
HAL Id: hal-02559585
https://hal.science/hal-02559585

Submitted on 30 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to Teach the Undecidability of Malware Detection
Problem and Halting Problem

Matthieu Journault, Pascal Lafourcade, Malika More, Rémy Poulain, Léo
Robert

To cite this version:
Matthieu Journault, Pascal Lafourcade, Malika More, Rémy Poulain, Léo Robert. How to Teach
the Undecidability of Malware Detection Problem and Halting Problem. WISE13: The 13th World
Conference on Information Security Education, May 2020, Maribor, Slovenia. �hal-02559585�

https://hal.science/hal-02559585
https://hal.archives-ouvertes.fr


How to Teach the Undecidability of Malware
Detection Problem and Halting Problem

Matthieu Journault1, Pascal Lafourcade2, Malika More2, Rémy Poulain1, and
Léo Robert2

1 Sorbonne Université, LIP6
2 Université Clermont Auvergne, LIMOS, IREM

Abstract. Malware detection is a term that is often associated to Com-
puter Science Security. The underlying main problem is called Virus
detection and consists in answering the following question: Is there a
program that can always decide if a program is a virus or not? On the
other hand, the undecidability of some problems is an important notion
in Computer Science : an undecidable problem is a problem for which no
algorithm exists to solve it. We propose an activity that demonstrates
that virus detection is an undecidable problem. Hence we prove that the
answer to the above question is no. We follow the proof given by Cohen
in his PhD in 1983. The proof is close to the proof given by Turing in
1936 of the undecidability of the Halting problem. We also give an ac-
tivity to prove the undecidability of the Halting problem. These proofs
allow us to introduce two important ways of proving theorems in Com-
puter Science : proof by contradiction and proof by case disjunction. We
propose a simple way to present these notions to students using a maze.
Our activity is unplugged, i.e. we use only a paper based model of com-
puter, and is designed for high-school students. This is the reason why
we use Scratch to write our ”programs“.

Keywords: Virus detection problem, Halting problem, Undecidability, Com-
puter Science Unplugged.

1 Introduction

After Alan Turing gave birth to Computer Science in 1936 [11,10] and the techno-
logical advances that ensued, nowadays computers are ubiquitous. The original
main concerns of Computer Science were to design hardwares and softwares that
can solve some problems. Afterwards, the main challenge became to establish
communications between computers. This was the goal of the project ARPANET
(Advanced Research Projects Agency Network) initiated by the DARPA (De-
fense Advanced Research Projects Agency) in the USA in 1962, but really born
in 1969, with a first demonstration in 1972. Finally in 1986, the Kenbak-1 was the
first Personal Computer (PC), according to the Computer Museum of Boston.
Unfortunately, all these projects were designed for an ideal world where everyone
is honest and there is no malicious participant.



2 Authors Suppressed Due to Excessive Length

However, as soon as a system is working, it is unavoidable that some people
try to hack or attack it. This is the reason why security is one of the main issues
in Computer Science. Some of the most popular terms associated to Computer
Science are malware and antivirus. Following the definitions given by F. Cohen
in his PhD and in [5], let us clarify some related notions :

– a malware is a set of instructions that runs on a computer and makes a
system do something that an attacker wants it to do.

– a virus3 is a program that can infect other programs by modifying them to
include a, possibly evolved, version of itself.

– a worm is a similar program, which has in addition an automatic propaga-
tion mechanism without human assistance. In contrast, a virus needs human
actions such as opening an email attachment.

– a ransomware is a malware, that encrypts the victim’s data unless a ransom
is paid.

– a trojan is a program that seems harmless but performs malicious action.

History shows that the evolution of malwares closely follows the evolution of
computers. In 1982, the high-school student Rich Skrenta wrote the first virus
ever released in the wild, called Elk Cloner. It was a boot sector virus. Then the
virus called Brain, designed by Basit and Amjood Farooq Alvi in 1986, was the
first virus to infect some PCs. It affected IBM PCs by replacing the boot sector
of a floppy disk with a copy of the virus. The first internet worm was the Morris
Worm, written in 1988 by the Cornell student Robert Tappan Morris. The first
ransomware was designed by Joseph L. Popp in 1989. It was called AIDS/PC
Cyborg, was sent by postmail on a floppy disk and requested 189 US$.

On the other hand, an important part of the research in Computer Science
consists in drawing the frontier between undecidable and decidable problems.
A problem is said to be decidable if there is an algorithm that can solve it,
and undecidable otherwise. In spite of the existence of many well known un-
decidable problems (e.g., [11,6,9,4,3,8]), this very notion is often unknown to
Computer Science students. However, we think that it is an important notion
all programmers should know about, in order not to loose their time trying to
solve undecidable problems whenever they encounter one. One of the most sim-
ple examples is the undecidability of the resolution of a system of diophantine
equations [6]. It is a problem that can naively pass as an easy exercise for an
unknowing teacher. For instance, she might consider that designing a software
to solve systems of equations where coefficients and solutions are real numbers
might be too difficult, because computers are not designed to manipulate real
numbers. Hence this teacher might want to simplify the problem by replacing
real numbers by positive natural integers, which is exactly solving a system of
diophantine equations. Thus, we believe that the notion of undecidability is an
important concept that we should teach to students (and teachers) as soon as

3 The term of virus was first used in 1972 in a science fiction novel written by the
American David Gerrold and called “When HARLIE Was One”, where a program
called VIRUS that reproduces itself appears.



Title Suppressed Due to Excessive Length 3

possible. Teaching them this notion also helps us to stop let them think that a
computer can already solve any problem, or that it is just a matter of time until
an AI solves it in the next years.

In this article, we show that there cannot exist an algorithm that always
decides if a program is a virus or not, which is indeed an undecidability proof.

Contributions: We present a pedagogical activity for high school students in
order to prove that a perfect antivirus does not exist. For this, we follow the
approach presented in the PhD of F. Cohen in [5]. This activity is unplugged, it
means it does not require any computer, but only some printed papers, following
the line of thought proposed in [1]. In order to prepare students to this proof,
we also designed an activity that proves that it is not possible to determine if a
program terminates or not on a given input. This activity follows Turing’s proof
of the undecidability of the Halting problem [11,10]. These two proofs use some
essential techniques in Computer Science: proof by case disjunction and proof
by contradiction. In order to present these two proof techniques to students, we
use a simple situation, where Alice aims at escaping from a maze. Moreover, our
material uses some programs written in Scratch [7], but of course other languages
can be used instead, such as Snap! [2], Python, C, Java, etc.

Outline: In Section 2, we give a few simple programs that help the students to
understand how our computer model works. In Section 3, we explain how a proof
by contradiction and a proof by case disjunction work, using a simple example
based on a maze. In Section 4, we present the proof of undecidability of the
Halting problem and in Section 5 we prove that a perfect antivirus cannot exist.

2 Preliminary Work

We first introduce the material used for this activity. Then we describe each
”Scratch“ program used to prove the two undecidability results.

2.1 Material

In order to simulate the execution of our programs on a computer, we use a
simplified model. The computer is viewed as a “slate” (or a sheet of paper) on
which is drawn the diagram of Figure 1.

This simplified computer has two inputs, denoted by I1 and I2 , two out-

puts denoted by O1 and O2 , and three register boxes denoted by A , B

and C . The goal of the next section is to get used to operating this simplified
computer by handling small programs. In addition, students get acquainted with
an abstract model of computation. In this activity, the computer model is closed
to a three registers machine.



4 Authors Suppressed Due to Excessive Length

I2

I1 A

B

C

O2

O1

Fig. 1: Computer model.

2.2 Simple ”Scratch“ Programs

The word machine denotes a group of three participants, equipped with a slate
on which is drawn the diagram of Figure 1. The slate is used to help representing
the states of the computer during the execution of a program.

Thanks to the simple examples given in Figures 2 to 5, we explain how
programs are executed in our computer model. For each case, a copy of the
program is given to the students. The programs are presented with a pedagogical
progression, which we believe helps to understand how our computer model
works.

For example, the program Increment, given in Figure 2, is the simplest one.
Each student picks an integer and uses it as the input of the program Increment.
This program just adds one to its input and outputs the result. The goal of this
program is to get used to the material.

The next program is Minus, given in Figure 3, which, as its name explains,
just makes the subtraction of its two inputs and outputs the result. It uses a
loop and contains internal variables.

The next program, Minus?, given in Figure 4, is similar to the previous one
but does not terminate. For the students, it is often the first time they encounter
a program that does not terminate. The students must realize that this program
Minus? is obtained from the program Minus just by “forgetting” one instruction.
Thus they should realize that it is generally hard to determine whether a program
halts or not just by examining its source code.

For the program Super, given in Figure 5, each student picks an input and
runs the program. Some executions do not terminate, depending on the inputs,
while others terminate. The goal for the students is to find under which condi-
tions the program terminates or not.



Title Suppressed Due to Excessive Length 5

when I1 is present

set O1 to I1 + 1

stop

Fig. 2: Program Increment

3 Proof by Case Disjunction and Proof by Contradiction

In order to introduce the notions of proof by case disjunction, which is widely
used in Computer Science, as well as proof by contradiction, we consider a sit-
uation where no mathematical background is required. We propose the simple
maze given in Figure 6, with two deadly obstacles, a precipice noted P and a
monster noted M . If Alice meets the monster, she dies as well as if she falls into
the precipice. Alice starts at point A and our goal is to prove that she cannot
escape alive from the maze.

We prove this result by contradiction. Assume that Alice can escape from
the maze alive. She has only two options from her starting point A : going down
or going right.

We consider the two cases above and show that they are both impossible.

1. Going right : If Alice goes right, then she is going to fall into the precipice
P , and die. Since she does not leave the maze alive this case is impossible.

2. Going down : If Alice goes down then she is going to be eaten by the
monster M , and die. This case is also impossible.

Finally we conclude that the assumption ”Alice can leave the maze alive“ is
false. Hence we have shown that Alice cannot escape the maze alive.

This part of the activity can be conducted as an interactive discussion with
the students. Its goal is to explain step by step how to use those two proof
variants on a simple example.

4 Proof of Undecidability of the Halting Problem

This section is assigned to present a proof by contradiction of the Halting prob-
lem (i.e., always determine whether a given program terminates or not on a
given input).

4.1 Three Programs

We present three programs used in the proof : Photocopy, Negation and
Halt.



6 Authors Suppressed Due to Excessive Length

when I1 and I2 are present

set A to I1

set B to I2

set C to 0

set C to C + 1

set A to A - 1

repeat until A = B

set O1 to C

set O2 to 0

stop

Fig. 3: Program Minus, under condi-
tion E1 > E2.

when I1 and I2 are present

set A to I1

set B to I2

set C to 0

set C to C + 1

repeat until A = B

set O1 to C

set O2 to 0

stop

Fig. 4: Program Minus?, under condi-
tion E1 > E2.

The program Photocopy, given in Figure 7, copies its input given in I1 to

outputs O1 and O2 . This program can be tested by the students by choosing
numerical inputs at first. They discover that the input is just copied in the two
outputs as a photocopier would do. Then we ask the students to use a program
such as Increment as input. It is a bit perturbing for them at first, but they finally
accept without too much difficulty that the input of the program Photocopy
may be a program as well as a number.

The program Negation, given in Figure 8, can be tested on inputs HALTS
and DOES NOT HALT. Students try both inputs and discover that the program
Negation behaves the exact opposite of what its input says.

The program Halt, given in Figure 9, takes as input I1 and I2 and re-

turns HALTS if the execution of the program I1 on the input I2 terminates;
otherwise it outputs DOES NOT HALT. This program, Halt, cannot actually
exist because of the following line:

execution of program I1 halts on input I2

The purpose of this activity is too prove this result.



Title Suppressed Due to Excessive Length 7

when I1 is present

set A to I1

set A to A + 1

repeat until A = 0

set O1 to A

stop

Fig. 5: Program Super

4.2 Undecidability Proof

The aim of this section is to prove that the program Halt, given in Figure 9,
cannot exist. We assume that this program exists and show that this assumption
leads to a contradiction.

The proof is constructive in the sense that we build a program, denoted by X,
composed of three programs one after the other. The first one is Photocopy,
the second is Halt and the third is Negation. The idea is now to use the
program X as its own input, and show that a contradiction ensues.

We have two possibilities concerning the behavior of the program X on the
input X :

1. The execution of Halt on the inputs X and X outputs HALTS. In this case,
the program Negation receives HALTS as its input, so its execution never
terminates. Finally, the execution of the program X with X as its input never
terminates which contradicts the output given by Halt. The latter being
assumed to never be wrong, this case is not possible.

2. The execution of Halt on the inputs X and X outputs DOES NOT HALT.
In this case, the program Negation receives DOES NOT HALT as its input,
hence its execution terminates. Finally, the execution of the program X with
X as its input terminates, which contradicts the output given by Halt. The
latter being assumed to never be wrong, this case is also not possible.

Both cases are impossible, which proves that the initial assumption is false.
In other words, it means that the program Halt cannot exist.



8 Authors Suppressed Due to Excessive Length

A

MP

Fig. 6: Maze.

when I1 is present

set O1 to I1

set O2 to I1

stop

Fig. 7: Program Photocopy.

5 Proof of Undecidability of isVirus

We prove by contradiction that it is not possible to have a perfect antivirus.
Hence, we assume the existence of such a program, called isVirus and given in
Figure 10. This program takes as input a program P and determines whether P
is a virus or not. The program isVirus never fails to determine if P is a virus
or not.

We begin by manipulating this program isVirus with students before show-
ing that such a program cannot exist.

5.1 The Program isVirus

Let us consider the program called isVirus with input I1 and output TRUE

in O1 if I1 is a virus and FALSE in O1 otherwise (see Figure 10).



Title Suppressed Due to Excessive Length 9

when I1 is present

set A to 1

set A to A + 1

repeat until A = 0

set O1 to 0

set O2 to 0

if I1 =Halts then

else

stop

Fig. 8: Program Negation.

when I1 and I2 are present

set O1 to Halts

set O2 to 0

set O1 to Does Not Halt

set O2 to 0

if execution of program I1 halts on input I2 then

else

stop

Fig. 9: Program Halt.

5.2 The Program Test

Let us consider the program called Test with one boolean input I1 and output

01 . If I1 is TRUE then the output is set to 0 meaning that the program stops

its execution. If the input I1 is FALSE then the program behaves like a virus
and thus infects.

5.3 Undecidability Proof

The proof is constructive in the sense that we construct a new program, called
Y formed by the program isVirus followed by the program Test, given in
Figure 11.

The program Y works as follows : if the input of Y is a virus according to

the program isVirus, then the program Y terminates by outputing 0 in O1 ,
and otherwise it infects the computer.

We now observe the behavior of Y when it is called with itself as its own input.
We have two possibilities concerning the behavior of the program isVirus on
the input Y :



10 Authors Suppressed Due to Excessive Length

when I1 is present

set O1 =TRUE

set O1 =FALSE

if I1 is a VIRUS then

else

stop

Fig. 10: Program isVirus.

when I1 is present

set O1 to 0

Infect

if I1 =TRUE then

else

stop

Fig. 11: Program Test.

1. isVirus outputs TRUE. In this case, the program Test receives as input
TRUE. Thus the program Y stops. This contradicts the answer of isVirus
that said that Y was a virus (and consequently should infect the computer).
This leads to a contradiction and makes this case impossible.

2. isVirus outputs FALSE. In this case, the program Test receives as input
FALSE. Thus the program Y infects the computer. This contradicts the
answer of isVirus that said that Y was not a virus (and consequently should
not infect the computer). This leads to a contradiction and also makes this
case impossible.

Both cases are impossible, which proves that the assumption is false. In other
words, it means that the program isVirus cannot exist.

6 Conclusion

In this paper, we presented a pedagogical activity demonstrating that a per-
fect antivirus will never exist. We also propose another activity for proving the
undecidability of the Halting problem. For this, we introduced a simple com-
puter model that only uses paper. Moreover, using a simplified maze, we present
two fundamental notions that are often used in Computer Science : proof by
contradiction and proof by case disjunction.

We have two main goals in this activity. First we aim at showing that Com-
puter Science security is not an easy task and that it also has some undecidable
problems. Second, we want to suggest to teachers an activity around the notion
of undecidability.

This activity has been tried with high-school students but also with Master
students. In both cases, the students have been surprised to discover these two



Title Suppressed Due to Excessive Length 11

undecidability results. For high-school students, the proof technique is not so
easy to follow and even for university students, the principles of the proof are
often new. We believe that this activity demystifies several misconceptions that
students can have about the power of computers and antivirus.

Of course, it does not mean that it is useless to install an antivirus on your
computer. One of the important security principles is to have an up to date
system, as Bruce Schneier said “Security is a process, not a product”.

References

1. Bell, T., Rosamond, F., Casey, N.: Computer science unplugged and related
projects in math and computer science popularization. pp. 398–456 (01 2012).
https://doi.org/10.1007/978-3-642-30891-8 18

2. Berkley: Snap! (2011), https://snap.berkeley.edu
3. Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.): The Multivari-

ate Algorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fel-
lows on the Occasion of His 60th Birthday, Lecture Notes in Computer Science,
vol. 7370. Springer (2012). https://doi.org/10.1007/978-3-642-30891-8, https://
doi.org/10.1007/978-3-642-30891-8

4. Cassaigne, J., Halava, V., Harju, T., Nicolas, F.: Tighter undecidability bounds for
matrix mortality, zero-in-the-corner problems, and more. CoRR abs/1404.0644
(2014), http://arxiv.org/abs/1404.0644

5. Cohen, F.: Computer viruses. Comput. Secur. 6(1), 22–35 (Feb 1987).
https://doi.org/10.1016/0167-4048(87)90122-2, http://dx.doi.org/10.1016/

0167-4048(87)90122-2

6. Matiyasevich, Y.V.: Hilbert’s Tenth Problem. MIT Press, Cambridge, MA, USA
(1993)

7. MIT: Scratch 3.0 (2019), https://scratch.mit.edu
8. Rice, H.G.: Classes of recursively enumerable sets and their decision problems.

Transactions of the American Mathematical Society 74(2), 358–366 (1953), http:
//www.jstor.org/stable/1990888

9. Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Inven-
tiones mathematicae 12(3), 177–209 (1971)

10. Turing, A.M.: I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind
LIX(236), 433–460 (10 1950). https://doi.org/10.1093/mind/LIX.236.433, https:
//doi.org/10.1093/mind/LIX.236.433

11. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society 2(42), 230–265
(1936), http://www.cs.helsinki.fi/u/gionis/cc05/OnComputableNumbers.pdf


