is to be the sum ofits two operands (within the
accuracy permitted by the implementation). A separate definition states that
if its first operand is int and its second is int, then it yields an int value, and
there are ten other similar definitions, not to mention three more for its
monadic counterpart (6.1.1).

An operand can be any tertiary except nil, provided it is of the required
mode. E.g. it can be another formula (as in the implied bracketing examples
above), a selection, a denotation or an ENCLOSED-clause, but it cannot be
an assignation because an assignation is not a tertiary (see 5.1.0.1). Thus if
you wanted to operate upon an assignation, you would have to make it into a
closed-clause thus:

(E15) x + (b := a xy)

The tertiary which constitutes an operand is in fact firm, and the
permitted coercions therefore include dereferencing, but not widening. Thus
in:

(E16) x + y

Ch.5.1.4 UNITS

the names x and yare first dereferenced to yield two real values, which are
then added to yield the real value of the formula.

Consider also:

(EI7) x := i + j

201

i andj cannot be widened because of the firm context, but the version of "+"
to add two ints can be used. Then the value of the whole formula i+j, being of
mode int, can be widened to real.

(EI8) x := i + y

Here again, i cannot be widened in order to be added to y. The formula i+y is
only valid by virtue of the fact that the operator "+" is also defined (6.1.2)
for the case of an int plus a real yielding a real.

5.1.4. Quaternaries

5.1.4.1. Assignations

An 'assignation' [R 5.2.1] is one of the commonest forms of unit. It
consists of two parts-a left hand side (its 'destination ') and a right hand side
(its 'source'). Consider the following example:

(EI9) x := y + 3.14

The LHS (x in this example) is subject to the following restrictions:
a) It must yield a name (Le. its mode must be ref am ode ; in the example

above x was ref real).
b) It must be a tertiary (in the example x was an applied-identifier; a

formula is also possible but in fact few operators yield names (but see
6.3)).

c) Its context is soft, which means in particular that no dereferencing is
allowed (unless you use a cast).

Application of these rules completely determines the mode of the value
referred to by the name yielded.

The RHS (y + 3.14 in the example) therefore has considerable freedom,
the rules being the following:

a) It must yield a value whose mode is the same as that of the value
referred to by the left hand side (in the example a real value is yielded,
which is in agreement with the ref real mode of the left hand side).

b) It can be any quaternary, which means it can be any coercend or any
ENCLOSED-clause, provided a suitable mode is yielded (in the example
it was a formula).

202 UNITS Ch.S.1.4.2

c) Its context is strong, which means that any known coercion can be
applied in order to obtain the required mode (in particular, both
widening and dereferencing can be used).

d) It has a scope restriction, but this is described in 3.2.2.
Consider:

(E20) x :=y

Both x and yare, a priori, names (of mode ref real). y must be dereferenced
to yield a real value. The value formerly referred to by x is then superseded
by this real value.

x :=a + b

In this case the RHS is the formula a + b, which already yields a real value.
No dereferencing is therefore needed (note, however, that a and b were in
fact dereferenced during the elaboration of the formula itself).

Since any quaternary can stand for the RHS of an assignation, it follows in
particular that another assignation can so stand. It is therefore necessary to
specify what value (and of what mode) is to be yielded. In fact, the value
yielded by an assignation is the value yielded by its LHS, which is always of
mode ref amode. Consider the following:

(E21) a :=b :=x :=2.4

Let us first insert the implied bracketing (which, as you will observe, is not
that of a dyadic-operator (see 5.1.3. E12)):

(E22) a := (b := (x := 2.4))

First of all, the real value 2.4 is assigned to x. The value of x := 2.4 as a whole
is the name x which, being of mode ref real, must be dereferenced before the
value to which it refers (which is now 2.4, of course) can be assigned to b.
The value of this assignation is the name b, the value referred to bywhich
(2.4 again) can now be assigned to a. Thus, everybody lands up by referring
to his private instance of 2.4. The formula x + (b := axy) given in example
E15 causes the product axy to be assigned to b. x and the. new value now
referred to by b are then added together.

5.1.4.2. skip

skipis a special form of unit. As a statement, it is a dummy. In other
strong contexts, it yields an undefined value of the mode demanded.

Ch.S.2 UNITS 203

Note that it is never subject to coercion and that it may only occur where the
context is strong.

Vertical readers, please tum to 6.1.

5.2. Balance and call

In this section we consider balancing, procedure calls, and also some
further examples of coercends involving names.

5.2.0. Coercion

5.2.0.1. ENCLOSED clauses and balancing
Any form of ENCLOSED-clause (3.2.4) may stand asa primary. Often,

the effect is straightforward:

(El) y:=xx(a+b)

However, let us consider again the example E9 from 3.2.4.1 :

(E2) begin
print (4 x (real w := 0, int i := 1; real z = sqrt (small real/2);

loop: w:= w + 2j(i x (i + 2)); i := i + 4;
if 1 Ii> z then loop fi;
w))

end

In this example, the value of the serial-clause within the parentheses is, a
priori, the name w (of mode ref real) which will have vanished by the time we
are outside the clause. Fortunately it is also clear that, if the value of this
serial-clause is a name, it ought to have been dereferenced (because the
operator "x" is expecting a real). However, the rules provide that an
ENCLOSED-clause cannot be dereferenced (it is not a coercend). Instead, the
required mode and the strength of the context are passed on to the unit
which is to be yielded, which in this case is the identifier w. Therefore, it is w
that gets dereferenced, right at the last moment before it disappears, and the
resultant real value is passed on. The following piece of syntax (which is not
the complete syntax for a serial-clause) may make this clearer to those who
have some familiarity with the Report [R 3.2.1] .

204 UNITS

SORT: strong; firm; weak; meek; soft.
SORT MOlD serial clause:

Ch.S.2.0.1

strong void unit, go on token, SORT MOlD serial clause;
declaration, go on token, SORT MOlD serial clause;
SORT MOlD unit.

The ENCLOSED-clause might well be a conditional-clause:

(E3) x := (i<OI-iliJ

or it might be a case-clause:

(E4) x := (ilj,k,m,n)

In these cases as well, any coercion that might appear to be needed on the
ENCLOSED-clause as a whole is instead performed on the unites) inside, as
the context may permit. Indeed, different coercions may be applied to
different internal units;

(E5) x := case i inj, k, x, y esac

The first two alternatives in E5 would have to be widened - the last two are
already real. Widening is possible because the case-clause occurs in a strong
context. However, even if the context had been firm, widening would have
been permitted provided that at least one of the alternatives had been real,
e.g.:

(E6) a := x x (i<O Ijly)

The fact that y is real shows that the version of the operator "x" requiring a
real is intended, and therefore the context of j can be promoted to strong.
The same holds for

(E7) a := x x (i<Olxlk)

This principle is known as "balancing". However:

(E8) a :=x x (i<Oljlk)

involves the multiplication of a real with an int, and is not balanced.
Balancing is permitted between:

a) The completion points of a serial-clause [R3.2.1] (i.e. the exits and the
final unit (3.1.4)), e.g.

Ch.5.2.0.2 UNITS

(E9) a := b + (real x, y, z; z := 1 - 3 x sqrt(small real); x := i;
if x ,;;;; 0 then go to libl fi,;

lobI: y := i/'d2; x := (2 x x + y)/3;
if y Ix < z then go to lobI fi;
if x ;;;, 10.0 then go to libl fi;
x exit

libl: print ("out of range ");
10)

Please compare that carefully with 3.1.4. E7.

205

b) The alternatives of a conditional-clause [R 3.4.1] , following then or else
(3.2.4.2 and examples E6 and E7 above).

c) The altematives of a case-clause, including the out option (3.2.4.3), e.g.:

(EIO) a:=yx(ilj,k,x,y)

d) The alternatives of a'conformity-clause, including the out option (3.6).
e) The LHS and RHS of an identity-relation (5.7.4). Experienced readers

might like to consider the rather delicate example 5.7.4. E28.
See also 5.5.1.3 for the balancing of transient names.

5.2.0.2. Deproceduring

Deproceduring is a method of calling routines not having parameters, and
has already been introduced in 4.2.2.2. We think it best, however, to consider
it alongside calls of routines which do have parameters, which brings us to:

5.2.1. Primaries - procedure calls

It will have been seen (1.2.3.1 and 4.2) that procedures are declared in
< much the same way as other objects, and that they yield values (i.e. their

routines). Thus proc void, proc real, ref proc (int, real) int are perfectly valid
modes. The consequence of which is that if random (which is declared to be
of mode proc real (see 6.2.2)) appears as a coercend, it is not immediately
apparent whether its value (i.e. its routine, which is of mode proc real) is to
be yielded, or whether the intention is to elaborate the routine and to yield
its real result (although the latter may well be intended 99% of the time, the
former facility is needed whenever a procedure is to be assigned, or operated
upon in a formula, or yielded by another procedure - all of these things
being quite allowable).

The distinction between these two interpretations can only be made by

206

context. There are two cases:
a) Calls [R S .4.3]

UNITS Ch.5.2.1

(Ell) proc (real) real p; proc sinh = (-real x) real: (exp(x) - exp(-x))/2;
y := sinh(x);

(EI2) p:= sinh

sinh has been declared to be a procedure requiring a parameter. Therefore,
in Ell where an actual-parameter is indeed present, the intention is clearly
that the procedure should be called. If there are no parameters, as in E12,
then its body must be yielded. Thus the problem does not arise.

b) Deproceduring [R 6.3]

(EI3)
(EI4)

proc real q; proc sinh x = real: (exp(x) ---, exp(-x))/2;
y := sinh x;
q := sinh x

sinh x does not require parameters. Therefore, we must see which mode is
required by the context. In E13, real is required, which is what the routine
yielded by sinh x returns. Therefore we must employ the coercion known
as "deproceduring". .
The effect of deproceduring is always to convert the mode of a coercend

of proc amode into amode (including proc void into void), at the same time
calling the value (Le. the routine) that the coercend yields.

In El4,on the other hand, the mode required is proc real and so the
routine yielded by sinh x is assigned without any coercion.

Deproceduring can be used in any context*, including the LHS of an
assignation.

In elaborating a call of either sort, it is first necessary to establish what is
to be called. In case (a) this is specified by a meek primary yielding the
required routine, and the primary is followed by the actual-parameters. The
interpretation of these has already been described in 4.2.2.2. Usually, the
primary will be an identifier, as ncos (see Appendix 2) in:

(EIS) x := ncos (i)

* In strong void contexts, there may be some doubt as to whether deproceduring or
voiding (5.7.0.1) is tobe used. The coercion chart (5.1.0.2) shows that deproceduring is
always to be preferred to voiding, except where the coercend is an assignation or a cast.
In E14 it was an assignation yielding (a priori) the ref proc real value q. Clearly, to have
now called this would have been ridiculous, and therefore immediate voiding was
appropriate. If q had stood as an applied-identifier on its own, however, it would have
been dereferenced, then deprocedured (so that any side effects of sinh x could happen),
and finally voided.

Ch.S.2.3 UNITS 207

However, it could be an ENCLOSED- (e.g. conditional-(3.2.4.2)) clause, as in:

(E16) x := (p I ncos I nsin) (i)

In case (b), where deproceduring is to be used, the required routine must
be yielded by a suitable unit (but not an assignation or a cast). Again, usually,
it will be an identifier as in:

x := random

It cannot, however, be an ENCLOSED-clause (which is not a coercend). If
proca andprocb are both of mode proc real, then:

(E17) x := (p I proca I procb)

is legitimate, but the deproceduring of proca and procb takes place in situ, as
you have already seen in 5.2.0.1, and the conditional-clause as a whole yields
real without further coercion.

The corresponding situation in the case of calls with actual-parameters
arises in:

(E18) x := (p I ncos(i) I nsin(i))

which should be compared wjth example E16 in which the actual-parameter
(i) appeared only once.

The modes yielded by the actual-parameters in a call must, of course,
match those of the formal-parameters (4.2.2.2) of the routine. However, the
context of an actual-parameter is strong, so that all the coercions are
available.

5.2.3. Tertiaries - nil

nil is a special tertiary of mode ref amode which yields a name which does
not refer to any value. See S.2.4.E27 for an example. Note that nil is never
subject to coercion and that it may only occur where the context is strong.

5.2.4. Quaternaries - assignations involving names

Here are some examples of assignations involving names. Remember that
xx and yy are of mode ref ref real and that a, x and yare merely ref real: .

(E19) xx := if i<O then x else y fi;

The value of xx is therefore the name x or the name y.

208 UNITS Ch.S.2.4

(E20) yy:=xx;

and so is the value of yy.

(E21) a :=xx;

The value currently referred to by x or y (whichever was assigned to xx) is
assigned to a. Note that xx is dereferenced twice in this example.

(E22) ref real (xx) := a;

The value referred to by a is assigned to x or to y. xx is here put in a cast, so
that it may be dereferenced. There is normally little point in using a cast as
the RHS of an assignation, since:

(E23) y := real (x);

means the same as:

(E24)

(E25)

y :=x;

a:=xx:=x;

means the same as a : = real (xx: = x), in which the name x is assigned to xx,
the value referred to by the value referred to by which (i.e. it is dereferenced
twice) being then assigned to a. On the other hand:

(E26) xx :=a :=x;

means the same as xx := (a := x), in which the value referred to by x is first
assigned to a, and the name a is then assigned to xx (but the resultant value of
xx is no way dependent upon x, so that one might just as well have written
a := x;xx := a;).

(E27) xx := nil

means that the value referred to by xx is a name which does not refer to
anything.

Vertical readers, please turn to 6.2 ...

Ch.S.4 UNITS

5.4. Units and structures

5.4.0. Coercion - complex widening

The widening of ints into reals was introduced in 5.1.0.4. In a similar
fashion, it is possible to widen a real into a compl, provided the context is
strong. Thus:

(E1) z:=x

x is first dereferenced into a real and then widened.

(E2) z := 2

209

Here the int 2 is first widened into a real, and then widened again into compl.
Even an implementation (of a sUblanguage) which does not include the

compl operators in its standard-prelude ought to implement this particular
widening (Le. of a struct (real re, im)), in order that a user may then declare
these operators himself, and use them in the normal fashion.

5.4.1. Primaries - applied identifiers

Clearly, once a struct (or a ref struct, etc.) has been ascribed to an
identifier, then that identifier can stand as a unit, and the value yielded is the
whole of some structure (however complicated) of the appropriate mode (or
the name of such a structure). For example, in:

(E3) vi := v2

v2, which is of mode ref struct (real xcoord, ycoord, zcoord) (see Appendix
2) is dereferenced to yield a value (consisting of three real quantities) which is
of mode struct (real xcoord, ycoord, zcoord). Such identifiers can occur in
assignations (as above), or in formulas, as in:

(E4) vi := v2 + v3

or in selections, as will now be discussed.

5.4.2. Secondaries - selections

A 'selection' is a form of secondary which can be used to obtain an
individual field out of a structure, thus:

(ES) xcoord of vi," re of z

Here, xcoord and re are field-selectors (see 2.4.1) and v i and z are identifiers.

210 UNITS Ch.S.4.2

More specifically, any weak secondary can be selected from, and this hal!
various consequences as follows:

a) Because it is weak, the secondary can be dereferenced, but a special
provision attaches to weak dereferencing. If we have a name ref~rring to a
structure, we have the right to expect, from our selection, a name referring to
the selected field, and so the dereferencing of the secondary must yield the
name of the structure, never the structure itself. Therefore, in weak
dereferencing, succeeding refs may be removed from the mode of the
secondary until one remains, but this last one cannot go.

A special rule now provides that where the secondary thus yields the name
of a structure, the selection as a whole yields the subname (1.1.4.2) referring
to the selected field (but if the secondary (being of a non-ref mode) yields the
structure itself, then the selection yields the field itself). For example in:

(E6) xcoord of vI

vI is of mode ref struct (real xcoord; ycoord, zcoord) and hence the example
as a whole yields a name of mode ref real. This selection as a whole may now
be dereferenced ifits context is strong, firm or meek, as happens in:

(E7) x := y + xcoord of vI

However, if we declare:

(E8) vec wI = (1,2,3);

in which wI is of mode vec, then:

(E9) xcoord of wI

is of mode real. Thus both vI and xcoord of vI are acceptable on the LHS of
an assignation, but wI and xcoord of wI are not.

For another viewpoint over this whole matter, you are invited to re-read
1.4.3.

b) Becauseit is a secondary from which the selection is made, and because
a seleciion is a secondary, it follows that selections can be selected from. If we
declare:

(EtO) mode tens = struct (vec xlevel, ylevel, zlevel); tens uI;

then we may call upon:

(Ell) xcoord of ylevel of ul

and the result is of mode ref real. Moreover, if we declare:

Ch.S.4.3 UNITS 211

(E12) mode man = struct (int age, ref man father); man jones;

then we may call upon:

(E13) age of father of father of father of father of father of jones

and the result is of mode ref into Each time we s~lect a father in this example,
we obtain a ref ref man which, since it occurs in a weak position, can be
dereferenced as far as ref man which is just what we need in order to be able
to select another ref ref man from it.

5.4.3. Tertiaries - formulas with complex operators

It will be recalled (2.4.4) that compl is really a structure of mode struct
(real re, im). Six special operators are provided for use with compls. They are
re, im, abs, arg, conj and i. The first four operate on compl and yield real. For
example:

(E14)

(E1S)

(E16)

re z means the same as real (re of z)

re (w + z) means the same as re of (w + z)

abs z means the same as sqrt (re zt2 + im zt2)

Contrariwise:

(E17) re w :=x

is not permitted, although:

(E18) re ofw :=x

is.

(E19) conj z means the same as re z i - im z

i is a dyadic-operator which produces a compl out of two reals or ints.
Thus:

(E20) z := x iy means the same as z := (x, y)

However:

z :=w+(x,y)

is not legitimate because the context of (x, y) is not strong.

(E21) z :=w+xiy

212 UNITS Ch.S.S

is all right because i is of higher priority than "+".
N.B. Those still unhappy with the interpretation of -xt2 should pay some
attention to rezt2, in E16 above.

Vertical readers, please tum to 7.4.

5.5. Units and multiples

5.5.0. Coercion - rowing

The restriction that a row-display (3.5.1) should contain either zero or at
least two units is necessary in order to avoid ambiguity. However, a multiple
value is perfectly entitled to contain only one element, and in order to be
able to assign values to such multiples a coercion known as "rowing" is
provided. This may be used in any strong context. Thus, given:

(El) flex [1 : 2] real wi;

then

(E2) wi := 2.4;

causes a multiple (with bounds [1 : 1]) of one element (Le. 2.4) to be
assigned to w 1. Also :

(E3) w1 := (1, 2, 3);
flex [1 : 2, 1 : 4] real w2 := w1;

gives w2 the bounds [1 : 1, 1 : 3].
likewise:

(E4) flex[1 : 2] [1 : 3] real w3 := w1;
gives w3 the bounds [1 : 1] [1 : 3].

Thus, rowing consists of adding one 'row' or one 'row of to the mode of a
value, at the same time providing bounds [1: 1] (several 'row's or 'row ofs
may be added by repeated rowing). See also 5.5.1.3. E20 for how to produce
names by rowing

5.5.1. Primaries

5.5.1.1. String denotations

A string is of course of mode [] char, and therefore a literal string could

Ch.S.S.1.2 UNITS 213

be provided by means of a row-display:

(E5) s := ("T", "H", "E", '~", "Q", "U;', "1", "C", "K")

However, a more compact denotation is provided:

(E6) s := "THE.:.QUICK-'..BROWp[FOXJUMPS.PVER]HE,..LAZypOG"

The value of the RHS here is a multiple value of mode string, and with
bounds [1:43]. Note the denotation "~' for the space character. You can, if
you like, use a space as the space-character:

(E6*) s := "BUT IF YOU HA VE AVER Y LONG STRING­
DENOTATION WHICH CONTINUES ON TO THE NEXT
LINE, HOW CAN YOU TELL HOW MANY SPACES
THERE WERE AT THE LINE BREAK?"

Presumably as many as you actually punched when you punched the program
in the first place. Note that this is an exception to the general rule (1.3.2)
that blank spaces have no meaning in this language.

If the quote-sumbol itself is required to appear in the string, it must be
represented by two quote-symbols (Le. ""), thus:

(E7) s := "He said" "she said" "he is a liar"" "" "

An empty string can also be assigned:

(E8) "" s :=

There is no denotation for a string of one character only. However, in strong
positions the same result can be obtained by taking a character·denotation
(5.1.1.1) and rowing (5.5.0) it:

(E9) s := "A" ..
'II'" " s :=

Note that a comment may not appear inside a string- (or character-)
denotation, and thus the comment symbol (~) may safely appear, and stand
for itself [R 8.1.4.1] .

5.5.1.2. Applied identifiers

Clearly, once a multiple (or a ref to a multiple, etc.) has been ascribed to
an identifier, then that identifier can stand as a unit, and the value yielded is
the whole of some multiple value of the appropriate mode (or the name of
such a value). Note that the value so yielded includes a descriptor. For

214 UNITS Ch.S.S.l.3

example:

(EIO) xl := yl

(in whichyl has to be dereferenced before a multiple value is obtained).

5.5.1.3. Shces

Slices are used in order to dissect multiple values. They consist of a weak
primary, which yields a multiple value, followed by an 'indexer' con taining a
series of 'trimscripts' which specify which parts of that multiple value are
required. Trimscripts may be either 'subscripts' or 'trimmers'.

Let us declare:

(Ell) [" J realx3 =(c some mUltiple with bounds [0:1-1, O:m-I, O:n-JJ c);

which is of mode [, ,J real. It can be represented thus:

,..

C

IL

~M
H I

I
s

0
n ~

ABCDEFGH represents the whole value, x3. From this, we may select the
plane PQRS by writing:

(E12) x3[i,,]

which yields a value of mode [,] real. This could now be assigned to any
doubly subscripted variable which it happened to fit. Here, i is a subscript.
Further sUbscripts can be used to yield the row 1M (of mode [] real) and the
element W (of mode real):

Ch:5.5.1.3 UN:ITS 215

(EI3) x3 [i,jl,]; x3[i,jl,kl]

To obtain the column TN (of mode [] real) we write:

(EI4) x3 [i" kl]

Trimmers are used to obtain a part (a "subvalue") ofa row, column, etc.
The required lower- and upper-bounds (both inclusive) are given, separated by
a colon. Additionally, the 'revised-lower-bound' from which the yielded
bounds are to run is also specified following an @.! (effectively, the sub value
between the specified lower- and upper-bounds is extracted, and its bounds
are then "slid down" until the revised-lower-bound is reached). If no
revised-lower-bound is specified, @ 1 is assumed. The following examples
should make this clear:

(ElS)

slice

x3Ii,jl:j2@jl ,]
x31i, jl :j2 ,]
x31i, :jl ,]
x31i, : ,I
x3li,j2: @j2 ,]
x31i, ,kl :k2]

value yielded

JKLM
JKLM
PJMS
PQRS
KQRL
NTUV

x3li,jl :j2@jl,kl:k2@kl]
x31i,jl, kl:k2]

WXYZ
WZ

x31i,il :j2, kl]
x3li,jJ, kl]
x31, .1
x31:,:, :]
x3

WX
W

ABCDEFGH
ABCDEFGH
ABCDEFGH

(The last line is not strictly a slice at all).

mode yielded bounds yielded

1,Ireal [jl:j2,O:n-11
I,] real Il:j2-jl+l,O:n-11
1,lreal Il:jl+l,O:n-l I
[,Ireal Il:m,O:n-l]
I, I real [j2:m-l,O:n-l]
[.] real [O:m-I, 1:k2-·kl+l]
I,] real [jl :j2, kl :k21
[] real [l:k2-kl+J]
[1 real' II:j2-jl+J]
real
1 .. 1 real
I ..] real
I ..] real

WI-I, O:m-l. O:n-l]
IJ:l,I:m,l:n]
10:/-1, O:m-I, O:n-I]

Note that, if a bound is omitted from a trimmer, the bound currently
existing in that multiple is implied. Moreover, if both bounds are omitted,
both existing bounds are taken (but @ 1 is still implied). Alternatively, when
both bounds are absent, the colon may be omitted as well, but now the
existing lower-bound is assumed (Le. there is no sliding). This accounts for
the difference between x3 [, ,] and x3 [: , : , :] iil E 15. The first is the same
as x3 (no trimmers, existing bounds). The second is an abbreviation for
x3[O:I-I, O:m-l, O:n-l] (full set of trimmers, with @l implied for each).

Subscripts, and bounds occurring in trimmers, are meek int units, and
therefore expressions of considerable complexity can be used, including any
coercion that is able to yield into The use of an assignation will be quite
common:

216 UNITS Ch.S.S.1.3

(EI6) x3[j : = i, ,]

A slice consists of a weak primary, followed by an indexer. The weak
primary leads to the following consequences:

a) Because it is weak, it can be dereferenced, but only until one ref is left
(see 5.4.2 for the corresponding phenomenon in connection with selections).
Thus dereferencing can never yield the multiple value itself.

A special rule now provides that where the primary thus yields the name
of a multiple value, the slice yields the sub name which refyrs to the element
or subvalue that has been sliced (but if the primary already yields a multiple
value - as x3 in the examples above - then the slice yields the element or
subvalue itself). The similarity between this and the -corresponding provisions
for selections (5.4.2) should be noted.

However, names referring to multiple values may be either fixed or flexible
(2.5.2.1) so that there are two cases to consider. For example, in:

(EI7) xl [i]

xl is a fixed name of mode ref [] real, and hence the example as a whole
yields a name of mode ref real, which may itself now be dereferenced if its
context is strong, firm or meek, as happens in:

(EI8) x := y +x1 [i]

whereas in:

(EI9) xx :=x1 [i]

we have obtained, in xx, a pointer to a real value, which just happens to be a
. particular element of a [] real.

(The converse operation, in which a pointer intended for a multiple value
can instead point to a single value is also possible:

(E20) ref [] real xx1 := x;

This involves rowing (5.5.0), and the bounds, when the real value referred to
is accessed via xx1, are [1 : 1]).

A pointer to a subvalue can also be obtained:

(E21) ref [] real xx1 := x2 [2 : 4, i];

in which xx1 is made to point to part of the ith column of x2.
If, however, the pri~ary yields a flyxible name, as in:

(E22) a1 [i]

where a1 is of mode ref flex [] real, we have to be careful. We indeed get a

Ch.S.S.1.3 UNITS 21'7

name, and its mode is ref real as in E 17, but it is said to be a "transient
name" [R 2.1.3 .6.c] because it is ·only meaningful so long as the flexible a1
stays the same size. If the whole of a1 is subsequently assigned to, it may
grow or contract and, in the process, be re-incarnated at a different address in
the store. What happens now if a subnamereferring to an element or
subvalue in the old store address has· been preserved somewhere?

Clearly, transient names are undesirable things to harig on to, and it is
therefore forbidden for them to be either assigned, or ascribed, or passed to
or returned by a routine. They may be dereferenced, or stand on the LHS of
assignations, so that we may have

(E23) x := y + a1 [i]; a1 [2 : 5] := (a, b, x, y);

but not

(***) xx := a1 [i] ~ cf. E19 ~

Care must therefore be taken, when using the flex feature (and especially the
mode string), to avoid these situations. Indeed, these unfortunate, but
necessary, restrictions are a significant limitation on the usefulness of
flexibility.

(Transient names can also arise in rowing, with the same restriction. Thus
we may have

(E24) [1: 1, 1 : 4] real b2;
(p I b2 I a1) := [] real (a, b, x, y) ~ a1 is rowed to ref [,] real¢

but not

(***) ref [,] real xx2 := a1; & cf. E20 ~

nor even

(***) ref flex [,] realxx2 :=a1;

Note how E24 illustrates the balancing of a fixed name (b2) against a
transient name (the rowing of a1) to give a transient name.)

b) Because it is a primary, it follows tha.t any suitable ENCLOSED-clause
can be used, thus:

(E2S) ifi<j thenx1 elsey1 fi [2: n-ll

Even a string denotation cap be trimscripted:

(E26) "abed" [2]

yields" b" . However, a row-display cannot be used because its context must
I.l.A.-8

--------------- .--.--------...

218 UNITS Ch.S.S.2

be strong, not weak (3.5.1). However, it can always be cast:

(E27) [Jint (j, k, I, m) [i]

Of course, slices can always be sliced again:

(E28) w3 [i] [j] C see 5.5.0 .E4 &

c) Because a selection is a secondary, parentheses may be needed when
slices and selections are to be combined:

(E29) p of q [i]

is only meaningful if q is of some mode such as [] struct (am ode p, ...), in
which case the ith structure is to be sliced from the multiple, and then the
field p is to be selected from it.

(E30) (p of q) [i]

is only meaningful if q is of some mode such as struct([] amode p, ...), in
which case the field p (which is a multiple) is to be selected from the
structure q, and the ith element is to be sliced from it. See 104. E13 for a
similar case concerning a selection which yields a procedure.

5.5.2. Secondaries - multiple selections

Suppose we have a row of structured values (e.g. complex numbers). We
may select a row of fields:

(E31) xl :=reofz1;
ref [] real xx1 := im of zl

Observe that (re of zl) [i] and re of (zl [i]) th.erefore both select the same
real value, but by completely different mechanisms!

Again, the possibility of transient names arises, so preventing

(***) flex [1 : n] compte1;
ref [] real xx1 := reof c1

5.5.3. Tertiaries - bound interrogations

It is useful to be able to discover the actual value of the bounds of a
multiple which is on hand, particularly so when it is a formal-parameter of a
routine, and the bounds of the actual-paramter are needed inside the routine.
Two special operators are provided for this purpose:

Ch.S.S.4 UNITS 219

(E32) n Iwb x3;
n upbx3

These two formulas yield, respectively, the lower- and upper-bounds of the
nth boundpair (see 1.5.1) of the multiple x3. (For example, with x3 declared
as in Ell, 3 upb x3 would yield the value n - 1).

For getting at the first (or only) boundpair, monadic versions oflwb and
upb are provided. Thus:

(E33) upb xl

means the same as

(E34) 1 upb xl

All these operators are introduced formally in 6.5.

5.5.4. Quaternaries - assignations

There are three questions to be answered:
1) What happens when the LHS yields a flexible name (2.5.2.1)?
2) What happens when the LHS is a slice?
(Note that these two questions can never arise together, because a slice

cannot yield a flexible name).
3) What happens when the LHS and the RHS involve the same multiple

value?

5.5.4.1. Flexible assignations

In the first place, it must be stated that the bounds on the two sides of an
assignation must match exactly. Thus:

(***) [1 : 3] real xa, [2:4] real xb ; xa := xb

can never be legitimate under any circumstances.
However, if the LHS yields a flexible name (and this can only occur when

the whole of some multiple is being assigned to), then the bounds from the
RHS are copied across. This means that a flexible ,multiple may well change
its size when the whole of it is assigned to. Given the declaration:

(E35)

. (E36)

flex [1 : 0] real el, [O:n-1) real d1;

el :=d1

220 UNITS Ch.S.S.4.3

causes cl to acquire the bounds [O:n-I] , whereas:

(E37) cl := dl [2:n-2]

causes cl to acquire the bounds [1 :n-3] .

5.5.4.2 Assignation to slices

When the LHS of an assignation is a slice, then of course only the sliced
part of the multiple referred to is assigned to. First, however, the bounds of
the slice are elaborated, and slid down according to any @s that may be
present. These bounds are then compared with those on the RHS to see
whether the assignation is legitimate. If it is, the value of the RHS is assigned
to the slice on the left (but as selected by the un-slid bounds, of course).
Thus, given the declarations:.

(E38) [1 :3] real xa, [2:4] real xb, [J: 2] real xc, [2:3] real xd;

the following statements are all legitimate :

(E39) xa [2:3] := xc;
xa [2:3 @ 2] := xd;
xa [2:3] :=xd[@I];
xa [@1] :=xb [@I]
xa [:] := xb [:]

In these examples the bounds used for comparison purposes are
[1:2] ,[2:3], [1:2], [1:3] and [1:3] respectively, but in all of the first
three cases it is [2:3] ofxa that get altered. The fourth and fifth cases show
how the presumably intended effect of xa := xb (which is not legitimate) can
be achieved.

5.5.4.3. Overlapping slices .

Suppose we wish to effect a cyclic permutation of the elements of xl.
Then we may write

(E40) yI[2:n] :=xI[I :n-I];
yl [1] := xl [n] ;
xl := yl

However, we might consider the effect of:

Ch.S.S.4.3

(E41)

UNITS

x:=xI[n];
xI[2: nJ :=xI[J: n-I];
xl [1] :=x

Consider the second line of this:

xl[2 : n] := xl [1 : n-I];

in which the slice being assigned from overlaps the slice being assigned to.
Does this work, or is it equivalent to:

forifrom2tondoxI[i] := xl [i-I] od;

221

(which has rather a disastrous effect)? Fortunately, the overlapping slices of
E41 do wo~k correctly, and it is up to the implementation to ensure that it
starts the copying operation at the correct end.

Vertical readers, please turn to 6.5.

222 UNITS Ch.S.6

5.6. Units and unions

(El) union (int, real) ira, irb;

ira and irb may refer to values of mode either int or real. However, this raises
no problem when one is assigned to the other:

(E2) ira := irb;

since ira now refers to whichever mode irb referred to before. The modes on
the two sides of E2 are both ref union (int, real), and the RHS is
dereferenced as usual.

The problems do not begin to arise until we want to set the mode of irb in
the first place (by assigning an int to it, for example) or until we want to get
an int out ofit again (always assuming that it happens to refer to an int at the
time in question). The first of these problems is dealt with by a new coercion
known' as "uniting". The solution to the second has already been given in 3.6
(conformity-clauses).

5.6.0. Coercion - uniting

It should be emphasised that there are no built-in-operators for operating
on unions so ira + ;rb is not a valid formula unless you have suitably dermed
"+" for yourself. This is reasonable because your compiler could not tell
whether you were trying to add a real to an int or an int to an int or
whatever. Therefore, all arithmetic must be done on ununited operands. Once
you have a value of some definite mode, however, (and if your context is at
least firm) then you may unite it to yield any union containing that mode
which may be demanded by the context:

(E3) ira := i+2;

Here, i+2 is of mode into The mode required is union (int, real) and the
context is strong (being the RHS of an assignation). Therefore i+2 is united to
be of mode union (int, real) and as such it can now be assigned to ira. Because
the uniting was from an int, ira now refers to an int value. You might be
tempted to think that this example is ambiguous,because the i+2 might also
be widened to real and then united. However, if you try to follow through
this possibility on the coercion chart given in 5.1.0.2, then you will find that
it has been carefully excluded - the only coercions that may precede uniting
are the meek ones.

(E4) union (bool, int, real) bira;
bira := ira

Ch.S.6.1 UNITS

Here, ira is united from union (int, real) into union (bool, int, real). This is
quite in order because all the constituent modes of the former are also
constituents of the latter.

5.6.1 Primaries - the void denotation

One of the few places where void values are actually useful is in unions
such as

(E5) union (real, int, void) riv;

Here, riv may refer to a real value, an int value, or to no value at all (i.e. a
void value). We can bring about the last state of affairs using the void
denotation empty:

(E6) riv := empty;

and of course we can test for this case in a conformity-clause:

(E7) case riv in (real x): print(x) ,
(int i): print(i) ,
(void): print(" neither")

esac

5.6.4. Quaternaries - assignations of unions of rows

Multiple values inside unions are always declared with formal bounds
(2.5.2.3) [R 4.6.1.u] :

(E8) union ([] int, [] real, bool) irla;

223

The effect is much as if the bounds had been preceded by flex, insofar as a
multiple value of any size (and suitable mode) may be assigned thereto:

(E9) irla:= yl;
irla:= il [17:23];
irla:= il

In all these examples, the RHS is ani ted before being assigned. The whole of
the multiple value on the RHS (bounds and all) is copied across regardless.
[R 5.2.1.2.b]. There is no question of checking the existing bounds of the
LHS (for ifir 1 a had previously referred to a bool, there would have been none).

A union containing multiples cannot be sliced (5.5.1.3), so there is no
question of·assigning to only a part of it. To get at a part of its existing value,
we use a conformity-clause (3.6):

224 UNITS Ch.S.6.4

(EI0) il[I7:23] :=(irlal([] intijl):ijl)[17:23]

Note that if ir 1 a did not refer to a [] int at this time, the result of El 0 would
be undefined.

It is, however, possible to discover the bounds of the multiple within a
union without all this bother, provided the union consists of multiples and
nothing else [R 10.2.3.1.a]. Thus irla as declared in E8 would not do, but
if we declare:

(Ell) union ([] int, [,] real)ir 1 b;

then we can say:

(E12) i := Iwb irlb; ~ yields the lower-bound of the first or only
boundpair ~

p := 2 upb irl b ~ yields the second upper-bound, so that it is
undefined unless irlb is currently exercising
its [,] real option ~

Vertical readers, please tum to 7.6.

Ch.5.7

5.7. Bits and pieces of garbage

5.7.0. Coercion

5.7.0.1. Voiding

UNITS 225

We have one coercion left to consider, although we hav~ in fact been using
it informally all along. Formally, it is necessary in order to satisfy the general
syntactic rule that the mode of each external object must, a posteriori, be
that required by its context.

The bulk of any ALGOL 68 program will consist of statements forming
the bodies of serial-clauses (3.1.2). Statemen ts are, of course, void-units,-but
in practice most of them will be assignations which yield a value (the name
yielded by the LHS). This value is thrown away by "voiding" [R 6.7] :

(EI) begin x := 1: y := 2 : z := 3 end

The first two assignations in this will certainly be voided. Whether the third
one is or not depends upon whether the context in which the whole closed­
clause occurs expects void.

Voiding can occur in strong contexts (but all contexts where void is
required are strong anyway) and may in most c~ses be preceded by
deproceduring (see coercion chart in 5.l.0.2):

(E2) ; x or y; ~ see Appendix 2. x or y is deprocedured and the
next random number is taken but (the context re­
quiring void) its real result is then thrown away by
voiding ~

However, an assignation (or a cast) must never be deprocedured and then
voided, for otherwise in:

(E3) proc void ppp; ppp ;= finish;

we should have to assign finish to ppp 'and then, by deproceduring the whole
assignation, call the routine now referred to by ppp (i.e. finish). The
assignation is therefore voided straight away ..

It is useful to note that the context immediately preceding a ";" is always
void (and strong).

5.7.0.2. bits and bytes widening

In strong contexts, bits values can be widened to [] bool and bytes values
to string. The bounds of the [] bool will always be [1 : bits width] (see

-------------_ .. __ ._----

226 UNITS ,.'h,S.7.1

6.2.1) and the string will always contain exactly bytes ~idth chars.
Here is an example in which a slice is trimmed out of a bits value. Note the

use of a cpst to give strength to what would otherwise have been a weak
. context (5.5.1.3):

(E4) bits t:= 2rl0111 00; ~ for bits denotations see next section ~
[1 : 3] bool bl := [] bool (t) [bits width-4: bits width-2];

~ yields (true, true, true) ~

Similarly, longs and shorts bits and bytes can be widened, the upper-bound
of the resultant value being given by environment enquiries such as short bits
width, long long bytes width, etc.

5.7.1. Primaries

5.7.1.1. bits denotations

A special form of denotation [R 8.2} is provided for values of mode bits:

(E5) bits bits := 2rl011 01 011 001;

which means that the value assigned to bits is the row-display:

(false ... false, true, false, true, true, false, true, false,
true, true, false, false, true)

Note that the correct number of falses is automatically inserted at the left
hand end. The 2r means that the bits denotation is in binary. Radices 4,8 and
16 are also possible:

(E6) 4r231121
8r5531

16rb59

These all yield the same value as that in E5. Note the use of the letters a - f
to denote the "digits" 10 -15.

Thus if you like quoting your ints in octal, you can always write:

(E7) i := abs 8r12 It meaning i := 10 It

(For the operator abs, see 6.1.1).

5.7.1.2. long and short denotations

There is no coercion provided in the language for converting a real into a

Ch.S.7.2 UNITS 227

long real or a long long reaL Therefore the a priori mode of any object must
already contain the right number of longs. In the case of denotations (int,
real and bits) this is achieved as follows [R 8.1.0.1]:

(E8) long int iiiint := long 122333444455555; short int it := short i2;
long long reaI'reaeal := iongJong 3.14159265358979323846;
long long long ~its biiiits := long long long

2r1011001011010111000101100101100101101101011 ;

There are no long forms of pool, char, or- string denotations.

5.7.2. Secondaries - generators

'Generators' [R 5.2.3] are used to make available to the user regions of
store where values may be put. They yield 'the names of those regions. A
generator consists of an actual-declarer (2.1.2 and 2.5.2.2), preceded by loc
or heap.

5.7.2.1. loc generators

In the case of loc generators, the scope (3.2.2) of the name thus created is
the lifetime of the "local range" in which the g~nerator appears. The "local
range" is the smallest enclosing range (3.2.1) containing the generator which
is either

a) a routine-text, or
b) a serial-clause with at least one declaration (3.1.1), except that

priority-declarations (4.3.1) do not count, or ..
c) an enquiry-clause together with the remainder of its choice-clause

(3.2.4.2,3.2.4.3,3.6) or loop-clause (3.5.2), if that enquiry-clause
contains at least one declaration (priority-declarations again excepted).

(E9) begin
[1:n] ref realxx 1;
for ito n

do xx 1 [i.] := case sign il [i] +2 in xl [i],
nil >

loc real := 0 esac
od;

comment At ~his point, each element of the multiple value
xx 1 has be.en set up referring to either an element of x 1 (if the
corresponding element of il was negative), or to no value at

........... _-_.-.-... -._._._----- _ .. -.-_.-

228 UNITS Ch.S.7.2.1

all (if zero), or to some value specially created for the purpose
by the generator loc real, and initially set to zero. The number
of these special values is determined at run time, according to
the values of the elements of ii. The only way to gain access
to them, at the moment, is via the elements of xx 1. Because a
loc generator was used, they will all disappear when we leave
this range. comment
skip
end
d At this point,xx1 has disappeared, and so have any locally

generated values to which it referred if

In this example, the generator loc real, each time it was encountered, would
reserve storage for one real value (presumably on the same stack as xx1 and i)
and yield the name referring to that value. 0 would then be assigned to that
name, and the name itself would be assigned to xx1 [iJ.

Although the generator loc real in this example is contained within the
range lying between the case and the esac,

which is in turn contained within the range lying between the do and
the od,

which is in turn contained within the range lying between the for and
the od (but excluding the to n, see 3.5.2),

which is in turn contained within the range lying between the begin
and the end,

only the last range of the four is the local range in question, since the others
do not declare anything, neither are they routine-texts.

loc generators are sometimes useful for creating triangular and other
oddly-shaped multiples:

(EI0) begin
flex [1 : 0] ref flex [] real triangle;
mode array = flex [1 : 0] real; ¢ to save ink ct
triangle := (Ioc array := 1,

loc array :=/1,2),
loc array := (1,2,3),
loc array := (1,2,3,4));

for i to 4 do print (triangle [i) [i)) a prints the diagonal a
end

Outside the range of EI0, both triangle and the arrays to which it referred
will have vanished.

Ch.5.7.2.2 UNITS 229

The slice triangle [i] [i] is worthy of further examination. triangle itself is
of mode ref flex [] ref flex [] real. triangle [i] is a slice of mode ref ref flex
[] real (for the reasons explained in 5.5.1.3). It yields the name of the name
of the ith row of triangle (it is impossible to get hold of the columns). In
order to be able to take a further slice out of triangle [i], we must
demonstrate that it is a weak primary of mode ref flex [] real. Now a slice is
a primary (5.1.0.1) and a weak primary of mode ref .flex [] . real can be
obtained by dereferencing a slice of mode ref ref flex [] real, such as
triangle [i] ,and there we are. We can make the further slice triangle [i] [i],
and the mode it yields is ref real. In EIO this was then dereferenced once more
so that a real value could be printed.

Now, we shall remind you for the last time that:

(Ell) real x ;

means exactly the same (2.2.2) as:

(El2) ref real x = loc real;

x is here declared to be of mode ref real and the name of the piece of store
made available by the generator loc real has been ascribed to it. Since it is a
loc generator, the piece of store will cease to be available outside the range in
which Ell or El2 appeared. Also, outside this range, the identifier x cannot
occur (or if it does, it identifies something completely different). Thus x and
the name which it yields rise and fall together.

5.7.2.2. heap generators

In the case of heap generators, the scope (3.2.2) of the name that is
created is not restricted to the lifetime orany range:

(EI3) begin
real w;
w := 10.5;
xx := heap real := w d creates an extra instance of 10.5

on the heap d .

end;
comment now we are outside the reach of wand of the

first instance of 10.5 to which it referred. However, the
second instance of 10.5 is still intact, and is accessible
via the variable xx comment

prInt (xx); ¢ prints 10.5 (after de referencing xx twice) ¢

230 UNITS Ch.5.7.2.2

xx :=x ~ the instance of 10.5 on the heap is now quite
inaccessible, because no-one now refers to it ~

In this example, when the heap generator heap real was encountered, storage
for one real value was reserved (but not on the main stack such as was used
by w - thus a different region of store, usually termed the "heap", is
involved). The generator yielded the name referring to this piece of storage,
the value 10.5 was assigned to it, and it was assigned to xx (which is of mode
ref ref real - see Appendix 2). Both xx and this value remained fully available
outside the range in which heap real occurred, and were used in the print.
However, after this, xx was used for something else and the 10.5 .was just left
sitting there.

Thus it is very easy to waste large amounts of the heap:

(E14) to 10000 do heap real od

this will reserve 10,000 words on the heap, and there will be no way of
accessing any of them - they will in fact be "garbage". Therefore it will be
necessary for your implementation to include in your run-time program a
"garbage collection routine" which will be called in whenever the size of the
he<tp has become embarrassingly large. How this works in detail is your
implementor's worry, but it will go something like this:

1) Consider all the values (on the stack) which are names that have been
ascribed or assigned to identifiers (i.e. all identifiers declared with
mode ref ref amode and some with ref amode within the current
range, or its surrounding ranges).

2) If any such name refers to a value on the heap; mark that area of
the heap as useful (this could be done by a vast array of bits, one
for each word on the heap). Since the mode of the name is always
known, the size of the value can easily be determined.

3) If the value referred to by any such name contains further names
within itself (again, this will be apparent from the known mode of
the given name), then consider these names also.

4) Go through the array of bits searching for areas of the heap that
have not been marked as useful. These areas can now be made avail­
able for further use.

This process will be recognised as being similar to that employed in
list-processing languages such as LISP, and it is for applications in which
list-processing would otherwise have had to be used that heap generators are
primarily intended.

Ch.S.7.2.2 UNITS 231

You can, if you like, do fairly conventional list-processing in this language:

(EIS) mode atom = union (char, int);
mode cons = struct (union (atom, ref cons) car, ref cons cdr);
proc list = ([] union (atom, ref cons) item) ref cons:

begin
ref cons a := nil;
for i from upb item by -1 to 1

a
end;

do a := heap cons := (item [i], a) od;

ref cons expression := list (("X", "+", list(("y", "x", 2))));

However, if you intend to create many lists with the same layout, it is better
to declare them as structs, and generate them as such:

(E16) mode operand = union (char, int; ref expression);
mode expression =

struct (operand left, char operator, operand right);
ref expression expression := heap expression :=

("X", "+", heap expression :=("Y", "x", 2));

This version is more convenient to write, will use less storage space, and will
have its garbage collected more speedily (since a complete expression can be
removed at one go).

As was mentioned in 2.7.3, the declaration:

(EI7) heap real x;

means exactly the same as:

(EI8) ref real x = heap real;

x is here declared to be of mode ref real and to yield the name of the piece of
-store made available by the generator heap real. This piece of store will still
be available outside the range in which E17 or E18 appeared, even though the
identifier x cannot occur there (or if it does, it identifies something
completely different). It could be accessed in the following circumstances,
which should be compared with E13: .

------------------~-------------- ---._------------------------------

232

(EI9) begin
heap real w;
w := 10.5;
xx :=w
end;

UNITS

print(xx); d' prints 10.5 d

Ch.S.7.3

xx := x q the instance of 10.5 on the heap is now garbage d

5.7.3. Tertiaries - order of elaboration of operands

The elaboration of a dyadic-formula involves the elaboration of two
operands (these are either other formulas or secondaries). These two operands
are elaborated collaterally (see 3.7.1). The following dangerous example
illustrates this, and should be compared with 3.7.1. E2:

(E20) begin int i;
proc side = int: (;:=1; i:=2, 0;
prin t (side + side)
end

This will print either 3 or 4, for the reasons given in 3.7.1.
The advantage of this collateral elaboration from the point of view of

implementation is that the order of elaboration can be chosen to be that
which yields the minimum number of compiled instructions. For example:

(E2I) y :=x +a x b

Most compilers will choose to fetch and multiply a and b before getting hold
ofx.

5.7.4. Quaternaries - identity relations

Identity-relations are used todetectwhether two names areidentical:

(E22) ref real anotherx = x; realy;
anotherx :=: x; q always yields true <l'

anotherx ::j:: x; ~ always yields false ~.

anotherx :=: y q always yields false d

This example is quite trivial, because anotherx and x, by virtue of the
identity-declaration, both yield the same name.

Ch.S.7.4

(E23)
(E24)
(E2S)
(E26)

UNITS

xx := yy :=x;
xx :=: x ; d yields true d
x :=: xx; d yields true d
xx :=: yy ¢ yields false ¢

233

In E24 and E2S, xx was dereferenced to yield the name to which it
currently referred (i.e. x). It is permissible to dereference on one side of an
identity-relation, but not on hath, and it is for this reason that E26 did not
work. E26 could never yield true, whatever assignations we might make to xx
and yy. However, by the use of casts we can achieve the result presumably
intended:

(E27) ref real (xx) :=: ref real (yy) d yields true(in the context
of E23) ~

The rules governing the use of an identity-relation are the following:

It has two sides - a strong side and a soft side. One of these can stand as the
LHS, in which case the other must stand as the RHS. The symbol in hetween
is either ":=:" or "::j::" (which may alternatively be written as is or isnt).

For its strong side:
a) It must yield a name (i.e. its mode must be ref amode).
b) It must be a tertiary.
c) Its context is strong (so that de referencing is allowed,

and also nil (5.2.3)).,

For its soft side:
a) It must yield a name, of the same mode as that yielded

by the strong side.
b) It must be a tertiary.
c) Its context is soft (so that deproceduring is the only

possible coercion, and nil is not permitted).

As a whole, an identity-relation yields a bool value -- true if the names match
and the symbol in between is ":=:" or if the names do not match and the
symbol is "::j::".

Here is a delicately balanced example:

(E28) case i in xx, x or y out nil esac

casej inyy, skip, heap ref real:= xesac

First, let us rewrite the example showing the a priori modes of all the items:

234 UNITS Ch.S.7.4

case i in xx, d- ref ref real q
x ory <t proc ref real d-

out nil <t wait and see d-
esac :=:
casej inyy <t re f ref real d-

skip, d- wait and see d-
heap ref real:=x <t ref ref real d-

Which is the soft side, and what is the mode of the name that it yields? Well,
to put you out of your misery, the LHS is the soft one and the mode is ref
real, but to obtain it we have to recall that case-clauses can be balanced
(5.2.0.1) so that, even on the soft side, all but one of the items can be
strongly coerced. Here then is the example again with all made clear:

case i in xx,
x ory

out nil
esac :==:
casej inyy,

skip,
heap ref real :=x

d- strongly dereferenced d­
<t softly deprocedured d­
d- a strong context d-

d- strongly derefert>nced d
<t a strong context d-
d- strongly dereferenced d

For an application of identity-relations, let us return to our list processing
in E15. Let us assume all the declarations of E I 5 to have been made, and now
continue thus:

(E29) op eql = (union (atom, ref cons) a, b) bool:
case a
in (char c): (b I(char d): c=d, (jnt): false I b eql c) ,

(int i): (b l(int j): i=j, (char): false I b eql iJ,
(ref cons rc) : car of rc eql b

esac;
comment this recursively defined (and probably not very

. efficient) operator compares two cars (or cdrs)
of conss and yields true if they are, or refer to
via a chain of cars, identical atoms comment

ref cons a :=list(("A", "X"));
ref cons b := list(("B", "X"));
cdr of cons (a) eql cdr of cons (b);

d- yields true because both sides refer to the value "x" d­
cdr of cons (a) :=: cdr of cons (b)

d- yields false because both sides refer to different
instances of the value "x" <t

Ch.5.7.4 UNITS 235

The distinction here illustrates how, in list processing, it is often important to
distinguish between a pointer to a list which is merely a copy of a given one,
and a pointer which points to the given list itself. The identity-relation should
be used to make this test.

Vertical readers, please tum to 6.7.

6. STANDARD PRELUDE

6.1. Operators

Each particular-program written by a user is presumed to be included
within an "outer range", at the head of which is the standard-prelude (1.1) in
which various standard declarations are made. These include:

Standard constants (see 6.2 and 6.7)
Standard procedures (see 6.2 and 6.7)
Standard operators (see this section, and 6.3, 6.5 and 6.7)
Additional constants and procedures required for transput (see 7).

Likewise, at the tail of the outer range, is a label stop:, to which you may
jump in order to terminate the elaboration of your program, and which is
followed by the standard-postlude (see 1.1 and Appendix 3).

We now set out, in tabular form, details of all the common operators (for
the manner in which they are used in formulas see 5.1.3). The tables include,
for completeness, all of the meanings which each operator can have, even
though you may not yet be familiar with all of the modes involved. The
meaning of each operator is given in the last column for those operators
whose meaning is not obvious. If nothing appears in this column, it means
that the generally accepted meaning applies, or that a similar operator has
already been explained higher up the column.

There are sometimes several operators which perform the same function,
in which case they are all given in the first column. Not all implementations
will proVide all the versions, however.

6.1.1. Monadic operators

oper- prior- mode mode meaning
ator ity of a of result

I • 10 bool bool
bits bits

not

+ 10 int int
real real
compl compl

10 int int
real real
compl com pi

236

Ch.6.1.2 STANDARD PRELUDE 237

oper- prior- mode mode meaning
ator ity ofa of result

bin 10 int bits the binary digits represent-
ing the positive integer a

re 10 campi real the real part

im 10 compl real the imaginary part

conj 10 campi campi reai-ima

abs 10 bool int I for true and 0 for false
int int
real real
campi real sqrt(reat 2 + imat 2)
bits int the opposite of bin
char int a unique integer for each

permissible value of char

arg 10 campi real the argument of a,
-rc<arga.;;;rc

odd 10 int bool true if odd, false if even

sign 10 int int } yields -1,0, or + 1
real int

round 10 real int the neares t in teger

entier 10 real int the integer eq ual to a, or
L the next integer below

(more negative than) a

repr 10 int char the opposite of abs of a
char

6.1.2. Dyadic operators

oper- prior- mode mode mode meaning
ator ity of a ofb of result

i 9 real real campi a plus i times b
1 int int campi
+x int real campi
+* real int campi

238 STANDARD PRELUDE Ch. 6. 1.2

oper- prior- mode mode mode meaning
ator ity of a ofb of result

t 8 int int int ab where b ;;.0

** real int real ab
up compl int compl ab

t bits int bits a shifted left b places (or
shl right for b negative)
up

~ 8 bits int bits a shifted right b places (or
shr left for b negative)
down

7 int int int abs (a -;. b) = entier abs (a/b)
% i.e. truncation towards
over zero

mod 7 int int int 0.;; a mod b < b
-;'x
-;.*

%x
%*

x 7 int int int
* real real real

compl compl compl
real int real
int real real
com pi int compl
compl real compl
int compl compl
real compl compl
string int string a replicated b times
int string string b replicated a times
char int string
int char string

/ 7 int int real
real real real
compl compl compl
real int real.
int real real
compl int compl
compl real compl
int oompl compl
real oompl compl

elem 7 int bits bool the a th bit of b
0 int bytes char the a th char of b

th.6.1.2 STANDARD PRELUDE 239

oper- prior- mode mode mode meaning
ator ity ofa of b of result

+ 6 int int int
real real real
compl compl compl
real int real
int real real
compl int compl
compl real compl
int compl compl
real compl compl
string string

'm~} string char string the concatenation
char string string ofa and b
char char string

6 int int int
real real real
compl compl compl
real int real
int real real
compl int compl
compl real compl
int compl compl
real compl compl

< 5 int int bool
It real real bool

real int bool
int real bool
char char bool true if abs a < abs b
string string

boot }
true if the first character

string char bool in a that differs from the
char string bool corresponding character
bytes bytes bool in b is less than same

> 5 int int bool
gt real real bool

real int bool
int real bool
char char bool
string string bool
string char bool
char string bool
bytes bytes bool

. .;; 5 int int bool
<= real real bool
Ie real int bool

int real bool
bits bits bool true if each bit in a implies

the corresponding bit in b
char char bool
string string bool
string char bool
char string bool
bytes bytes bool

-- - --.-~--.~--.----.,,- ---------

240 STANDARD PRELUDE Ch.6.1.2

oper- prior- mode mode mode meaning
ator ity of a of b of result

;;;. 5 int int boot
>= real real boot
ge real int bool

int real boot
bits bits boot
char char bool
string string boot
string char boot
char string bool
bytes bytes boot

4 bool bool boot
eq int int boot

real real bool
compl compl boot
real int boot
int real boot
compl int boot
compl real boot
int compl' boot
real compl boot
bits bits boot
char char boot
string string bool
string char boot
char string boot
bytes bytes boot

'*'
4 boot boot boot

/= int int bool
ne real real boot

compl compl boot
real int boot
int real bool
compl int boot
compl real bool
int compl boot
real compl boot
bits bits boot.
char char boot
string string bool
string char bool
char string boot
bytes bytes boot

1\ 3 bool boot boot
& bits bits bits
and

V 2 boot bool boot
or bits bits bits

Vertical readers, please turn to 7.1.

Ch.6.2 STANDARD PRELUDE 241

6..2. Constants and procedures

6.2.1. Constan ts

With the exception of pi, the purpose of these constants is to give infor­
mation about the implementation upon which the program is being run, and
they are therefore called "environment enquiries". They are all declared in
the standard-prelude [R 10.2.1] , by means of identity-deClarations, to be of
some mode such as int or real. Hence they are not names, and hence they
cannot be altered by the user.

Some further environment enquiries are given in 6.7.1 (in connection with
long modes) and in 7.2.2 and 7.5.3 (in connection with transput).

identifier mode value
of constant

max int int the largest int value which can be represented
max real real the larges t real value which can be represented
small real real the smallest real value which can be meaning-

fully added to or subtracted from 1
bits width int the number of bits in bits (see 2.7.1)
bytes width int the number of chars in bytes (see 2.7.1)
max abs char int the largest value which abs of a char can yield
null character char some character (see bytespack in 6.2.2)
blank char ":.." (the space character)
pi real 1T

6.2.2. Procedures

The following procedures are all declared within the standard-prelude
[R 10.2.3.12, 10.5.1] to be of some mode proc amode, rather than ref proc
amode. Hence they cannot be altered by the user. Their meanings are those
generally accepted, or as specified by the last column of the following table.

Further procedures from the standard-prelude are to be found in 6.7.2,
7.1.1,7.1.2,7.2.3,7.2.4,7.2.5,7.4.2,7.4.3,7.5.1,7.6.3 and 7.7.1.

242

identifier
ofproc

sqrt
exp
In
cos
arccos
sin
arcsin
tan
arctan
next random

last random

random

bitspack

bytespack

STANDARD PRELUDE Ch.6.2.2

mode

proc(real) real
proc(real) real
proc(real) real
proc(real) real
proc(real) real
proc(real) real
proc(real) real
proc(real) real
proc(real) real
proc(ref int a) real

ref int

proc real

proc([] bool a) bits

o .. arccos(x) .. 1C

-1C/2 .. arcsin(x) .. 1C/2

-1C/2 .. arctan(xj .. 1C/2
The next int value after a from a pseudo-random
sequence uniformly distributed in the range
o .. a .. max int is assigned toa. The yield is a
real value x (0 .. x < 1) obtained by means of
some uniform mapping from a (such that x is
also pseudo-random and uniformly distributed)
an int variable, initialised to round(max int/2),
which is used by random (below)
a call of next random, using last random as
parameter
the multiple a, made up with falses at the left,
is turned into bits

proc(string a)bytes the string a, made up with null characters
(6.2.1) on the right, is turned into bytes

See 6.7.2 for long(s) versions of these.

Vertical readers, please turn to 7.2.

Ch.6.3 STANDARD PRELUDE 243

6.3. Assigning operators

The operators in the following table all have the property that the result of
the operation is automatically assigned to the name of the left hand operand,
and this name is yielded as the value of the formula. Thus:

(E1)
(E2)
(E3)

a plusab b or a +:= b
x := a plusab b
a minusab b plusab c

E3 has implied bracketing:

d' means the same as a := a+b ¢
¢ means the same as x := a := a+b ¢

(E4) (a minusab b) plusab c ¢ and therefore means a := a-b; a := a+c ¢
(E5) a plusab b := x

E5 is legitimate example of a formula on the LHS of an assignation, but it is
not very sensible since b does not enter into the result.

oper- prior- mode . mode mode meaning
ator ity of a of b of result

timesab ref int int ref int a:= axb
x:= ref real real ref real
*:= refcompl compl ref compl

ref real int ref real
refcompl int refcompl
ref compl r.eal refcompl
ref string int ref string a := axb (x implying

replication)

overab ref int int ref int a := a7b
+:=
%:=

divab 1 ref real real ref real a := alb
1:= refcompl compl refcompl

ref real int ref real
ref com pi int ref compl
ref com pi real ref compl

modab ref int int ref int a:= a mod b
7X:=
7*:=
%x:=
%*:=

... _ .. _-----_._--- .. _._._._------_._ _---_ _-------------------

244 STANDARD PRELUDE eh.6.3

oper- prior- mode mode mode meaning
ator ity ofa of b of result

plusab ref int int ref int a:= a+b
+:= ref real real ref real

ref compl com pi ref com pi
ref real int ref real
refcompl int refcompl
ref compl real ref com pi
ref string string ref string } a := a+b (+ implying
ref string char ref string concatenation)

plusto string ref string ref string b := a+b
+=: char ref string ref string

minusab ref int int ref int a := a-b
-.- ref real real ref real

ref compl compl refcompl
ref real int ref real
ref compl int refcompl
ref compl real refcompl

Vertical readers, please tum to 8.3.

Ch.6.5 STANDARD FRELUDE 245

6.5. Interrogations

The following table specifies the operators introduced informally in 5.5.3.
Note that amode stands for any mode and ",s" stands for any number of
commas (including none).

6.5.1. Dyadic operators

oper- prior- mode
ator ity of a

lwb 8 int
L

upb 8 int
I

6.5.2. Monadic operators

oper­
ator

lwb
L

upb
I

prior­
ity

10

10

mode
of.l

[,s) amode

[,s) amode

mode
of b

[,s) amode

[,s) amode

Vertical readers, please turn to 7.5.

mode meaning
of result

int the lower bound of the
a th subscript of b

int the upper bound of the
a th subscript of b

mode meaning
of result

int llwba

int 1 upb a

246 STANDARD PRELUDE Ch.6.7

6.7. Long operators

6.7.1. Environment enquiries

The numbers of different lengths and shorths of ints, reals, etc. that are
provided may vary between different implementations. Environment
enquiries (6.2.1) are therefore provided to indicate these numbers
[R 1 0.2.l]. Additionally, the environment enquiries introduced in 6.2.1
(max int, etc.) and in 7.5.3 (int width, etc.) have long versions of themselves.
Note that the number of different '<lengths" or "shorths" of each mode
includes none at all, so that if the implementation distinguishes just short int,
int and long int, then both int lengths and int shorths will have the value 2.

identifier
of constant

int lengths
int shorths
real lengths

real shorths

bits lengths
bits shorths
bytes lengths
by tes shorths
long max int

long long max int
long long long

max int

mode

int
int
int

int

int
int
int
int
long int

long long int

value

the number of different lengths of ints
the number of different shorths of ints
the number of different lengths of reals
(and of compls)
the number of different shorths of reals
(and of compls)
the number .of different widths of bits
the number of different shorths of bits
the number of different widths of bytes
the number of different shorths of bytes
the largest long int value which can be
represented

and so on, up to any number of longs. For the rest of this table, let us introduce
the convention that "long(s)" means any number of longs or shorts and "Iong(s)"
means the same number of longs or shorts.

long(s) max real long(s) real the largest long(s) real value which can be
represen ted

long(s) small real long(s) real the smallest long(s) real value which can be
meaningfully added to or subtracted from f.

long(s) bits width int the number of bits in long(s) bits
long(s) bytes int the number of chars in long(s) bytes

width
long(s) int width int the number of decimal digits required to re-

present long(s) max int - not including sign
long(s) real width int the number of decimal digits required to re-

present a mantissa, such that long(s) small real
is not neglected in comparison with f - not
including sign

long(s) exp width int the number of decimal digits required to re-
present a decimal exponent, such that long(s)
max real can be correctly represented - not
incl uding sign

long(s) pi long(s) real 1T

Ch.6.7.2 STANDARD PRELUDE 247

6.7.2. Procedures

The procedures introduced in 6.2.2 [R 10.2.3.12, 10.5.1] also have their
long and short versions. Note that a procedure with, for example, a long long
real formal-parameter yields a value whose mode has exactly the same
number of longs in it.

identifier
of proc

long sqrt
long long sqrt

mode

proc(1ong real) long real
proc(long long real) long long real

and so on. We shall adopt the same abbreviation as before.

long(s) exp
long(s) In
long(s) cos
[ong(s) arccos
long(s) sin
long(s) arcsin
long(s) tan
long(s) arctan
long(s) next random
long(s) last random
long(s) random

long(s) bitspack
long(s) by tespack

6.7.3. Operators

proc(long(s) real)long(s) real
proc(1ong(s) real)long(s) real
proc(1ong(s) real)long(s) real
proc(1ong(s) real)long(s) real
proc(long(s) real) long(s) real
proc(long(s) real)long(s) real
proc(long(s)real)long(s) real
proc(1ong(s) real)long(s) real
proc(ref long(s) intjlong(s) real
ref long(s) int initialized to round(long(s) max int/2)
proc long(s) real which uses long(s) last random: see

6.2.2
proc([I bool)long(s) bits
proc(stringJlong(s) bytes

Most of the operators introduced in 6.1.1,6.1.2 and 6.3 have their long(s)
and short(s) counterparts [R 10.2.3]. We shall not list them all here; instead
we shall give you a rule for working them out yourself.

Each operator has one or two parameters and a result, each being of some
mode. If one or more of these modes is:

int, real, compl bits or bytes

then new version of that operator can be obtained by inserting long(s) or
short(s) in front of each of those modes. However, the modes bool, char and
string, wherever they occur, must be left strictly alone.

For example, one of the versions of the operator "+" can be used to add a
real to an int yielding a real (6.1.2). There therefore exists another version
which adds a long long real to a long long int yielding a long long real (but
not to add a long long real to a long int yielding a real - the number of longs

248 STANDARD PRELUDE Ch.6.7.4

added must be the same throughout). Likewise, a short real can be added toa
short int yielding a short real.

However, there are certain exceptions to this general rule, all of which are
concerned with not allowing long(s) ints in places where they would clearly
be ridiculous. Thus:

The abs of a char yields a (single) int
The repr of a (single) int yields a char
long(s) ints, reals and compls can be raised to a (single)

int power, yielding correspondingly long(s) ints etc.
strings and chars can be replicated a (single) int number of times

using x, * or timesab
The (single) int th element of a long(s) bits or bytes

yields a bool or a char
The level of a (single) int yields a serna and vice versa (3.7.2)

In all of these, the phrase "(single) int" implies int where long(s) int or
short(s) int might otherwise have been expected.

6.7.4. leng and shorten

There are no coercions provided in the language for converting, for
example, ints into long ints or vice versa. Instead, you are provided with the
monadic-operators leng and shorten (see 8.4.2 for a meaningful example of
their use):

oper- prior- mode ofa mode of result meaning
ator ity

leng 10 long(s) int long long(s) int } the longer value
long(s) real long long(s) real equivalent to a
long(s) compl long long(s) compl .
long(s) bits long long(s) bits making up with

faIses at the left
long(s) bytes long long(s) bytes making up with null

characters (6.2.1) on
the right

shorten 10 long long(s) mt long(s) int } the shorter value
long long(s) real long(s) real equivalent to a,
long long(s) compl long(s) compl if it exists
long long(s) bits long(s) bits truncating on the

left
long long(s) bytes long(s) bytes truncating on the

right

Ch.6.7.S STANDARD PRELUDE 249

In this table, as usual, "long(s)," means long or short repeated zero or more
times (but the same number of times in each column). Also, of course, leng
of a short short int yields 1I short int, leng of a short int yields an int, and so
on. Note that if you trY to shorten, for example, a long int which is greater
than max int (6.2.1), tilen the result is undefined.

6.7.5. up and down

The operators up, down and level, as applied to semas, were defined in
3.7.2.

Vertical readers, please tum to 7.7.

I.I.A.-9

7. TRANSPUT

'7.1. Formatless transput

"Transput" is the name given to all those operations which communicate
with the environment. These include input, output and transfers to backing ·1

media such as magnetic tape and discs, 1

There is a large variety of transput facilities provided to suit the user's
taste, ranging from the simplest formatless transput described in this section,
through the facilities for accessing various types of device (7.2) and for
dealing with exceptional. situations (7.4.4) up to the formatted transput
described in 7.6 and the binary transput in 7,7.

7.1.1. Formatless output

Formatless output is achieved by means of the procedure print, e.g.:

(E1) print (x); print (i+3); print (p & i<j); print ("A");
print ("ABC"); print (x i y); print (bin 5); print (r)

The modes of the actual-parameters jn these examples are, respectively, real,
int, bool, char, string, compl, bits and bytes (for a description of the mode
string see 2.5.3 and 5.5.1.1, forcompl see 2.4.4 and 5.4.3 and for bits and
bytes see 2.7.1 and 5.7.1.1). In addition, multiple values (1.5.1,2.5) and
structures (1.4.1,2.4) made up of any of these modes can be used. The
actual-parameter of this procedure is a firm unit (the firmness arises from the
particular way in which it is defined in the standard-prelude), which means
that widening is not allowed, but dereferencing is. Note that it is not possible
to output names (Le. modes beginning with ref), or formats (7.6.2) or
routines.

It is possible to output more than one item with. one call on print:

(E2) print ((x, i+3, p & i<j, "A", "ABC", x i y, bin 5, r))

which is equivalent to the series of separate prints in E1 above. Note the
additional parentheses (these are required because the "data list" of items is
really a row-display (see 3.5.1)).

The following layout procedures [R 10.3 .1.6] may be called upon in
between calls of print:

250

Ch.7.1.l

identifier mode
ofproc

newpage proc(ref file)void

newline proc(ref file)void

space proc(ref file)void

backspace proc(ref file)void

TRANSPUT. 251

continue printing at the beginning of the next
page
continue printing at the beginning of the next
line .
skip one character (whi~h results in a space
character unless cunning use has been made
of backspace)
move back one character (but not beyond the
start of the current line). A subsequent call on
print will overwrite whatever chara-ctet was
previously there (but a call on space will not).

These layout procedures (and other proc(ref file)voids (see 7.2.5) written
by the user) may also be called upon within a print call. Thus:

(E3) print ((newpage, "HEADING", newline, "X=" ,x))

means the same as:

(E4) newpage (stand out);
-print ("HEADING");
newline (stand out);
print (("X = " ,x))

The stand out parameter specifies the file (see 7 .2.1) to be affected. Tht: file
stand out is automatically implied by print, and is therefore supplied as the
parameter of these routines when they are called from Within it.

When print is called, the mode of each item to be printed is identified, and
appropriate action taken as follows:

ints, reals, compls:

If there is not room for the item on the current line (page), then newline
(newpage) is called. Then the item is printed, preceded by a space (if not at
the beginning of a line), allowing sufficient positions to cope with the largest
permissible value of that mode.

Examples are:

252

+123456
+456

-1
+0

+ 1. 2345610+ 11
-6.5432110 -2

TRANSPUT

+1.2345610+11 1-6.5432110 -2

chars, bools:

Ch.7.1.2

newline or newpage is called if necessary as above, and then the item is
output with no preceding space. The (single) characters to be printed for true
and false are to be decided by the implementer (see 7.5 .3). In this book we
use T and F.

strings, bytes, bits:

These are treated as sequences of chars or bools as appropriate, newline and
newpage are called wherever required (and thus a string may get split over a'
line - but see 7.4.4 for how to control this).

If an item is a multiple (structure), then its component elements (fields)
are output in tum according to the above rules. This is discussed more fully in
7.5.1 (7.4.1) under the heading of ~'straightening".

For those who prefer it, the procedure write may be used instead of print.

7.1.2. Formatless input

This is achieved by means of the procedure read, e.g.:

(ES) read (x); read (0; read (p); read (c); read (s); read (z);
read (t); read (rJ .'

The modes of the actual-parameters in these examples are, respectively:

ref real, refint, r~f bool, ref char, ref string, ref compl,
ref bits, ref bytes .

In addition, references to multiples and references to structures made up of
any of the modes referred to can be used. The actual-parameter is in fact a
firm unit, which means that.

(E6) read (xx)

is allowed, where xx is of mode ref ref real and must be dereferenced once.

Ch.7.1.2 TRANSPUT 253

The quantity actually input, of course, is of mode real, int, etc. The actual­
parameter yields the name of the place where it is to be put. Note that it is
not possible to input names, or formats, or routines or unions (1.6,2.6).

It is possible to input more than one item with one call on read:

(E7) read ((x, i, p, c, s, z, t, r))

which is entirely equivalent to the series of separate reads given above. Note
the additional parentheses (these are required because the "data list" of items
is really a row-display (see 3.5.1)).

The following layout procedures [R 10.3.1.6] may be called upon in
between calls of read:

iden tifier mode
of proc

newpage

newline

space
backspace

proc(ref file) void

proc(ref file)void

proc(ref file)void
proc(ref file)void

ignore the rest of the current page and start
reading the next
ignore the rest of the current line, and start
reading the next
ignore the next character
move back one character (but not beyond the
start of the current line). A subsequent call on
read will yield the last character again

These layout procedures (and other proc(ref file)voids (see 7.2.5) written
by the user) may also be called upon within a call of read. Thus:

(E8) read ((newpage, s, newline, x))

means the same as:

(E9) newpage (stand in);
read (s);
newline (stand in);
read (x)

The stand in parameter specifies the file (see 7.2.1) to be affected. The file
stand in is automatically implied by read, and is therefore supplied as the
parameter of these routines when they are called from within it.

When read is called, the mode of each item required is identified, and
appropriate action taken as follows:

ints, reals, compls, bools:

The input stream is searched for the first character that is not space (newline

254 TRANSPUT Ch.7.1.2

and newpage being called as necessary). When it is found, the required item is
read in (note that when real is called for, an int will suffice). Ifno recognis­
able item is found, then the result is undefined (unless the user has called the
on char error procedure (see 7,4.4.7). The following examples are acceptable:

+123456
+ 456

+456
-1
123456
12.3456

.3456
12.34

1. 2345610+11
1. 23456e-2
121012
12.34 1 1.23456101.2
T (for true)
F (for false)

" i " may be accepted in place of "'/''', and" e " or "Y' in place of" 10" .
. chars:

The next-character (possibly space) is read from the input stream, newline or
newpage being first called if necessary.

strings (i.e. flex [] chars):

Characters are read from the current position until either the end of the
current line is reached, or (if the user has called make term (see 7.4.2» one of
the terminating characters is found (this character is not yielded as part of the
string, but will be read by the next read). If you do not want to have the
string stopped by the end of the line (but only by the term), you may call the
on line end procedure (7.4.4.4) so as to call newline automatically. If the
current position is already at the end of the line (or if the line is em pty),
newline is not called - you just get an empty string. On the other hand,
newpage will be called if you are off the end of the page.

[m : n] chars (i.e. a multiple with fixed bounds), bytes and bits:

The exaotnumbenifchars needed (i.e. n-m+l or bytes width or bits width)

Ch.7.2 TRANSPUT

is read, newline and newpage being called as needed. In the case of bits,
spaces are skipped (as with bools).

255

If an item refers to a multiple value (structure), then its component
elements (fields) are sought in tum according to the above rules. This is
discussed more fully in 7.5.1 (7.4.1) under the heading of "straightening".
The number of elements expected in a multiple value (other than a string) is
the number contained in the existing multiple referred to by the item.

Vertical readers, please tum to 8.1.

7.2. Files

7.2.1. Channels, books and files

Your particular-program communicates with its environment via facilities
termed "channels" [R 10.3.1.2] . A channel may be anything from a key­
board to a wind tunnel, with all the usual peripherals (tape, cards, magnetic
tape, discs) coming in between. In alarge operating system, it will most likely
turn out to be a file in its filestore. We distinguish between "character
transput" (in which the external representation of the data is potentially
readable) and "binary transput" (in which it is not, and which we shall not
consider until 7.7).

Confining ourselves, then, to character transput (although some channels
may be able to accommodate both varieties), it is convenient to imagine that
at the other end of the channel is a "book" (or maybe several books). Some
channels permit the program to read the book, and some to write in it. Some
very accommodating ones will permit both, and may even allow you to
browse through the pages in any order. A program connected to several paper
tape readers would be reading several such books through one channel (a
channel is thus a type of device, rather than an individual piece of hardware).
This channel would presumably permit reading (get possible), forbid writing
(lput possible), would insist that the book be read in strict sequence
(l reset possible and I set possible) but might conceivably agree to provide
data in binary (bin possible).

A book has pages, lines and characters, the maximum number of each of
which may be limited by the channel, although the actual book may be
smaller. If a line is able to accommodate n characters, then positions within
the line are sp'ecified by one of n+ 1 character numbers (the extra one

256 TRANSPUT Ch.7.2.1

corresponding to an overflow position at the end). If the line is empty (i.e. it
contains zero characters), then its character number is always 1 and it is
always in the overflowed state. Similarly, if a page (a book) is able to
accomodate m lines (m pages), then positions within the page (the book) are
specified by one ofm+1line numbers (page numbers). If the page (the book)
is empty, then its line number (its page number) is always 1. The "current
position" is a triple (page number, line number, char number) specifying the
position of the character to be read or written to next (normally the position
just after the character read or written last). New readers are advised to start
at (1, 1, 1). If, by some mischance, you find your current position to be at
the overflow position of a line, or of a page, or of the book, then you have
overflowed the "physical" book. If the book has been written, but not right
up the its end, then the "logical end of file" is the position (page, line and
character number) just after the last character written. New writers are
recommended to start on an empty book with its logical end of file at
(1,1,1). Ifby some further mischance you contrive to get your current
position beyond your logical end of file, then you have overflowed the
"logical" book.

A book has a title, its "identification", which you may use to ensure that
Y0t: get the right one. Som~times, you may be allowed to change the identi­
fication of the book (reid! possible). For your convenience when referring to
the book from within your program, we provide an identifier for it, and with
this we associate a record containing useful information (as detailed in 7.4.2).
This record is of a special mode called file (in actual fact a file is a particular
form of structure (1.4), and there is no reason why several files should not
refer to one book, nor why one file should not be assigned to another). files
may be declared thus:

(El) file my input, my output;

The process of causing a file to refer to a book (via some specified
channel) is known as "opening" the file (see 7.2.3 below). Initially, every
particular program is provided with one book to be read, one to be written,
and one to browse in. These are already opened in the standard-prelude
[R 1O.5.l.c] (and are closed in the standard-postlude), and are referred to by
me variables called:

stand in }. {stand in channel
stand out the books being linked stand out Ch. annel
stand back via channels called stand back channel

The properties of all books linked via these standard channels are given by

Ch.7.2.1 TRANSPUT

set possible
reset possible
get possible

. put possible
bin posSible
reid! possible
estab possible
compressible

stand in channel" stand out channel

true
true

You may open further files on these and other channels:

257

stand back channel

true
true
true
true
true

(E2) open (my input, "BOOK;..1", stand in channel);
create (my output, special printer channel)

The results of the first of these can be represented thus:

ref file

stand in channel

ref book

"BOOK. I "

The procedures print and read introduced in 7.l. automatically use the books
referred to by stand out and stand in. Two further procedures put and get
perform identical functions for other files. These must specify some file, and
are such that:

----------_._ .. _------

258 TRANSPUT Ch.7.2.2

print (XXXXX) is equivalent to put (stand out, XXXXX)
read (XXXXX) is equivalent to get (stand in, XXXXX)

7.2.2. Environment enquiries

You will see, therefore, that channels and books have lots of useful
properties. What we need are some more environment enquiries (see 6.2.1)
to guide us [R 10.3 .1.3] . Since some of these properties may be a func.tion of
the channel and some of the book and some (at the whim of the operating
system) of both, or neither, these environment enquiries mostly take the
form of procedures with ref file parameters. They are therefore only meaning­
ful when a book has been opened onthe file.

identifier
. of proc or constant

se t possible
reset possible

get possible
put possible
bin possible
reid! possible

compressible

chan

estab possible

stand in channel

stand out channel

stand back
channel

mode

proc(ref file)bool
proc(ref file) bool

proc(ref file)bool
proc(ref file)bool
proc(ref file)bool
proc(ref file) bool

proc(ref file)bool

proc(ref file) channel

proc(channel}bool

channel

channel

channel

value

true if random access is permitted
true if the current position can be reset
to (1,1,1) (e.g. rewfud on magnetic
tape)
true if fuput is possible
true if output is possible
true if binary transput is possible
true if the string which identifies the
book can be changed by reid! (7 .2.3)
true if the line length can be varied on
outPllt

. the channel on which the file has been
opened
true if new books may be established
(7.2.3) on the. channel
the channel on which the file stand in
is opened
the channel on which the file stand out
is opened
the channel on which the file stand back
is opened

Some further environment enquiries will be given in 7.5.3.
Observe that channel is actually a new mode. Implementations will

doubtless ascribe to suitable identifiers in their library-preludes (1.1) extra
channels on the lines of stand in channel etc. (but you cannot create new
channel values for yourself).

Ch.7.2.3 TRANSPUT 259

7.2.3. Procedures for openipg and closing
[R 10.3.1.4]

identifier
ofproc

open

establish

create

associate

mode

proc(ref file file,
string idf,
channel ch}int

proc(ref file file,
stringidf,
channel ch,
int mp, ml,

mc} int
proc(ref fiI.e file,

channel ch} in t

proc(ref file file,
ref [1 [1 [1
char sss} void

Attachfile to an existing book with iden­
tification idfthrough channel ch. The book
will already contain wr.iting up to some
logical end of file, and it will have some
number of pages, lines and characters
consistent with the maxima for ch.
Create a new, empty book with identifica­
tion idf and with mp pages each of ml
lines of mc characters. Attach file to this
book through channel ch (with which mp,
ml and mc must be consistent).
Create a new, empty book with undefined
identification, and with the maximum
number of pages, lines and characters
permitted by the channel ch. Attach file
to this book through ch.
The existing multiple value (of mode [1 [1
[1 char). referred to by sss is attached to
file in lieu of a book. By virtue of the.
rowing coercion (5.5.0 and 5.5.1.3), the
actual-parameter supplied for sss may be of
mode ref [rl [1 char (giving a "book" of
only 1 page) or of mode ref [1 char (giving
a "book" of only 1 line).

Note that the int returned by open, establish and create is normally zero,
but if the opening is not successful for some reason (e.g. the required book
does not exist, or the operating system is unable to provide the required
facility) some other integer may be returned, depending upon the implemen­
tation.

identifier
ofproc

scratch

close

lock

reidf

mode

proc(ref file file}void

proc(ref file file}void

proc(ref file file}void

proc(ref file file,
string idfJvoid

detach the book (if any) attached to file
and burn it
detach the book from file (but it may sub­
sequently be opened again)
detach the book from file. It may not be
re-opened until it has been unlocked again
by some action of the operating system
change the identification of the book to
idf (reid! must be possible)

Note that, if two files are declared, and one is assigned to the other, then
they are both attached to the same book. For the application of such
assignations, see 7.4.2.

260 TRANS PUT Ch.7.2.4

7.2.4. Position enquiries

[R 10.3.1.5]

identifier mode
of proc

page number
line number
char number

proc(ref file file)int
proc(ref file file)int
proc(ref file file) int

7.2.5. Layout routines

[R 1O.3.L6]

identifier mode
ofproc

set

set char number

reset

newpage
newline
space
backspace

proc(ref file file.
int p. I. c) void

proc(ref file file.
int c)void

proc(ref file file) void

proc(ref file file)void
proc(ref file file) void
proc(ref file file) void
proc(ref file file) void

the current page number of the book
the current line number of the book
the current character number of the book.
N.B. the page, line and character number
between them define the character position
about to be read from or written to.

Set the current position of the book re­
ferred to to (P. I. c). Only meaningful if
set possible. See 7.7.1 for applications.

. Set the current position to character c
within the current line.
Reset the current position to (1. 1. 1).
Only meaningful if reset possible.
See 7.7.2 for further effects.

. see 7.1.1 and 7.1.2
see 7.1.l and 7.1.2
see 7.1.l and 7.1.2
see 7.1.1 and 7.1.2

Note that if the book is compressible (7.2.2), the effect of newline
(newpage) during output is to terminate the current line (page) immediately,
the length of the line (page) being determined by the number of characters
(lines) already written. If the book is not compressible, the line (page) is filled
out with spaces to the size specified when the book was established (7.2.3)
(the sizes specified in establish are simply the maxima allowed in the com­
pressible case).

It will be recalled that procedures of mode proc(ref file)void (or firmly
coercible thereto) may appear as actual-parameters in calls of get, read
(7.1.2), put and print (7.1.1). Of course, any procedure of this mode written
by the user is acceptable in such positions. Of the procedures defined in the

Ch.7.4 TRANSPUT

standard-prelude, the following are the relevant ones:

backspace, space, newline, newpage, reset, scratch, close, lock.

Note that where such procedures are called from inside read, etc. they
need no actual-parameter. In other places, t}-,e file must be specified.

Vertical readers, please turn to 8.2.

7.4. Structures and events

7.4.1. Straightening of structures

Given: .

(El) struct (int a, real b, compl c, char d,) s;

then print (s) (or put, get, read, etc) is equivalent to

(E2) print((a of s, b of s, c of s, d of s,))

261

In other words, the fields of s, taken in order in which they were declared, are
printed (or put, or got, or read) in accordance with whatever rules are
applicable to their modes. This is known as "straightening" [R 10.3.2.3]. If
one of the fields is a further structure or a multiple value, then that field itself
is also straightened, and so on. Note, however, that although the mode compl
is a struet, it is specifically forbidden from being straightened into two reals.

Clearly, since the transput of names and routines and formats and the
input of unions is forbidden (at least so far as the transput routines declared
within the standard-prelude are concerned), it follows that these things
cannot appear in struets that are to be transput.

For straightening of multiple values, see 7.5.1.

7.4.2. Files

A file is, in reality, a struct being declared in the standard-prelude
[R 10.3.1.3.a] somewhat like this:

262 TRANSPUT

(E3) mode file = struct(ref book ?book?,
secret ?conv?, ?term?,
proc(ref file)bool

?logical file end?,
?physicalfile end?,
?page end?,
?line end?,
?format end?,
?value error?,

proc(ref file, ref char)bool
?char error?)

Ch.7.4.2

The queries around the field-selectors are intended to convey to you that
these are not the true selectors of those fields. The true ones are secret, and
so you have no way of making use of them. You can only alter them via
procedures provided for the purpose or by assigning a complete new file, and
it is therefore up to the implementor whether his struct is actually made up
of the fields suggested in E3 *.

Now, if you declare two files, open a book on one, and then assign it to
tire other:

(E4) file first, second;
open (first, "bookname", channel);
second := first;

you arrive at the situation shown on the next page.
Both files must inevitably refer to the same book, and there is no way in

which you can change this. However, if you contrive to make one of the
fields different in the two versions, then you may get different results when

* Pedantically speaking, this is not quite true. Your compiler ought not to complain
upon seeing:

file f:= (skip, skip, stand in channel,'!. i, p, p, p, p, p,
skip, "", skip, (ref file f) bool: false,
(ref file f) bool: false, (ref file f) bool: false,
(ref file f) bool: false, (ref file f) bool: false,
(ref file f) bool: false, (ref file f, ref char a) bool: false)

but we would not like to take any bets on it.

Ch.7.4.2

file

string

terminating
characters

conversion
code

I I varIOUS

TRANSPUT

I. 1 event

~J
ref format ref book

book

format ~chars~

;IIIIITI
/

I
current ----;/ -I position

~

~

j
(pages

string

book name

channel

channel

file

string

terminating
characters

conversion
code

various
event
routines

r======:= r logical end
of file

)

status
information
(see 7.7.2)

263

I

264 TRANSPUT

you use them:

(ES) make term (first, "A");
make term (second, "BC");
string s;
get (first, s);

Ch.7.4.2

comment will read in a string of characters from the current
position up to the end of the current line, or up to
an "A" (whichever occurs first) (see 7 .1.1) comment

get (second, s);
comment will read in a string from the same book as before,

starting from where the previous get left off
(presumably starting with an "A" in this case) and
reading up to the end of the line, or until either a
"B" or a "c" is encountered comment

make term is the first of the procedures referred to above. Its use should
be apparent from the above example. A complete list of these procedures is
now given, and their use will be explained in the sections which follow

[~ 10.3.1.3]

identifier mode
of proc

make term

make conv

on logical file
end

on ph y si cal file
end

on page end

on line end

on format end

on value error

on char error

proc(ref file .r.
string t)void

proc(ref file f.
secret c)void

proc(ref file f.
proc(ref file)bool p)void

proc(ref file f.
proc(ref file)bool p)void

proc(ref file f.
proc(ref file)bool p)void

proc(ref file f.
proc(ref file)bool p)void

proc(ref file f.
proc(ref file)bool p)void

proc(ref file!.
proc(ref fiJe)bool p)void

proc(ref file j;
proc(ref file.

ref char)bool p)void

assigns t to the ?term? field of f

assigns c to the ?conv? field of f

assigns p to the ?logical file end?
field of f
assigns p to the ?physica/ file end?
field of f
assigns p to the ?page end? field of
f
assigns p to the ?line end? field of
f
assigns p to the ?format end? field
off
assigns p to the ?value error? field
off
assigns p to the ?char error? field
off

Procedures which alter the ?book? field of a file are open, close, establish,
associate, etc. (7.2.3). Note that associate causes the file to refer to a [] []
[] char instead of to a book.

Ch.7.4.3 TRANSPUT 265

7.4.3. Code conversion

All transput is really a matter of sending chars to or from a book. The
function of the various transput procedures (put, get, etc.) is basically to
convert the value on hand to or from strings of chars, and to transput the
latter. You will doubtless have observed that internally we have been talking
of "chars" - that is the internal objects of mode char which can be handled
by an ALGOL 68 program. The things which we write in the book (i.e. the
external representations) we have been talking of as "characters".

The relationship between these is determined by a conversion rule, and the
conversion rule is kept in one of the secret fields of the file. A standard
conversion rule is provided for each channel, and the intention is that the
library-prelude of your implementation will provide additional ones to suit
any special codes with which your installation may have to deaL

An environment enquiry [R 1O.3.1.2.d] provides the standard rules, and
the procedure make conv attaches them to the file.

identifier

stand cony

mode

proc(channel chan)
secret

value

gives the standard conversion for chan

The mode secret is not really called secret, so you cannot do anything with
it, except use it in make conv.- When a file is opened (or established or
created) on a channel, it is set up with the appropriate stand conv. When a file
is assigned, its ?conv? goes with it.

(E6) file first, second;
open (first, "bookname", stand in channel);
second := first;
make conv (second, special conv);

4 supposing that special conv is available in the
particular library-prelude 4

get (first, s); 4 reads a string according to the standard 4
get/second, s); 4 reads the next string from the same

book, according to special conv 4
make conv (second, stand conv (stand in channel));

4 restores the original rule 4
get (second, s) 4 now does the same as get (first, s)

would have done 4

Each conversion rule specifies the transformation of each single char into a

266 TRANSPUT Ch.7.4.4

single external character and vice versa (the mapping rule is not necessarily
one to one in either direction).

7.4.4. Event routines

The remaining fields in file are event routines [R lO.3.I.3.cc]. They are
provided to enable some user-defined action to take place when, for example,
the end of a page is reached, without the user having to insert a test for this at
the end of every transput call.

They all yield some bool value, and their default state, as left by open,
create, establish or associate, is to yield the value false. If you write some
routine of your own, and associate it with your file by means of one of the
on procedures given above (7.4.2), then you may do what you like inside it,
but there are three ways in which you may finish it:

I) yield false. In this case you are asking the transput routine which called
you in to continue by taking its default action (which in some cases is
left undefined by the Report, but which should then be some sensible
system action).

2) yield true. In this case the calling routine will presume that you have
corrected the situation to your satisfaction, and it will continue with
next business.

3) jump right out of (i.e. terminate) your routine. In this case, the calling
routine is terminated also. However, you must be sure that the label to
which you jump is in the same reach as that in which your routine was
declared, or in a surrounding range (else you will be in identification
trouble (see 3.2.3)).

In cases 1) and 2), you may alter any of the values associated with the book
(e.g. the current position - by newline, reset, etc. - or the format, or the
contents) or with the file (e.g. by closeing and re-opening it with a different
book, or by providing a different terminating string, conversion rule or event
routines).

Beware of associating an event routine with a file if its scope (4.2.3) is
newer than that of the file. If necessary, you must declare a copy of the file
with the scope of the proposed routine, so that the original file can continue
to use its original routine outside this scope. A good example of this tech­
nique can be found in the Report at I0.3.1.3.cc.

We shall now consider the various routines and their uses. They all cause
an event routine to be associated with the appropriate secret field of the file.
The first four of them are concerned with exceeding the logical or physical
limits of the book (7.2.1). To do this is in itself no crime. You are quite

Ch.7.4.4.1 TRANSPUT 267

entitled to have overflowed these limits by one character, one line or one
page as the case may be. It is only when you are in such an overflowed
position and you try to make matters worse by attempting transput (put, get,
etc.) or layout (space, newline, etc.) that an event routine will be called
[R lO.3.1.6.dd].

7.4.4.1. On logical file end

The associated event routine can be called by the input routines (get, getf,
get bin, etc.) and by the layout routines space, set char number, newline and
newpage when called in conjunction with input operations. It can also be
called by set. Input or layout continues right up to and including the last
character present in the book before the logical end of the file. If a further
character is now demanded (or one of the layout routines is called), then the
event is called. If this returns false (or if no such routine is provided) then the
further elaboration is undefined (presumably the implementation halts the
program with suitable diagnostics). Ifit returns true, then a further attempt is
made to input the character or perform the layout.

The most likely action of the user's routine here is to recognise that his
input data is ended, and to take steps to commence the next phase of his
program.

7.4.4.2. On physical file end

The associated event routine can be called by the output routines (put,
putf, put bin, etc.) and by the layout routines space, set char number,
newline and newpage when called in conjunction with output operations.
Output or layout continues until the book has overflowed (i.e. until the
current position has gone beyond the last page that is physically available). If
further ou tpu t is now attempte d (or one of those layout routines is called),
then the event is called. The action taken is similar to the previous case - if
false is returned the further elaboration is undefined, if true the output or
layout is attempted again.

This event might be called, for example, if you had filled up a reel of
magnetic tape, in which case it would be appropriate for your routine to close
it and open another one.

7.4.4.3. On page end

The associated event routine can be called by all the transput routines (i.e.
by both put and get, etc.) and by the layout routines space, set char number

268 TRANSPUT Ch.7.4.4.4

and newline. Transput or layout continues until the current page has over­
flowed (i.e. until the current position has gone beyond the last line physically
available in the page). If further transput is now attempted (or one of those
layout routines is called), then the event is called. If this returns false (or if no
such routine is provided), then the default action is to call newpage (which
should remedy the situation). If it returns true, then the transput or layout is
attempted again.

The user may of course call newpage himself and return true, but he then
also has the opportunity, for example, of outputting some heading and page
number on the new page.

7.4.4.4. On line end

This is exactly like on page end, except that the event happens when the
current line has overflowed and the default action (except in formatted
transput and when getting strings) is to call newline (which should remedy the
situation).

The user may, again, call newline himselfand return true, perhaps first
outputting some line number.

It is to be noted that the default actions or user routines invoked by the
above events may provoke other events. For example, the default call of
newpage in on page end will normally remedy the situation but, in the
exceptional case that this is the last page in the book, or before the logical
end, the physical (or logical) file end event will then be invoked. In the
extreme case in which the user when invited to mend the situation fails to do
so, but erroneously claims (by returning true) that all is now well, the same
event will be invoked again, and so on indefinitely.

7.4.4.5. On format end

The associated event routine is called by the formatted transput routines
(putf, getf, etc.) when the format is exhausted. It may yield false whereupon
the previous format associated with the book is repeated, otherwise it must
provide a fresh format and yield true.

7.4.4.6. On value error

The associated event routine is called by the formatted transput routines
(7.6.3) when the (internal) value on hand is incompatible with the current
picture [R lO.3.4.l.l.hh, ii]. For example, on output the picture may
provide too few digits, on input the value yielded may be too large to store

Ch.7.4.4.7 fRANSPUT 269

(e.g. > max int) or the expected literal in a choice may not be found, and in
either case the mode of the picture may be wrong. If true is yielded, the
offending value and picture are skipped; otherwise the result is unde.fined,
except that with put/the value is first output with put.

This event is also invoked during formatless input (get) when the value
yielded is too large to store.

7.4.4.7. On char error

The associated event routine is called by the input routines (get and get!)
when the converted char read from the book does not agree with the sort of
value expected (e.g. a letter is found when a number has been called for) or
when the character in the book cannot be converted to any char (e.g. a parity
error). 'With the call is provided the name of a char which it is proposed to
substitute for the offender in order that input may continue. If false is
yielded, then the implementation will take its own action (e.g. diagnostic
message) after which the substitution may duly be made (although the user's
routine may nevertheless have taken some note of the error). Alternatively,
the user's routine may yield true, after possibly having assigned some alterna­
tive char to be used in place of the suggested one.

The suggestions that will be made in various circumstances are as follows:

Expected suggestion

a number (unformatted) 0
a digit or supressed zero

(formatted) 0
a sign (formatted) +
a decimal point (formatted)
10 (formatted) 10

1 (for com pI) (formatted
or unformatted) 1

a bool value (formatted
or unformatted F (but see 7.5.3)

an expected char of an insertion
(formatted) that char

If the user, in this routine, wants to examine the offending character, he
has only to backspace the file and use get. If he decides the offending
character should be a candidate for the next input operation, he has only to
leave the file backspaced.

270 TRANSPUT Ch.7.S

In the case of an unconvertible character, the suggestion will be ":.." (i.e. a
space).

Vertical readers, please tum to 8.4.

7.5. Rows and strings

7.5.l. Straightening of multiple values

Given:

(E1) [l:n, 1:4] intj2;

then print(j2) (or put, get, read, etc.) is equivalent to:

(E2) print((j2[l,1],j2[1,2],j2[l,3],j2[l,4],
j2 [2,1] , j2 [2,2], j2 [2,3] , j2 [2,4] ,
j2[3,l] , j2[3,2] , j2[3,3] , j2 [3,4],
........))

In other words, the rows of j2, and within them the elements of each row, are
printed (or put, or got, or read) in accordance with whatever rules are
applicable to their mode. This is known as "straightening" [R 10.3.2.3]. If
one of the elements is a structure, then it itself is straightened in accordance
with 7.4.1 and if it is itself a multiple, then it is straightened as above, and so
on. Note, however, that a string or [] char is never straightened into its
constituent chars.

7.5.2. Conversion procedures

Basically, non~binary transput consists of considering values of various
modes and converting these values to or from strings. It is the strings which are
transput across the channel to or from the book.

print and put provide certain fixed rules for converting ints, reals, compls,
bools, etc. (7.1.1 and 7.1.2). These are quick and easy to use, but they may
not always provide the layout you want, in which case you must do-it­
yourself (or you might consider formatted transput (7.6». You can always
output a string, and so you use one of the following do-it-yourself procedures
[R 10.3.2.1] to make your own string. In the following table, number stands
for real or int or any long or short version thereof.

Ch.7.S.2 TRANSPUf 271

identifier
ofproc

whole

fixed

float

char in string

mode

proc(number v,
int w)string

proc(number v,
int w, a) string

proc(number v,
int w, a, e) string

proc(char c,
ref int i,
string a)bool

Examples. Given:

(E3) i := 1023; x := 999.888;
print(whole(i, 7));
print(whole(i, -7));
print(whole(i, 0));
print(whole(i,3));
print(fixed(-x, 8, 3));
print(fixed(-x, -8, 2));
print(float(x, -12,5,3));

Converts v into a string of abs w chars.
Leading zeroes are replaced by spaces. If
w is positive, a "+" or" -" is always
included in the string. If w is negative,
the string is unsigned for positive v. If
w is zero, the shortest possible string into
which v can be converted is provided
(including a "-" if v is negative, but
never a "+"). If v cannot be converted
within abs w chars, a string of w
asterisks is returned (but see 7.5.3).
Converts v into a string of abs w chars,
including sign, if any, and decimal point
and with a digits after the decimal point.
The cases when w is negative or zero are
treated as in whole. If v cannot be
converted within abs w chars (even after
reducing a so as to provide more
positions before the decimal point), then
w asterisks are returned.
Converts v into a string of abs w chars,
including sign, decimal point and" 10",

and with a digits after the decimal point
and abs e digits (including any sign) of
exponent. If w is negative, a leading
"+" is replaced by".;.." and, if e is
negative, positive exponents are not
signed.
Returns true if c is contained in s, in
which case the index of its first
occurrence in s is assigned to i.

d' .:..:. +1023 4-
d' .:..:..:.1023 4-
d' 1023 4-
d' *** 4-
d' -999.888 d'
d' -lOCO .00 4-
d' .9.9988810. +24-- -

---_ .. "--------------------------------------

272 TRANSPUT Ch.7.S.3

7.5.3. Conversion environment enquiries

print and put always output the exact number of digits necessary to
represent the largest possible magnitude of the value being output. The uSer
might wish to know what this number of digits is, either when planning the
layout of his page, or when using formatted transput (7.6). Appropriate
environment enquiries are therefore provided [R 1O.3.2.1.m, n, 0,

10.2.1.r, s, t].

identifier mode value
of constant

int width int the number of decimal digits req uired to re-
present max inr(6.2.1) - not including sign

real width int the number of decimal digits required to re-
present a mantissa, such that small real (6.2.1)
is not neglected in comparison with 1 - not
including sign

exp width int the number of decimal digits required to re-
present a decimal exponent, such that max real
(6.2.1) can be correctly represented - not in-
cluding sign

error character char the char used to represent unconvertible values
in whole, etc. (7.5.2) - in this book we use
" " *

flip char the char used to represent true during transput
- in this book we use "T"

flop char the char used to represent false during transput
- in this book we use "Fo

See 6.7.1. forlong(s) versions of these.
Note that the chars used for error character, flip and flop are to be chosen

by the implementer - the choice of"*", "T"and "F" is merely the con­
vention adopted for this book.

Vertical readers, please turn to 8.5.

Ch.7.6 TRANS PUT 273

7.6. Formatted transput

In formatted transput, the information about the values to be transput is
presented separately from the information about how they are to be laid out.
For example, given, in the book to be read, characters to yield the string:

"+123:..456.:. 789/A47/999.888*6"

we could read in the ints 123456789 and 47 and the real 999888000 by
writing:

(El) read [((
$ + 3d x 3d x 3d "/ ", x 2d "/", 3d. 3d se "*" d $,
i, j, x))

Here, i, j, x is a data list of the names to which the values input are to be
assigned. In this case they are two ref ints and a ref real, but they could have
been of any of the modes acceptable to read (7.1.2) including references to
multiples and structures which would require straightening (7.4.1 and 7.5.1).
The only things not permitted here are proc(ref file)voids such as newline,
space, etc. because these are concerned with the layout rather than the values.

The layout is controlled by the piece between the two "$"s, which is
known as a 'format-text'. This is made up of various items known as 'frames',
'alignments' and 'literals', and the meaning of each item in this example is as
follows:

item name effect
$ to introduce the format-text
+ sign frame expect a "'+" or a "'-"
3d digit frame read 3 digits
x alignment skip one character
3d digit frame read 3 digits
x alignment skip one character
3d digit frame read 3 digits
"I" literal the next character must be a "I"

This is the end of the 1st "picture". The sign and the 9
digits that have been read are to be converted and
assigned to the I st value, which is i.

x alignment skip one character
2d digit frame read 2 digits
1/ /1/ literal the next character must be a "I"

This is the end of the 2nd picture. The 2 digits that have
been read since the last picture are to be converted and
assigned to the second value, which is j.

3d digit frame read 3 digits
point frame expect a"."

3d digit frame read 3 digits

274

se

"*"
d
$

exponent frame

literal
digit frame

TRANSPUT Ch.7.6.1

because of the s (for suppressed), no character is read
for this frame, but the next digit frame will be inter­
preted as the start of a decimal exponent
the next character must be an *
read 1 digit
End of the format-text and of the 3rd picture.
The characters read (or implied) by its various frames
are to be converted to real and assigned to the 3rd value,
which isx.

Thus every character position of the input line is accounted for, and each
must contain exactly what the format-text says it should. Formatted input is
therefore very suitable for punched card input, where fixed layouts are
customary, but less so for paper tape where the free layouts accepted by the
unformatted procedures will often be more appropriate.

For output, however, the formatted procedures will always give more
control over what is printed, chiefly by their ability to include fixed informa­
tion (Le. literals) anywhere amongst the values that are being printed. For
example, to print the same line that we read in in E1, we could write:

(E2) print! ((
$ + 3d x 3d x 3d "/", "A" 2d "/", 3d. 3d se "*" d $,
123456789, 47, 999888000))

You will see that the format-text here is almost exactly the same as before,
the only difference being that here we specify the "A" that is to be printed,
whereas on input we were prepared to pass over any character that might
have been present. On the other hand, the alignment x is quite sufficient to
ensure that a space will be output, unless some other piece of trans put has
tried to put some other character there. In this respect, the x behaves just like
a calIon space (7.1.1).

7.6.1. Format texts

A format-text consists of a list of 'pictures' separed by commas, the whole
being enclosed between "$"s [R 10.3.4.1.1] . Each picture is obeyed in turn,
and if it contains any frames it is matched up against the next value that is to
be transput (otherwise its insertions are performed and the next picture is
taken). .

Within each picture there may be found 'insertions' (which can be further
subdivided into 'literals' and 'alignments'), and 'frames'. Insertions, or
sequences of insertions, may be put at the beginning or end of the picture, or
in between any two frames.

Ch.7.6.1.1 TRANSPUT 275

7.6.1.1. Literals

A literal [R 10.3.4.1.1.i] consists simply of a string denotation (5.5.1.1).
On output, when this point in the format-text is reached, the string denota­
tion is printed. On input, it is "expected" [R 10.3.4.1.1.11] ; i.e. the characters
read from the book at this point must match the literal - if they do not, then
the char error event is invoked (7.4.4.7).

The string denotation of a literal is actually preceded by a 'replicator'.
These will be de.scribed more fully in 7.6.1.4. It will suffice for the moment
·that a replicator can cQRsist of either "empty" or of an int denotation
(5.1.1.1), and that We ~an indicate the possible presence of one in what
follows by an "R".

(E3) print!(($ "START" 1'...!..." 3d $, i))

There are two literals in the one and only picture in the format-text in this
example. The first has an empty replicator, implying that the string
"START" is to be printed only once. The replicator in the second shows that
":.. ." is to be printed 7 times, so that the characters written to the book
should look like this:

START ••••••• 987
Note that if two literals occur in succession, then the second one must

have a non-empty replicator, for otherwise:

(E4) "SMITH""JONES" •

would be ambiguous. In fact, E4 is a single literal which would be printed out
(see 5.5.1.1) as:

SVlIlli"JONES

7.6.1.2. Alignments

Alignments [R 10.3 .4.1.1.e] do not write any characters to the book.
Their purpose is to move the current position (7.2.1) to some different page,
line or char number, in a similar manner to the procedures newpage,
newline, space and backspace (7.1.1 and 7.1.2) used in formatless transput.
The following are the alignments permitted [R 1O.3.4.1.1.ff] :

--. - ... _---_._------_._--------

276 TRANSPUT Ch.7.6.1.3

alignment effect

Rx call space the number of times specified by the repJicator R. I.e.
skip over R characters.

Rq write (or expect) R space characters
Ry call backspace R times
Rl call newline R times
Rp call newpage R 'times
Rk call set char number (7.2.5) with R as its second parameter

(ES) printf((
$ I "ABeD" 4x 4a, 5k 4a $,
"/JKL", "EFGH"))

(in which 4a is a character frame) will therefore cause to be written, on a new
line in the book:

ABCDEFGHIJKL

7.6.1.3. Frames

frame type syntax effect on input effect on output

digit frame Rd expect R digits print R digits
Rsd

sign frame + expect ~, +" or ,,~" print "+" or "-"
expect "~" or "-" print "....:.-." .or "-"

Rz+ pass over up to R replace up to R leading
Rz- spaces (say n). and zeroes (say n) by

then expect "+", or spaces, and then print
"-" Of "-!...." as above, "+", "-" or "....:..." as
followed by R-n above, followed by
digits R-ndigits

zero frame Rz expect R digits print R digits with
Rsz with leading zeroes leading zeroes replaced

replaced by spaces by spaces

point frame expect a decimal print a decimal point
s. point

exponent frame e expect " 1 D" "\" or "e" print "'0 "
se

complex frame
si

expect "1" or "i" print "i"

Ch.7.6.3.1

frame type

radix frame

character frame

boolean frame

general frame

format frame

TRANSPUT 277

syntax

2r
4r
8r

16r

Ra
Rsa

b

g

g(w)
g(w, aj
g(w, a, ej
here, w,a
and e stand
for units
yielding int

effect on in'put

convert the digits
read, using the
specified radix,
into a bits value

expect R characters

effe..:t on output

convert the bits being
output using the speci­
fied radix, and print in
accordance with the
rest of the frames

print R characters

expect "T" or /IF" print "T" or "F"
(but see 7.5.3)

accept characters as
unformatted input
(read or get)

print as in unformatted
output (print or put)

print(whole(~', w)j
print(fixed(v, w, aj)
print(float(v, w, a, e))
where v is the value to
be output

f(format) transput proceeds using the format yielded by
format. Upon exhaustion of this, the transput
reverts to the next item of the original format

here (format)
stands for any
ENCLOSED-
clause (3.2.4,
yielding a
format

In all the frames listed above, if an s is present, then on input the expected
characters are not read from the book, but input proceeds as though they' had
been (and in the case where digits were expected, zeroes are yielded). On
output, the characters concerned are not written to the book, but are simply
"thrown away".

Note that sign, point, exponent and complex frames serve a dual purpose.
They indicate that a certain character is to be expected or printed (unless
suppressed), and they also indicate to the conversion routines the significance
of the adjacent digit frames. Here are some examples:

278 TRANSPUT Ch.7.6.3.1

(E6) x := 999888000;
print! (($ +d.5de2d $, x));.~ +9.998881008 ~
print!(($ -5zde-zd $, x)); ~ 99988810 3 ~
print!(($.6de+2d $, x)); ~ .999888 10+09 ~
print!(($.5de+2d $, x)); ~ .9998910+09 ~
print!(($ +l1zd. $, x)); ~ + 999888000. ~
print! (($ 11 z+ds. $, x)); ~ +999880000 ~
print! (($ 9d.3d $, x)); ~ 999888000.000 ~
print! (($ 6d3z. $, x)); ~ 999888 ~
print! (($ 6d3sds. $, x)); ~ 999888 ¢

As you will see, any reasonable combination of frames is permissible. Rather
than try to list all the permitted cases, we shall instead point out certain
compatibility restrictions [R 10.3.4.2 - 10.3.4.7] which arise with certain
modes of the value being transput. Failure to observe them will result in
invocation of the value error event (7.4.4.6).

1) A radix frame (r) may only be useful if the value is int.
2) Either a point frame (.) or an exponent frame (e) must be present if the

val ue is real.
3) A complex frame (i) must be present if the value is compl, with either a

point frame (.) or an exponent frame (e) somewhere on each side cif it.
4) On output, there is no objection to having point, exponent and

complex frames present when the value is int, nor to having a complex
frame when the value is real, since the int or real can be widened. These
cases are not acceptable on input, however.

5) Character frames (a) may only be used if the value is char or string.
6) A boolean frame (b) may only be used if the value is boo!.
7) The order in which the various frames, if present, must appear in int,

real or compl pictures is as follows:
sign frame (+, -, z+, z-)
zero frames (z) and digit frames (d)
point frame (.)
zero frames (z) and digit frames (d)
exponent frame (e)
sign frame (+, -, z+, z-)
zero frames (z) and digit frames (d)
complex frame (i), in which case all the preceding frames may occur again.

8) Character frames (a) must not be mixed with other types within one
picture, but there may be several of them.

9) A boolean frame (b), a general frame (g) or a format frame if) must be
the one and only frame of its picture.

Ch.7.6.1. TRANSPUT 279

Here are some more examples, illustrating compls, bools and strings (single
chars are treated exactly like strings):

(E7) print! (($ 2z-d.2d i -d.2de-d $,37.2 i -43.4));
¢ 37.201 -4. 3410 1 ¢

print! (($ b,b,b $, true, false, true));
¢ TFT ¢

print! (($ 4a x 4a $, "ABCDEFGH"));
d' ABCD EFGH ¢

make term (stand in, "F");
readf(($ g $, s)) ¢ reads "ABCDE" from a book containing

.¢ ABCIEFGH ¢

Iii addition to the various frames introduced above, there are two further
types, known as "choices" [R 10.3.4.8], which can be used when the value
to be transput is intor bool:

(E8) i := 4;j:= 5;
print!((

$ c("SUN", "MON", "TUES", "WEDNES", "THUS", "FRI",
"SATUR") "DAY" $,

i));
d' prints WEDNESDAY ¢

print[((
$ b(" LESS.:. THAN" , "GREATER") $,
i<j))
¢ prints LESS THAN d'

On output, one of these literals is selected from the list according to the value
of the int or the bool. (Note that a sequence of literals, complete with
replicators (7.6.1.1), could be used in place of each of the single literals
shown in the examples.) On input, one of the literals listed is expected, and a
value is assigned to the int or bool accordingly. If two or more of the literals
match, the earliest one in the list is taken. The search is never carried beyond
the end of the current line. If no literal matches, the valu(! error event is
invoked (7.4.4.6).

7.6.1.4. Replicators and collections

Two types of replicator have been introduced already (7.6.1.1). These
consist of "empty" and of an int denotation. There exists a third type,
known as a "dynamic" replicator [R 1 0.3.4.1. l.dd] , which consists of an n

280 TRANSPUT

followed by an ENCLOSED int clause (3.2.4):

(E9) proc digits in = (int i) int: entier(ln(i)/ln(10)+1);
j := 0;
for i to 4

do
j timesab 10 plusab i;
printf(($ln(digits in (j))d $, j))
od

¢ prints: 1
12
123
1234 ~

Ch.7.6.1.4

If the expression of a dynamic replicator yields a negative value, then zero
is assumed.

Replicators may also be used to cause a 'collection' of pictures within a
format to be repeated. This is particularly useful when a multiple value of
flexible size is to be transput:

(ElO) flex [1 : 0] struct (inti, char a) ic1 := ((l,"A"), (2,"B"), (3,"C"), (4,"D"));
me f : = stand out; ¢ ! has the same scope as ic1 ¢
put!(!,($ p n(upb ic1)(4z+d,2x a I), "TOTAL=" 3z+d $,

ic1, (int i := 0; for j to upb ic1
do i +:= i of ic1 [j] od; i)))

¢ which will print out, on a new page:

+1 A
+2 B
+3 C
+4 D

'IDTAL= + 10 ¢

Such replicated collections can, of course, be nested to any depth. Moreover
the grouping of the pictures so defined need not correspond to any natural
grouping in the values being transput:

(Ell) [1:4] intj1 := (999,999,999,999), k1 := (888,888,888,888);
printf((

$ 3d, 3(3"A" 2(3d x) 3x), 3d $.
j1, k1))

Ch.7.6;2 TRANSPUT 281

¢ which would print:

999AAA999 999 AAA999 888 MA888 888 888 ¢

In this example,jl and kl are first straightened (7.5.1). The changeover from
the values arising from j] to those arising from kl actually takes place half
way through the second repetition of the outermost collection - this is
slightly odd, but perfectly permissible.

7.6.2. formats

We shall now introduce a new mode, known as format. As with other
modes, you may declare formats, assign them, refer to them, construct
multiples and structures and unions' out of them, invent procs that deliver
them, and have operators operating upon them. About the only thing you
cannot do with a format is to transput it.

The value of a format is the internal object yielded by some format-text
(7.6.1). Moreover, the value of any format at any stage in the elaboration of a
program, unless it is undefined, must be traceable back to a format-text
somewhere in that program.

(EI2) format f; ¢ f is therefore of mode ref format ¢
f:= $ + n(int width)d $;
printf((f, 999))
¢ which will print something like:
+ O()(X)()999 ¢

Because a format-text can contain expressions which in tum may contain
identifiers of limited reach, it should be pOinted out that the scope of a
format-text is determined by exactly the same rule as is applied to routines
(see 4.2.3), so thatthe result of the elaboration of the following is not
defined:

format /,"
begin
int i := 4;
f:= $ n(i)d$
end

printf ((f, j))

7.6.3. The formatted transputprocedures

Associated with each file is a format value and a format pointer (which
l.I.A.-IO

282 TRANSPUT Ch.7.6.3

keeps track of which picture is to be used next). As with print and read
(7.1.1, 7.1.2), the parameter supplied to printf or readf is a data list. each
element of which yields either a fonnat value, or. a value to be transput (but
not a proe(reffile)void this time). Usually, the first element provides a format
(it is then associated with the file stand in or stand out as the case may be)
whose sequence of pictures (as expanded by performing the replication of
any collections) is then matched against the sequence of values obtained by
straightening the remaining elerr.ents. This was done in all the examples
shown so far, but it need not necessarily be the case. Example E2 can thus be
rewri tten as

(EI3) printf(($ + 3d x 3d x 3d"I" $,123456789,
$ "A" 2d"I" $,47,
$ 3d. 3d se "*" d $, 999888000))

If a new fonnat is provided before the old one has been exhausted, the old
one is lost (note, however, that if the new fonnat is provided to a copy of a
file obtained by assignation, the original file still retains the old fonnat, as
should be clear from the diagram in 7.4.2). If part of a fonnat still remains
unused when the end of the data list is reached, it remains associated with the
file and will be used for the next data list to be transput via that file.

(EI4) printf ($ p 6(8(6(+d.6de+d 2x) 1) 21) $);
& a data list of one element which actually performs no

transput at all &
proe real compute = e computes some result e;
to some large number
do printf(compute) od

This will print the results of the computation, 6 numbers to a line, 48 lines to
the page, with 2 extra blank lines inserted after every 8 lines. After printing
the results of 288 computations the fonnat will be exhausted. Then the
format end event will be invoked (7.4.4.5). In this case the user has provided
no event routine and so the default action is taken, viz the same format is
started again (and printing is continued on a fresh page).

The procedures printf and readf use the books and formats referred to by
stand au t and stand in (there is also a procedure writef which is iden tical to
print!). Two further procedures putf and getf perform identical functions for
other files, and are such that:

prin~f(XXXXX) is equivalent to putf(stand out, XXX XX)
readf (XXXXX) is equivalent to getf (stand in, XXXXX)

Ch.7.6.4 TRANSPUT 283

7.6.4. Events

The various procedures which you can associate with each file in order to
trap various events during transput were described in 7.4.4. We shall now
summarise the situations in which each of them can be called during for­
matted transput.
During both input and output:

1) The various frames, alignments and literals encountered in the format
may cause the current position to overflow the physical book (7.2.1). If
a character is read from or written to the book in this situation, the line
end, page end or physical file end event is called as appropriate.

2) If the end of the format associated with the book is reached before the
straightened data list of values being transput has been exhausted, then
the Jonnat end event is called.

3) If the mode of the value being transput is incompatible with the
sequence of frames which occurs in the current picture (the possible
causes of this were liste d in 7.6 J .3), then the value error even t is called.

During input:
4) If an attempt is made to read beyond the (logical) end of the book

(7.2.1), then the logical file end event is called.
5) If the value yielded by conversion of various digi ts etc, in accordance

with the picture, is too great for values of that mode (e.g. an int greater
than max int (6.2.1)), then the value error event is called.

6) If the character read from the book in accordance with one of the
frames d, Z, +, -, . , e, i or b is not expected, then the char error event is
called.

7) If a character that has been expected by a literal is not found, then the
char error event is called.

8) If none of the literals of a choice is found, then the value error event is
called.

During output:
9) If a value to be output cannot be converted into the number of digits

specified in the picture, then the value error event is called.
10) If a negative value is to be output, and the picture does not contain a

sign frame, then the value error event is called.
11) If the int to be output by a choice is zero or negative or greater than

the number of literals in the list, then the value error event is called.

Vertical readers, please tum to 8.6.

284 TRANSPUT Ch.7.7

7.7. Binary transput

Binary output may be used where the sole purpose of the material
produced i~ that it should subsequently be read (during the same or some
~ther program) by binary input. Normally, the medium used will be magnetic
tape, disc or drum, but paper tape or cards can be used if your implementa­
tion permits.

During binary transput, the medium is still divided into pages, lines and
chars, but iris not defined how many chars'are occupied by each object that
is transput, and your implementation may provide some strange shape for the
physical book (e.g. a magnetic drum might be regarded as a continuum of
chars, all on the one and only line of the one and only page: on magnetic
tape, a line might correspond to some block length, and ona disc a page
might demarcate a region which could be accessed without head movement).
Nevertheless, it will always be true that the current position will be defined
by the triple (page number, line number, char number), and that it can always
be inspected arid manipulated by means of the facilities provided (7.2.4 and
7.2.5). In particular, the procedure reset can be used (7.2.5) if reset is
possible (7.2.2) (as on tapes, discs and drums) arid set can be used if set is
possible (as on discs and drums). All the binary transput routines whiCh are
about to be described start from the current position. As line and page
boundaries are passed, line end and page end events are called, but the default
action is to call newline or newpage, so that the routines proceed auto­
matically to cover as many chars·, lines and pages as the values being transput
may demand."

7.7.1. Binary transput procedures

In all of these procedures, the values are first straightened (7.4.1 and
7.5.1), and the straightened values are transpl,lt [R 10.3.6] . Thus all informa­
tion as to how the original values were divided into structures and rows of
multiple values is lost, as are the values of any bounds. Nevertheless, if the
values output in this way are subsequently read back into a set of structures
and multiples identical to tl1;at from which they originally came, then the new
set will be an exact copy .of the old.

Ch.7.7.2 TRANSPUT 2flS

(E1) struct(inta, b)s1, s2, [1:4]inti1, i2;
s1 := (1,2); i1 := (3,4,5,6);
reset(stand back);
put bin(stand back, (s1, i1));
reset(stand back);
get bin(stand back, (s2, i2));

comment we might just as well have said
s2 :=s1;i2 :=i1
However, if we want to mix things up: comment

reset(stand back);
get bin(stand back, (i2, s2))

¢ whereupon i2 has the value (1 ,2,3,4) and s2
has the value (5,6) ¢

identifier mode
of proc

put bin

write bin
get bin

read bin

proc(ref file I,
[1 outtype x)

proc([1 outtype x)
proc(ref file f,

[1 intypex)

proc([1 intype x)

x is straightened and the resultant values
are output to the book referred to by I,
starting at the current position (which is
suitably advanced)
equivalent to put bin (stand back, x)
x is straightened to yield the names to which
the values in the book referred to by I,
starting at the current position (which is
suitably advanced), are read
equivalent to get bin(stand back, x)

In this table, the modes outtype and intype (these are not their real names)
indicate the modes acceptable to print (7.1.1) and read (7.1.2), with the
exception of proc(ref file)void

7.7.2. Some restrictions

The environment enquiries listed in 7.2.2 show what can and cannot be
done with the various channels provided in an implementation. You can only
do binary transput if bin possible. However, this is not to say that non.binary
(i.e. character) transput is forbidden thereby. You are perfectly entitled to
put and get to and from your disc, provided only that you are prepared to
tolerate any strange page and line sizes that it may have.

There-is an· important distinction between channels with set possible (i.e.
drums and discs) and the rest [R I0.3.1.4.j-mO]. With set possible, you can

286 TRANSPUT Ch.7.7.2

roam around your book writing characters here, reading them back there, and
doing binary transput in between. It is your entire responsibility to keep
track of the (page number, line number, char number) where everything has
been put, and of course if you try to read back as characters that which has
been written in binary, or vice versa, then the result will be quite undefined.

If, on the other hand, set is not possible, then things are different. When­
ever you start off at (1,1,1) (after a reset, for example, assuming reset
possible), you have the choice of reading or writing in characters or binary
(assuming a suitable combination of put, get and bin possible on the channel).
Thus you have 4 possibilities:

read binary - you must carryon reading in binary.
write binary - you must carryon writing in binary.
read characters - you may continue reading characters up to some

point, and then change to writing characters. But you must
not read beyond the logical end of the file (7.2.1).

write characters - each time you write, the logical, end of the file is set
to the new current position, which effectively prevents
you from doing anything other than to write characters
again.

Thus, with put, get and reset possible, but not set possible, the normal
behaviour expected with magnetic tape is obtained. If you disobey any of
these rules, then the result is undefined. Note that, when set is possible, it is
still impossible to set beyond the logical end. Any attempt to do so will
merely set the current position to the logical end exactly, and then call the
logical file end event.

The possible properties of the three standard channels were given in 7.2.1.
Note that only the minimum requirements are given there, and individual
implementations might, for example, allow bin possible on stand in channel.

Vertical readers, please tum to 8.7.

8. EXAMPLES

8.1. Simple examples

In this chapter, which forms the tail of the columns in our othogonal
plan, we shall show you, column by column, what you can do with the
facilities described so far.

However, the language available to us at the end of this first column is
rather sparse. We have shown you only the crudest form of conditional·
statement. strings have only been hinted at. You cannot declare procs, nor
refs, nor even constants. Any substantial and worthwhile example within
these limitations could never do justice to the expressive power of ALGOL
68, and we must therefore invite you to read further before encountering a
real example in 8.2.

If shorter examples of these simple facilities are what you would like to
see, then we must refer you back to the early parts of Chapter 0 (the Very
Informal Introduction) where you will find many such.

Vertical readers, please turn to 1.2.

8.2. Procedure examples

8.2.1. Easter

The Gregorian Calendar, insofar as it determines upon which day each year
shall start, is universally accepted throughout the world. It also fixes the dale
of Easter as being the next Sunday after the Paschall Full Moon, which is
intended to be the first full moon occurring on or after the Vernal EqUinox
(March 21st). The rules given for computing this are not so widely accepted.
For example, the Jewish Passover and the Orthodox Easter are determined
from different (and probably more accurate) calendars.

The defining document for these rules was written by one Clavius under a
commission from Pope Gregory XIII l1l. Absolute accuracy was not a prime
consideration. The Full Moon is considered to occur on the fourteenth day of
the lunar month (which commences with the new moon). The rule was
carefully devised so that the date predicted for its new moon always fell on,
or one or two days after, the true mean new moon of the astronomers - but
never before it. This was to ensure that never, under any circumstances,
"auld the Christian Easter fall on the same day as the Jewish Passover

287

.~--"--""-"-----~~~-~~~~~--~~~~---~~-

288 EXAMPLES C'h.8.2.1

(notwithstanding which, this terrible circumstance does occasionally arise, as
in 1903).

The following is a complete program for calculating the date of Easter
according to the Gregorian rule. For further explanations, se~ [3Land [4].

begin .
int year, date, moon, paschal, easter;

comment We shall reckon dates by the number of days since the start of the
year.

Thus: comment
intmarch21st=31 +28+21;

comment The Gregorian calendar was introduced into various parts ofthe
world at different dates. In Great Britain, the year was: comment

int gregory start = 1752 ¢ or whatever date you prefer If' ;
read (year);
if year < gregory start
then print (("The Gregorian calendar was not introdu~ed until",

gregory start, newline))
else int century = year + 100,

leap = abs (year mod 4 = a A year mod 100 :j: a v
year mod 400 = 0);

comment leap = 1 for a leap year, and 0 otherwise. comment
, print ((newpage,

year,
if leap = 1 then " (Leap year)" else "" fL
newline));

comment To calculate the day of the week corresponding to any date, we
associate with each year a Dominical Letter, whose position il1 the alphabet
gives the date of the first Sunday in January. comment

int dominic = 7 - (year + year + 4 - century + century +4
'~ 1 -leap) mod 7;

print (("TheDominical Letteds",
case dominic-in "A", "B", "e","D", "E", "F", "G"'esac,
if leap = 1
then case (dominic -.2) mod 7 + 1

in "/A", "/B", "/e", "/D", "/E", "/F", "/G"
esac

else
,,,,

fl,
newline));

Ch.8.2.! EXAMPLES

proc weekday = (int date) string:
case (date - dominic) mod 7 + 1
in "Sunday". "Monday". " Tuesday". "Wednesday".

" Thursday". "Friday". "Saturday"
esac;

proc month = (ref int date) string:

289

comment This proc has a ref int parameter which it will alter to become the
date within the month. comment

if date';; 31
elif (date := date-31)';; 28 + leap
elif (date := date-28-leap)';; 31
elif (date := date-31) .;; 30
elif (date := date-30)';; 31
elif (date := date-31) ';;30
elif (date := date-30)';; 31
elif(date :=date-31)';;31
elif(date :=date-31)';;30
elif (date := date-30)';; 31
elif (date := date-31) .;; 30
else date := date-30; "December"
fi;

then "January"
then "February"
then "March"
then "April"
then "May"
then"June"
then "July"
then "August"
then" September"
then" October"
then "November"

comment The moon revolves around the earth once every 29.530588 days.
235 such lunations last just I! hours less than 19 Julian years. The calendar is
therefore based on a "Metonic" cycle of 19 years, each year in a cycle being
allotted a "Golden Number" in the range 1 to 19: comment

int golden = year mod 19 + 1 ;
print (("The Golden Number is". golden. newline));

comment However, following this cycle indefinitely would introduce an error
of approximately 0.43 days per century. There is therefore a correction
which, for convenience, is only allowed to change at the end of a century:
comment

int Wius 4' who is a not inherently meaningful identifier 4'
= (century - century -;- 4 4' for the leap years omitted

·at the start of some cen­
turies 4'

- (century-(century-17)7 25) -;- 3
4' the 1 ~ hours error 4'

-8) mod 30;
comment On the 1st of Janilary of any year, the number of days since the
last new moon is given by the "Epact": comment

290 EXAMPLES

int epact = (11 x (golden-l)-lilius) mod 30;
print (("The Epact is", epact, newline));

Ch.8.2.1

comment If successive new moons were to occur every 30 days, then we
should be 'able to associate with each date a unique epact, one less for each
day modulo 30 (then that date would be a new moon in years with that
epact). In fact, six times in the year (and once extra at the .end of 19 years)
we must have a lunation of only 29 days, whereupon the sequence of epacts
slips back a day and some date will have two epacts listed against it. These
dates have been carefully chosen (it is alleged) so as to minimise the deviation
from the true moon. One of them occurs in February and so happenings in
March occur exactly 59 days after those in January (or 60 in a leap year,
since the intercalary day, if any, in February is automatically added to the
lunation in which it occurs). Therefore, there is a new moon on: comment

moon:= 31-epact + 59 + leap;
if (paschal := moon + 13) <march21st + leap
then

comment the fourteenth day of this moon falls before the Vernal Equinox
and we want the next one. The next date with two epacts against it occurs in
April, the critical epact being given by: comment

fi;

int clavius = if golden> 11 then 26 else 25 fi;
moon := moon + (epact:> clavius I 30 i 29);
paschal := moon + 13

print (("The Paschal Full Moon falls upon ",
weekday (paschal), space,
month (date := paschal), space));

comment Note how we have to break off the print here and start another
one, so that we can use the value of date, as calculated therein, in the next
print. If it had all been done in one print, then we might have been using date
and assigning to it at the same time (i.e. collaterally), and anything might
have happened. comment

fi
.end

print ((date, newline));
print (("Easter day, being the next Sunday after the ",

"Paschal Full Moon, therefore falls upon ",
month (date := easter := paschal + 7-(paschal- dominic)

mod 7)));
print ((date, newline))

Ch.8.3 EXAMPLES 291

The following are the references quoted in this section:
[1] Christophorus Clavius. K~lendarium Gregorianum Perpetuum. Cum

Privilegio Summi Pontificis Et Aliorum Principum. Rome, Ex Officina
Dominicae Basae. MDLXXXII. Cum Licentia Superiorum.

A companion volume was also prepared, and published in 1603:
[2] Christophorus Clavius. Romani Calendarii a Gregorio XIII. Pontifice

Maximo restituti Explicatio.
[3] A. de Morgan. A Budget of Paradoxes. Longmans, Green &. -'::0, 1872.
[4] Sir Harris Nicolas. The Chronology of History, containing Tables,

Calculations & Statements, indispensable for ascertaining the dates of
Historical Events, and of Public and Private Documents from the earliest
periods to the present time. Longman, Brown, Green and Longman's,
1838.

Vertical readers, please turn to 1.3.

8.3. Examples of operators

8.3.1. Parallel plus

This example is intended to show how defining your own operators can
lead to a considerable simplification of a program, at the same time making it
more easy to follow.

It is well known that if two resistors A and B are placed in parallel, their
combined resistance is given by:

1
1 1 --+ -
A B

We can now define the operator "parallel plus" (we shall represent it by pap)
to perform this operation. pap is a well behaved operator, being both
commutative and associative. For the sake of completeness we shall also
define "parallel minus" (pam) and assigning versions·(6.3) paplusab arid
paminusab.

Consider the following network:
~---------rt----------------~

r2 a r6

---.:~",ll'-' __ -1-------' r 3 . GY
r4 r5

292 EXAMPLES

It is required to find the value of x such that the resistance of the whole
network shall be rt. Here is a program to do it: .

begin
prio pap = 7, pam = 7, paplusab = 1, paminusab = 1;
op pap = (real a, b) real: a xb I (a + b);
op pam = (real a, b) real: a x b I (b-a);
op paplusab = (ref real a, real b) ref real: a := a x b I (a + b);
op paminusab = (ref real a, real b) ref real: a := a x b I (b-a);
realrt, r1, r2, r3, r4, r5, r6;
read ((rt, r1; r2, r3, r4, r5, r6));
print ((rt-(r1 + r2 pap r3 pap (r4+r5))) pam r6)
end

Ch.8.4

Electrical engineers will realise that all these operators ought also to be
defined for compl operands (2.4.4) and for mixed real and compl.

Vertical readers, please turn to 1.4.

8.4. Two examples of library preludes

A library-prelude (see 1.1) is an expansion of the standard-prelude. I t may
contain further identity-, mode-, priority- and operation-declarations for use
in particular applications. A library-prelude must be throughout consistent
with the standard-prelude (Le. indicators declared in it may not conflict with
those declared in the standard-prelude).

In 8.4.1 we give a library-prelude for the basic operations on vectors in a
Euclidean space E3 , the vectors being declared as

mode vec = struct (real xcoord, ycoord, zcoord);

In Section 8.5 we give a library-prelude for the basic operations on vectors in
En (n arbitrary) which is more general, but also less simple than this one.

In 8.4.2 we give a library-prel.ude for the basic operations on rational
numbers, declared as

mode rat = struct (int numerator, denominator);

The declarations in 8.4.1 and 8.4.2 (and also those in 8.5) are fully
consistent with each other and may, therefore, be joined into one library­
prelude without any precaution. They may be regarded as one of many
possible expansions of the language. Their intention is to demonstrate the
expressive power and efficient elegance of the language, and to suggest how

Ch.S.4.1 EXAMPLES

to do away in practice with dialects and specific languages for use in
particular problems.

8.4.1. Operations on vectors in E3

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)

(11)

(12)

(13)

(14)
(15)

(16)
(17)
(18)

mode vee = struet (real xcoord, ycoord, zcoord) ;.

prio pari
op x
op y

op z
op +
op -
op +
op~

op x

op x

op /

op x

op lx

op norm
op e

real eps
op eps
op eps

= 5 , perp = 5 , proj = 6, lx = 7;
= (vee u) real: xcoord of u ;
= (vee u) real: ycoord of u ;
= (vee u) real: zcoord of u ;
= (vee u) vee: u;
= (vee u) vee: (-xu, -yu, -zu);
= (vee u , v) vee: (xu + xv , yu + yv , zu + zv) ;
= (vee u , v) vee: (xu - xv , yu - yv, zu - zv) ;
= (real r, vee u) ¢ the product of a scalar and a vector ¢

vee: (r x xu , r x yu , r x zu) ;
= (vee u , real r) ¢ the product of a vector and a scalar ¢

vee: r xu;
= (vee u , real r) ¢ the quotient of a vector and a sc'alar ¢

vee: (xu / r, yu / r, zu / r) ;
= (vee u , v) ¢ the innerproduct ¢ real:

xu x xv + yu x yv + zu x zv ;
= (vee u , v) ¢ the vectorproduct ¢ vee:

(yu x zv - zu x yv ,
zu x xv - xu x zv ,
xu x yv - yu x xv) ;

= (vee u) real: sqrt (u xu) ;
= (vee u) ¢ the unit vector in the direction of u ¢ vee:

(eps u I skip I (l/norm u) xu);
= e some small enough real number e ;
= (real r) bool: abs r < eps;
= (vee u) bool: eps norm u ;

293

(19) op pari = (vee u , v) ¢ parallel? ¢ bool: eps (eu lx ev) ;
(20) op perp
(21) op proj

(22) proe angle

= (vee u , v) ¢ perpendicular? ¢ bool: eps (eu x ev);
= (vee u , v) ¢ the protection of u on a plane

perpendicular to v ¢ vee:
(vee ew = e ((v lx u) lx v); (u x ew) x ew);

= (vee u , v) ¢ the angle between u and v ¢ real:
arccos (eu x ev) ;

294 EXAMPLES

(23) proe plane = (vee u , v , w) ¢ in one plane? ¢ bool:
eps (eu x (ev lx ew)) ;

8.4.1.1. Comments on the library-prelude 8.4.1

Ch.S.4.1.1

The given set of operations is confined to E3 -vectors over the field of real
values; it is obvious that they can as easily be defined over the field of
complex values and also over more particular fields (see, for example, the
rationals as defined in 8.4.2). It is also obvious in what way more specific
operations can be subjoined to those given in 8.4.1; the declarations (21),
(22) and (23) are already of a somewhat specific nature.

The given set may be of use in a variety of applications in mathematics,
physics, chemistry and astronomy, enabling the programmer to write
transparent and straightforward algorithmic prose in his own professional
jargon.

Further modes may be derived from the given vee, for instance:

mode event = struet (real time, vee position) ;

mode tens = struet (vee xlevel , ylevel , zlevel) ;

The kinds of operators to be then declared for event and tens values, of
course, depend entirely upon the specific applications. For an example of the
use of the mode event, see 8.4.1.2.

The declarations (1) - (12) may speak for themselves.
In (13) we adopted for vector multiplication (sometimes termed the

"outer product") the operator lx. The formula u lx v yields a vee
perpendicular to both u and v and of length I u II v I sin (u, v).

The norm defined in (14) is the usual Euclidean norm. If the underlying
field is that of the rational values (8.4.2) we may define:

op norm = (vee u) rat: max (abs xu , abs yu , abs zu);

The environment enquiry eps in (16) serves as a criterion for "zeroness"
and is used in (20), (21) and (23) to define parallelism, perpendicularity and
"planeness". The value of eps may depend heavily upon the given input- and
the required output-precision. If, for instance, real eps = 0.01, then two
vectors will be considered as "perpendicular" to each other as soon as their
inner product is <0.01 (see also the example in 8.4.1.2).

In (21) the vee ew (which is local to the routine) is a unit vector
perpendicular to v in the plane of v and u (we applied the vector product lx
twice); hence, (u x ew) ~ a real ¢ x ew yields a vee in the plane perpendicular
to v and in the plane of v and u.

Ch.B.4.1.2 EXAMpLES 295

The declarations (22) and (23) may speak for themselves.

8.4.1.2. An example of the use of vees

The input starts with an integral number n, whieh fixes the number of real
quadruples following. The first real in each quadruple is a point in time, the
remaining three reals define a point in space (a vee). In the first line of the
program below we define such a quadruple to be an event.

Let the input consist of some thousands of events, ordered in time; the
time-coordinates are not necessarily equidistant. One may conceive the row
of events to be the result of some smoothing process on a large set of
measurements. The events may then describe, with sufficient accuracy to
allow second order numerical differentiation, the orbit of a particle (be it a
mass body or an electric charge) in a possibly complicated field of forces.

The program below surveys the motion and acceleration of the particle in
its orbit. It includes a few features of the language which you may not have
met yet (if you have been reading vertically). Nevertheless, we hope their
meaning will be readily apparent to you (if not, please see 2.5 and 5.5.1.3 for
multiple values and how to slice them, and 3.5.2 for the use of for).

(E1) begin mode event = struet (real time, vee pas ~ ition ~) ;
proe deriv = ~ yields the derivative of a vee as a function of time ~

([] event e , int k) event:
(event elk = e[k-1J, ekl = e [k+l] ;

real dt = time of ek1 - time of el k ;
(time of e1 k + dtl2 , (pos of ekl - pos of el k) I dt }

) ;
int n ; read (n) ;
[l:n] eventorb;read(orb); ~ see 7.1.2 ~
real init ~ initial time ~ = time of orb [1] ;
print (("initial time =", init , newline) } ;
[2:n-1] event vel ~ oeity ~;
for i from 2 to n-1 do vel [i] := deriv (orb, i) od ;
vee newx = e pos of vel [2] ; ~ unit vector tangent to the orbit at

time init ~
vee newy = e (pas of vel [3] proj newx) ; ~ newx-newy is the

tangent plane to the
orbit at time init ~

vee newz = newx Ix newy ; ~ newz is the unit vector perpendicular
to the unit vectors newx and newy ~

296 EXAMPLES Ch.8.4.1.2

proc new = ¢ yields the coordinates of an event relative to the initial
time and the new axes newx-newy-newz ¢
(event e) event:
(time ore - init , (pos of e x newx , pos of e x newy ,

pos of e x newz)) ;
proc pr = <t prints characteristic data of an event, preceded by a

string and a newline <t (string s , event e) void:
(event newe = new(e);

print ((newline, s , e pos of newe , norm pos of newe ,
time of newe))

) ;
for i from 3 to n-2
do event veli. = vel [i] , orbi = orb [i] ,

od
end

acci ¢ acceleration ¢ = deriv (vel, i) ;
vec v = pos of veli , a = pos of acci ;
¢ if certain situations occur, messages and data will be

printed: ¢
if v perp newx then pr ("orbit in YZ", orbi);

pr ("velocity = ", veli) ;
elif v perp newy then pr ("orbit in ZX", orbi);

pr ("velocity = ", veli) ;
elif v perp newz then pr ("orbit in XY" , orbi) ;

pr ("velocity = ", veli)
else skip fi ;

if eps v then pr ("standstill " , orbi) ;
pr ("accelerat. =", acci) fi ;

if eps a then pr ("zero force" , orbi).;
pr ("velocity = ", veli) fi ;

if a pari v then pr ("force//orbit", orbi);
pr ("velocity = ", veli) ;
pr ("accelerat. =", acci)

elif a perp v then pr ("force1orbit", orbi);
pr ("velocity = ", veli) ;
pr ("accelerat. =", acci)

else skip fi
¢ if an appropriate device is available, one might conceive here

the call of a procedure plotting the curve ¢

Ch.S.4.2 EXAMPLES 297

8.4.2. Operations on rational operands

mode rat = struet (int numerator, denominator) ;

(1) prio nn = 7, nd = 7, dd = 7;
(2) op n = (rat r) int: numerator of r;
(3) op d = (rat r) int: denominator of r ;
(4) rat a = (0 , 1);
(5) rat! = (1 , 1);
(6) proe errat = void: e some action interrupting or halting the elaboration

of the program signalizing that a result, required to
be rational, cannot be expressed as a value of the
mode rat e;

(7) proe gcd = (int n , d) int:
if d = 0 then abs n else gcd (d, n mod d) fi ;

(8) proe long gcd = (long int n , d) long int:

(9) op t

(10) op t

(11) op sign
(12) op whole
(13) op en tier
(14) op frae

if d = long 0 then abs n else long gcd (d , n mod d)
fi;

= (int n , d) rat:
if d= 0
then errat ; skip
else int k = gcd (n , d) ;

fi;

(if sign n = sign d then abs n 7 k
else - abs 11 7 k fr,
ab's d 7 k)

= (long int n , d) rat:
if d = long 0
then errat ; skip
else long int k = long gcd (n , d) ;

long int nk = n 7 k , dk = d 7 k ;
if abs nk ~ leng maxint

fi;

1\ abs dk ~ leng maxint
then shorten nk t shorten dk
else errat; skip
fi

= (rat r) int: sign n r ;
= (rat r) bool: d r = 1 ;
= (rat r) int: if n r ;;;. 0 then n r 7 d r else n r 7 d r - 1 fi;
= (rat r) rat: r - entier r ;

298

(15) op round
(16) op re
(17) op nn
(18) op nd
(19) op dd
(20) op<
(21) op =
(22) op>
(23) op~
(24) op :j:

(25) op ;;;.
(26) op +
(27) op -
(28) op +
(29) op +

(30) op +
(31) op -
(32) op-
(33) op-
(34) op x
(35) op x
(36) op x
(37) op /
(38) op /
(39) op /
(40) op t

EXAMPLES Ch.8.4.2.1

= (rat r) int: if frac r < 1 -l- 2 then entier r else entier r + 1 fi;
= (rat r) real: n r / d r ;
= (rat p , q) long int: leng n p x leng n q ;
= (rat p , q) long int: leng n p x leng d q ;
= (rat p , q) long int: leng d p x leng d q ;
= (rat p , q) bool: p nd q < q nd p ;

= (rat p , q) bool: p nd q = q nd p ;
= (ratp, q).bool: p nd q >q ndp;
= (rat p , q) bool: I (p > q) ;
= (rat p , q) bool: I (p = q) ;
= (rat p , q) bool: I (p < q) ;
= (rat r) rat: r;
= (rat r) rat: -n r -l- d r ;
= (rat p , q) rat: (p nd q + q nd p) -l- (p dd q) ;
= (int n , rat r) rat:(leng n x leng d r + leng n r) -l-

leng d r;
= (rat r , int n) rat: n + r ;
= (rat p , q) rat: p + - q ;
= (int n , rat r) rat: n + - r ;
= (rat r, int n) rat: r + - n ;
= (rat p , q) rat: (p nn q) -l- (p dd q) ;
= (int n , rat r) rat: (leng n x leng n r) -l- leng d r ;
= (rat r , int n) rat: n x r ;
= (rat p , q) rat: p x (d q -l- n q) ;
= (int n , rat r) rat: n x (d r -l- n r) ;
= (rat r, int n) rat: r x (1 -l- n) ;
= (rat r , int n) rat: (n r t n) -l- (d r t n) ;

8.4.2.1. Conunents on the library-prelude 8.4.2

Possibly more than may be necessary for vecs, the operations on rats
should be "hand-coded" to take advantage of specific machine-features in
double-precision integral arithmetic.

(I) The down-symbol -l- is used to obtain a rat from two ints or from two
long ints. It already has a priority of 8 (see 6.1.2).
(4-5) The rationals zero and one are ascribed to the identifiers 0 and I.
(7-8) The recursive declarations of gcd and of long'gcd is not only the
most natural algorithm, but most likely (in a good implementation) also the
most efficient one.

Ch.8.4.2.2 EXAMPLES

(9-10) 777 t 1813 yields (3,7)
-777t 1813 yields (-3,7)

777 t -1813 yields (--3,7)
-- 777 t -1813 yields (3,7)
correspondingly for long int operands.

299

(8) and (\ 0) All intermediate computations on the numerator and
denominator will be performed in double-precision. If (being a vertical
reader) you are not familiar with the mode long int, the denotation long 0
and the operators leng and shorten, please be assured that such double­
precision is indeed achieved (or read 5.7.1.2 and 6.7). In (10), the fraction is
then reduced (if possible) to the mode rat.

Notice that 1813 /777 yields the real 2.3333333
18137 777 yields the int 2

but 1813 t 777 yields the rat (7,3)

(11) sign(777U813)=1
(12) whole (777 t 1813) = false
(13) entier (1813 t 777) = 2
(14) frac(1813 t 777)=(1,3)
(15) round (1813 t 777) = 2
(16) re (1813 t 777) = 2.3333333

sign (-777 t 1813) = -1, sign 0 = 0
whole (37 t 1) = true
entier(-1813t 777)=-3

round (2321 t 777) = 3

(17-19) The operators nn, nd, dd are declared mainly to facilitate the
notation of the remaining routines.

(20-40) These declarations may speak for themselves.

8.4.2.2. Some remarks on the use of rationals

The given set of operations on rational numbers may be of some
importance in problems in which the (rational) coefficients of power series
should be determined exactly. Such problems may arise when operations like
addition, subtraction, multiplication, division and substitution of power series
are relevant. A (truncated) power series (i.e. a polynominal) may, for instance
be declared as a:

mode powser = flex [1 : 0] rat;

The power series for the exponential function then occurs as:

powser exp = (t, t, (1,2), (1,6), (1,24), (1,120), (1,720),
(1,5040), (1,40320), (1,362880), c etc c);

300 EXAMPLES Ch.8.S

and the Bemouilli numbers (the Bemouilli polynomial) as:

powser bern = (I, (-1,2), (1,6),0, (-1,30),0, (1,42),0, (-1,30),
0, (5,66),0, (-691,2730),0, (7,6),0,
(-3167,510),0, c etc c);

For such powsers one may then define operators:

op + = (powser p , q) powser:
op - = (powser p , q) powser:
op x = (powser p , q) powser:
op / = (powser p , q) powser;

(see also 8.5)

c routine for addition c;
c routine for subtraction c;
c routine for multiplication c ; .
c routine for division c ;

op ~ = (powser p , q) powser: c routine for the substitution of
pinqc;

The complex function defined by such powsers may be declared as:

proc fun = (powser p , compl z) compl:
(int m = lwb p, n = upb p; compl value := re p [n] ;

for ifrom n-1 by -1 to m
do value := value x z + re p [i] od;
value);

Vertical readers, please tum to 1.5.

8.5. A library prelude for vector and matrix operations in En·

For many applications in a variety of scientific disciplines you may want
to write in your particular-program mode- and identity-declarations such as:

!Dode vector = [1: fl] real ,
matrix = [1: fl,1: n] real;

real p, q, r;
vector u , v , w ;

matrix a , b , c ;

and to apply operators yielding the sum, the difference, the (inner)product,
the norm, etc. of such vectors and matrices, in order to be able to write
straightforward expressions close to the well established mathematical
notation, such as:

Ch.8~5

u := r x ~';

U := JI + w;
r := JI x w;
p := norm u;
a := r x b ;
c := a + b ;
c := a x b ;
u := a x JI;

u := v x a;
p := det a;

v := inva x u

EXAMPLES

Then you may, of course, also want to write composite formulae such as:

u := a x (jJ I norm JI) ;

u := inv (a x (b-c)) x (w- v)
You may even want to use vectors of unequal length and non-square
matrices:

[1 : n J real x , y ; [1 : nz] real z ;
[1 : nz, 1: k] real nz ; [1: k, 1: n] real n ;

and formulae such as:

z:= nz x n x(x + y)

301

The library-declarations listed in 8.5.1,8.5.2 and 8.5.3 supply a basic and
general set of such linear operations in En- The whole set is fully compatible
with the library-declarations 8.4.1 and 8.4.2 and presupposes even the
priority-declarations 8.4.1 (I) and the declarations for eps and eps in 8.4.1
(IS) and (16). As was the case in the library-prelude for vecs(8.4.1) we
confine ourselves to En-vectors and matrices over the field of real values; it
may again be obvious that and how the whole set can be expanded over the
field of complex values and even over more particular fields such as the
rational values (8.4.2).

All our operation-declarations have formal-parameters of mode [1 real or
[,1 real, even though this may lead to great inefficiency in some
implementations due to the copying of multiple values when these operators
are used in formulas (see 4.5). We make no apology for this. The operators
reflect the user's requirement much more naturally in the form here given,
and their yields (which are again mUltiple values) are in a form immediately
suitable for use as operands in further formulas. As for the so-called
inefficiency, this is simply a problem of implementation. Methods exist which
avoid the copying entirely, except in those peculiar and rare cases where it is
really needed.

302 EXAMPLES Ch.8.5

(However, should you be faced with an old-fashioned inefficient
implementation, then you will need to declare all these formal-parameters as
ref [] reals or ref [,] reals. Moreover, the values returned willalso have to be
of these modes. Next you will have to worry about the scope (3.2.2) of these
returned names, and you will then find that the variable-declarations which
create them will have to have heap where we have written loe (2.7.3).
Alternatively, shoot your implementor.)

In calculating the innerproduct of two vectors (line (10) of 8.5.1), we
make use of double-precision arithmetic. If (being a vertical reader) you are
not yet familiar with the long modes, please see the remarks about them in
8.4.2. I.

The intention of these declarations is (rather than to make a definite
proposal for a particular library-prelude) to show how in a quite natural, even
dogmatic, manner one can define a set of powerful operators which are, in
their application, very close to the generally accepted conventions of
mathematical notation.

A priori information about the multiples to which the operators are to be
applied and considerations of required precision may influence the ultimate
form of the routines ascribed to these operators. In particular the algorithms
in 8.5.3 may, from several technical points of view, depend heavily upon a
priori information about the condition of the .matrices there we are faced·
with problems of numerical analysis rather than of programming.

In 8.5.1 we declare the operations on vectors, adopting a notation which is
as close as possible to the notation of 8.4.1. In fact, if you redeclare in your
particular-program:

mode vee = [1: 3] real;

then the result yielded by the operators +, -, x, norm, e, eps, pari and perp
will be the same by 8.5.1 as it otherwise would have been by 8.4.1.

In 8.5.2 we declare the operations on vectors and matrices, applying where
possible the operators declared in 8.5.1. Consider, for example, in 8.5.2 (10)
the statement:

forkfromp2toq2doab[,k] :=axb[;k]od

the occurrence of "x" identifies the operator declared in 8.5.2 (8) where in
its turn the occurrence of "x" in the statement:

for i from m1 to n1 do au [i] := a [i,] xu od

identifies the operator declared in 8.5.1 (10) where in its turn the occurrence
of "x" in the statement:

---------~

rh.S.S.l EXAMPLES 303

for i from m to 11 do inpr +:= leng u [i] x leng v [i] od

finally identifies the operator declared in the standard-prelude [R 10.2.3.4.1].
Observe that the operators +:=, -:=, x:= and /:= in 8.5.1 and 8.5.2 may be

conSiderably more efficient than +, -, x and /, because no intermediate
results have to be stored anywhere; for which reason they are anyhow less
space-consuming!

The library-declarations in 8.5.3 may be considered as examples of the use
of the operators declared in 8.5.1 and 8.5.2. The procedure crout is
essentially the procedure det from R 11.7 in an adopted notation with a
minor improvement. The operator invert yields a routine which is the
ALGOL 68 version of a procedure by T.1. Dekker [*].

It may be very instructive to study carefully the use of the slicing feature
in the routines 8.5.3 (6) and (8).

8.5.1. Operations on vectors in En

(1) op +

(2) op-

= ([] real u, v) [] real:
q the sum of two vectors q
if int m = lwb u, n = upb u ;

m = lwb v A n= upb v
then loc [m:n] real s ;

for i from m to n do s [i] := u [i] + v [i] od;
s

else error; skip
fi;

= ([] real u, v) [] real:
q the difference of two vectors 4

if int m = lwb it, n = upbu ;
m = lwb v An = upb v

then loc [m:nJ real s ;
for ifrom m to n do s[iJ := u[i] + v[i] od;
s

else error; skip
fi;

[* 1 T.J. Dekker: ALGOL 60 procedures in numerical algebra,Part I
(Mathematical Centre Tracts 22,
Mathematisch Centrum, Boerhaavestraat 49, Amsterdam).

304

(3) op x

(4) op x

(5) op /

(6) op +:=

(7) op -:=

(8) op x:=

(9) op j:=

EXAMPLES

= (real r, [] real u) [] real:
d the product of a scalar and a vector 4
(int m = lwb u, n = upb u ;

loe [m:n] real ru ;
for i from m to n do ru [I] := r x u [i] od;
ru) ;

= ([] real u, real r) [] real:
4 the product of a vector and a scalar 4

r xu;

= ([] real u, real r) [] real:
4 the quotient of a vector and a scalar 4

ux(ljr);

= (ref [] real u, [] real v) ref [] real:

Ch.S.S.l

if int m = lwb u, n = upb u ;
m = lwb v 1\ n = upb v .

then for i from m to n do u [i] +:= v[i] od;
u

else error; skip
fi;

= (ref [] real u, [] real v) ref [] real:
if int m = lwbu, n = upb u ;

m = lwb v 1\ n = upb v
then for ifrom m to n do u [i] -:= v [i] od;

u
else error; skip
fi;

= (ref [] real u, real r) ref [] real:
(for i from lwb u to upb u do u [i] x:= r od ; u) ;

= (ref [] real u, real r) ref [] real:
(for i from Iwb u to upb u do u [i] /:= r od ; u) ;

Ch.B.5.1 EXAMPLES

(10) op x = ([] real u, v) real:
ct the innerproduct of two vectors ct
. if· int m = Iwb u, n = upb u ;

m = Iwb v A n = upb v
then long real inpr := long 0 ;

for i from m to n
do inpr +:= leng u [i] x leng v [iJ od;
shorten inpr

else error; skip
fi;

(11) op norm = ([] rea! u) rea!:
ct the euClidean norm of a vector ct

sqrt (u xu) ;

(12) op e = ([] real u) [J real:
ct a unit-vector in the direction of the given vector 4

u / norm u;

(13) proc norm = (ref [] real u) ref [] real:·
ct a reference to a vector divided by its norm

i.e., u := u'/ norm u ct
(rea! normu=: norm it ;

305

fori from Iwbu to upb u do U [i] /:= normu od; u) ;

(14) op =

(15) op:J:

(16) op pari

= ([] real u, v) boo!:
eps norm (u-v);

= ([] rea! u, Ii) boo!:
. i(u,= v);

= ([] real u, v) boo!:
eu=ev;

(17) op perp =([] real u, v) bool:
eps (u x v) ;

4' for eps applied to a reaL
see 8.4.1 (17)4'

4' for the priority of parI,
see 8.4.1 (1) 4'

306 EXAMPLES Ch.S.S.2

(18) proe en-or = void: e some action interrupting or halting the elaboration
of the program signalizing that two vectors or .
matrices are of incompatible size e ;

8.5.2. Operations on matrices and vectors

(1) op +

(2) op-

(3) op x

(4) op x

= ([,] real a, b) [,] real:
4 the sum of two matrices 4

if int mi = I Iwb a, m2 = 2 Iwb a,
ni = I upb a, n2 = 2 upb a ;

m2 = 2 Iwb b 1\ n2 = 2 upb b
then loe [mi :nl, m2:n2] real s;

for j from m2to n2
dos[,j] :=a[,j] +b[,j] od;s

else en-or; skip
fi;

= ([,] real a, b) [,] real:
4 the difference of two matrices 4

if int ml = 1 Iwb a, m2 = 2 Iwb a,
ni = I upb a, n2 = 2 upb a ;

m2 = 2 Iwb b 1\ n2 = 2 upb b
then loe [ml:nl, m2:n2] real d;

for j from m2 to n2
do d [,j] : = a [,j] - b [,j] od ; d

else en-or; skip
fi;

= (real r, [,] real a) [,] real:
It the product of a scalar and a matrix It

(int mi == llwb a,m2 == 2 lwb a, ni = I upb a, n2 = 2 upb a ;
loe [mi :nl, m2:n2] real ra ;
for j from m2 to n2 do ra [,j] := r x a [,j]. od ; ra) ;

= ([,] real a, real r) [,] real:
it the product of a matrix and a scalar it

r x a;

Ch.8.S.2

(5) op +:=

(6) op -:=

(7) op x:=

(8) op x

(9) op x

EXAMPLES

= (ref [,] real a, [,] real b) ref [,] real:
if int mi = Ilwb a, m2 = 2 Iwb a,

ni = 1 upb a, n2 = 2 upb a ;

307

m2 = 21wb b 1\ n2 = 2 upb b
thenforjfromm2ton2doa[,j] +:=b[,j] od;a
else e"or; skip
fi;

= (ref [,] real a, [,] real b) ref [,] real:
if int mi = 1 Iwb a, m2 = 2 lwb a,

ni = 1 upb a, n2 = 2 upb a ,.
m2 = 2 lwb b /I. n2 = 2 upb b

thenforjfromm2ton2doa[,j] -:=b[,j] od;a
else e"or .. skip
fi;

= (ref [,] real a, real r) ref [,] real:
(for j from 2 Iwb a to 2 upb a do a [, j] x:= r od ,. a) ,.

= ([,] real a, [] real u) [] real:
~ the product of a matrix and a column-vector ~

if int ml = 1 Iwb a, m2 = 2 Iwb a,
ni = 1 upb a, n2 = 2 upb a ;

m2 = Iwb u 1\ n2 = upb u
then loc [mI:nI] real au ,.

for ifrom mi toni doau[i] :=a[i,] xu od;au
else e"or; skip
fi;

= ([] real v. [,] real a) [] real:
~ the product of a row-vector and a matrix ~
if int mi = 1 lwb a, m2 = 2 lwb a,

ni = 1 upb a, n2 = 2 upb a,.
Iwb v = mi 1\ upb v = ni

then loc [m2:n2] real va ;
for j from m2 to n2 do va [j] := v x a[, j] od; va

else e"or; skip
fi;

-------------- -------- -------------------

308 EXAMPLES Ch.8.S.3

(10) op x =([,] real a, b) [,] real:
¢ the product of two matrices ¢ .

(int ml = llwb a, nl = 1 upb a, p2 = 2lwb b, q2 = 2 upb b;
loc.[ml:nl,p2:q2] realab;
for k from p2 to q 2 do ab [,k 1 : = a x b [, k] od; ab) ;

(11) procicoi =(ref [,] real a, intjl,j2) ref [,] real:
¢ interchanges a [,jl] and a [,j2] ¢

([llwb a:lupb a] real u := a[,jl] ;
a[,jl] :=a[,j2] ;a[,j2] :=u;a/;

(12) proc irow = (ref [,] real a, int ii, i2) ref [,] real:
¢ interchanges a [il ,] and a [i2 ,] ¢

([2lwb a:2 upb a] real v := a[ii ,] ;
a[ii,] :=a[i2,] ;a[i2,] :=v;a);

8.5.3. Operations on square matrices

(1) op zero = (ref [] real u) ref [] real:
(for i from lwb u to upb u do u [i] := 0 od ; u) ;

(2) op zero = (ref [,] real a) ref [,] real:
(for i from llwb a to 1 upb a do zero a [i,] od; a) ;

(3) op unit = (ref [,] real a) ~ef [,] real:
if int ml = 1 lwb a, nl = 1 upb a ;

ml = 2 lwb a /\ nl = 2 upb a
then zero a ; for k from ml to nl do a [k, k] : = 1 od;

a
else error; skip
fi;

(4) proc iroco = (ref [,] real a; int i, j) ref [,] real:
¢ interchanges a [i, 1 and a [,j] ¢

if int ml = Ilwb a, nl = lupb a ;
ml = 2 lwb a /\ nl = 2 upb a

then loc [l:n] real u := a[i,] ;
ali, 1 :=a[,j) ;a[,j) :=u;
a

else error; skip
fi;

(h.8.S.3 , EXAMPLES 309

(5) op trnsp = (ref [,] real a) ref [,] real:
¢ transposes the matrix a ~

if int ml = llwb a, n1 = 1 upb a ;
m1 = 2 lwb a /\ n1 = 2 upb a

then for k from m1 to n1 - 1
do iroco (a[k:n1, k:n1], k, k) od;
a

else error; skip
fi ;

(6) proc crout = (ref [,] real a, ref [] int p) real:
¢ By the method of Crout with row interchanges the

square matrix a is replaced by its triangular decompo­
sition a := I x u with all u[k,k] = 1. The vector p
gives as output the pivotal row indices; the k-th pivot
is chosen in the k-th column of I such that
abs l[i,k] / row norm is maximal. The procedure
crout yields the value of the determinant of a ¢

if int m1 ;= 1 lwb a, n1 = 1 upb a ;
m1 ;= 2 lwb a /\ n1 = 2 upb a
/\ m1 = lwb p /\ n1 = upb p

then fm1:n1] realnorma;
fori from m1 to n1 do norma [i] := norm a [i,] od;
real determinant := 1, r, pivot;
for k from m1 to n1
do int k1 = k-l ; ref intpk = p[k] ; real max := -1 ;

ref [,] reaIJ=a[,m1:k1], u = a[m1:k1,]
ref [] real ak = a [k,] ka = a [, k]

lk = l[k,] ku = u [, k]
for i from k to n1
do if (r := abs (ka [i] -:= l[i,] x ku) /

norma [i]) > max

then max:= r; pk := i
fi

od;
if pkt. k
then norma[pk] := norma[k] ;

irow (a, pk, k) ;
determinant := - determinant

fi;

310 EXAMPLES Ch.8.S.3

pivot:= kaLk] ;
for j from k + 1 to n1
doak[j] -:=(lkxu[,j))/:=pivotod;
determinant x:= pivot

od;
determinant

else 0
fi;

(7) op det = ([,] real a) real:
4' the determinant of a square matrix 4'

(int m1 = 1 lwb a, n1 = 1 upb a;
[m1:n1, m1:nJ] reallu := a;
crout (lu, loc[m1 :n1] int)) ;

(8) op invert = (ref [,] real a) ref [, 1 real:
4' a reference to the inverted matrix a whose triangularly

decomposed form I x u and pivotal indices
[m1 :n1] int p are obtained by a call of the procedure
crout (6); the inverse matrix supersedes the given
matrix a 4'
if int m1 = 1lwb a, n1 = 1 upb a; [m1 :nJ] int p ;

crout (a, p) :j: 0
then [m1 :n1] real"; cc;

for k from n1 by -1 to m1
do int k1 = k + 1 ;

ref [..] real as :;; a [k1 : n1, k1 : n1] ;
ref [] realar=a[k, k1: n1J,ac=a[k1: n1, k] ;
refrealakk=a[k, k] ;
int m = n1 - k; .
for i from m1 to m
do "[i] := - (ar xas[, i]);

. cc[i] := - (as[i,]x ac) / akk
od;
ar:=rr[: m] ;
akk := (1 - ar x ac) / akk ;
ac:= cc[: m]

Ch.8.6

(9) op inv

EXAMPLES

od;
for k from n1 by -1 to m1
dointpk=p[k] ;

if pk :j: k then icol (a, k, pk) fi
od;
a

else error; skip
fi;

= ([,] real a) [,] real:
¢ an inverted copy of the given matrix a, which itself

remains unchanged ¢
(int m1 = llwb a, n1 = 1 upb a,

m2 = 2 lwb a, n2 = 2 upb a ;
loc [m1 :n1, m2:n2] real copya := a;
invert copya) ;

Vertical readers, please turn to 1.6.

8.6. Examples of transput

8.6.1. The happy family

311

This example is intended to show some of the things that can be done with
formatted trans put. The techniques shown are not necessarily the best ways
of producing the particular outputs of this program, but they exemplify -
methods which may well be valid in more. realistic situations.

The example concerns the history of the Fitzwilliam family, and the
relationships between its members (or at least those relationships which they
were disposed to publicise). We have eschewed the use of generators (in case,
being a vertical reader, you have not yet come upon 5.7.2), but we did find it
necessary to use identity-relations (5.7.4), and these are explained to you at
their first occurrence.

begin
comment This example concerns people: comment

mode person = struct (string surname, given ¢ name ¢,
ref person father, mother, wife ¢ or husband ¢,
flex [1 :0] ref person children,
bool dead, male);

bool male = true, female = false, alive = false, dead = true;
ref person nobody = nil;

------ ----------- -------- ------ ----------- --_._-----_._---

312 ··.EXAMPLES Ch.8.6.1

comment Sometimes it will be convenient to have a person's given name and
surname together: comment

proc names = (ref person pers) struct (string given, surname):
(given of pers, surname of pers),;

comment All our formal-parameters will be of mode ref person rather
than person, to save making unnecessary. copies of persons (which are
rather large) at run time. comment'
comment Here is a procedure that will be used to add a little random spice
to the messages that we shall produce. It yields a random integer in the
range specified by its parameter. comment

proc randint = (int range) int :.
1 + entier (random x range) ;

read(last random); 4' to start it off 4'
comment This program is goingtoprint texts of variable length. We
therefore have to take a newline whenever a line is full (after 80 characters,
say), but before doing this we must go back to the last space and transfer
the whole of the word which was about to be split onto the next lirie.
Therefore, we shall output into a [] char instead of directly to the book.
comment

file file; [1 :80] char buffer;
for i to upb buffer do buffer [i] :=":." od;
associate(file, buffer); .

comment Whenever the buffer becomes full, its contents (except for the
split word) must be printed in t~e real book. comment

procempty buffer = (reffilef)bool:
(int j := upb buffer;

if char number (f) > j
then while buffer [j] :j:":." doj -:= 1 od
fi;
print ((buffer [:j], newline)) ;
reset (I);
put (f, buffer [j + 1:]);
for i from upb buffer - j +1to upb buffer
do buffer [i] :=":." od;
true); ,

online end (file, empty buffer);

comment The [] char associated with file is like a: book containing one page
containing one line. As soon as we call newline(/ile), therefore, We shall find

J

Ch.S.6.1 EXAMPLES

that the page has overflowed (the current position will actually be at
(1,2,1)). comment

on page end(file, empty buffer);

struct(int day, [1:3] char month, intyear) date;
comment We shall frequently have occasion to print dates. Here is a
format to do it. comment

format datef = $ g(O)x, 3ax, 2d $;

proc generate = (ref person infant, father, mother,
string given name, bool male) void:

if male of father 1\ I male of mother 1\ I dead of mother

313

then op plusab = (ref flex [] ref person names, ref person pers) void:
names :=

infant :=

(int upb = upb names;
[1 :upb + 1] ref person new names;
new names [1 :upb] := names;
new names [upb + 1] := pers; new names);

(s'urname of mother,
given name,
father,
mother,
nil,
(), ¢ not yet! 4'
alive,
male);

children of father plusab infant;
children of mother plusab infant;
if wife of father :=: mother

comment That was an identity-relation. If you have not yet read 5.7.4, please
accept our assurance that" :=: " is a sort of operator which yields true-if the
two names which are its operands in fact are the same name. In this case, the
operands were of mode ref person, and if the persons refed to turn out to be
the same person comment

then putf(file,
($ 21 "Birth. "

I 4x g $, surname of infant,
$ ". On " f(datef) $, date,
$ " to " g $, given of mother,.
$ ", wife of " g $, given of father,

I.LA.-ll

-------.-.--

314

comment

EXAMPLES

$ ", a " c ("darling",
"bouncing",
"beautiful",
"tiny") $, ran din t(4),

$ x b("son", "daughter")
"-" $, mate,

$g". "$, given name))

else no comment comment
fi

Ch.8.6.1

comment The above call of putfis intended to produce messages such as:

Birth.
Fitzwilliam. On 3 MAR 28 to Eleanor, wife of

Ebenezer, a beautiful son - Japhet. comment

else ,stop ¢ the birth was quite impossible ¢
fi; ¢ end of generate ¢

comment The following procedure is intended to print the name of some
person, together with details of his parents. However, if there is some doubt
about the marital state of the parents, then we shall draw a discreet veil
over the matter by using a different format. comment

proc details = (ref person pers) void:
if mother of pers :=: ref person(wife of father of pers)
then bool sex = male of pers;

putf(file,
($ g ", " $, given of pers,

$ c("only", "youngest", "younger",
" eldest", "elder", '/1') x $,

(intj := 0, k;
ref flex [] ref p~rson children =

children of father of pers;
int upb = upb children;
for i to upb ¢ each brother/sister of pers ¢
do ref person child = children [i] ;

(male of child = sex Ij +:= 1);
(given of child = given of pers \ k : = j)

od;
(j = 1 \1 ¢ only ¢
\: k= j \ 2 + abs (j = 2) ¢youngest or younger ¢
I: k=114 + abs (j=2)¢eldest or elder¢
\ 6)),

Ch.8.6.1 EXAMPLES

$ b("son", "daughter")
"of" $,

$ "d'i, $ g an ,gx, g ,

else putf(file, ($ g x, g $,
fi; 4' end of details 4'

sex,
given of father of pers,
names(mother of pers)))
names(pers)))

proc marry = (ref person bride, groom) void:
if male of groom A I dead of groom

A I male of bride A I dead of bride
A (wife of groom :=: nobody I true

I dead of wife 9f groom)
A (wife of bride 4' sic 4' :=: nobody I true

I dead of wife of bride)
then wife of groom := bride;

wife of bride := groom;

comment We are now going to produce a message such as:

Marriage.

315

Fitzwilliam/Jones. On 1 APR 24, Eleanor, only
qaugt1ter of Emrys and IVJyfanwy Jones to Ebenezer,
eldersnn of Aloysius and Anastasia Fitzwilliam.

comment

putf(file,
(S 21"Marriage."

I 4x g "/", g". On " $, surname (If groom, surname of bride,
$ f(datef) ", " $, date));

details(bride);
put(file, " to ");
details(groom);

('{','/ "") put/,e,. ;
surname of bride := surname of groom

else stop 4' the marriage is impossible, or illegal, or both 4'
fi; 4' end of marry 4'

proc kill = (ref person bloke) void:

I.I.A.-Il*

if I dead of'bloke
then dead of bloke := true;

bool sex = male of bloke;
bool wa4' wife alive 4' =

(wife of bloke :=: nobody I false
II dead of wife of bloke);

'316 EXAMPLES Ch.8.6.1

string 4' name of 4' wife = (wa I given of wife of bloke I "");

comment The following call of putf is intended to produce messages such as:

Death.
On 21 DEC 68, Ebenezer, elder son of Aloysius

and Anastasia Fitzwilliam, mourned by his devoted
wife Eleanor comment

putf(file,
($ 21 "Death."

14x 'il On" f(datef) ", "$, date));
details(bloke);
if wa
then putf(file,'

fL-

($ ", mourned by "
b("his", "her") x,
c(." everloving", "devoted",

" thankful") x,
b("wife", "husband"),
xg$,'

sex, randint(3), sex, wife))

comment If bloke has surviving descendants, the dirge continues in the
following vein:

and his children Shem, Ham and Japhet aYJ.d his
grandchildren Ananias, Azarias and Misael and his
great-grandchild Tom. comment

bool mp 4' mourners printed,4' := wa;

comment The following proc calls itself recursively for each generation.
comment

proc print children of= ([] ref person parents,
intgeneration) void:

begin int i := 0, j := 0;
[1:(inti :=0;

for j to upb parents
do i +:= upb children of parents [j] od;
i)] ref person children, living children;

for k to upb parents

J

Ch.8.6.1 EXAMPLES

do for l to upb children of parents [k]
do ref person child =

317

(children of parents [k]) [l] ;

od

children [i +:= 1] :=
(I dead of child
I living children [j +:= 1] := child
I child)

od;
ifj:j: 0
then 4' there are living children to be printed 4'

putf(file,

fi;

($ f(mp I $ " and" $ I: wa I $ "," $
1$ " mourned by" $),

x b("his", "her") x,
n(generation-I) "great-"
f(generation :j: 0 I $ "grand" $ I $ $),
"child" f(j:j: 1 1$ "ren" $ 1$ $) x,
n(j) (g,f ((j -:= 1) + 1

sex,

I $ $, $ " and" $
I $ ", " $)) $,

([1: j] string names;
for ito j do names [i]

given of living children [i] od;
names)));

mp := true

if upb children :j: 0
then print children of (children, generation + 1)
fi

end 4' ofprint children of 4';
print children of (bloke, 0);
put(file, ".")

else stop ¢ the bloke was dead already 4'
fi; ¢ end of kill ¢

comment Now we are ready to start our tale. Since we do not wish to go right
back to Adam, we shall start by declaring the story so far: comment

person aloysius := ,
. ("Fitzwilliam", "Aloysius", skip, skip, skip, (), dead, male);

318 EXAMPLES Ch.8.6.1

person anastasia :=
("Fitzwilliam", "Anastasia", skip, skip, aloysius, (), dead, female);

person ebenezer :=
("Fitzwilliam", "Ebenezer", aloysius, anastasia, nil, (), alive, male);

person alaric : =
("Fitzwilliam"; "Alaric", aloysius, anastasia, nil, (), alive, male);

comment We were unable to include anastasia as aloysius; wife when initializing
him, because her declaration had not been elaborated at that time (cf. 3.2.E7).
We can rectify this, and the similar case of their children, now comment

wife of aloysius := anastasia;
children of aloysius := children of anastasia := (ebenezer, alaric);

comment We shall declare the next family differently, so avoiding this
problem: comment

person emrys, myfanwy, frederick, eleanor;
emrys := ("Jones", "Emrys", skip, skip, myfanwy, (frederick, eleanor),

dead, male);
myfanwy := ("Jones", "Myfanw)/', skip, skip, em'rys, children of emrys,

alive, female);
frederick:= ("Jones", "Frederick", emrys, myfanwy, nil, (),

alive, male);
eleanor := ("Jones", "Eleanor", emrys, myfanwy, nil, (),

alive, female);
person shem, ham, japhet, ananias, azarias, misael; tom;

comment These are the unborn generations, and are therefore undefined.
comment

date := (1, "APR", 24); marry(eleanor, ebenezer);
date := (1, "JAN", 25); generate(shem, ebenezer, eleanor,

, "'Shem", male);
comment We don't waste much tiine in this program. comment

date := (31, "MAR", 26); generate(ham, ebenezer, eleanor,
"Ham", male);

date := (3, "MAR", 28); generate(japhet, ebenezer, eleanor,
"Japhet", male);

comment This will produce the example given 'in the proc generate. comment
date := (14, "JUL", 48); , '

comment Now we need to declare some eligible young ladies. comment
person a, b, josie, rosie;
josie := ("Smith", "Josephine", a, b, nil, (), alive, female);
rosie := ("Smith", "Rose", a, b, nil, (), alive, female),'
marry(josie, shem);

Ch.8.7 EXAMPLES

date := (23, "JAN", 49); generate(ananias, shem, josie,
"Ananias", male);

comment Well, perhaps it was premature. comment
. date := (14, "DEC", 50); generate(azarias, shem, josie,

"Azar/as", male);
date := (29, "FEB", 52);,kill(josie);

comment Alas! But ... comment
date := (28, "DEC:', 52); marry(rosie, shem);

comment There are some interesting ecclesiastical problems in that one.
comment

date := (14, "JAN", 54); generate(misael, shem, rosie,
"Misael", male);

comment Here is a not-so-eligible young lady: comment
person x := (skip, skip, skip, skip, nil, skip, alive, female); .

319

date':= (20, "DEC", 68); generate(tom, azarias, x, " Tom", male);
comment And so the permissive society has arrived. Nothing will be printed.
comment

date := (21, "DEC", 68); kill(ebenezer);
comment Poor chap! This will produce the example given in the pro<: kill.
comment

newline(file); newline(ftle) ¢ to ensure that the final contents of buffer get
printed ¢

end

Vertical readers, please turn to 1. 7.

8.7. Examples of everything

8.7.1. Analytic differentiation

This example is intended to illustrate how generators can be used to
achieve more efficiently results which would formerly have necessitated the
use of some list-processing language.

The following program will accept a series of expressions punched in a
convenient notation, differentiate each one, and print the result in the same
notation.

begin
mode formula = struct(operand left, int operator, operand right);
intplus = 1, minus = 2, times = 3, over = 4, to = 5;
mode operand = union(ref formula, var, const);
mode var = ref struct(string s, var next);

320 EXAMPLES Ch.8.?!

comment We propose to ensure below that all var values refer to structures
containing distinct strings. Hence equality of two such strings implies identity
of their vars. comment

mode const = struct(real r);

comment The mode const is different from the mode real in order that
the operator + to be declared between operands should not be confused
with the already existing operator + between reals. I.e. const, declared
thus, is not firmly related to operand (4.3.3), and neither is var. comment

op con = (real a)const: (const b; r of b := a; b);
op = = (consta, b)bool: (r of a = r of b);
const zero = con 0.0, one = con 1.0;
op + = (operand a, b) operand:

begin
case a in
(const c):

case bin
(const d): con (r of c + r of d)

t This is the one case where we can use the
standard version of + (between two reals)
to do some real arithmetic. ~

out (c = zero I b I gotoformula) ~ 0 + b = b ~
esac

out case b in

esac
exit

(const d): (d = zero I a I goto formula) ~ a + 0 = a t
out goto formula
esac

formula: t No simplification was possible. We now have no alternative
but to generate a new piece of tree on the heap ¢

heap formula:= (a, plus, b)
end 4' of+ t;

op - = (operand a, b) operand:
begin
case bin
(const d):

case a in
(const c):

(real x := r of c - r of d;
(x > 0 I con x I goto formula))

Ch.8.7.1 EXAMPLES

out (d = zero' a , goto formula) ¢ a - 0 = a ¢
. esac ,

(var t):
case a in
(var s): (s :=: t , zero' go to formula) ¢ a - a = 0 ¢
out go to formula
esac

out goto formula

321

4' We do not attempt to produce the value -b here when a is zero,
because our system has no provision for a monadic minus. 4'

esac
exit

formula: heap formula:= (a, minus, b)
end ¢ of - 4';

op x = (operand a, b) operand:
begin
case a in
(const c):

case bin
(const d): con (r of c.x r of d)
out (c = zero' zero ¢ 0 x b = 0 ¢

,: c = one' b ¢ 1 x b = b ¢
, go to fo~mula)

esac
out case bin

esac
exit

(const d):
(d = zero' zero ¢ a x 0 = 0 ¢
,: d = one' a ¢ a x 1 = a ¢
, goto formula)

out go to formula
esac

formula: heap formula := (a, times, b)
end ¢ ofx 4';

op / = (operand a, b)operand:
begin
case a in
(const c):

case bin

322 EXAMPLES

(const d): con (r of c / r of d)
out (c = zero I zero I go to formula) 4' 0 / b = 04'
esac

out case bin

esac
exit

(const d):
(d = zero I goto help 4' a/O is undefined 4'
I: d = one 1 a 4' a/I = a 4'
1 go to formula)

out got%rmula
esac

formula: heap formula:= (a, over, b)
end 4' of /4';

op t = (operand a, b)operand:
begin
case b in
(const d):

case a in
(const c): con exp(ln(r of c) x r of d)
out (d = zero lone 4' at 0 = 1 4'

esac

I: d = one 1 a 4' at 1 = a 4'
1 goto formula)

out goto formula
esac
exit

formula: heap formula := (a, to, b)
end 4' of t 4';

Ch.8.7.1

comment We shall now arrange to read in expressions consisting of strings
(for variables), constants, the operators +, -, x, /, and t, and pairs of
parentheses, each expression being terminated by a semicolon. Spaces and
newlines will be ignored in plausible places. Each expression read in is to
be stored, on the heap, as an operand. comment

make term (stand in, "+-x/t() ... ;");
comment These will be regarded as terminating a variable. comment

on logical file end (stand in, (ref file f)bool: goto stop);
comment When we have read all the expressions, we shall have finished the
program. comment

rh.S.?l EXAMPLES

var string list: = nil;
comment We shall use this to record all the variables met so far. Initially,
it points to an empty chain. comment

proc get var or canst = union(var, const, void):
begin string s, real x, file fool := stand in,

var pointer := string list;
on char error(fool,

(ref file f, ref char c)void:
(backspace(f); goto notreal));

comment We had to invent fool, for local use, to avoid scope troubles.

323

We are now going to try to read a real. If the next thing on the input stream
(ignoring any spaces and newlines) is not a constant, in some readable format
(see 7.1.2), the char error event will be called, and we shall presume it was a
variable. comment

get (fool, x);
con x exit ¢ con x is now united to union(var, const, void) ¢

notrea/: read(s); ¢ up to one of the tenn chars, or end of line. ¢
if s = "', then empty

--! comment We met a term char straight away. comment
elif while (var(pointer) ::j:: nil

I s of pointer :j: s I false)
do pointer :=.next of pointer od;

comment We see if we have had this string before. comment
var(pointer) ::j:: nil then pointer

comment We have, so we yield the old var containing it. comment
else string list := heap struct(string s, var next)

:= (s, string list)
comment It is a newcomer. We have made a copy of it on the heap and
inserted it at the start of the chain. comment

fi
comment The value of this conditional·clause is either a var or is empty.
It is now united to union (var, const, void) comment

end 4' of get var or const 4';

comment The next procedure is going to read an operand. It reads the
first variable or constant itself, with the following operator, and then
calls itself recursively to deal with the rest. Its int formal-parameter is
u~ed to convey the priority of the operator currently being processed.
comment

324 EXAMPLES

proc read operand = (int priority)operand:
begin operand operand, char c, int operator;
case get var or const in
(constx): operand :=x,
(var s): operand := s,
(void):

if read(c); c =1= " (" then go to help
else operand := read operand(1)
fi

comment If we meet an opening parenthesis, we are to start again at
priority one. comment

esac;
loop: while read(c);

comment get the operator after the first operand. comment
if I char in string (c, operator, "-,- ;)+-x/t")
then go to help
fi;
operator = 1

do skip od ¢ ignore spaces ¢;
operator -:= 2;

¢ ; = a
)=1
+=2
-=3
x=4
/=5
t=6¢

if operator";;; priority

Ch.8.7.1

then (operator> 1 V operator <priority I backspace(stand in));
operand

comment If the next operator is of lower or equal priority to the one
currently on hand, we ignore it for the time being, and yield what we
have got so far. This is in fact the only exit from this procedure. Note
that; and) are bound to take this path. comment

else operand:= case operator-1 in
operand + read operand(2),
operand - read operand(3),
operand x read operand(4),
operand / read operand(5),

Ch.S.7.1

fi

EXAMPLES

operand tread operand(6) esa~;
goto loop

end k o!read operand 4';
comment Suppose we were now to write:

var x := (read operand(O) I (var s): s I help);
operand!= read operand(O)

and suppose that the book being read contained, at its current position:

ex;
e:x1'2 x(ex-2)j (fred-bill);

then, after elaboration of these phrases, we should have the following
situation:

string list

ref var ref var

operand
ref formula

325

---------,

I
• - - - - - - - - - - _I

f
I---,.......,..-----.,

'--------~

L ___ ~ _______________________ .1

Note that everything inside the dotted line is on the heap.

326 EXAMPLES Ch.S.7.1

Now we shall write our procedure to differentiate an operand with respect
to a variable. comment

proc diff= (operand d, ¢ wrt ¢ var x)operand:
case d in
(const): zero,
(var s): (s :=: x lone I zero) ,

comment The use of an identity-relation is quick and safe here because we
ensured, during get var or const, that if s and x refer to structures
containing identical strings, then they do in fact refer to the same
structure comment

(ref formula form):
begin ref operand left = left of form,

right = right of form;
case operator of form in

¢ + 4' diff(left, x) + diff(right, x),
¢ - 4' diff(left, x) - diff(right, x),
¢ x 4' diff(left, x) x right + diff(right, x) x left,
4' / ¢ (diff(left, x) - diff(right, x) x d) / right,
4' t 4' begin

proc checkforx = (operand!, var x)bool:
(fl
(ref formula form):

checkforx(left of form, x) V.
checkforx(right of form, x),

(var s): s :=: x
I false);

comment That was a conformity-clause, in case you didn't notice.
This proc yields true if f is a function of x. comment

if checkforx(right, x) then goto help
comment The present program does not purport to cope with this case.
comment

esac;

esac
end

else right x left t (right - one) x diff(left, x)
fi
end

comnient Now we ought to have a procedure to print our results comment
proc print operand = (operand operand, int priority)void:

case operand in

Ch:8.7.1 EXAMPLES

(const x): printf(($2zd.3d$, r of x)),
(var s): print(s of s),
(ref formula f):

327

if int i; (i := entier ((operator of f + 1) /2)) <priority

esac;

then print(" (1/);
print operand(f, 0);
print(")")

else print operand(left off, i);
print(" +-x/t" [operator of fl);
print operand(right of f, i)

fi

comment Now we come to the rest of the body of Ollr program (you will
have noticed that it actually started when we caned make term a little
way back). comment

do ~ ad nauseam, or at least until the logical file end event happens ~
newline(stand out);

od;

case read operalJd(0) in
(var x): print operand(difffread operand(O), x), 0)

out go to help
esac

help: print(" This is not a legitimate case for this program")
comment In the best circles, the program should here print out some more
informative diagnostic message, but to include such in our present example
would be tedious rather than instructive. comment

end

Suppose, now, that this program were to be offered as input the piece of
text we discussed earlier. Then, during the elaboration of the print operand,
its formal-parameter operand would be as in the scheme on the next page.

The bottom part of the picture is, of course, that which you saw in the
previous diagram.

Note that all the items shown here are on the heap, and that at this instant
there is only one of them that is pOinted to, and which is therefore available
for garbage colle,ction. As soon as print operand has been elaborated, they
will all become garbage.

If you follow through the operation of the program on this example, you
will see that the number of items generated would have been much greater
had it not been for the facilities for dealing with singular cases (1 x x, a + 0,

Ch.B.7.) EXAMPLES 329

etc.) in the operation-declarations. When the elaboration of print operand is
over, it will have printed the following:

2.000x ex x (ex-'- 2.ooo)t (fred-bill) + (fred-bill)
x (ex- 2.000) t (fred-bill- 1.000) x ex t 2

For a slightly different treatment of problems of this nature, you might
now like to study example R 11.10 in the Report.

--

APPENDICES

APPENDIX 1. Alternative Representations

As explained in 0.2 and 1.3.3, the Report provides representations for all
the symbols needed to construct an ALGOL 68 program, and in this
Introduction we have adhered to these (as indeed will most implementations).
In many cases, however, the Report provides two or more representations for
the one symbol. Usually, one is a bold word (1.3.2) and the other a distinct
graphic mark. These bold words are described as "reserved", which means
that you are forbidden to redeclare them as mode-indications or operators of
your own (imagine the ambiguities that would arise if you could declare begin
to be an operator). Here then is a list of all the reserved bold words, together
with their graphic alternatives, if any.

begin end
if then elif else fi
case in ouse out esac
for from by to while do od
par
exit
at
is
isnt
of
goto go to
skip
comment co
pragmat pr
true false empty
nil

()
(I I: I)
(II: I)

@

::j:: :j=:

¢#

o

3.2.4.1
3.2.4.2
3.2.4.3,3.6
3.5.2
3.7.2
3.1.4
5.5.1.3
5.7.4
5.7.4
5.4.2
4.7.1
5.1.4.2
1.3.2
1.3.2
5.1.1.1,5.6.1
5.2.3

long short refloc heap struet flex proc union 2
mode prio op 2.3,4.3.1,4.3.2
int real bool char compl bits bytes string 2
serna file channel format 3.7.2,7.2.1,7.6.2
void 1.2.3
[] () 5.5.1.3
10 \ 5.5.1.1

(Le. a blank) .: 5.5.1.1

The bold words defined in the standard-prelude as operators, however, are

330

Ap.1 APPENDICES 331

not reserved (you can redeclare ,them if you like). Moreover, where several
symbols are declared as operators with the same function, they really ought
not to be regarded as alternative versions of the same symbol for, if you
redec1are the meaning of not, for example, the meaning ofl and of­
remains unchanged, unless you redeclare them too. Bearing this in mind, we
give now a list of all those functions for which several operators are defined:

I not 6.1.1
entier L 6.1.1

1 +x +* 6.1.2
t ** up 6.1.2
shl up t 6.1.2
shr down .j. 6.1.2

% over 6.1.2
mod -';-x %x -.;-* %* 6.1.2
x * 6.1.2
elem 0 6.1.2
< It 6.1.2
< <= Ie 6.1.2
;;;. >= ge 6.1.2
> gt 6.1.2

eq 6.1.2
:j: j= ne 6.1.2
1\ & and 6.1.2
V or 6.1.2
timesab x:= *:= 6.3
overab .. %:= 6.3
divab j:= 6.3
modab -';-x:= %x:= -.;-*:= %*:= 6.3
plusab +:= 6.3
plus to +=: 6.3
minusab -:= 6.3
Iwb L 6.3
upb I 6.5

.. _ .. _ _------------------

332 APPENDICES

APPENDlX2. Sample Declarations

The following is a summary of the sample declarations introduced in
Chapter 0, with some others from R 1.1.2.

int i, j, k, m, n;
real a, b, x, y;
real e =.c a real value close to the base of natural logarithms,

i.e. 2.718281828 ... c;
bool p, q, overflow;
char c;
ref real xx, yy;
compl w, z;
fonnatf;
bytes r;
bits t;
mode vec = struct (real xcoord, ycoord, zcoord);
vec v1, v2, v3;
mode rational = struct (int numerator, denominator);
rational r1, r2, r3;
string s;
union (int, real) uir;
proc void task1, task2;
[1 : n] realx1,y1;
flex [1 : n] real a1;
[1 : m, 1 : n] real x2;
[1 : n, 1 : n] realy2;
[1 : n] int il;
[1 : m, 1 : n] int i2;
[1 : n] compl zl;
proc x or y = ref real: (random <. 5 I x I y);
proc ncos = (int i) real: cos (2 x pi x iln);
proc nsin = (int i) real: sin (2 x pi x iln);
procfinish = void: go to stop;
mode book = struct (string text, ref book next);
book draft;
op i = (int a) compl: (0, a);
op i = (real a) compl: (0, a);
princeton: grenoble: st pierre de chartreuse: kootwijk:
warsaw: zandvoort: amsterdam: tirrenia: north berwick: munich:

Ap.2

.J

Ap.3 APPENDICES 333

APPENDIX 3. Glossary

The Report defines a vast number of new technical terms. In this Informal
Introduction we have used those of them which we think could or should
come into general use within the computing community. We have also
inven ted one or two of our own (we hope they will be acceptable to you -
they are marked with an * in the lists below), and occasionally the meaning
of one of our terms differs slightly from its meaning in the Report (as marked
with a t below).

We define below the meaning of the principal terms. For the others, you
may foHow the references given to their "defining occurrences" in our text.
Usually, there are two such references - one to the basic concept in
Chapter I, and one toits practical realisation in Chapters 2 through 7.

1. Internal objects and modes

internal object 1.1.1

* instance (of a value) 1.1.1

mode 1.1.1 1.2.3

value 1.1.1

An object which is stored and
manipulated inside the computer;
i.e. an instance of a value.

a:=2: b:=2; There are now two
instances of the value "2". If
we assign to b a "J", then we
may say "an instance of 2 has
been superseded by an instance
of J", but not that "the value
of b, which was 2, is now 3".

The property of a value (and
therefore of an instance) which
defines the class to which it
belongs, i.e. the amount of
storage space it requires, its
compatibility with other values
with which it may be con­
fronted, etc. A mode Can also
be a property of an ex ternal
object if that object yields a
value of that mode.

The ultimate object processed
by the operations of the
language; c.g. a number, a
character. a structure, etc.

In our text, yve use formal~dec1arers (e.g. int, ref real, [J ref comp!) to
specify modes, and also to indicate values of those modes. There is no

I.I.A.-12

334 APPENDICES Ap.3

ambiguity. If we use such a declarer as a noun,it indicates (an instance of) a
value. If we use it as an adjective, it is a mode - "The mode of an int is int".

primitive modes 1.2.3 2.1.1 The built-in modes in terms
of which all other modes may
be constructed.

int
real
bool
char
bits
bytes
void
ref

'row or }
rowed
[]
struct
union
proc
long
slrort
string
serna
file
channel
format
primitive value

name

sub name

fixed name

flexible name

tranSient name

2.1.1
2.1.1
2.1.1
2.1.1
2.7.1
2.7.1
1.2.3

1.2.3
1.4.0 2.5.1

1.2.3 2.4.1
1.2.3 2.6.1
1.2.3 4.2.1
1.2.32.7.2
1.2.32.7.2"
2.5.3

} 3.7.2
7.2.1
7.2.1
7.6.2

1.1.1

1.4.1.2

2.5.2.1

1.5.3 2.5 .2.1

5.5.1.3

Prefixes used to construct de­
clarers (e.g. ref real, union
(int, real), proc (real) int) or to
specify all the modes of the
appropriate class (e.g. proc
modes., 'row of' modes, etc.), or
to indicate values of those
classes of modes.

Derived modes built into the
language.

A value of mode int, real,
bool, char, bits or bytes.

A value whose mode is ref
some other mode, and which
refers to a value of that other
mode.

If a name N refers to a multiple
(a structure) V then the sub­
names of N refer to the sub­
values (the fields) of V.

The bounds of a multiple
assigned to a fixed name must
match the existing bounds.

Assignation of a multiple to a
flexible name may change the
existing bounds.

A subname of a flexible name.

I

I

Ap.3

* structure }
structured value
struct

field
multiple value }

* multiple

element
subvalue

descriptor
routine

t constant

t variable

subscript
boundpair

2. External objects

APPENDICES

1.4.0 2.4.1

1.4.0
1.4.0.1.5.l

1.4.0 1.5.1
1.5.25.5.1.3

1.5.1
1.1.44.2.2

1.1.1 1.2.2.1

1.1.2.l 1.2.2.4

1.5,1
1.5.l

A value consisting of several
fields, each being a value of
some other mode.

335

A value consisting of a se­
quence of values, its "elements",
of some (same) mode, to-
gether with a descriptor.

A subset of the elements of a
multiple, as specified by a
different descriptor.

See under external objects.

The internal equivalent of a
routine-text .- a value of a
proc mode.

A value which has been ascribed
to an external object. Therefore,
no name refers to it, and it
cannot be changed. See also
under external objects.

An instance of a value to
which a name refers (so that
it can be changed), together
with that name.

Most of the terms defined below are in fact what the Report would class
as "paranotions" (see R 1.1.4.2). For this reason, at their defining occurrences
in our text they are enclosed between single quotes (e.g. 'serial-clause') and
they are hyphenated, whereas our defining occurrences of other technical
terms are in double quotes.

construct (or external
object)

program

particular-program

1.1.1

1.1

1.1 3.1

--_. ---------- -----

A part of a program text, as
classified below.

The program text provided by
the user, together with the
standard- and library-preludes
and the standard-postlude.

The program text provided by
the user, on its own.

336

standard-prelude

library-prelude

* standard-postlude

phrase
dedaration

* collateral-declaration

identifIer-declaration
identity-declaration
variable-declaration
routine-identity-

declaration
routine-variable­

declaration
mode-declaration

mode-indication

priority-declaration
operation-declaration

declarer

actual-declarer
formal-declarer

t descriptor

APPENDICES

1.1 4.1 6

1.1

1.1

1.1.3
1.1.32
1.1.3 2.1.2

1.1.22.2
1.2.22.2.1
1.1.2.1 2.1.2

1.2.3.1 4.2.2.1

4.2.2.1
1.3.3.1

1.3.3.1

1.3.3.3 4.3.1
1.3.3.24.3.2

2.1.22.2.22.5.2.2
1.2.22.2.1
1.5.1

Ap.3.2

The declarations already built
into the language.

Additional built in declara­
tions, peculiar to the particu­
lar implementation.
The administration of thc
completion of the program,
following the label stop.

A declaration or a clause.

A list of declarations, separated
by commas.

Ascribes a value to an identifier

Causes a mode-indication to
specify a mode.

A bold word that has been
declared to specify a mode.

Ascribes a routine to an
operator.

An externa:1 object which
specifies some mode.

At run time, an internal object
has to be kept for each mul­
tiple value and subvalue to
record· the values of its bounds.
This is called, in the Report, a
"descriptor". We also apply this
term to that .external object
which conveys the same
information, viz. the list of
boundpairs enclosed between
" [" and "I " which appears in
the actual-declarer of a 'row of
mode.

Ap.3.2 APPENDICES 337

boundpair 1.5.1
bound 1.5.1

parameter
formal-parameter 1.2.22.2.1
actual-parameter 1.2.2 2.2.1

clause
ENCLOSED-clause 3.2.4

closed-clause 1.1.33.2.4.1 A serial-clause enclosed be-
tween begin and end or "("
and ")".

collateral-clause 3.7.1
row-display 3.5.1
vacuum 3.5.1
structure-display 3.4

and-also-symbol 1.1.3
parallel-clause 3.7.2 A void-collateral-clause

preceded by par.

conditional-clause 3.2.4.2 if XXXX then XXXX else
XXXXfi

case-clause 3.2.4.3 case XXXX in XXXx, XXXX

~ out XXXX esac

I

conformity-clause 1.6.23.6
specification 3.6

loop-clause 3.5.2
serial-cla use 1.1.33.1 3.1.5

completer 3.1.4 } Constituents of serial-clauses.
label 3.1.2
go-on-symbol 1.1.3 3.1 A semicolon.

enquiry-clause 3.2.4.2
range 1.1.3 3.2.1 A piece of program text

(usually a serial-clause) which
demarcates the scope of the
variables which are locally
generated during its elabora-
tion.

reach 3.2.1 A range, with the exclusion of
all ranges contained within it.

unit 1.1.35.1
coercend 5.1.0.1

* quaternary 5.1.0.1 The same thing as a unit.

assignation 1.1.2.25.1.4.1

338 APPENDICES Ap.3.2

destination 1.1.2.2 The LHS of an assignation

source 1.1.2.2 The RHS of an assignation

identity.relation 1.7.25.7.4 :=: or :*:

routine-text 1.1.44.2.2.1
tertiary 5.1.0.1

formula 1.1.45.1.0.1 5.1.3
operator 1.1.4 6.1

monadic-operator 1.3.3.2 5.1.3 With one following operand.

dyadic-operator 1.3.3.2 5.1.3 Between two operands.

operand 1.1.45.1.3 A secondary or another
formula.

secondary 5.1.0.1
selection 5.4.2 of

field-selector 1.4.12.4.1
generator 1.2.2.3 5.7.2 The means of making storage

space available for variables.

loc generator 1.2.2.3 5.7.2.1
heap generator 5.7.2.2

primary 5.1.0.1
denotation 5.1.1.1 Denotations are provided for

ints, reals, bools, chars,
strings, bits, and the long(s)
versions (if any) of these.

cast 1.2.2.5 5.1.1.3
format-text 7.6.1 The specification of the layout

of the characters produced or
expected during transput.

picture 7.6.1 To be matched against a
single value.

insertion· 7.6.1
literal 7.6.1.1
alignment 7.6.1.2

frame 7.6.1.3
replicator 7.6.1.4
dynamic 7.6.1.4

replicator
t collection 7.6.1.4 A collection of pictures, to be

replicated.
identifier 1.1.25.1.1.2

Ap.3.2 APPENDICES 339

defining-identifier 3.2.3
applied-identifier 3.2.3 5.1.1.2

call 5.2.1 Of a procedure with parame-
ters.

slice 1.5,4 5.5.1.3
t indexer 1.5.2 5.5.1.3

trimscript 1.5.2.1 5.5.1.3
trimmer 1.5.2.1 5.5.1.3
subscript 1.5.2.1 5.5.1.3
revised-Iower-

bound 5.5.1.3
expression 3.1 5.1.0.1 A unit which yields a value.

statement 3.1 5.1.0.1 A unit which yields void.

t constant 1.2.2.1 A coercend (usually an identi-
fier) which yields a value which
is not a name. See also under
in ternal objects.

variable 1.2.2,4 A coercend (usually an identi-
fier) which yields a name. See
also under internal objects.

* procedure 4.2.1 A coercend (usually an iden ti-I
fier or a routine-text) which
yields a value of a PIOC mode.

* LHS 1.1.2.2 The left hand side of an
assignation or identity-declara-
tion.

* RHS 1.1.2.2 The right hand side.

symbol 1.3.1- The smallest external object,
out of which all the others are
constructed, e.g. a, +, begin,
etc.

* bold word 1.3.2 A symbol, made up of under-
lined or bold faced characters
(or otherwise), invented for use
as a mode-indication or an
operator.

indicator 1.1.1 an identifier, a mode-indication
or an operator.

comment 1.3.2 May be inserted between any
two symbols (except within a
denotation or an identifier).

pragmat 1.3.2

---------_. -----_._----

340 APPENDICES Ap.3.3

3. Technical terms

contraction 1.1.3 2.1.2 Omission of redundant declarers,
as in real a, b.

sUblanguage Appendix 4 A language (not ALGOL 68)
all of whose particular-pro-
grams are also particular-pro-
grams of ALGOL 68 and have
the same meaning [see R 2.2.2.c].

superlanguage Appendix 4
* to stop 1.3.2 To construct bold words out of

sequences of letters and digits
by underlining, prefixing with
a point, etc.

firmly related modes 4.3.3
* instance 1.1.1 Values have instances

occurrence 1.1.5 Constructs have occurrences.

defining occurrence 1.1.53.2.3
applied occurrence 1.1.5 3.2.3

scope 1.1.3 3.2.2 The scope of a value is the
range (possibly the whole
program) in which it is avail-
able for use.

reach (of a defining- The part of a program text from

indicator) 3.2.3 which the given defining-
indicator may be identified.

to yield 1.1.1 A construct yields a value.

to refer to 1.1.1 A name refers to a value.

to conform to 1.6.23.6 The yield of a union conforms
to the mode actually in
residence.

to identify 1.1.53.2.3 An applied occurrence identi-
fies a defining occurrence.

to specify 1.4.1 A declarer specifies a mode.

to select 5.4.2 A field-selector selects a field
from a structure.

to develop 1.3.3.1 To derive the mode specified
by a mode-indication.

elaboration 1.1.1 The process of inspecting a
construct and causing the
corresponding actions (as
specified by the seman tics of
the Report) to take place.

Ap.3.3 APPENDICES 341

actions 1.1.1 The elementary operations
(how elementary is not de-
fined) which, when performed
in the appropriate sequence,
constitute the elaboration of
a construct.

collateral elaboration 1.l.2.23.7.1 An elaboration in which the
actions required to elaborate
certain phrases are merged in
time, in a manner left unde-
fined.

* to supersede l.l.2.2 To replace an instance of a
value by another instance of
a value.

to call 1.1.4 4.2.2 To initiate the elaboration of
a procedure.

to parametrize l.2.3.2.1 To substitute actual-parame-
ters for formal ones:

to complete 3.l.4 To finish the elaboration of a
serial-clause by yielding a
value, or void (from its final
unit, or from an exit).

to terminate 3.l.4 To finish the elaboration of a
serial-clause abruptly, as when
a jump is made out of it, or
when some other elaboration
collateral with it is terminated.

to halt 3.7.2 To suspend the elaboration of
a serial-clause temporarily, as
in the operator down.

to resume 3.7.2 To resume the elaboration of
a clause that had been halted,
as in the operator up.

to ascribe l.1.1 A value is ascribed to a,n
indicator.

to assign l.l.2.2 A value is assigned to (the
location addressed by) a name.

coercion 1.l.65.1.0 The changing of the mode of a
coercend to that required by
its context, with a correspond-
ing modification to the actions
performed upon elaboration
of tha t coercend.

de referencing l.l.6 5.1.0.3
widening 5.1.0.4

342 APPENDICES Ap.3.3

deproceduring 4.2.2;2 5.2.0.2
rowing 5.5.0
uniting 5.6.0
voiding 5.7.0.1
balancing 5.2.0.1

context 5.1.0.2 The context of a coercend is
its relationship to the clause
in which it occurs. With each
such context is associated a
strength.

strong 5.1.0.2
firm 5.1.0.2
weak 5.1.0.2
meek 5.1.0.2
soft 5.1.0.2

STOWED 1.4.0 Structured or rowed.

stack (the) 1.2.2.3 That part of the storage of
the computer where internal
objects crea ted by loc genera-
tors are kept.

heap (the) 5.7.2.2 That part of the storage of the
computer where internal ob-
jects that cannot be held on
the stack are kept.

flat descriptor 1.5.1 2.5.2.2 A descriptor in which a t least
one upper-bound is less than its
matching lower-bound.

acceptable 1.6.1.1 A value is acceptable to a union
mode if its mode can be united
to that union.

garbage collection 5.7.2.2 The process of recovering
storage space on the heap from
internal objects that are no
longer accessible to the pro-
gram.

undefined 1.1.2.2 If the result of some elabora-
tion is said to be undefined,
then the Report does not
oblige an ALGOL 68 imple-
mentation to produce any
specific result. In practice,
implementations may produce

Ap.3.3 APPENDICES 343

diagnostic message, or go com-
pletely haywire.

environment enquiry 6.2.1 A constant made available by
the standard or library prelude
to convey information about
some property of a particular
implementation.

transput 7.1 Input and output and trans-
fers to backing media.

formatless transput 7.1
formatted transput 7.6
binary transput 7.7
book 7.2.1 The input/output medium in

use, together with its contents.
current position 7.2.1 The current page, line and

character number of the book;
logical end of file 7.2.1 The last used page, line and

character number of the book.

physical end of file 7.2.1 The last existing page, line and
character number of the. book.

I

channel 7.2.1 The facility through which
-, transput to (from) the book

takes place.
data list 7.1.1 7.1.2 A row-display of values used as

a parameter of a transput
procedure.

to open 7.2.1 7.2.3 To attach a book to a file
through a channel.

to close 7.2.3 To dis'c(mnect a book from a
file.

to straighten 7.4.1 7.5.1 To cause the elements of a
multiple value or the fields of
a structure to be presented in
sequence as a stream of primi-
tive (also compl or string)
values.

344 APPENDICES Ap.4

APPENDIX 4. The Suhlanguage

The language realised by a particular implementation may differ from
ALGOL 68 as defined by the Report. The differences may be of two sorts:

Sublanguages. If we omit some features of the language, or impose
extra restrictions, then we have a "sublanguage" [R 2.2.2.c] . A
particular-program written in a sublanguage should run without further
ado on an implementation of the full language.

SUperianguages.lf we add new features, or define the results of
programs whose results are at present left undefined, then we have a
"supedanguage". A particular-program written in canonical ALGOL 68
is therefore automatically correct in any superlanguage.

Although many sublanguages of ALGOL 68 are possible, there is one
particular sublanguage that has been accorded official recognition by IFIP
Working Group 2.1*, and which is usually referred to as "ALGOL 68S".

ALGOL68S is intended for use primarily in numerical and related areas.
In spite of the various features of full ALGOL 68 that have been left out of
it, it is still a viable language in its own right, within its field of application.

The omitted features have been chosen principally with a view to
simplifying the compilation process, enabling the sUblanguage to be
implemented on mini computers with as little store as 16K words of 16 bits.
Another design aim was to ensure that programs could be parsed and object
code generated in- one pass through the source text. Although this, of course,
aids compilation on small machines, it has the further advantage, even on
large machines with complex operating systems, that overlaying of the
compiler is avoided. Since the operating-system overhead associated \vith
bringing the compiler and/or its overlays into store may account for the bulk
of the compilation cost for sufficiently small programs, it is expected that
implementations of this subhinguage will be used for teaching purposes, since
students' programs are typically small, but large in number.

* P.G. Hibbard, A. Sublanguage of ALGOL 68, SIGPLAN Notices 12 (5) (1977).

Ap.4.1 APPENDICES 345

Restrictions

1. Modes

There are fewer modes than in the full language:

There are no unions.
There is no flex (but there are special provisions for string).·
Structures may not contain multiples (e.g. no struct(int no, [] real elems))

and multiples of multiples (such as [] [] int) are forbidden.
In an actual-declarer, you may not write [3] int meaning [1 :3] int (see

2.5.2.2.E7*), and quirks like mode a = [1:(a b = (4, 6, 8); b [i])] int
(observe how a is used in the actual-bounds before its declaration is
complete) are forbidden.

You must not expect standard-prelude operators to work (even with
restricted precision) on long or short modes (2.7.2) beyond those implied
by int lengths, int shorths, etc. (6.7.1).

If your implementation forces you to use "(" and ")" in place of" [" and
"]", you are not allowed to omit the loc in variable-declarations such as
loc (l:n) realx1.

~ 2. Omitted constructs

No heap generators (5.7.2.2) (this immediately rules out all applications of a
"list processing" nature, but it simplifies the run-time system considerably
by removing the need for a garbage collector).

No parallel-clauses (3.7.2) (i.e. no up, down or serna).
No void-collateral-clauses (3.7.1).
No vacuums (3.5.l.E4) (you don't really need them, because of the absence

of flex).
Jumps must be explicit (i.e. go to t or goto t, but not just t - see 4.7.l.E2).
No conformity-clauses (3.6) (because there are no unions).
No empty (5.6.l) (no unions again).
No 10 (or its alternative \). This is no hardship because you just use 1230e-1

in place of 123010-1 (5.l.1.1). (See also Appendix 5).
No procedured jumps (4.7.2).

3. Textual order

The following restrictions arise because of the requirement for one-pass
compilation:

All declarations of indicators (i.e. of identifiers, operators and mode­
indications) must precede the first applied occurrences (3.2.3) which

346 APPENDICES Ap.4.3

identify them. This is normally good programming practice anyway
(moreover, see 3.2.3.E7) and the only case where you might regret the
restriction is that of mutually recursive pairs of procedures (you would
have to declare one of them as a proc variable in the sublanguage) or of
mode-indications (but, the sublanguage not being suitable for list
processing anyway, the need for these is less likely to arise).

Priority-declarations of operators (4.3.1) must precede their corresponding
operation-declarations (4.3.2) and, once a priority has heen given for an
operator, it may not be changed again within ari. inner range (which
prevents you, among other things, from altering the priority of the
standard-prelude operators). Also, a bold word declared as an operator
may not subsequently be used as a mode~indication in an inner range, and
vice-versa.

The "firmly related" restriction oh declaring a given operator to apply
separately to. not-too-different modes, as given in 4.3.3, is made more
severe. The new "meekly related" condition applies whenever there exists
a commonlTIode to which the two modes in question can be meekly
coerced (e.g. proc real and ref real are meekly related) *.

Structure- and roW-displays (3.4 and 3.5.1) may not be used in the strong
~position of a firm (or weaker) balance (5.2.0.1). I.e. although z +:= (p Ix I w)
would be accepted in the sublanguage (because of the balancing, x gets
widened to compl even though the conditional-clause is in a firm context),
z +:= (p I (+1, -1) I w) would not. Likewise, structure- and roW-displays
may not occur as the first (effectively the only) unit of a closed-clause (as
in ((+ 1, -1))). These restrictions are no great hindrance to .the programmer
(a cast (5.1.1.3) can always resolve the matter) but, for the compiler
writer, they mean that as soon as he starts to compile such a display, he
knows what its mode is meant to be.

loc generators (5.7.2.1) may not precede the first declaration in their range
(the compiler must be able to know, at the time it encounters the loc,
whether the range in question is going to be a local one or not (5.7.2.1),
they may not stand as bounds in actual-declarers (but who would want to
write [1:loc int] real anyway), and they may not be operands (as in
loc int + 1 - again not in the least useful).

Ajump may not cause the elaboration of a declaration to be bypassed (as in
((p I goto I); real x; c statements involving x c; I: c statements not involving
x c) which is legal, though hardly good style, in the full language).

* Moreover, the new operator may not be meekly related even to mother operator de­
clared in an outer reach.

Ap.4.4 APPENDICES 347

4. Strings

string is actually a different mode from [] char in the sUblanguage.
However, many operations (e.g. slicing) work with both modes and a strong
coercion from string to [] char is provided, so that you will hardly notice the
difference. The following are the few cases which might arise:
The operators <,~, =,:J:,;;:', >, +, x, plusab and plusto work as usual for

string, but not for [] char.
Slices work for both modes, but in the case of string the slice cannot yield a

name (thus s[2] := "A" is excluded, but not char c := s[2]).
The lower-bound of a string is always 1 (and hence revised-lower-bounds

(5.5.1.3) are never needed).
Contexts·(even strong ones) expecting a string cannot accept a [] char (as in

procp = (strings) void: skip; [l:n, l:m] char rrc; p(rrc[i,])). The
converse (string where [] char is expected) is all right, because of the
extra strong coercion (as in rrc[i,] :=.s).

The rowing coercion can never yield a name (see 5.5.1.3.E20).

5. Transput

Many of the less used and more exotic transput features are omitted, as
follows:
There are no formats.
Omitted procedures are stand conv (7.4.3), make conv, make term (7.4.2), on

format end (7.4.4.5), on value error (7.4.4.6), on char error (7.4.4.7),
reidf, lock, scratch, create (7.2.3), backspace, set char number (7.2.5) and
char in string (7.5.2).

All the environment enquiries given in 6.2.1, 6.7.1, 7.2.2 and 7.5.3 are
omitted, with the exception of max int, max real, small real (and their
long(s) versions), chan, stand in channel, stand out channel and stand back
channel.

Conclusion

It will thus be seen that most of the restrictions in ALGOL 68S will hardly
be noticed by' the average programmer (although they all help the compiler
writer considerably). It will be noticed that, in the lists above, those
restrictions likely to be of practical importance have been given first. These
include the lack' of unions, flex, parallel-clauses, heap generators, the
requirement for defining before applying and formats. Even without all these,
you still have· a very powerful language.

348 APPENDICES Ap.5

APPENDIX 5. The Standard Hardware Representation

Of the large number of symbols that could be used in an ALGOL 68
program (see Appendix 1), most computer installations will be able to use but
a few due to the limitations of their character codes. Indeed, the symbols
used in this book (especially those such as x, V A, I and 10 and the bold
words) have been cho·sen, from amongst those permitted by the Report, for
their clarity and conciseness rather than for their ready availability on real
computers. .

It is thus the responsibility of each implementor to choose ~hich symbols
he will represent (where there are alternatives he is not obliged to provide
more than one) al.1d how he will represent them. In order to give guidance to
implementors and to facilitate the portability of programs betwe.en different
implementations, IFIP Working Group2.1 has approved a standard
representation * to which it is expected that many imph~mentations will
adhere.

The standard seeks to represent all ALGOL 68 programs using only 60
"worthy characters", which have been chosen because of their ready

. availability in the majority of modern character codes, such as ISO (including
its American version ASCII) and EBCDIC (although even these are not as well
standardized as is popularly imagined, there being problems with specialized
Natonal Characters in ISO and various positions for (or even a complete
absence of) [and] in EBCDIC). The 60 worthy characters are:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
o 1 2 3 4 56 7 8 9 .
space ,,# $ % 'e) * + , -. I: ; < = > @[t_ I

This is not to say that all these will appear on your keyboard. A local
convention may tell you to punch II +-" for" _" and "a" for" A". The .
important thing is that there should be a one-to-one correspondence between
the worthy .characters anq the codes recognized by your machil.1e so that, at
the worst, transferring a program to another machine should require only a
one-to-one. transliteration of codes. To these 60 worthy characters may be
added, optionally, a second alphabet ("a" to "zit) but, except in the case of

* 'wilfred J. Hansen and Hendrik Boom, The Report on the Standard Hardware
Representation for ALGOL 68, ALGOL Bulletin, AB40, also in SIGPLAN Notices
12 (5) (1977).

I

J
I

Ap.5.1 APPENDICES 349

UPPER stropping and strings (see below), "a" means the same as "A" and
" z" means the same as "z".

The manner in which these worthy characters are used to represent
ALGOL 68symbols such as ":=", ":=:" and "+:=" is quite obvious. For the
symbols not immediately representable (e.g.:j:, x, ~, +) Appendix 1 gives
representable alternatives (e.g. /=, *, <=, %) and for 10 or \ you can always
write "e" (5.1.1.1). The letters A to Z can obviously be used to represent
identifiers, which leaves us with just the "stropping convention" (1.3.2) to be
used for the bold words - i.e. for mode-indications such as real and int, for
operators such as abs and entier, and for delimiter words such as begin and
end. For this, three distinct conventions, "POINT", "UPPER" and "RES",
are prescribed.

I. POINT stropping

Each bold word is preceded by a point and followed by a "disjunctor".A
"disjunctor" is anything other than a letter of,a digit or an underscore (so
that, if the bold word is to be followed by an identifier (which starts, of
course, with a letter) you had better insert a space in between to act as the
disjunctor- so that. REAL X means real x but • REALX means realx). Even
if a second alphabet ofletters (" a" to" z") is provided, no distinction is made
between" a" and "A", so that. real x is no different from. REAL X.

Example:

• BEGI:J • REF • LONG . REAL X : = • LOC • LONG • REAL .­
.LONG 3.141592654; X .MINUSAB LONG PI;
PRINT(X)
• END

If you want to see which spaces were actually essential as disjunctors, observe
that the following is exactly (but confusingly) equivalent:

.BEGIN.REF.LONG.RF~ X:=.LOC.U1~G.REAL:=

• LONG 3.141592654; X. MINUSAB LONG!;>I; PRINT (X) • END

The POINT stropping regime is introduced by the pragmat (1.3.2) pr point
pr (which will usually appear as • PR POINT • PR) but, since point
stropping continues to be valid even in the other two regimes about to be
introduced, the chief effect of this pragmat is to turn those other regimes off.

~------ -----------

350 APPENDICES Ap.5.2

2. UPPER stropping

Assuming the extra alphabet of lower-case letters (" a" to "z") to have
been provided, all words written in upper case are deemed to be bold words
in this r()gime, and so identifiers must be rewritten using the new lower-case
facility. Example:

BEGIN REF LONG REAL X : = IDC LONG REAL : =
LONG 3.141592654; X MINUSAB long pi;
print (x)

END

Disjunctors are now needed between two adjacent bold words, of course, but
no longer between a bold word and an identifier. The shortest way of writing
the above example is therefore:

BEGIN REF LONG RF~Lx:=LOC LONG REAL:=LONG 3.141592654;
xMINUSABlongpi;print(x)END

You may still introduce bold words with a point, so that in this regime REAL,
REAL and • real but not real) are all bold words. Also, digits appearing in

upper-case words are presumed to be "upper-case digits":

MODE ROW23 = [1:23] INT; LOC RON23 row23;
This regime is introduced by the pragmat pr upper pr (which will usually

appear as. PR UPPER . PR since, presumably, UPPER stropping was not in
force before the pragmat).

3. RES stropping

RES stands for "reserved word", and in this regime the following 61 words
are presumed to be bold whether they are preceded by a point or not (see
also the first list in Appendix 1).

at, begin, bits, bool, by, bytes, case, channel, char, co, comment,
compl, do, elif, else, e~pty, end, esac, exit, false, fi, file, flex, for,
format, from, go, goto, heap, if, in, int, is, isnt, loc, long, mode, nil, od,
of, op, ouse, out, par, pr, pragmat, prio, proc, real, ref, serna, short,
skip, string, struct, then, to, true, union, void, while.

Note that this list includes all the delimiter words and all the standard
mode-indications - but none of the standard-prelude operators which must
still, tberefore, be stropped with a point. Since, for example, LONG is

I

l

Ap.5.3 APPENDICES 351

automatically a bold word in this regime, we have a problem when
representing the identifier long, or even long pi if we are not prepared to
represent it as longpi. Whereas in the POINT regime we needed the point as
an "emboldening" symbol to turn long into long, we now need an
"intimidating" symbol to turn long into long. For this purpose we use the
underscore "_", and it may be placed either after the word to be intimidated,
or between two such words. Thus, althoughEND ,OF andFIIE are all bold
words in this regime,END OF FIlE is a single identifier, since all its words are
either preceded or followed bY-an underscore. For our identifier long, then,
we write LONG and for long pi eitherLONGPIor LONG PI .Our example now
appears as follows: -

BEGIN REF LONG REAL X : = LOC LONG REAL : =
LONG 3.141592654;X .MINUSAB LONG PI;
PRINT(X) -

and the minimum number of disjunctors is shown by

BEGIN REF LONG REAL X: =LOC LONG REAL: =LONG 3.141592654
X.MINUSAB LONGPIjPRINT(X)END

Of course POINT stropping may still be used (.REAL means the same as REAL
and of course. HEAL is illegal - remember that underscore is not a
disjunctor). -

This regime is introduced by the pragmat pr res pr (usually appearing as
• PR RSS • PR).

strings
Within a character- or string-denotation the worthy characters may be used

freely to represent themselves with the exception of quote (II) and
apostrophe (,). These must appear in pairs. Thus II "" II is a character­
denotation for a single quote-symbol (as already explained in 5.1.1.1) and
'" '" is similarly a character-denotation for a single apostrophe-symbol. This is
a new feature, and its purpose is to enable a single apostrophe to be used, in
some implementations, to escape into some other notation (e.g., in some
implementation, 'BS' might represent the oth~rwise unrepresentable
character "backspace" (a character not recognized by the Report) and might
appear in string-denotations such as II = , BS' I" .

If the additional alphabet of lower-case letters is provided then, within
character- and string-denotations they are distinct from the upper-case letters

352 APPENDICES Ap.5.3

(remember that outside such denotations they are not distinguished, except
in UPPER stropping). If some non-worthy characters are available in your
implementation (e.g, ~, { , }, etc.), they may be used in character- and
string-denotations, but whether such programs could be transferred to
another implementation is another matter.

An' extra feature, entitled the "string break", is provided to reduce
confusions arising when string-denotations occupy more than one line.
Remember that two quotes (" II) together stand for one quote-symbol. If,
however, they are separated by a space, or a change to a new line, then they
are ignored altogether:

PRINT ("This is a ,very long strin~-denotation which "
"occupies more than one line of our program "
"text) even though we want it to appear as one "
"line in our output")

Possible confusion

Since a point can sometimes mean a point, and sometimes the start of a
bold word, is there any situation in which you cannot tell which is meant? It
turns out that there is only one situation in legal ALGOL 68 where a genuine
point-symbol can be followed by a bold word, and that is in the following
format-text:

$ 2zd. comment format for 3 digit real number with decimal point but
no decimal digits comment $

Suppose we are in UPPER stropping and we write:

$ 2 ZD. COMMENT FORMAT FOR • • • ·COJVlMEt\JT $
COMMENT could be a representation of comment and so could. COMMENT
(POINT stropping is valid in all regimes), so is the point a point or not? The
answer is that it is not, because of the general rule [R 9 .4.2.2.b 1 that, in any
case of doubt, any sequence of marks is to be regarded as a single symbol
wherever such an interpretation is possible. Thus. COMJVlENT always means
comment, whether in UPPER or not. Clearly, the format-text in question
should have been wri tten as

$ 2ZD. COMM8~T,FORMAT FOR ••• COMMENT $
(which is much clearer to the human reader anyway).

J
I

Ap.6. APPENDICES 353

APPENDIX 6. Syntax Charts

The following charts show exactly which sequences of symbols from a le­
gal ALGOL 68 particular-program and. which do not. To see what you may
legally write, start where it says "particular-program" in the first chart below,
and follow the line. Where the line diverges, you have a choice. You may either
write an "ENCLOSED-clause", or you may write a "label" followed by a":".
If you write a label, then you get back where you started so, following the
same lines again, you may now write an "ENCLOSED-clause" or you may go
for another label. Eventually, you must write an ENCLOSED-clause in order
to reach the outgoing arrow on the right, which signifies that your particular­
program is complete.

In order to write any construct enclosed in a rectangle (such as an
"ENCLOSED-clause"), you must find the start of that construct (usually on
another chart) and follow the line from there, writing such constructs as you
meet on the way, until you escape via an outgoing arrow. Then you have com­
pleted the construct in question and may continue following lines in the orig­
inal chart. If you encounter a circle (or an oval), simply write the symbol in­
side it. So, to write an ENCLOSED-clause, find the start on the ENCLOSED­
clauses chart. Immediately you are faced with a choice. Suppose you follow
the route marked "closed-clause". Now you must write either "begin" or
"{", and after that a "serial-clause" (which is on yet another chart). When
your serial-clause is complete, you write "end" or ")", whereupon you reach
the outgoing arrow and your ENCLOSED-clause is complete. Although the
chart does not show it (it would have been just too complicated), if you write
"begin" (rather than "(") before the serial-clause, then you must write "end"
(rather than ")") after it, and vice-versa.

Every construct written inside a rectangle will thus be found as an entry
point somewhere in one of the charts. The only exceptions are some very sim­
ple ones such as "label", "defining-identifier", "field-selector", "mode-indica­
tion", "operator", "character" and "digit". The first three of these are the
same as "applied-identifier" (on the units chart). For mode-indications and
operators see 1.3.2 and 4.3.

Above some of the rectangles there appears an indication of the mode that
the construct inside is expected to yield, and the strength of its context
(5.1.0.2) or whether it may be balanced (5.2.0.1). The mode written under­
neath an outgoing arrow tells you the mode of the construct you have just
written. "MOlD" stands for any mode including void, and "MODE" for any

354 APPENDICES Ap.6

PARTICULAR-PROGRAM

mode other than void. On anyone pass through a particular chart,the
MODEs etc. encountered must, however, always stand for the same mode.

Generally speaking in ALGOL 68, comments and pragmats (I .3.2) may ap­
pear in between any two symbols, but there are some exceptions - notably in
identifiers, denotations and format-texts. In these charts, you may insert a
comment or a pragmat anywhere where you are following a continuous line,
but if your route between two symbols is entirely over dotted lines, then you
may not write comments or pragmats although blanks and newlines are still
permitted (but see 5.5.1.1 for the dangers of doing this in string-denotations
and see Appendix 5 for a commonly used solution to the problem).

In "collection-lists" in the format-texts chart, an indication is given of the
modes in the data list of get! and put! which are compatible with the various
patterns. For example, the chart shows that for a real-pattern the mode in the
data list on output may be int or real, but than on input it may only be ref
real. See 7.6.1.3 for further details on this point.

ENClOSED- closed-clause ~

clause

condit iona.t­

o t au 5 e

s t ron 9
po Sit Ion s

on \ y

o -ciisola

s t ron 9

po Sit Ion s -

on I y

- ---"

b n I an C Ii! d

field TAGl. MODEn field TAGn)

of MODE
MODE (if MODE was alrl;!ody rowQd)

>
'" '"

W
til
til

SERIAL-CLAUSES
ba.t ancC!d

MOlD

serIQl-olQus.--~~~-------------r--~------------~~

mQQ t. MODE

." qu I r 'J -0 I au S I: -,.--___ ------------------------------------j

DECLARATI ONS

d It C 1 Ilr- a. t 10 n--.,-------------------------{

\la.r lab 1 e-
dec lor-a.'\; ion

Idudlt -

deolarCltlon

rout I nlll­
"Qr lab 1 e-

dec I ar-a.t Ion

rout i ne-
t de nt It -

dec I Qr-Cot ion

rout, ne­
operat i on-

dec I a.-a.t Ion

dec I u":o.t I on

dec tarat Ion

mode-

dec 1 arat Ion

MOlD

mode

MOlD

Ap.6 APPENDICES 357

DECLARERS
actual-declare '1lrtuQ\-declarer

formal-deolorl!:

TAG

MODE field TAG •
... 1

MODE field TAG,
••• 1

MODE field TAG •
... 1

358

unit

tel" t i ary

50ft ..!:.!i MODE
as, i gna.t ion

tart iury

soft ref
5tl"'01'l9 ~:£l

~:~:::!n- tertiary

I"out I ne­
text

s~ i

strong
only

sl-<ng
POSitions
only

APPENDICES

UNITS
strong MODE

~n~;n~;~' ________________ -(~

MODE strong POSitions
only

~

firm MODEl E!..~!!JMODEl.MDDE2)MOID firm MODE2

"1~1~-~'~'~'~mu~'~a~~~~~ I-operan.... -operand

2- 0 per an dl-.d'.;.2--,-'e..>,""",m,,-u ',-,a,--

f II"'" MODEl E!...t2.s{MODEl.MOD(2)MOID f Irrn MODE2

n-opftrand--.. "-opera" ,-t~n~-'~'~'~m~u~'~a-t~~~3

nott-operan
n+l-formulCl

E!...t2.S(MODE2) MOlD

1 0 - 0 P Iiii" a n d-.d'"m,,-, n",a",d,-,;",'.:--,-f"-"",m,-,u,-,'-,,a~ ______ -1 :: ~ ~: ~ :;

secondary ref ROWS
-- ROVS

TAG
seleotion fleld-

selector

ener-a.to,...

field TAG. ...)
field TAG • ...)
field TAG • ...)

TAG • ••• J

MODE
MODE

t:..!..f.. MODE
MODE

Ap.6

Ap.6

pI" i mar",

APPENDICES 359

meel:.
E!..!..!!..£. PARAMETE.R.S MOlD stronq MODE paramllter-

oed I

!:..!..f... n

I I e.d-

i dent ff i er

dtnotat i 0"

ENCLOSED-
01 Quse

""'-rTrni-nisn-1 MODi : lethr d 19 It

'----- -----..(---

(where m ma~ be 0)

MODE

LONGSETY :: Q. sequ\lncQ (u:;;uQ.11 y

empty 1 of i.£.!:!..9...s or shorts

360 APPENDICES Ap.6

FORMAT-TEXTS

format-tli':xt-----\

~-L---~--0-~---~------------0~:~~=~=~=~-----/1
I: r:..~~ ~£.£.L

/Eh.;~T0\
I /1 " \ 0: £..b..~r:.. ! I £.b..~r:..
---------J--'-------L'--------'--0-,-~---~------=='----==-__'l

1 I: r:..~f... £..b..~!:... c...~~ [) £.b..~r:.. r:..~f.. ~~r:...!...f1...9... L __________________ + _______________________ J

0:
: 4 :

0: ~.!...t.~

I : r:..~L ~--'---~~

0: ~£...£...l..
I : !:..!..f.. ~~l..

0: ..!....~~

I : c..~L .'-r:..~

0: ANY

Ap.6 APPENDICES 361

I nt egral-patt u"n w. ______________ ~

~--~ i
,j _______ J:~ __________ :.~
~------T----------<-----------1

: ~ : ~--,.@--~
:,: \~: ,: :.: ;.: \~
G------------- V L-r ---------J----------L'--------'0Il ,~

- l __________________ ... ____________________ : _____ Ll _______ ____ ~

r II a.l -p ott arn-------------------.----,

~--~ :

(!:~-;--~---~::~~~~~~~~~~~
: ~ : ~--rB--~
:,: \{}: ,: :.: ;.: \~ G_____________ _ ""'i~-r---------J---------...L'--------

: ~ , ..J i r------------r-------------""--------------

: ____________ <------------..1 i L::~:_:~~>.~

i ~--~ i --B--"@--~ i

LL-----)'--\Olt':_::~(~:~'~:::-~12J
i ~--~ i~
L---/-------J:~--------:·'0-';~:i:~; _LL ________ \ _______ !>

In, (". I on I ,----------------------, "p (, 'c.," I!------~---------.~!>

.. ~."9nm.n.k~~~.. m .. ' ~
L ___________ <---- .. ~:::::::::::::::::')"------!> ~ENCC,L.O"S,E.D-~

~
-----------------------""-------------------1

rep ,
/ :

(,.".,"- ' " ----r-------,--------O.J-------!>

~ 1 ch·,:·",,1
\... _______ .J

<0,
~ :",:

':~\{3}M
~ I 'gnme n t --'------------- ____ woo>

: y :

~
\Q

INDEX

a, 277
abs, 211, 237, 248
Acceptable, 123, 342
Action, 64, 341
Actual declarer - see declarer, actual
Actual parameter - see parameter,

actual
ALGOL 60,152,157,159,173,182
ALGOL 68S, 344
Alignment, 273, 274, 275
amode, 84
and, 240, 331
And also symbol, 69, 337
Applied identifier, 158, 198, 209, 213
Applied occurrence, 73, 188, 198, 346
arccos, 242, 247
arcsin, 242,247
arctan, 242, 247
arg, 211, 237
Array, 101
Ascribe, to, 64,65,66,70,74, 132, 133,

341
Assign, to, 341
Assignation, 67, 74, 172, 194, 195,201,

337
Assignation (example - names), 207
Assignation (of multiples), 142, 219,

223
Assignation (scope restriction), 157, 185
Assignation (to unions), 126
Assignation (value yielded), 69
associate, 259,312
at, 116, 215, 330
b, 277
Backspace, 351
backspace, 251,253,261,276,347
Balancing, 162, 163, 194, 203, 204, 233,

346,
begin, 69, 150, i54, 160, 166, 167, 172,

330
bin, 237
bin possible, 255, 257, 258, 285
Binary, 226
Binary transput - see transput, binary
bits, 131, 148, 225, 226, 330

bits (input), 254
bits (output), 252
bits lengths, 246
bits shorths, 246
bits width, 225,241,246
bitspack, 242,247
blank,241
Blank space, 91
Block,157
Bold word, 93, 137, 165, 185, 186, 339,

349
Book,255, 259,263,343
bool, 131, 330
bool (input), 253
bool (output), 252
"Boundpair, 115,219, 335, 337
Bounds, 151, 215, 337
Bounds (after rowing), 212
Bounds (binary transput), 284
Bounds (in assignations), 219, 220
Bounds (in unions), 223
Bounds (interrogations), 218
Bounds (of row display), 167
Bounds (of string denotation), 213
by, 168,330
bytes, 131, 148, 225, 330
bytes (input), 254
bytes (output), 252
bytes lengths, 246
bytes shorths, 246
bytes width, 226,241,246
bytespack, 242,247
c,94
Call, 70, 172, 177, 182,194, 195,205,

206,339
Call by name, 182
Call by reference, 87, 182
Call by'value, 86, 182
Call, to, 341
case, 154, 163, 170, 330
Case clause - see clause, case
Cast, 81, 182, 194, 197, 198,218,338
Cast (example), 187, 226
Cast (on LHS of assignation), 201, 208
Chaining, 108

362

INDEX 363

chan, 258
channel, 255, 263, 330, 334, 343
char, 131, 330
char (input), 254
char (output), 252
char in string, 271,347
char in string (example), 324
char number, 260
Character, 265
Character transput - see transput,

character
Check,185
Choice, 279, 283
Choice clause - see clause, choice
Clause, 337
Clause, case, 160, 163, 204,205,337
Clause, choice, 156, 160
Clause, closed, 69, 156, 160, 200, 337
Clause, collateral, 160, 172,337, 345
Clause, conditional, 160, 161, 204, 205,

337
Clause, conformity, 126,160,170,205,

222, 223, 337, 345
Clause, conformity (example), 320
Clause, ENCLOSED, .l50, 160, 166,

167,193,198,203,207,217,280,
337

Clause, enquiry, 161, 163, 168, 195,
227,337

Clause, loop, 156, 160, 168, 337
Clause, parallel, 160, 172, 174,337,345
Clause, serial, 68,150,204,227,337
Clause, serial (coercion 00, 203
Clause, serial (in closed clause), 160
Clause, serial (in conditional clause), 161
Clause, serial (in loop clause), 168
Clause, serial (range), 156
Clause, serial (value 00, 152
Clause, serial (where used), 154
Clause; unitary - see unit
close, 259, 261
Close, to, 343
Closed clause - see clause, closed
co,330
Code conversion, 263, 265
Coercend, 193, 337
Coercion, 73, 183, 188, 194, 203, 209,

212,222,225,341

Coercion chart, 196
Collateral clause - see clause, collateral

Collateral declaration - see declaration,
collateral

Collateral elaboration, 68, 69, 71, 166,
167,169,172,182,232,341

Collection, 280
Colunm, 167,215
Comma, 69
Comment, 94, 213, 339
comment, 330
Common sub-expressions, 174
Comorf,196
compl, 140, 209,211,261,330
compl (input), 253
compl (output), 251
Complete, to, 154, 172, 204, 341
Completer, 153,337
Completer (example), 320
compressible, 258,260
Computer word, 148
Concatenation, 239, 244
Conditional clause - see clause,

conditional
Conform, to, 126, 170,340
Conformity clause - see clause,

conformity
conj, 211, 237
Constant, 65, 74, 75, 134, 198, 335, 339
Constants (standard prelude), 241
Construct, 64, 335
Context, 194, 342
Contraction, 69, 135, 137, 138, 180,

181,186,187,340
Conversion procedures, 270
Copying, 190, 301
cos, 242, 247
create, 259,265,347
Cube root, 151
Current position, 256, 260, 263, 343
Cyclic permutation, 220
d, 276
Data list, 250, 253, 282, 343
Declaration, 66, 68, 150, 157, 336,

346
Declaration, collateral, 132,135,172,

186,336

364 INDEX

Declaration, collateral (contraction),
135,137

Declaration, heap, 149
Declaration, identifier, 66, 133
Declaration, identifier (and mUltiples),

118,121
Declaration, identifier (and structures),

102
Declaration, identifier (and unions), 123,

146
Declaration, identity, 74, 75, 133, 194,

336
Declaration, identity (and multiples),

142
Declaration, identity (formal/actual

correspondence), 182
Declaration, mode, 95, 108, 137,138,

143,165,186,336
Declaration, operation, 97, 165, 186,

188, 336, 346
Declaration, operation (example), 291,

320
Declaration, priority, 99, 185, 186, 188,

227,336,346
Declaration, procedu~e, 85, 179,
Declaration, routine identity, 181, 336
Declaration, routine variable, 181, 336
Declaration, row, 141
Declaration, sample, 132
Declaration, struct, 139
Declaration, union, 146
Declaration, variable, 66, 74, 79, 131,

134,336,345
Declaration, variable (and multiples),

141, 143
Declaration, variable (initialized), 135,

194
Declarer, 336
Declarer, actual, 77, 114, 135, 137, 143,

144,227,345,346
Declarer, formal, 75, 133, 144, 146,

179, 180, 198, 223, 333
Declarer, proc, 85, 144, 179
Declarer, row, 141
Declarer, struct, 138
Declarer, union, 146
Defining identifier, 158, 170
Defining occurrence, 73, 188, 346

Delimiters, 154
Denotation, 198,338
Denotation, bits, 226
Denotation, character, 213
Denotation, long, 226
Denotation, short, 226
Denotation, string, 212, 217, 275
Denotation, void, 223
Deproceduring, 183, 196, 205, 206, 225
Dereferencing, 196, 197,203,210,216
Descriptor, 114, 141,213,335,336
Destination, 68, 201,338
Develop, to, 96, 340
Dijkstra, E.W., 176
Dimension, 101
Disc, 284
Disjunctor, 349
Display, row, 160, 167, 172, 212, 250,

253, 337, 346
Display, structure, 160, 166, 172, 337,

346
divab, 243, 331
do, 154, 168, 330
down, 175, 238, 331,345
Drum, 284
Dummy statement, 202
Dyadic operator - see operator, dyadic
Dynamic replicator, 279
e,276
elaboration, 64, 340
Elaboration, collateral -- see collateral

elaboration
elem, 238,248,331
Element, 101, 114, 141, 167, 212,335
elif, 154, 162, 330
else, 154, 161,330
empty, 223, 330,345
empty (example), 323
ENCLOSED clause - see clause,

ENCLOSED
end, 69,150,154,160,166,167,172,

330
Enq uiry clause - see clause, enq uiry
entier, 237, 331
Environment enquiry, 129,241,246,

258,265,272,294,343,347
eq, 240, 331
Equivalence, 76

INDEX 365

error character, 272
e~~ 154,163,170,330
estab possible, 258
establish, 259, 265
Event routine, 191, 263, 266, 283
exit, 153,204,330
exit (example), 320
exp, 242, 247
exp width, 246,272
Expect, to, 275, 276, 279, 283
Expression, 150, 160, 194, 339
External object, 64, 335
f,277
false, 131, 330
fl, 154, 161, 330
Field, 101, 138, 166, 209, 261, 335
Field selector, 101,138,209,338
file, 256, 261, 263, 282, 330, 334
Firm context, 195, 196, 200, 222, 250,

252
Firmly related modes, 188, 340, 346
fixed,271
Fixed name, 142, 190, 216, 334
Flat descriptor, 115, 143, 342
flex, 142, 143, 144, 190,212, 217, 330,

345
Flexible name, 120, 142,190,216, 219,

334
Flexible name (transput), 280
flip, 272
float, 271
flop, 272
for, 168, 330
Formal declarer - see declarer, formal
Formal parameter - see parameter,

formal
format, 281, 282, 330, 334, 347
format, (transput), 250, 253
format pointer, 263,282
Format text, 273, 274, 281, 338
Formatless transput - see transput,

formatless .
Formatted transput - see transput,

formatted
Formula, 70, 177, 187, 188, 195, 199,

211,338
FORTRAN, 159
Frame, 273 274, 276

from, 168, 330
g,277
Garbage collection, 230, 327, 342
ge, 240, 331
Generator, 227, 338
Generator, heap, 149, 229, 345
Generator, heap, (example), 319
Generator, loc, 77, 89, 135, 227, 346
get, 257,260,285
get bin, 285
get pOSSible, 255,257,258
getf, 282
Go on symbol, 68, 132,150, 337
go to, 330
go to statement, 151
go to statement - see also jump
goto, 191, 330
gt, 239, 331
Halt, to, 175, 341
Hardware representation, 348
Reap, 230, 325, 342
heap, 149,227, 229, 231, 330
heap (example), 320
heap declaration - see declaration, heap
heap generator - see generator, heap
i 211, 237, 331, 332
i,276
Identification, 158, 346
Identification (of books), 256, 259
Identification (of modes), 165
Identification (of operators), 188
Identifier, 66, 133, 158, 168, 185, 336,

338
Identifier declaration - see declaration,

. identifier
Identifier, applied - see applied

identifier
Identifier, defining - see defiriing

identifier
Identify, to, 73, 158, 340
Identity declaration - see declara tion;

identity
Identity relation, 129, 172, 194, 195,

205,232,338
Identity relation (example), 313, 321,··

326
if, 154, 161, 330
im, 211,237

----- --. ---------------------------_. __ -

366

Implied bracketing, 202, 243
Implies, 239
i~ 154, 163, 170, 330
Indexer, 116, 120, 214
Indication, mode - see mode indication
Indicator, 64, 65, 339
Indirect addressing, 81
Initialization, 80, 135
Initialized declaration - see declaration,

initialized
Input, formatless, 252
Insertion, 274
Instance, 64, 65, 202, 333, 340
int, 131, 330
int (input), 253
int (output), 251
int lengths, 246
int shorths, 246
int width, 246, 272
Internal object, 64, 133, 333
Interrogations, 121, 218, 245
Intimidation, 351
is, 129, 330
isnt, 129, 330
Jensen's device, 183
Jump, 191, 345,346
Jump - see also go to statement
k, 276
I, 276
Label, 151, 153, 159, 191, 337
last random, 242, 247
Layout routines, 260
Ie, 239, 331
leng, 248
level, 175, 248
LHS, 67,339
Library prelude, 64, 200, 258, 265, 292,

300,336
line number, 260
Lisp, 230
List, i 08
List processing, 230, 234, 319
Literal, 198, 273, 274,275,279
In, 242, 247
~~77,79, 157,227,330, 345
Local generator - see generator, loc
Local range - see range, local
lock, 259,261,347

INDEX

Logical book, 256
Logical end of file, 256, 259, 263, 283,

286, 343
long, 84, 196, 226, 246, 248, 330, 334
long modes, 128, 148, 345
long modes (example), 297
long operators, 247
long, 246, 247
Loop cause - see clause, loop
It, 239, 331
lwb, 122,219, 224, 245, 331
Machineword, 128
Magnetic tape, 258, 284, 286
make conv, 264,265,347
make term, 254,264,347
Matrioes, 300
max abs char, 241
max int, 241,246,269,272
max real, 187,241,246,272
maze, 184
Meek context, 143, 195, 196, 206, 215
Meekly related modes, 346
Metanotion, 75, 83
min, 186,188
minusab, 244, 331
mod, 238, 331
modab, 243, 331
Mode, 64, 83, 333
mode, 330
Mode declaration - see declaration,

mode
Mode indication, 137, 143, 185, 336
Monadic operator - see operator,

monadic
Mood, 122
Morf,196
Multilength arithmetic, 128
Multiple, 335
Multiple selection, 218
Multiple value, 100, 114, 141, 151, 167,

218, 335, 345
Multiple value (as parameter), 190
Multiple value (assignation of), 219
Multiple value (binary transput), 284
Multiple value (in unions), 223
Multiple value (rowing), 212
Multiple value (slicing), 214
Multiple value (transput), 270

INDEX 367

n,279
Name, 65, 80, 134,201, 207,227,229,

232, 334
Name (assignation 00, 207
Name (dereferencing), 197
Name (scope 00, 157
Name (transput), 250, 253
Names 'of fields of structures, 105, 210
Names of slices, 121, 216
neos, 332
ne, 240,331
New line, 91
newline, 251,253,260,261,276
newpage, 251, 253, 260, 261, 276
next random, 242,247
nil, 110, 207, 208, 233, 330
nonproc, 196
not, 236, 331
Notion, 83
nsin, 332
null character, 241,248
Occurrence, 340
Octal,226
od, 154, 168, 330
odd, 237
of, 209, 330
on char error, 254,264,269,275,283,

347
on char error (example), 323
on format end, 264,.268, 282, 283, 347
on line end, 254, 264, 268, 283, 284
on logical file end, 264, 267, 283, 286
on page end, 264,267,283,284
on physical file end, 264, 268, 283
on value error, 264, 268, 279, 283, 347
op, 186, 330
open, 259, 265
Open, to, 256, 259, 343
Operand, 71, 187, 195, 199,232,338
Operation declaration - see declaration,

operation
Operator, 70, 97, 177, 186, 188, 199,

218,338
Operator, dyadic, 99, 172, 187
Operator, monadic, 100, 175, 187
Operators (assigning), 243
Operators (complex), 211
Operators (standard prelude), 236, 247

Operators, dyadic (standard prelude),
237,245

Operators, monadic (standard prelude),
236, 245

or, 240, 331
Order of elaboration, 232
ous~ 154, 164, 171, 330
out, 154, 163, 170, 205, 330
Output, formatiess, 250
over, 238, 331
overab, 243, 331
p, 276
page number, 260
Paper tape, 274, 284
par, 174, 330
Parallel clause - see clause, parallel
Parameter, 337
Parameter, actual, 75, 85, 86, 133, 172,

182,186,194,206
Parameter, formal, 70, 75, 85, 133, 180
Parameter, formal (formal/actual

correspondence), 182, 187
Parametrize, to, 86, 341
Paranotion, 335
Parity error, 269
Particular program, 64, 150, 151, 335
Phrase, 68, 336
Physical book, 256, 283, 284
Physical end of file, 343
pi, 241,246
Picture, 268, 273, 274, 280
pie, 160
plusab, 244, 331
plusto, 244, 331
Position enquiries, 260
Power, 199
pr,330
Pragmat, 94, 339, 349
pragmat, 330
Precision, 148
Primary, 160, 193,195,197,205,206,

212,214,223,226,338
Primitive modes, 83, 131, 148, 334
Primitive value, 334
print, 250, 257, 260, 272
printf, 274
prio, 186, 330
Priority, 161, 186, 199

------------ ._-_.-_._--

368 INDEX

Priority declaration - see declaration,
priority

proc, 84, 179, 330,334
proc declarer - see declarer, proc
proc modes, 84
Procedure, 177, 179,205,339
Procedure declaration - see declaration,

procedure
Proceduredjump, 191, 345
Procedures (standard prelude), 241, 247,

259,260,270,281,284
Program, 64, 335
Pseudo comment, 94
Punched cards, 274, 284
put, 257, 260, 272, 285
put bin, 285
put possible, 255,257,258
putf, 282
q,276
Quaternary, 181,193,201,207,219,

232, 337
Queue, 108
Quote symbol, 213
r,277
Radix, 277
Random access, 258
random, 242,247
Range, 69, 133,135,137,156,157,

158,185, 228, 337
Range, local, 227, 228
Ra tionals, 297
re, 211, 237
Reach, 156, 158,169, 186, 337, 340
read, 252, 257, 260
read bin, 285
readf,273
real, 131, 330
real (input), 253
real (output), 251
real lengths, 246
real shorths, 246
real width, 246, 272
Real time, 174
Record,101
Recursion, 183
Recursion (example), 316, 323
ref, 65, 84, 144, 330, 334
Refer, to, 65, 340

reidf, 258, 259, 347
reidf possib Ie, 256, 258, 259
Related - see firmly related nodes &

meekly related modes
Replication, 238, 243
Replicator, 275, 279
repr, 237, 248
Representation, 91, 330, 348
Reserved bold words, 330
Reserved word, 350
reset, 260, 261, 284, 286
reset possible, 255, 257, 258, 260,284,

286
Resume, to, 175, 341
Revised lower bound, 116,215
Rewind,258
RHS, 67,339
round,237
Routine, 70, 84, 177, 179, 180, 335
Routine (and operators), 186
Routine (calling),205
Routine (recursion), 183
Routine (scope), 185
Routine (transput), 250, 253
Routine identity declaration - see

declaration, routine identity
Routine text, 70, 84, 156, 177, 180,

186,194,227,338
Routine variable declaration - see

declaration, routine variable
Row declaration - see declaration, row
Row declarer - see declarer, row
Row display - see display, row
'Row of', 334
Rowed, 334
Rowing, 196, 212, 213,216, 217, 347
s, 276,277
Sample declaration - see declaration,

sample '
Scope, 69,149,157,158,202,227,

229,266,340
Scope (of formats), 281
Scope (ofroutines), 185, 323
scratch, 259, 261, 347
Secondary, 193,195, 209,218,227,

338
Select, to, 340
Sclection, 195,209i 218, 338

Selector, field - see field selector
serna, 175, 330, 334, 345
Semaphore, 175
Semicolon, t;.11
Serial clause - see clause, serial
set, 260, 284
set char number, 260,276,347
set possible, 255,257,258,260,284,

285
Shield, to, 108, 139
Shift,238
shl, 238, 331
IDort,84,196,226,330, 334
short modes, 128, 148, 345
IDolt operators, 247
shorten, 248
shl, 238, 331
Side effect, 68, 172
sign, 237
sin, 242, 247
skip, 89, 202,330
Slice, 120, 195, 214, 220, 223, 229,

339, 347
Slices, overlapping, 220
small real, 151,160,,241,246,272
Soft context, 195, 196,201,233
Source, 68, 201, 338
Space, 91
Space character, 213
space, 251,253, 261,274,276
Specification, 170, 337
Specify, to, 101, 340
sqrt, 242, 247
Stack, 228, 230, 342
stand back, 256
stand back channel, 256, 258
stand conv, 265, 347
stand in, 253,256,257
stand in channel, 256, 258
stand out, 251,256,257
stand out channel, 256,258
Standard postlude, 64, 236, 256, 336
Standard prelude, 64, 140, 145, 177,

186,200,236,256,261,292,336
Statement, 150, 151, 160, 194, 202,

225,339
stop, 236
STOWED,342

INDEX

STOWED value, 100
Straighten, to, 343

369

Straightening, 252, 255, 273, 282, 284
Straightening (example), 280
Straightening (of mUltiple values), 270
Straightening (of structures), 261
string, 145, 212, 270, 330, 334, 347
string (input), 254
string (output), 252
string (straightening), 270
String denotation - see denotation,

string
Strong context, 133, 194, 196, 202,

203,204,207,212,225,233,346
Strop, to, 340
Stropping, 93, 349
struct, 84, 330, 334, 335
struct declaration - see declaration,

struct
StIllct declarer - see declarer, stIllct '
Structure, 138, 166, 209, 335, 345
Structure (binary transput), 284
Structure (transput), 261
Structure display - see display, structure
Structured value, 100, 101,335
Sublanguage, 209, 340, 344
Subname, 105, 109, 121, 210, 216, 334
Subscript, 114, 116, 214, 335
Subvalue, 116,215,216,335
Superlanguage, 340, 344
Supersede, to, 67, 341
switch, 192
Symbol, 91, 92, 330, 339
Synchronisation, 174
Syntax, 204
tan, 242,247
Tenninate, to, 154, 159, 172, 236, 341
Tertiary, 193,200,201,207,211,218,

232, 233, 338
Textual order, 345
then, 154, 161, 330
timesab, 243, 248, 331
to, 168~ 330
Transient name, 217, 218, 334
Transput, 195, 198, 343
Transput procedures, binary, 284
Transput procedures, formatted, 281

370 INDEX

Transput, binary, 255, 258, 284
Transput, character, 255
Transput, formatless, 250
Transput, formatted, 273
Transput, formatted (example), 311
Tree, 108
triangle, 228
Trimmer, 116, 214
Trimscript, 116, 195, 214
true, 131, 330
Truncation, 238, 248
Typographical display feature, 91
Undefined, 68, 162, 163, 172, 179, 202,

224,248,254,266,268,269,286,
342

union, 84, 122, 144, 146, 222, 330, 334,
345

union (example), 319
union (of multiples), 223
union (transput), 253
union declaration - see declaration,

union
union declarer - see declarer, union
Unit, 68, 181, 193, 203, 215, 337
Unit (in case clause), 163
Unit (in identity declaration), 133
Unit (in loop clause); 168
Unit (in serial clause), 150, 152
Unit (in structure display), 166, 167
Unitary clause - see unit
United modes, 122
Uniting, 196, 222, 223
Uniting (example), 323
up, 175, 238, 331,345

upb, 122, 219, 224, 245,331
Vacuum, 167, 337, 345
Value, 64, 69, 84, 333
Value (of serial clause), 69
Variable, 65, 74, 80, 131,132, 134, 335,

339
Variable declaration - see declaration,.

variable
vec, 332
Vectors, 300
Vectors (example), 293
void,69,17~ 181,194,330
void (example), 323
Void denotation - see denotation, void
Voiding, 196, 225
Weak context, 195, 196, 210, 214, 216
Well formed, 97, 113, 139
while, 154, 168,330
whole, 271
Widening, 194, 196, 197, 200, 204, 209,

222, 225
Word, computer - see computer word
Worthy character, 348
write, 252
write bin, 285
write!. 282
x,276
xory,332
y,276
Yang, 139
Yield, 64, 152
Yield, to, 340
Yin, 139
z,276

	Spine

	Cover

	Title page

	Acknowledgements

	Preface

	Foreword

	Table of Contents
	0 Very informal introduction to Algol 68

	1 Basic concepts

	2 Declarations
	3 Clauses

	4 Routines

	5 Units

	6 Standard prelude

	7 Transput

	8 Examples

	Appendices

	A1 Alternative representations

	A2 Sample declarations
	A3 Glossary

	A4 The sublanguage

	A5 The standard hardware representation

	A6 Syntax charts

	Index

