
HAL Id: hal-02384606
https://inria.hal.science/hal-02384606

Submitted on 28 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On Practical Aspects of PCFG Password Cracking
Radek Hranický, Filip Lištiak, Dávid Mikuš, Ondřej Ryšavý

To cite this version:
Radek Hranický, Filip Lištiak, Dávid Mikuš, Ondřej Ryšavý. On Practical Aspects of PCFG Password
Cracking. 33th IFIP Annual Conference on Data and Applications Security and Privacy (DBSec), Jul
2019, Charleston, SC, United States. pp.43-60, �10.1007/978-3-030-22479-0_3�. �hal-02384606�

https://inria.hal.science/hal-02384606
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


On Practical Aspects of PCFG Password
Cracking

Radek Hranický, Filip Lǐstiak, Dávid Mikuš, and Ondřej Ryšavý

Faculty of Information Technology, Brno University of Technology, Czech Republic
ihranicky@fit.vutbr.cz, {xlisti00,xmikus15}@stud.fit.vutbr.cz,

rysavy@fit.vutbr.cz

Abstract. When users choose passwords to secure their computers,
data, or Internet service accounts, they tend to create passwords that
are easy to remember. Probabilistic methods for password cracking profit
from this fact, and allow the attackers and forensic investigators to guess
user passwords more precisely. In this paper, we present our additions
to a technique based on probabilistic context-free grammars. By modifi-
cation of existing principles, we show how to guess more passwords for
the same time, and how to reduce the total number of guesses without
significant impact on success rate.

Keywords: Password · Cracking · Security · Grammar

1 Introduction

Confidential data and user accounts for various systems and services are pro-
tected by passwords. Though a password is usually the only piece that separates
a potential attacker from accessing the privileged data, users tend to choose weak
passwords which are easy to remember [1]. In reaction, system administrators
and software developers introduce mandatory rules for password composition,
e.g., “use at least one special character.” While password-creation policies force
users to create stronger passwords [11,13], recent leaks of credentials from various
websites showed the reality is much more bitter. People widely craft passwords
from existing words [4] and often reuse the same password between multiple
sites [3]. This fact may be utilized by both malicious attackers and forensic
investigators who seek for evidence in password-protected data.

Traditional ways of password cracking contain a brute-force attack where one
tries every possible sequence of characters upon a given alphabet, and a dictio-
nary attack where one uses a list of existing passwords and tries each of them.
The main drawback of the brute-force attack is the size of a keyspace (a set of
all possible password candidates) which grows exponentially with the length of
the password, and one does not need to “try everything” to crack the password.
The dictionary attack, on the other hand, usually checks a limited number of
commonly-used or previously-leaked passwords. It is possible, however, to com-
bine both methods to perform a “smarter” cracking. The use of probability



2 R. Hranický et al.

and statistics has been shown to bring substantially better results for cracking
human-created passwords [9, 10,15].

One approach is the use of Markov chains which consider probabilities that
a certain character will follow after another one. The probabilities are learned
from an existing password dictionary and then reused for generating password
guesses [10]. The method, however, only works with individual characters and
does not consider digraphs or trigraphs. To work with larger password fragments,
Weir et al. proposed the use of probabilistic context-free grammars (PCFG) that
can describe the structure of passwords in an existing (training) dictionary. Frag-
ments described by PCFG represent finite sequences of letters, digits, and special
characters. Then, by derivation using rewriting rules of the grammar, one can
not only generate all passwords from the original dictionary, but produce many
new ones that still respect password-creation patterns learned from the dictio-
nary [15].

The rewriting rules of PCFG have probability values assigned accordingly to
the occurrence of fragments in the training dictionary. The probability of each
possible password equals the product of probabilities of all rewriting rules used
to generate it. Using PCFGs, generating password guesses is deterministic and
is performed in an order defined by their probabilities. Therefore, more probable
passwords are generated first.

While the creation of such grammar is fast and straightforward, the appli-
cation of rewriting rules takes a significant amount of processor time, and the
number of generated passwords is overwhelming in comparison with the original
dictionary. For example, using Weir’s tool1 with a PCFG trained on 6.5 kB elite-
hacker2 dataset (895 passwords) generates a 12 MB dictionary with 1.8 million
passwords. However, using 73 kB faithwriters dataset (8,347 passwords) gener-
ates a 28 GB dictionary with over 3 billion passwords. Even more unpleasant is
the time required to generate such datasets. The first 10 and first 100 passwords
of darkweb2017 3 dataset and darkweb2017-top100 can be both used for training
and generating within 1 minute on Core(TM) i7-7700K CPU. Taking first 1000
passwords requires more than a day to generate guesses on the same processor.

1.1 Contribution

Our goal was to make the PCFG-based password cracking utilizable for prac-
tical use. We identified factors that influence the time of generating password
guesses. Based on Weir’s Python PCFG cracker, we created an implementa-
tion in Go4 language, which enables to parallelize the generation of terminal
structures making the password generation multiple times faster. Moreover, we
proposed methods that remove specific rewriting rules from the grammar which
leads to a massive speedup of password guessing and allows the process to end
in a meaningful time without having a considerable impact on success rate.

1 https://github.com/lakiw/pcfg_cracker
2 https://wiki.skullsecurity.org/index.php?title=Passwords
3 https://github.com/danielmiessler/SecLists/tree/master/Passwords
4 https://golang.org/

https://github.com/lakiw/pcfg_cracker
https://wiki.skullsecurity.org/index.php?title=Passwords
https://github.com/danielmiessler/SecLists/tree/master/Passwords
https://golang.org/


On Practical Aspects of PCFG Password Cracking 3

1.2 Structure of the paper

The paper is structured as follows. Section 2 provides an introduction to PCFG
and discusses related work. Section 3 describes the enhancements we made to
PCFG-based techniques, while Section 4 shows experimental results of our work.
Finally, Section 5 concludes the paper.

2 Background and related work

For a long time, probability and statistics have been applied to measure pass-
word strength [8, 11, 13] and generate guesses in password cracking [7, 9, 10, 15].
Major password leaks allowed to make a clearer image of how user create their
passwords [2]. Such knowledge has been utilized in multiple password cracking
principles and adopted to existing tools.

Narayanan et al. proposed the use of Markov chains for password guessing.
The method uses conditional probability P (A|B) that character A will follow
after character B. The probabilities for all characters A, B are stored in a matrix
obtained by the analysis of an existing password dictionary [10]. The technique
was utilized in Hashcat tool which uses Markov chains for brute-force attacks by
default. The probability matrix can be generated automatically using Hcstatgen5

utility and is stored in a .hcstat file. Recent versions of Hashcat use LZMA
compression which is indicated by .hcstat2 file extension.

Weir et al. introduced password cracking using probabilistic context-free gram-
mars (PCFG) [15]. The mathematical model is based on classic context-free
grammars [5] with the only difference that each rewriting rule is assigned a prob-
ability value. The grammar is created by training on an existing password dic-
tionary. Each password is divided into continuous fragments of letters (L), digits
(D), and special characters (S). For fragment of length n, a rewriting rule of the
following form is created: Tn → f : p, where T is a type of the character group
(L, D, S), f is the fragment itself, and p is the probability obtained by dividing
the number of occurrences of the fragment by the number of all fragments of the
same type and length. In addition, we add rules that rewrite the starting sym-
bol (S) to base structures which are non-terminal sentential forms describing the
structure of the password [15]. For example, password “p@per73” is described by
base structure L1S1L3D2 since it consist from a single letter followed by a single
special character, three letters, and two digits. Table 1 shows rewriting rules of
a PCFG generated by training on two passwords: “pass!word” and “love@love”.
There is only one rule that rewrites S since both passwords are described by
the same base structure. By using PCFG on MySpace dataset (split to training
and testing part), Weir et al. were able to crack 28% to 128% more passwords
in comparison with the default ruleset from John the Ripper (JtR) tool6 using
the same number of guesses.

5 https://hashcat.net/wiki/doku.php?id=hashcat_utils#hcstatgen
6 https://www.openwall.com/john/

https://hashcat.net/wiki/doku.php?id=hashcat_utils#hcstatgen
https://www.openwall.com/john/


4 R. Hranický et al.

left → right probability

S → L4S1L4 1
L4 → pass 0.25
L4 → word 0.25
L4 → love 0.5
S1 → @ 0.5
S1 → ! 0.5

Table 1: An example of PCFG rewriting rules

The proposed approach, however, does not distinguish between lowercase and
uppercase letters. Weir extended the original generator by adding capitalization
rules like “UULL” or “ULLL” where “U” means uppercase and “L” lowercase.
The rules are applied to all letter fragments which increases the number of
generated guesses [14]. After adding capitalization, the notation for letter non-
terminals were changed from Ln to An (as alphabetical) since L now stands for
lowercase.

While the previous techniques consider only the syntax of passwords, Veras et
al. designed a semantics-based approach which divides password fragments into
categories by semantic topics like names, numbers, love, sports, etc. With JtR
in stdin mode feeded by a semantic-based password generator, Veras achieved
better success rates than using Weir’s approach or the default JtR wordlist [12].

Ma et al. showed how normalization and smoothing can increase the success
rate of Markov models. By training and testing on a huge number of datasets,
Ma showed that the improved Markov-based guessing could bring better results
than PCFGs [9].

Weir’s PCFG-based technique encountered extensions as well. Houshmand
et al. introduced keyboard patterns represented by additional rewriting rules
that helped improve the success rate by up to 22%, proposed the use of Laplace
probability smoothing, and created guidelines for choosing appropriate attack
dictionaries [7]. After that, Houshmand also introduced targeted grammars that
utilize information about a user who created the password [6].

The current version of Weir’s PCFG Cracker consists of two separate tools:
PCFG Trainer and PCFG Manager. While PCFG Trainer is used to create
a grammar from an existing password dictionary, PCFG Manager generates
new password guesses from the grammar - i.e., gradually applies rewriting rules
to the starting symbol and derived sentential forms.

At the time of writing this paper, both tools include the support for letter
capitalization rules [14], keyboard patterns [7], as well as the ability to generate
new password segments using Markov chains [10]. In the training phase, a user
can set a coverage value which defines the portion of guesses to be generated
using rewriting rules only while the rest is generated using Markov-based brute-
force. A smoothing parameter allows the user to apply probability smoothing
as described in [7]. Moreover, the tools contain the support for context-sensitive
character sequences like “<3” or “#1” that, if present in the training data, form



On Practical Aspects of PCFG Password Cracking 5

a separate set of rewriting rules. Such replacements can be used to describe
special strings like smileys, arrows, and others.

Despite numerous improvements made by Houshmand [7], users still have to
face slow password guessing speed which is currently the bottleneck of the entire
process. Besides, the generating of password guesses gets progressively slower as
the time goes on and, as we detected, has high memory requirements. Creating
a complete wordlist of possible password candidates using PCFGs trained on
leaked datasets may take many hours or even days. Moreover, current tools
do not provide information about the size of the keyspace, i.e., the number of
possible password candidates, and thus the user has no clue about how long will
the process take. This obstacle has already been reported as a GitHub issue7.
Weir, however, does not plan to resolve the issue “anytime soon.”

3 Enhancements to PCFG

We focus on making PCFG-based password cracking suitable for practical use -
i.e., allow the user to create a PCFG, generate a wordlist of password guesses in
a short time, and start cracking immediately. To achieve this, we decided to:

– Create a faster “password generator” that could produce more guesses at
the same time using the same hardware.

– Make a tool to calculate the number of possible password guesses from
a PCFG. The number can help estimate the size of an output dictionary
as well as the time required to generate all password candidates.

– Analyze if modification of an existing grammar can provide any help to
the password guessing process. Concretely, if it accelerates the password
guessing, or makes it end in a meaningful time.

To verify the success of our efforts, we study the following metrics: a) the number
of guesses per time unit, b) the total time of password guessing, c) the number
of generated passwords, d) the success rate for testing datasets, i.e., how many
newly-generated passwords are present in existing password dictionaries.

3.1 Key observations

By analyzing the behavior of Weir’s Python PCFG Cracker on various leaked
datasets, we observed the following:

– The Python implementation of PCFG Manager uses a priority queue and
three processes: one that fills the queue with pre-terminal structures [15],
one that creates terminal structures (password guesses), and one for storage
backup. No other parallelization is supported. Thus, the processor cores are
not utilized well.

7 https://github.com/lakiw/pcfg_cracker/issues/9

https://github.com/lakiw/pcfg_cracker/issues/9


6 R. Hranický et al.

– Processing long base structures like A1D1A2D2A3D3A4D4A5D5 is compu-
tationally complex and wastes a lot of time even if their probabilities are
insignificant.

– Rewriting rules for alpha characters (A), digits (D), and other symbols (O)
have all similar probability, while rewriting rules for base structures differ
more between each other.

– For capitalization of letter fragments, a grammar usually contains few (1 to
4) rules with higher probabilities while the rest have probability below 0.1
and only little impact on success rate.

3.2 Long base structures

For every PCFG, possible sentential forms create a tree structure where the start-
ing symbol represents the root node, and terminal structures are leaves. Every
edge stands for the application of a rewriting rule that transforms a parent node
to a child node. In terms of probabilistic password cracking, terminal structures
are password candidates, and base structures (e.g., A4D2O1) are located on the
second level of the tree.

In PCFG Manager, every base structure is processed by Deadbeat dad algo-
rithm [14]. The goal of this algorithm is to create new children from the current
node and ensure that these child nodes are inserted into the priority queue in
the correct order. Deadbeat dad replaced the original Next function [15] and
significantly reduced the size of the priority queue at the expense of computing
operations [14].

We analyzed the algorithm and observed that the most expensive task is
to find every possible parent of every node which is being inserted into the
priority queue. In Weir’s PCFG Manager, the task is resolved by a function called
dd is my parent that runs in iterations whose count is potentially increased by
every non-terminal present in the processed base structure. The deciding factor is
the number of different probabilities assigned to the rewriting rules applicable to
the non-terminal. If all usable rules have the same probability value, the number
of iterations is not increased. The more different probabilities are present, the
more rapidly the iteration count grows, if the non-terminal is added to the base
structure.

Table 2 shows the number of dd is my parent iterations under different set-
tings. For D3 non-terminal, all rules have the same probability, and thus D3 has
no impact on the iteration count. For A1, rewriting rules have 26 to 29 different
probability values (Ap

1). As a capitalization rule for A1, only ”L” is used. One
can see, the number of iterations grows almost exponentially each time A1 is
added to the base structure.

In PCFGs trained on leaked password datasets, the variedness between rule
probabilities is usually high, especially for shorter character fragments. For long
base structures, the dd is my parent function may iterate millions of times
which significantly slows the password guessing process. Such structures usually
have low probability values since they are in most cases created from randomly
generated strings, not created by users. We assume, removing such structures



On Practical Aspects of PCFG Password Cracking 7

base structure Ap
1 = 26 Ap

1 = 27 Ap
1 = 28 Ap

1 = 29

A1 103 107 111 115
A1D3 103 107 111 115
A1D3A1 15,811 17,067 18,371 19,723
A1D3A1D3 15,811 17,067 18,371 19,723
A1D3A1D3A1 1,506,286 1,688,528 1,884,906 2,095,948
A1D3A1D3A1D3 1,506,286 1,688,528 1,884,906 2,095,948
A1D3A1D3A1D3A1 120,939,106 140,790,314 162,990,446 187,717,930

Table 2: The number of iterations of dd is my parent function

from the grammar speeds up password generation several times and does not
noticeably decrease success rate at cracking sessions.

3.3 Calculating the number of password candidates

The calculation of possible password guesses from a PCFG is a currently missing7

feature that is, however, essential for tools presented in this paper. Let size(N)
be the number of terminal structures that can be created by applying rewriting
rules on non-terminal N . For base structure B = N1N2 . . . Nn, the number of
possible password candidates can be calculated as:

cnt base(B) =

n∏
i=1

size(Nn). (1)

For grammar G, the total number of possible password candidates is the sum of
cnt base(B) for all base structures B ∈ G:

cnt total(G) =
∑
B∈G

cnt base(B). (2)

The file and directory structure of Weir’s PCFG considers a single rewriting rule
per line. All rewriting rules have non-zero probability, and thus, all are used.
Therefore, size(N) for non-terminal N = Tn (see Section 2) is, in most cases,
the number of lines in n.txt file located in a directory for fragments of type T .
For example, size(D3) equals the number of lines in Digits/3.txt file. Since
letter capitalization rules have been introduced, it is necessary to take them
into consideration. Thus, size(An) is the number of lines in Alpha/n.txt file
multiplied by the number of lines in Capitalization/n.txt file.

The calculation shown above is usable for classical PCFG-based approach
only, i.e., with the --coverage parameter of PCFG Trainer set to 1. Otherwise,
Weir’s PCFG Manager would create additional character fragments using brute-
force and Markov chains which is out of the scope of this paper.



8 R. Hranický et al.

3.4 The new PCFG Manager

To improve the use of resources, we created an alternative8 to Weir’s PCFG Man-
ager. We started with a simple transcription of Python sources to Go program-
ming language that we chose because of its speed, simplicity, and compilation
to machine language. Early experiments showed that our Go-based alternative
using the same algorithms was about four times faster than the original solution.
However, there was still enough space for optimization.

Within all steps performed by the PCFG Manager, generating password
guesses from pre-terminal structures [14,15] was the most computationally com-
plex part. Since there is no mutual dependence between the pre-terminals, we
decided to modify the program and parallelize this part of the process. Our
new design uses a single goroutine (a lightweight thread) for filling the priority
queue [15] with pre-terminal structures, and one to n goroutines for generating
terminals in parallel. The n can be set by a user to reflect the processor’s ca-
pabilities. Moreover, we added a parameter which allows the user to limit the
number of generated password guesses. We illustrate both approaches by sim-
plified schematics that display goroutines and data transfer operations. While
Figure 1a shows the original design of Weir’s PCFG Manager, the parallel version
is depicted in Figure 1b.

For synchronization and mutual communication, goroutines use a mechanism
called channels that act as FIFO queues. A goroutine can send values to a chan-
nel or receive values from it. By default, channels are not buffered and both send
and receive operations are blocking. In our solution, we use a buffered channel
of size n where the sender is blocked only if the channel contains n values in the
queue. Each value represents a pre-terminal structure. The main goroutine (M)
implements the Deadbeat dad algorithm [14] filling the priority queue with pre-
terminals. Every time a pre-terminal is created, it is sent to the buffered channel
if there is enough space. Every time the channel is full, the main goroutine is sus-
pended automatically by the send operation. There is no need to generate more
pre-terminals at the time they cannot be processed. In contrast to the original
version, the proposed design allows to process multiple pre-terminals and gen-
erate passwords in parallel if n > 1. In that case, the only apparent drawback
is the possible slight change of the password order at the output. This behav-
ior could be resolved by adding a supplementary synchronization mechanism at
the output, however, at the cost of performance loss. For practical use, we do
not consider this as a large obstacle since for millions of password, the changes
are insignificant because the order of larger password blocks is preserved. More-
over, if the user does not set the guess limit explicitly, or if the limit is set in the
PCFG Mower (see Section 3.5) instead of PCFG Manager, the output dictionary
contains the same passwords, and the success rate would be intact.

By profiling, we later detected that even though we accelerated generating
terminal structures, the new bottleneck was at the output, where simple I/O
text operations slowed down the entire process. We overcame this obstacle by

8 https://github.com/Dasio/pcfg-manager

https://github.com/Dasio/pcfg-manager


On Practical Aspects of PCFG Password Cracking 9

adding extra output buffers to goroutines that generate terminal structures. The
buffers store the terminal structures and are flushed to output after the entire
pre-terminal is processed. The final design is illustrated in Figure 1c and the
experimental results in Section 4.

getNext

send... PT

Process 1

Priority queue

Process 2

listPT T1
...
Ti

(a) Python PCFG Manager

... PT

Goroutine M

Priority queue
PT1 ... PTN

Buffered channel

send

Goroutine 1

list
PT T1

...
Ti

...
Goroutine N

list
PT T1

...
Ti

Wordlist
flush

flush

receive

receive

flush

flush

flush

flush

(b) Go PCFG Manager

... PT

Goroutine M

Priority queue
PT1 ... PTN

Buffered channel

send

Goroutine 1

list
PT T1

...
Ti

...
Goroutine N

list
PT T1

...
Ti

receive

flush

Output buffer

flush

Output buffer

Wordlist

receive

(c) Go PCFG Manager with buffered output

Fig. 1: The architecture of PCFG Manager in Python and Go
(PT - pre-terminal structure, T - terminal)



10 R. Hranický et al.

3.5 Grammar filtering

To increase speed even more, we experimented with various modifications of
already-trained grammars. We noticed that removing rules which rewrite the
starting symbol into long base structures brings a significant speedup without
higher impact on a success rate. The motivation for such filtering was discussed
in Section 3.2. We automated the process by creating a simple script that auto-
matically filters out all base structures longer than a user-defined maximum.

At this point, we were able to generate much more passwords per time
unit. However, without a manually-defined limit for password guesses, the to-
tal amount of time required for generating was still extensive. From a practical
perspective, any limit to guess count means that there is always a part of the
grammar that is never used and unnecessarily wastes memory during the guess
generation. Such consideration led us to speculate about reducing the size of the
grammar instead of limiting guesses in PCFG Manager.

We came with an idea to remove the least significant rewriting rules from
the grammar. We are aware of the fact that any removal of rules from already-
created PCFG without adjusting probability values results in a mathematically
incorrect grammar where the total probability of rules that rewrite some non-
terminals may be lower than one. For practical use with the PCFG Manager,
it does not matter. The goal of the filtering is to make the output dictionary
more compact and to ensure that generating passwords will end in a meaningful
time. Besides, having a reduced grammar that can be processed entirely, ensures
that even the parallel run of PCFG Manager generates the same passwords every
time. Nevertheless, the strongest motivation for grammar filtering is a potentially
massive saving of processor time. Putting a limit before the guessing even starts
prevents the Deadbeat dad algorithm from performing many useless derivation
steps on trees that never form terminal passwords due to a low probability.

As denoted above, rules for alpha characters, digits, and special symbols
usually have similar probabilities, thus removing them leads to a considerable
loss of information which decreases the success rate. Rulesets for base structures
and capitalization, on the other hand, contain many insignificant rewriting rules
that can be removed safely. We created a tool called PCFG Mower9 which can:

– Calculate the total number of possible password guesses from a PCFG and
inform the user about achievable keyspace. Moreover, if the user knows an
average speed of password guessing, it is possible to estimate the total time
required for generating all password candidates.

– Filter a PCFG by performing an automatic removal of rewriting rules based
on a set of options entered by the user.

To verify our assumptions, we created a simple PCFG reduction algorithm that is
implemented in PCFG Mower and shown in Figure 2. The goal of the algorithm
is not to provide a universal solution, but to validate or disprove that system-
atic PCFG filtering brings a possible benefit to password cracking. Besides the

9 https://github.com/findo11/pcfg_mower

https://github.com/findo11/pcfg_mower


On Practical Aspects of PCFG Password Cracking 11

Input: original grammar, limit, bs, cs
Output: reduced grammar
1: reduce = true, i = 0
2: repeat
3: i++
4: count = password count()
5: if count ≤ limit then
6: reduce = false
7: end if
8: if reduce then
9: Remove as many base structures as required to reduce their total probability

by bs.
10: Remove all capitalization rules that have probability lower than i× cs.
11: end if
12: until not reduce

Fig. 2: PCFG reduction algorithm

original grammar, it takes the following input parameters: limit defining the
maximum number of password guesses to be generated, and probability values
bs, cs. While bs allows to set how rapidly should the algorithm remove base
structures, cs sets the same for capitalization rules. The output of the algorithm
represents a PCFG which generates the maximum of limit password guesses.

4 Experimental results

In this section, we demonstrate the practical benefits of our enhancements to
PCFGs. For experimental purposes, we work with both original and modified
datasets from real password leaks. As data sources, we used SkullSecurity2 pages
and SecLists3 repository. All employed datasets are enlisted in table 3. For
shorter notation, we assign each a unique identifier (ID). The last row (def)
represents the default PCFG from Weir’s PCFG Cracker1, which is said to be
trained on a random sample of million passwords from RockYou dataset.

The table shows the number of passwords in the dataset (pw count), its
size, and the average password length (avg). The other columns illustrate how
a PCFG trained on the dataset looks like. We show the number of rewriting rules
for alpha characters (A), digits (D), other characters (O) as well as the number
of rewriting rules for base structures (base) and capitalization (cap).

4.1 The performance of PCFG Manager

At first, we measured the acceleration that can be achieved using our new PCFG
Manager in contrast with the original one from Weir et al. [15]. Table 4 shows
experimental results of generating password guesses using PCFG trained on
Darkweb2017-10000 dataset (dw), RockYou-75 dataset (ru75), and the default
PCFG (def) used in Weir’s cracker. All three experiments were performed using



12 R. Hranický et al.

dataset PCFG

ID name pw count size avg A D O base cap

dw Darkweb2017-10000.txt 10,000 82.6 kB 7 5,244 947 30 323 83

r65 rockyou-65.txt 30,290 344.5 kB 7 17,845 4,213 35 256 39

r75 rockyou-75.txt 59,187 478.9 kB 7 30,670 10,601 51 351 51

ms myspace.txt 37,126 354.2 kB 8 22,587 4,273 133 1,574 179

tl tuscl.txt 38,820 324.7 kB 7 26,806 6,518 71 1,290 242

pr probab-v2-top12000.txt 12,645 100.2 kB 6 11,117 534 1 125 23

def Random million passwords from RockYou 330,343 145,510 906 84,307 950

Table 3: Password datasets used for experiments

a computer with Intel(R) Core(TM) i7-4700HQ CPU with 8 GB RAM. We also
decided to study the influence of disk I/O speed, so that we measured everything
using HDD and then using SSD. In all cases, we measured how many password
guesses we can generate within 3 minutes.

Our solution was from 8 to 40 times faster than the original one. Using
Darkweb dataset (see Figure 3) resulted in lowest acceleration since it contains
long and complex base structures. With the default PCFG (see Figure 4) and
Rockyou-75 dataset (see Figure 5), we were able to generate much more password
guesses, and the difference between HDD and SSD is more noticeable.

training manager HDD SSD

dw
Python 3,022,923 2,948,532

Go 24,592,908 24,609,579
acceleration 8.14 x 8.35 x

def
Python 29,613,726 32,402,490

Go 405,819,926 485,244,534
acceleration 13.70 x 14.98 x

r75
Python 18,418,684 20,843,491

Go 490,635,443 842,695,475
acceleration 26.64 x 40.43 x

Table 4: No. of guesses and acceleration of PCFG manager

4.2 The impact of PCFG filtering

The second set of experiments aim to examine the effects of our attempts to
reduce the grammar. Table 5 shows the results of training, modification, gen-
erating password guesses, and checking success rate using multiple datasets.
The experiments were performed using Intel(R) Core(TM) i7-7700K CPU with
32 GB RAM and an SSD. Since generating password guesses using non-modified



On Practical Aspects of PCFG Password Cracking 13

0

5000000

10000000

15000000

20000000

25000000

Python Go

HDD SSD

Darkweb-trained PCFG

Fig. 3: No. of guesses within 3 minutes using Darkweb-trained PCFG

0

100000000

200000000

300000000

400000000

500000000

Python Go

HDD SSD

Default PCFG

Fig. 4: No. of guesses within 3 minutes using Default PCFG

PCFGs would take hours and days, we set a time limit of 10 minutes to all
measurements - every time the PCFG manager exceeded the 10-minute interval,
it was stopped.

The first column (tr) shows which dataset we used for training to create
the PCFG. For all training datasets, the first line represents generating pass-
word guesses using the original grammar - i.e., without any modification. The
longbase modification stands for the grammar where we removed base struc-
tures longer than 10 characters (5 non-terminals). In other measurements, we
used a grammar with already-removed long base structures and reduced it us-
ing PCFG Mower described in Section 3. The mow-n modification means that
we performed longbase first and then we set the limit of the PCFG reduction
algorithm to n passwords. We experimented with the following limit values:
1,000,000,000 (1000M), 500,000,000 (500M), and 20,000,000 (20M) passwords.
In all cases, the bs and cs constants were set to 0.001 to achieve fine-grained fil-
tering. Since the algorithm removes selected rules, we illustrate the changes done
to the grammars in each step. For every modification, we display the preserved
number of rewriting rules for base structures (base) and capitalization (cap).



14 R. Hranický et al.

0

250000000

500000000

750000000

1000000000

Python Go

HDD SSD

Rockyou-75-trained PCFG

Fig. 5: No. of guesses within 3 minutes using Rockyou-75-trained PCFG

Next columns inform about password guessing. We display the amount of
time required to generate the output dictionary (time), (or 10m∗ if we reached
the time 10-minute limit), the size of the output dictionary (out size) and the
number of its passwords in millions (mop). The rest displays the success rate
of password guessing on testing datasets - i.e., the percentage telling how many
generated password guesses were included in different testing datasets. The last
column displays the average success rate impact (ASRI) which is calculated as:

ASRI =

∑n
i=1(SRmod

i − SRorig
i )

n

where SRorig
i is the success rate on testing dataset number i before the modifi-

cation of the PCFG, and SRmod
i is the success rate on testing dataset number i

after the modification of the PCFG, and n is the total number of testing datasets.
In our case, n = 4. We use ASRI to analyze the influence of our modifications.
Positive ASRI means that the success rate was improved while negative stands
for decrease.

As we can see from results, removing long base structures resulted in a mas-
sive increase of password guessing speed which enabled to generate much more
passwords within 10 minutes. We achieved the highest acceleration on dw and
r65 since they contain very complex passwords that create enormously long base
structures. After the modification, we were able to generate over 14 times more
password guesses. In contrast, training on ms and tl creates more simple gram-
mars, and thus the speedup was not as rapid. Removing long base structures
showed almost no impact on the success rate which confirms our assumption
that their importance is negligible. From 16 testings, only 8 led to decrease by
a maximum of 0.06 %. To our surprise, the ASRI was mostly positive since in 6
cases, removing long base structures improved the success rate by up to 0.7 %
thanks to more passwords generated within the same time.

Next measurements analyzed grammars filtered by PCFG Mower to verify if
the removal of low-probability rewriting rules brings any benefit. In all cases, the
mow modification allowed the PCFG Manager to process the entire grammar



On Practical Aspects of PCFG Password Cracking 15

grammar password guesses success rate

tr modification base cap time out size mop pr ms dw r65 ASRI

dw

original 323 83 10m* 731 MB 78 45.03 % 26.83 % 98.27 % 41.39 %
longbase 288 83 10m* 12 GB 1,110 45.01 % 26.91 % 98.35 % 41.40 % +0.04 %

mow-1000M 106 40 25s 3.3 GB 373 44.54 % 24.47 % 96.42 % 38.36 % -1.93 %
mow-500M 106 40 25s 3.3 GB 373 44.54 % 24.47 % 96.42 % 38.36 % -1.93 %
mow-20M 86 32 2s 77 MB 9 44.18 % 24.12 % 95.65 % 38.00 % -2.39 %

r65

original 256 39 10m* 1.5 GB 151 72.34 % 37.63 % 88.25 % 99.84 %
longbase 223 39 10m* 25 GB 2,210 72.30 % 37.63 % 88.14 % 99.81 % -0.05 %

mow-1000M 161 36 3m 31s 11 GB 980 72.17 % 37.17 % 87.73 % 99.61 % -0.35 %
mow-500M 123 31 1m 31s 4.5 GB 409 72.01 % 36.62 % 87.23 % 99.35 % -0.71 %
mow-20M 79 20 3.5s 130 MB 13.8 70.98 % 34.26 % 85.80 % 97.16 % -2.47 %

ms

original 1574 179 10m* 5.7 GB 616 47.47 % 93.68 % 69.14 % 46.42 %
longbase 1430 179 10m* 9.5 GB 1,030 47.45 % 94.38 % 69.07 % 46.42 % +0.15 %

mow-1000M 110 25 3m 9.2 GB 941 46.37 % 82.40 % 66.74 % 43.04 % -4.54 %
mow-500M 78 20 1m 3.1 GB 334 45.13 % 79.67 % 64.71 % 42.62 % -6.15 %
mow-20M 21 20 2s 126 MB 15 33.25 % 61.17 % 54.28 % 35.58 % -18.11 %

tl

original 1290 242 10m* 4.5 GB 520 55.27 % 36.87 % 69.85 % 43.86 %
longbase 1158 242 10m* 7.6 GB 870 55.23 % 37.15 % 69.79 % 43.87 % +0.05 %

mow-1000M 91 20 2m 43s 7.5 GB 884 54.06 % 30.94 % 66.08 % 40.37 % -3.60 %
mow-500M 48 19 1m 8s 1.8 GB 200 53.77 % 29.05 % 64.19 % 39.39 % -4.86 %
mow-20M 24 18 2s 133 MB 17 52.08 % 22.27 % 55.61 % 35.64 % -10.07 %

Table 5: Success rates of original and modified PCFGs (* - reached the time
limit)

in less than 4 minutes, showing that it can provide a suitable alternative to
a “hard” limit for password guessing. More compact PCFGs produced smaller
dictionaries. With more compact PCFGs, the generated dictionaries were smaller
as well. Again, we achieved the best results with dw and r65 datasets, where we
were able to reduce the size from 12 GB (longbase) to 112 MB dictionary, and
from 25 GB to 130 MB with a loss of success rate below 4 % in all cases. For ms
and tl, filtering the grammar spared time and space as well, however, the mow-
20M limit was too strict to provide satisfactory results. For dw, we received
the same results with mow-1000M and mow-500M. The dw -trained grammar
contains a high number of base structures with similar probabilities. Thus, a lot
of them was removed by mow-1000M modification, and no further filtering was
necessary.

4.3 Evaluation

By modification of both PCFG Manager and existing grammars, we were able to
make password guessing many times faster. What most helped the speedup was
the use of a compiled programming language, the parallelization of generating
terminal structures and removing rewriting rules for long base structures. For
datasets we analyzed, such rules caused ”more harm than good.” The rewriting
rules for long base structures mostly had insignificant probabilities but compli-



16 R. Hranický et al.

cated the calculation of the computationally-complex Deadbeat dad algorithm.
In all cases, the removal accelerated the password guessing dramatically.

Filtering grammars with PCFG Mower reduced the time required for pass-
word guessing rapidly. The settings, however, have to be selected wisely. With
our experimental setup, we achieved the best results with PCFG Mower limit
set to 500 millions of passwords. Stricter limitation produced decent results for
only some cases. We assume that the success rate highly depends on the nature
of selected datasets, and thus there is no universal solution.

5 Conclusion

Probabilistic methods certainly have their place in the area of password cracking.
While Markov chains were adopted to existing tools a long time ago, probabilistic
context-free grammars are currently more a subject of academic research than
a ready-to-use technique. However, as the development of cracking methods con-
tinues by researchers, communities, and commercial subjects, the situation may
change. Even the authors of Hashcat consider10 adding support for generating
“slow candidates.”

From our standpoint, one of the main factors that currently complicate the
use of PCFG-based techniques is the extensive amount of time required to gen-
erate password guesses. By using both analytic and experimental approach, we
identified the critical spots that slowed down the entire process. We proposed
methods that optimize the password guessing and allow better use of hardware
resources. We experimentally proved that our new PCFG Manager is capable of
generating passwords 8 to 40 times faster than the original tool from Weir et al.

Moreover, we proposed a way of PCFG filtering which provides a resource-
saving alternative to a “hard” password guess limit. We showed that the system-
atic removal of selected rewriting rules might reduce the total amount of time
required to generate password candidates without having a significant impact
on the success rate. If one decides to use the filtering techniques, we recom-
mend starting with the removal of long base structures that produce the least-
probable passwords and perceptibly increase the number of necessary processor
operations.

In our future research, we want to perform a more detailed analysis of the
relation between PCFG filtering and the success ratio which may discover new
factors that have not been revealed yet. Since the practical use of password crack-
ing often involves a distributed environment, we currently work on distributed
PCFG-based password guessing techniques which may provide a smarter alter-
native for a classic dictionary attack.

Acknowledgements The research presented in this paper is supported by “In-
tegrated platform for analysis of digital data from security incidents” project,
no. VI20172020062 granted by Ministry of the Interior of the Czech Republic

10 https://hashcat.net/forum/thread-7903.html

https://hashcat.net/forum/thread-7903.html


On Practical Aspects of PCFG Password Cracking 17

and “ICT tools, methods and technologies for smart cities” project, no. FIT-S-
17-3964 granted by Brno University of Technology. The work is also supported
by Ministry of Education, Youth and Sports of the Czech Republic from the Na-
tional Programme of Sustainability (NPU II) project “IT4Innovations excellence
in science” LQ1602.

References

1. Bishop, M., Klein, D.V.: Improving system security via proactive password check-
ing. Computers & Security 14(3), 233–249 (1995)

2. Bonneau, J.: The science of guessing: Analyzing an anonymized corpus of 70 million
passwords. In: 2012 IEEE Symposium on Security and Privacy. pp. 538–552 (May
2012). https://doi.org/10.1109/SP.2012.49

3. Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X.: The tangled web of
password reuse. In: NDSS. vol. 14, pp. 23–26 (2014)

4. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proceed-
ings of the 16th International Conference on World Wide Web. pp. 657–666. WWW
’07, ACM, New York, NY, USA (2007). https://doi.org/10.1145/1242572.1242661

5. Ginsburg, S.: The Mathematical Theory of Context Free Languages. McGraw-Hill
Book Company (1966)

6. Houshmand, S., Aggarwal, S.: Using personal information in targeted grammar-
based probabilistic password attacks. In: IFIP International Conference on Digital
Forensics. pp. 285–303. Springer (2017)

7. Houshmand, S., Aggarwal, S., Flood, R.: Next gen pcfg password cracking. IEEE
Trans. Information Forensics and Security 10(8), 1776–1791 (2015)

8. Kelley, P.G., Komanduri, S., Mazurek, M.L., Shay, R., Vidas, T., Bauer, L.,
Christin, N., Cranor, L.F., Lopez, J.: Guess again (and again and again): Mea-
suring password strength by simulating password-cracking algorithms. In: Security
and Privacy (SP), 2012 IEEE Symposium on. pp. 523–537. IEEE (2012)

9. Ma, J., Yang, W., Luo, M., Li, N.: A study of probabilistic password models.
In: 2014 IEEE Symposium on Security and Privacy. pp. 689–704 (May 2014).
https://doi.org/10.1109/SP.2014.50

10. Narayanan, A., Shmatikov, V.: Fast dictionary attacks on passwords using time-
space tradeoff. In: Proceedings of the 12th ACM Conference on Computer and
Communications Security. pp. 364–372. CCS ’05, ACM, New York, NY, USA
(2005). https://doi.org/10.1145/1102120.1102168

11. Proctor, R.W., Lien, M.C., Vu, K.P.L., Schultz, E.E., Salvendy, G.: Improving
computer security for authentication of users: Influence of proactive password re-
strictions. Behavior Research Methods, Instruments, & Computers 34(2), 163–169
(2002)

12. Veras, R., Collins, C., Thorpe, J.: On semantic patterns of passwords and their
security impact. In: NDSS (2014)

13. Vu, K.P.L., Proctor, R.W., Bhargav-Spantzel, A., Tai, B.L.B., Cook, J., Schultz,
E.E.: Improving password security and memorability to protect personal and orga-
nizational information. International Journal of Human-Computer Studies 65(8),
744 – 757 (2007). https://doi.org/10.1016/j.ijhcs.2007.03.007

14. Weir, C.M.: Using probabilistic techniques to aid in password cracking attacks.
Ph.D. thesis, Florida State University (2010)

https://doi.org/10.1109/SP.2012.49
https://doi.org/10.1145/1242572.1242661
https://doi.org/10.1109/SP.2014.50
https://doi.org/10.1145/1102120.1102168
https://doi.org/10.1016/j.ijhcs.2007.03.007


18 R. Hranický et al.

15. Weir, M., Aggarwal, S., d. Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: 2009 30th IEEE Symposium on Security
and Privacy. pp. 391–405 (May 2009). https://doi.org/10.1109/SP.2009.8

https://doi.org/10.1109/SP.2009.8

	On Practical Aspects of PCFG Password Cracking

