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Abstract. In engineering, design analyses of complex products rely on
computer simulated experiments. However, high-fidelity simulations can
take significant time to compute. It is impractical to explore design space
by only conducting simulations because of time constraints. Hence, sur-
rogate modelling is used to approximate the original simulations. Since
simulations are expensive to conduct, generally, the sample size is limited
in aerospace engineering applications. This limited sample size, and also
non-linearity and high dimensionality of data make it difficult to gener-
ate accurate and robust surrogate models. The aim of this paper is to
explore the applicability of Random Forests (RF) to construct surrogate
models to support design space exploration. RF generates meta-models
or ensembles of decision trees, and it is capable of fitting highly non-
linear data given quite small samples. To investigate the applicability of
RF, this paper presents an approach to construct surrogate models using
RF. This approach includes hyperparameter tuning to improve the per-
formance of the RF’s model, to extract design parameters’ importance
and if-then rules from the RF’s models for better understanding of design
space. To demonstrate the approach using RF, quantitative experiments
are conducted with datasets of Turbine Rear Structure use-case from an
aerospace industry and results are presented.
Keywords: machine learning, random forests, hyperparameter tuning,
surrogate model, meta-models, engineering design, aerospace.

1 Introduction

In aerospace industry, engineers develop highly complex composite and metallic
engine structures, fan cases and exhaust systems. The early design phase of these
components and their performance estimation is a complex multidisciplinary
problem, and it involves analyzing the effects of aero performance, mechanical
functions and producibility aspects. For this, simulations play a vital role to
help to have a better understanding of the functional behaviour and to predict
possible failure modes in design concepts. However, high-fidelity simulations can
take significant time to compute. Typically, a large system has millions, if not
billions of possibilities to explore in the design space [11]. Thus, it is impracti-
cal to explore the design space by conducting simulations for all possible design



concepts due to the time constraints. Hence, to minimize the number of simula-
tions which is needed to investigate a certain design space, different approaches
are used. One of the approaches is surrogate modelling which is also known as
response surface modelling and metamodeling [18] [14].

Surrogate models are used to approximate the time-consuming simulations
by mimicking the complex behaviour of the underlying simulation model. This
provides a great opportunity to explore as many as design concepts without
needing more computationally expensive simulations. The generation of surro-
gate models requires a dataset of inputs and known outputs. Since simulations
are expensive to conduct, datasets are usually small in real-world context. The
size of the data sets and the complexity of the underlying simulation model make
it difficult to generate accurate enough and robust surrogate models. Thus, the
challenge is to generate a model as accurate as possible with a small size of
datasets for design space exploration. This motivates to study surrogate mod-
elling and methods that can be helpful to construct surrogate models as accurate
as possible. For instance, in many studies, the applicability of widely used meth-
ods such as Support Vector Machines (SVM), Artificial Neural Networks, Radial
Basis Function, Kriging methods, and Linear Regression (LR) have been inves-
tigated to construct surrogate models [1] [5] [9] [17] [22].

Furthermore, the performance of two tree methods (Random Forests and
M5P) have been investigated for surrogate modelling and concluded that these
tree models performed as similar to the widely used methods such as LR and
SVM [6]. The authors of this study stated that tree model could provide com-
prehensibility (if-then rules) that could be used to interpret model behaviour.
Though tree models have been suitable and have shown to have a better perfor-
mance in other applications, they have been rarely used for surrogate modeling
in design engineering. Furthermore, Random Forests (RF) generate ensembles
of decision trees, and they are capable of fitting highly non-linear data given
quite small samples [2] [15]. Therefore, we choose a tree method, RF, to explore
its applicability for surrogate modeling. The aim of this paper is to support de-
sign space exploration of Turbine Rear Structure (use-case) using RF generated
surrogate models. For this, we present an approach that aims (1) to construct
surrogate models by RF (2) to improve RF’s model performance using hyper-
parameter tuning method (3) to extract design parameter importance and rules
from RF’s generated surrogate models. We present related work in Section 2, our
approach in Section 3, experiments in Section 4, results and analysis in Section
5, and conclusions in Section 6.

2 Related Work

In this section, we present related work on several methods that have been used
to construct surrogate models. We found that Kriging and Polynomial meth-
ods are commonly used to construct surrogate models [22] [20] [4]. Mack et al.
have used Polynomial response surface approximation for multi-objective opti-
mization of a compact liquid-rocket radial turbine in aerospace application [14].



Thorough investigations of Polynomial Regression, Multivariate Adaptive Re-
gression Splines, Radial Basis Functions, Kriging and Bayesian Neural Networks
were conducted, and some observations were presented in the following studies
[25] [10]. For instance, a drawback of Polynomial models is that they have limited
flexibility and need prior knowledge of underlying functions [19].

In another study, the authors used Random Forests (RF) to construct sur-
rogate models for design optimization of a car and concluded that RF is per-
forming as well as Kriging method [17]. Though Kriging is another well studied
method for surrogate model generation, the use of Kriging method is not triv-
ial to construct surrogate models due to its global optimization process [23]
for non-experts who are unaware of Kriging methodology. On the other hand,
the construction of RF is not as difficult as Kriging but still shows an equal
performance. RF was also compared with Support Vector Machines, M5P and
Linear Regression and the authors observed that RF is performing as well as
these methods [6]. Though RF models have been shown a better performance
for these two studies and also other applications, they have been rarely used
for surrogate modeling in design engineering. These observations motivate us to
study RF applicability for our design study problem.

Furthermore, we focused on related work on how to improve the performance
of RF, and we found that hyperparameter tuning of RF could help achieve that
[2] [8] [13]. Regarding this, Oshiro et al. analysed the performance of Random
Forests by tuning the number of trees (Ntree) for classification tasks [16]. The
authors provided insights about Ntree (threshold configurations). Diaz et al.
also mentioned about hyperparameters of RF that increasing Mtry can lead to a
small decrease in error rate and vice versa [8]. Similar to these studies, we focus
on tuning hyperparameters of RF for regression instead of classification tasks.

Terminology: A design concept (also called an instance) is a set of design
parameters (also called variables or inputs) and design objectives (also called
outputs) that explain the design of Turbine Rear Structure (TRS) component.
In every design concept, the design variables and objectives are the same, but
the values vary. Design space exploration is investigating alternative design con-
cepts in order to find an optimal design concept that fulfill design requirements
and constraints prior to implementation. The term hyperparameter refers to the
characteristic of a method. For instance, Ntree and Mtry are the hyperparame-
ters of the RF method.

3 An Approach to Explore Design Space using Random
Forests Surrogate Models

In this section, we present our approach, that is shown in Fig. 2, to explore the
design space of Turbine Rear Structure through RF generated surrogate models.

3.1 Use-case: A Design Study of Turbine Rear Structure

The geometry model of Turbine Rear Structure (TRS) is shown in Fig. 1, and it
is a component of aircraft engine. TRS is a complex component of engine which



involves multidisciplinary studies that address the behaviour of the design from
mechanical, aerothermal and producibility aspects. For better understanding of
design space of TRS, engineers divide design space into several design studies
incrementally to evaluate different aspects of the proposed design, piece by piece
unveiling behaviour and constraints. In this study, we use data from one of
TRS design studies that focus on investigating four design parameters of hub
configuration (inputs) such as hub rear stiffener height, forward hub wall angle,
hub knee point radial position and bearing flange axil position shown in Fig. 1,
to get better understanding about them. These design parameters are studied
together with 17 other parameters related to thickness groups (engine mount,
hub surface, mount sectors etc), turbine vanes and outer case. In total, 21 design
parameters are used to create computer aided design (CAD) models which are
analysed using finite element analysis. The outputs (design objectives) from this
analysis are shown in Table 1.

Fig. 1. Left: Turbine Real Structure case (TRS), Middle: Hub configuration of TRS
(with other aircraft engine parts), and Right: Four design parameters of hub configu-
ration (a more detailed from middle picture)

For this design study, a total of 56 design concepts were generated from
finite element analysis. These 56 design concepts are too small to understand the
design space of parameters. At the same time, it is time-consuming to perform
finite element analysis on more design concepts. Therefore, surrogate models are
constructed to analyse more design concepts in order to reduce the number of
simulations that are needed for design space exploration.

3.2 Surrogate Model Generation

In surrogate modelling, the aim is to determine a continuous function f̂ (model)
of a set of design variables x = x1, x2, ..., xn from a limited amount of available
data D (shown in Fig. 2 (a)). The available data D represent the exact evalu-
ations of the function f , and in general cannot carry sufficient information to
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Fig. 2. An approach to explore design space using Random Forest (RF) surrogate
models: (a) and (b) show the construction of surrogate models and a brief visual repre-
sentation of RF, and (c) shows an example of an if-then rule extracted from surrogate
models.

uniquely identify f . Thus, surrogate modelling deals with two problems which
are constructing a model f̂ from the available data D, and evaluating the error
ε of the model [14]. The prediction of the simulation based model output using
surrogate modelling approach is formulated as follows:

f(x) = f̂(x) + ε(x) (1)

Where f̂(x) is the predicted output and ε(x) is the error in the prediction. The
construction of response surface model involves several steps (shown in Fig. 2)
[18]: (1) Design of experiments: A set of design variables (x = (x1, x2, ..., xd)T ,
T means transpose of vector) and their values are selected (2) Numerical sim-
ulations: Let f be the black-box function (simulations), evaluate f on design
points yi = f(xi) where xi ∈ Rd and yi ∈ R (3) Construction of response surface
model: Consider the data D = {(x1, y1), . . . , (xn, yn)}, given the data, a contin-

uous function f̂ is determined to evaluate new design point ŷ = f(x̂i) (4) Model

validation: Assessing the predictive performance of f̂ from the available data D.
We used Random Forest to construct surrogate models and the brief description
of it is as follows:

Random Forests (RF) is an ensemble method that is a combination of mul-
tiple methods, and can handle nominal, categorical and continues data, thus,
it is used for both classification and regression [3]. RF contains several decision
trees. Each tree in the forest represents a model. It is built using a deterministic
algorithm by selecting a random set of variables and random samples from the



training set. Two hyperparameters of RF are needed to build a forest: Ntree -
the number of trees to grow in the forest based on a bootstrap sample of ob-
servations, and Mtry - a number of features which are randomly selected for
all split in the tree. The training procedure of RF is as follows (a brief visual
representation is shown in Fig. 2 (b)):

1. From a dataset D, draw a bootstrap sample D′ randomly with replacement
for each tree construction.

2. Build a tree T using the bootstrap sample, at each node, choose the best
split among a randomly selected subset of Mtry descriptors. The tree is
constructed until no further splits are possible or reaching given Node size
limit.

3. Repeat the 2nd step until user defined number of trees is reached.

When choosing the bootstrap samples to build a tree, some of the training data
may be repeated and some of the samples are left out. These left out data samples
are called out-of-bag samples. For RF model generation, two thirds of all training
samples are used for deriving the regression function whereas one third forms the
out-of-bag samples. A regression tree is built using randomly selected training
samples, and out-of-bag samples are used to test for the accuracy of the tree.

3.3 Improve Random Forests Model Performance

We found that one of the ways to improve the performance of a model is hyperpa-
rameter tuning [2] [8] [13]. We use the same method to improve the performance
of RF models, and the procedure is as follows. Firstly, two hyperparameters
and a set of parameter configuration values are selected for parameter tuning
of RF. The detailed descriptions of parameters and configurations are explained
in section 4.2 (Hyperparameters and Configuration Selection). Secondly, experi-
ments are conducted to construct surrogate models using our design study data
with those parameter configurations of RF. Finally, Root Mean Square Error
(RMSE) is calculated for the prediction error rate of the surrogate model. The
RMSE is calculated as the sum of squared differences of the predicted values and
the actual values of the regression variable divided by the number of predictions
as shown in equation 2 [24]. Where ŷ is the predicted value and y is the actual
value.

RMSE =

√√√√ 1

N

n∑
i=1

(ŷ − y)
2

(2)

3.4 Parameters Importance and Rules from RF Surrogate Models

As mentioned earlier in Section 3.2, numerical simulations use a black-box func-
tion to evaluate design points. Hence, the mapping procedure from input to
output parameters are hard to interpret. Hence, if we can provide some informa-
tion regarding this mapping procedure, it could help to understand the design



space better and make informed decisions about design parameters. This is one
of the reasons to select the RF method to construct surrogate models, because
it provides parameter importance. Furthermore, it can provide rules that could
help to understand the design space. For instance, we can observe where the first
split is on design space and which design parameter is used for that split. In order
to extract information from RF, we use the InTrees framework which is presented
in [7]. The InTrees framework extracts information from the trees in the form of
if-then rules, and prunes redundant rules and leaves the non-redundant rules in
the forest. These rules may provide some information regarding the prediction
behaviour to understand the relationship between input and output parameters.
An example of the if-then rule is shown in Fig. 2 (c).

3.5 Decision Support

The end goal of our design study application is to analyse design parameters
(inputs) by exploring design concepts, and then to get some insights about them.
For this, we use Random Forest surrogate models as a support in decision making
by (1) predicting the value of design objectives for as many design concepts as
possible to reduce computational expensive simulations needed to explore the
design space (2) getting insights about the importance of design parameters
towards the design objectives, and when needed, reduce number of parameters
to narrow down its space for further analysis, and (3) extracting if-then rules
that could help to better understand the reasoning of prediction behavior of the
RF surrogate model.

4 Experimental Design

This section presents the experimental design to construct surrogate model by
Random Forests.

4.1 Dataset Descriptions

We have a dataset D1 from our design study which contains 56 design concepts
(instances). Each design concept describes a possible design of TRS which is
a component of an aircraft engine. The design concepts are selected from the
design space of a turbine vane using Latin hypercube sampling technique. Later,
simulations were conducted using selected design concepts to get their design
objectives (outputs). The 56 concepts contain 21 design variables (Section 3.1)
and 14 design objectives with continuous values. We use these simulated design
concepts to construct surrogate models. Since we have 14 outputs, we divided
the dataset into 14 sub-datasets as single output design concept datasets. This
means that we have an independent RF model for each output, hence 14 models.
We have another dataset D2 related to TRS with 410 design concepts with
three more outputs (D2-15, D2-16 and D2-17). Table 1 (second row) shows the
description of design objective or outcome of TRS for all datasets. We used in
total, 17 datasets for experiments, and we named them as D1-1, D1-2. . . , D2-17.



4.2 Hyperparameters and Configuration Selection

We selected Mtry and Ntree hyperparameters to tune RF. The motivation is,
these parameters have an effect on model performance. For instance, a previous
study states that increasing the size of tree (Ntree) can decrease the forest error
rate, and decreasing number of random features (Mtry) can reduce the strength
of a tree (increases the error rate) [16]. Threshold range was provided for Ntree
which is 1 to 128 to increase accuracy for classification tasks [16]. We also selected
a narrower range of Ntree configuration values between 10 and 130 with step size
10. We select Mtry configuration values from minimum to maximum number
of input features from datasets with step size 2. For instance, for n = 5 input
features, the Mtry configurations are 1, 3 and 5. We automatized hyperparameter
tuning using the following procedure to get a model with a better RMSE.

1. Set configuration values for Mtry and Ntree. The maximum Mtry value
should be n-1 where n is the number of features in the datasets.

2. Generate possible configurations using Mtry and Ntree.
3. Construct a model with single output dataset using RF.
4. Repeat step 3 for each possible hyperparameter configuration value.
5. Evaluate the performance of model for each hyperparameter configuration

value.
6. Select the model, which has least RMSE.
7. Repeat steps 1-6 for every single output dataset.

4.3 Experiment

We used the selected hyperparameter configuration values (Ntree 10 to 130 with
step size 10 and Mtry from 1 to 21 with step size 2) to generate possible combina-
tions of configurations for all selected datasets. We have 143 possible parameter
configurations for datasets D1-1 ..., D1-13 and 130 for D2-14 ..., D2-17. Later,
we conducted the experiment to construct surrogate models using RF by tun-
ing the selected hyperparameter’s configurations (Ntree and Mtry) with 10 fold
cross-validation [12]. We measured RMSE to evaluate the prediction accuracy.
We used R software environment and RF packages 3 to conduct experiments.

5 Results and Analysis

In this section, we present the prediction error (RMSE) of RF surrogate models
in order to predict the value of design objective (output) for as many design
concepts (inputs) as possible, and to reduce the number of expensive simulations
that are needed for design space exploration. Table 1 shows RMSE for RF with
default parameter configurations (Ntree = 100 and Mtry = 5), and tuned RF.
The results show that tuned RF yields the best results compared to RF with

3 RF: https://cran.r-project.org/web/packages/randomForest/
randomForest.pdf



Table 1. Description of output from TRS design study, and RMSE performance com-
parison of default RF and tuned RF on 17 datasets

Data Set Output Description
RMSE

Default RF Tuned RF

D1-1 Related to Angles for Turbine Hub and
Cone

2.0553 0.0296
D1-2 10.4724 3.5116

D1-3

Related to Measure Points for the
Tolerance Stability to Weld

0.3155 0.2185
D1-4 0.0171 0.0061
D1-5 0.2720 0.1658
D1-6 0.0151 0.0056
D1-7 0.1714 0.1297
D1-8 0.0459 0.0118
D1-9 0.1067 0.0791
D1-10 0.0464 0.0121

D1-11 TRS Mass 5.5322 3.4871

D1-12 Related to Fan Blade out
Load Cases

0.0254 0.0223
D1-13 0.0482 0.0298

D1-14 Welding Life 0.1248 0.1169

D2-15 Related Stress at Leading Edge and
Trailing Edge

0.0602 0.0462
D2-16 0.0757 0.0466

D2-17 Time Step Trailing Edge 1.2752 0.7535

default configurations for all datasets. Furthermore, we compared our study
results to those reported in [6] for the same datasets, and we found that tuned
RF performs better than Support Vector Machines, Linear Regression and M5P.

In this paper, we included RMSE results (Table 1) for one Mtry configuration
which gave the best results compared to the other configurations. Due to the
page limit, the RMSE results for the rest of Mtry configurations are available
on the online web link 4. These RMSE results show that the prediction error is
decreased by hyperparameter tuning, and we observed that Mtry has influence
on the prediction error. We can support our observation on Mtry with Diaz
et al.’s study observations on Mtry that shows similar effects [8], however, for
classification tasks. Regarding Ntree, we observed that it has little influence on
the performance. Hence, the threshold values of Ntree which are provided for
classification tasks [16] and also for our configurations (Ntree: between 10 and
130) can be recommended for regression tasks too.

In order to test if Mtry has significant influence on the prediction error, we
conducted the Friedman statistical test [21] to test the null hypothesis which is
there is no significant difference between Mtry parameter values and predictive
performance. From the Friedman statistical test, we got p-value which is less
than 0.05 significant level, hence, rejecting the null hypothesis. Thus, there is a
significant performance difference between different Mtry values. In addition, we
conducted the post hoc Nemenyi test for pair wise comparison to see individual
differences. These pair wise statistical results indicate that there is significant
difference between larger Mtry configurations and smaller Mtry configurations.
The post hoc Nemenyi test results are also available on the same online link 4.

As a summary of the analysis, we see that automated hyperparameter tuning
helped us to get a model with better performance. Also, it only took between 2

4 https://github.com/dasSiv/Mtry-analysis.git



to 3 minutes to run all hyperparameter configurations. The system we used is
a 64-bit Windows 7 Operating System with 2.7 GHz Intel Core i7-4600U CPU
and 8 GB RAM. Since we have small sample size– and also in general, surrogate
models usually are built using small size of samples– of datasets, we believe this
automated procedure has a reasonable time complexity. Thus, this procedure is
recommended for design engineers when they construct surrogate models with
small sample sizes using RF for hyperparameters tuning to get a model with
better prediction accuracy.

5.1 Parameters Importance and Rules Extraction

In this section, we present how to get variable importance and rules from RF
surrogate models. For this, we focus on one of the design objectives of the turbine
rear structure (TRS) which is TRS mass (D1-11 dataset in Table 1). The measure
that we used to extract parameter’s importance is the increase in mean squared
error (MSE) as a result of a parameter permutation (more details on parameters
importance can be found in [3]). Hence, the higher value indicates that the
parameter has a high importance on the model performance (building model
without this parameter causes an increase in the prediction error).

Fig. 3. Parameters Importance from RF model

We have used a total of 21 design parameters (inputs) and the mass of TRS
(design outcome or output) to build the surrogate model by RF, and the im-
portance extracted from the surrogate model is plotted in Figure 3. The x-axis
represents the number of design parameters and the y-axis represents the impor-
tance of each of these variables. Due to the confidentiality of design parameters,
we did not include their names in the plot. Fig. 3 provides an idea on differ-
ent design parameters ’contribution on model performance, and this analysis
could help to further explore the space of design parameters. For example, we
observed that parameters that are related to forward hub wall angle and hub
cone mount have high importance, and inner ring reg and mount have low im-
portance compared to other parameters. Further analysis of this example would
be tune parameter configurations of high or low importance and then predict
the outcomes for a better understanding of these parameters.



Furthermore, we extracted if-then rules from surrogate models for TRS mass.
For a better understanding, we discretize the outcome of TRS mass into three
levels with intervals (low, medium and high). There are 7 rules for low mass, 9
rules for medium and 8 rules for high mass of TRS. By looking at these rules, we
can see the reasoning for the predictions that cause the low or high mass of TRS.
For example, if we want to focus on minimising the mass of TRS, we use the 7
rules (1) to understand design parameters and their configurations’ contribution
in predictions, (2) to narrow down the design regions (3) and then to generate
more design concepts within that region to analyse the design outcome. We
believe that this analysis (extracting if-then rules from surrogate models) helps
to understand the design space better. Consequently, it helps to find the design
concepts that minimise or maximise the mass of TRS.

6 Conclusions and Future work

In this paper, we investigated the performance of Random Forests (RF) for surro-
gate modeling to support the design space exploration of Turbine Rear Structure.
In order to get accurate surrogate models, we conducted hyperparameter tuning
for RF. The use-case results show that the prediction performance of the model
is improved by hyperparameter tuning. Additionally, we observed in our use-case
results, Mtry hyperparameter has an influence on increasing the performance.
Hence, our automatized hyperparameter tuning method and threshold values are
recommended when using RF to get accurate surrogate models. Furthermore, we
extracted design parameters’ importance and if-then rules from RF generated
surrogate models to better understand the design parameters and design space
of Turbine Rear Structure. In future work, we will focus on investigating RF’s
applicability for other tasks such as sensitivity analysis and design optimization.
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