
HAL Id: hal-02312614
https://inria.hal.science/hal-02312614

Submitted on 11 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Enhancement of Automata with Jumping Modes
Szilárd Zsolt Fazekas, Kaito Hoshi, Akihiro Yamamura

To cite this version:
Szilárd Zsolt Fazekas, Kaito Hoshi, Akihiro Yamamura. Enhancement of Automata with Jumping
Modes. 25th International Workshop on Cellular Automata and Discrete Complex Systems (AU-
TOMATA), Jun 2019, Guadalajara, Mexico. pp.62-76, �10.1007/978-3-030-20981-0_5�. �hal-02312614�

https://inria.hal.science/hal-02312614
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Enhancement of Automata with Jumping Modes

Szilárd Zsolt Fazekas1?, Kaito Hoshi1, and Akihiro Yamamura1

Department of Mathematical Science and Electrical-Electronic-Computer
Engineering, Akita University

1-1 Tegata Gakuen-machi, Akita 010-8502, JAPAN

Abstract. Recently, new types of non-sequential machine models have
been introduced and studied, such as jumping automata and one-way
jumping automata. We study the abilities and limitations of automata
with these two jumping modes of tape heads with respect to how they
affect the class of accepted languages. We give several methods to deter-
mine whether a language is accepted by a machine with jumping mode.
We also consider relationships among the classes of languages defined by
the new machines and their classical counterparts.

Keywords: Jumping mode · Jumping finite automata · Pushdown Au-
tomata · Pumping lemma · Context free language

1 Introduction

We study the ability of the jumping mode of tape heads to strengthen accepting
power of automata. Automata have several characteristics; determinism of tran-
sition functions, ability of rewriting or erasing input words, memory devices like
stacks and directions of tape heads to read inputs. Recently a mode of tape head
movement has been introduced and examined with respect to how the class of
languages accepted is affected ([1, 3–6, 8, 9, 11–13]). We study the abilities and
limitations of the new mode of tape head move by comparing several machine
models.

Jumping finite automata (JFA) were introduced as automata with a new
mode of tape head in [12]. In the new mode, the tape head is allowed to jump
- either left or right - over a part of the input word after reading a letter and
continue processing from there. Once a letter in the input word is read, it cannot
be reread again later. This implies that once a letter is read, it is erased. The
tape head starts anywhere in the input word and it can move to either right or
left side. It was shown that a language is accepted by jumping finite automata
if and only if it is commutative and semilinear in [4, 5].

One-way jumping (deterministic) finite automata (OWJFA), a variant of
jumping finite automata, were introduced and analyzed in [4]. They have another
mode of tape head; the head moves in one direction only and starts at the
beginning of the input word. It moves from left to right (and jumps over parts of

? Corresponding author

2 Fazekas et al.

the input it cannot read) and when the tape head reaches the end of the input, it
is returned to the beginning of the input and continues the computation until all
the letters are read or the automaton is stuck in the sense that it can no longer
read any letter of the remaining input. Several properties and characterization
results were provided in [1]. The majority of decidability questions have been
answered in [2], with the most notable exception being, when is the language
accepted regular? We attempt to get closer to the answer by looking at the
complements of OWJFA.

In this paper we consider deterministic or nondeterministic finite automata
and pushdown automata in a uniform manner. However, we restrict our study to
automata that do not rewrite the input letters and so we exclude linear bounded
automata and Turing machines from consideration.

We recall notations of automata (see [7, 15]). We denote Σε = Σ∪{ε}, where
ε is the empty word and P (Q) stands for the power set of Q. A nondeterministic
finite automaton (denoted by NFA) M is a 5-tuple (Q,Σ, δ, q0, F), where Q is
set of states, Σ is finite set, δ : Q×Σ → P (Q) is a transition relation, q0 is the
initial state, F is set of accept state. In Section 3 we deviate from this definition
by allowing the NFA to have multiple initial states, a change that is known
not to affect the class of accepted languages in the classical case, but makes a
difference in the alternative tape head modes. If δ is a mapping Q×Σε → P (Q),
then M is called ε−NFA. M is called deterministic (denoted by a DFA) if (1)
it is an ε-free NFA and (2) for ∀p ∈ Q and ∀a ∈ Σ, there is no more than one
q ∈ Q such that δ(p, a) = q.

A nondeterministic pushdown automaton (denoted by NPDA) M is a 6-tuple
(Q,Σ, Γ, δ, q0, F), where Q is finite set of states, Σ is finite set, Γ is a finite
stack alphabet, δ : Q × Σε × Γε → P (Q × Γε) is the transition function, q0 is
the initial state, F is set of accept states, and $ is a bottom marker of stack. M
is called deterministic (denoted by DPDA) if it satisfies (1) For ∀q ∈ Q,∀a ∈
Σ ∪ {ε},∀b ∈ Γ we have |δ(q, a, b)| ≤ 1 and (2) For ∀q ∈ Q,∀a ∈ Σ,∀b ∈ Γ , we
have δ(q, a, b) = ∅ if δ(q, ε, b) 6= ∅. The language accepted by DPDA is defined
as the set of inputs on which the automaton ends up in a final state (not the
empty stack acceptance condition) after reading the whole input.

2 Modes of Tape Head Move

First we define modes of movement of the tape head to capture characteristics
of both JFA and (R)OWJFA. Transitions between configurations of automata
are considered to be rewriting of strings on state and input alphabets. We study
three ways of rewriting configurations of automata; the standard mode, the non-
deterministic jumping mode and the one-way jumping mode. The first one is the
traditional way to rewrite configurations of automata as defined in [7] and [15].
The second and third one are introduced by [12] and [4], respectively. The three
modes can be applied to any automata with deterministic/nondeterministic tran-
sition functions, with/without stacks, and with/without rewriting and erasing a
letter in an input. Our objective with this paper is to extend the examination of

Enhancement of Automata with Jumping Modes 3

how the three modes relate to each other with respect to the accepting power of
automata, in particular, nondeterministic finite and pushdown automata.

2.1 Tape Head Modes

Suppose M is a (deterministic or nondeterministic) finite automaton.

Standard mode
A configuration of M is any string in Q × Σ∗. A transition from configuration
q1aw to configuration q2w, written as q1aw → q2w, is possible when q2 ∈ δ(q1, a).
In the standard manner, we extend → to →m, where m ≥ 0. Let →+ and →∗
denote the transitive closure and the transitive-reflexive closure of →, respec-
tively.

We define a (deterministic or nondeterministic) finite automaton with stan-
dard mode to be a rewriting system (M,→) based on→∗. The language accepted
by (M,→) (denoted by L(M,→)) is defined to be {w | w ∈ Σ∗, sw →∗ f, f ∈ F}.

Nondeterministic jumping mode
A configuration of M is any string in Σ∗ × Q × Σ∗, representing the part of
the input to the left from the reading head, the state and the input to the
right from the head. The binary jumping relation, symbolically denoted by y,
over Σ∗ × Q × Σ∗, is defined as follows. Let x, z, x′, z′ be strings in Σ∗ such
that xz = x′z′ and q ∈ δ(p, y); then, M makes a jump from xpyz to x′qz′,
symbolically written as xpyz y x′qz′. In the standard manner, we extend y to
ym, where m ≥ 0. Let y+ and y∗ denote the transitive closure of y and the
transitive-reflexive closure of y, respectively.

We define a (deterministic or nondeterministic) finite automaton with non-
deterministic jumping mode to be a rewriting system (M,y) based on y∗. (see
Fig. 1). The language accepted by (M,y) (denoted by L(M,y)) is defined to
be {uv | u, v ∈ Σ∗, usv y∗ f, f ∈ F}. This jumping mode was introduced as a
new automaton model called a JFA in [12].

One-way jumping mode
The right one-way jumping relation (denoted by �) between configurations from
QΣ∗, was defined in [4] as follows. Suppose that x and y belong to Σ∗, a belongs
to Σ, p and q are states in Q and q ∈ δ(p, a). Then the right one-way jumping
automaton M makes a jump from the configuration pxay to the configuration
qyx, symbolically written as pxay � qyx if x belongs to {Σ \Σp}∗ where Σp =
{b ∈ Σ | ∃q ∈ Q s.t. q ∈ δ(p, b)} (see Fig. 2). In the standard manner, we extend
� to �m, where m ≥ 0. Let �∗ denote the transitive-reflexive closure of �.

We define a (deterministic or nondeterministic) finite automaton with one-
way jumping mode of tape head to be a rewriting system (M,�) based on �∗.
The language accepted by (M,�) (denoted by L(M,�)) is defined to be {w |
w ∈ Σ∗, sw � f, f ∈ F}.

In a similar manner we define a (deterministic or nondeterministic) pushdown
automaton with standard mode, nondeterministic jumping mode and one-way

4 Fazekas et al.

Fig. 1. Nondeterministic jumping mode of
tape head move.

Fig. 2. One-way jumping mode of
tape head move.

jumping mode, respectively, to be the rewriting systems (M,→), (M,y) and
(M,�), respectively, where M is a (deterministic or nondeterministic) pushdown
automaton.

2.2 Language Classes

We consider deterministic and nondeterministic finite automata and determin-
istic and nondeterministic pushdown automata, denoted by DFA, NFA, DPDA,
NPDA, respectively. Then we classify these automata with three modes of tape
head from the standpoint of languages accepted. We denote the language classes
accepted by DFA, NFA, DPDA, NPDA with three modes→,y,� by (→,y,�)-
DFA, (→,y,�)-NFA, (→,y,�)-DPDA, (→,y,�)-NPDA, respectively, in
this paper. For example, →DFA coincides with →NFA and they comprise the
class of regular languages, and →NPDA is the class of context-free languages.

2.3 Differences of Modes of Tape Head Move

The next proposition shows the basic relationship between the processing of
inputs by the same machine M in different tape head modes. Versions of the
statement regarding the acceptance of inputs by M in the different modes have
been shown in [13, Ch.17] and [4], for y and �, respectively.

Proposition 1. Let M be an (deterministic or non-deterministic) automaton.
Suppose w1, w2, w3 are words over Σ.
(1) If q1w1 →∗ q2w2 then q1w1 y∗ q2w2.
(2) If q1w1 →∗ q2w2 then q1w1 �∗ q2w2.
(3) If q1w1 y∗ q2w2 then there exists a permutation φ such that q1φ(w1) →∗
q2w2.
(4) If q1w1 �∗ q2w2 then there exists a permutation φ such that q1φ(w1) →∗
q2w2.

Proof. (1) Let q1w1 →n q2w2 and let m = |w1|. We prove that q1w1 yn q2w2

holds, by induction on n. If n = 0, then q1 = q2 and w1 = w2. Thus, q1w1 y0

q2w2 holds. Suppose that n = k ≤ m − 1 holds. If n=k+1, then there ex-
ist q and a ∈ Σ such that q1w1 →k qaw2 → q2w2. By q2 ∈ δ(q, a), we have

Enhancement of Automata with Jumping Modes 5

q1w1 yk qaw2 y q2w2 = q1w1 yk+1 q2w2. Therefore, if q1w1 →∗ q2w2, then
q1w1 y∗ q2w2. We can prove (2) in a similar manner.

(3) Let q1w1 yn q2w2 and let m = |w1|. We prove that there exists a per-
mutation φ such that q1φ(w1) →n q2w2 holds, by induction on n. If n = 0,
then there exists a permutation φ such that φ(w1) = w1. Thus, q1φ(w1) →0

q1w1 = q2w2 holds. Suppose that n = k ≤ m − 1 holds. i.e. there exists
σ =

(1 2 3 ··· k−1 k
σ(1) σ(2) σ(3) ··· σ(k−1) σ(k)

)
such that q1σ(w1) →k q2w2. If n=k+1, then

there exist q and a ∈ Σ such that q1w1 yk quav y q2w2 where uv = w2. From
before, q1σ(w1)→k quav y q2w2 holds and let the permutation σ′ be such that
σ′(xyaz) = xayz for a ∈ Σ and xyz ∈ Σ∗ with |x| = k. Choosing φ = σ′ ◦ σ
gives q1φ(w1)→k qauv → q2w2. Thus, q1φ(w1)→k+1 q2w2 holds.
We can prove (4) in a similar manner. ut

Remark 1. It is easy to see that if q1w1w2 →∗ q3 and q1w1 →∗ q2 then q2w2 →∗
q3. However, q1w1w2 y∗ q3 and q1w1 y∗ q2 does not imply q2w2 y∗ q3. Simi-
larly, q1w1w2 �∗ q3 and q1w1 �∗ q2 does not imply q2w2 �∗ q3.

In [1](equation (1)) the authors summarize the relationship between the lan-
guages accepted by DFA M in the various tape head modes, as:

L(M,→) ⊆ L(M,�) ⊆ L(M,y) = Perm(L(M,→)).

Regarding the → and y modes, it makes no difference in the proofs whether
the machine is deterministic. This means that we have the following relationship
between acceptance in → and y modes.

Proposition 2. Let M be any automaton. A word w is accepted by (M,y) if
and only if there exists a permutation φw depending on w such that φw(w) is
accepted by (M,→).

We note that the permutation φw depends on the word w, however, it is not
necessarily unique. Therefore, if a language L is accepted by a JFA (M,y), we
have L = Perm(L).

Corollary 1. A word w is accepted by a rewriting system (M,y) if and only
if there exists a permutation φ such that φ(w) is accepted by a rewriting system
(M,→).

The following corollary has been stated for JFA (yNFA) in [12] and for
deterministic ROWJFA (�DFA) in [4]. They also follow, just as the nondeter-
ministic case, from Proposition 1. A similar argument can easily be made for
DPDA and NPDA.

Corollary 2. Let M be a deterministic or nondeterministic finite automaton or
pushdown automaton. Any word w, which is accepted by (M,→), is also accepted
by (M,y) and (M,�).

6 Fazekas et al.

This means, generalizing the inclusions from before, that for any DFA, NFA,
DPDA or NPDA M :

L(M,→) ⊆ L(M,�) ⊆ L(M,y) = Perm(L(M,→)). (1)

Parikh’s well-known paper [14] shows that all context-free languages have
semilinear Parikh-image. Furthermore, all semilinear sets have a regular preim-
age, and this, combined with equation (1) tell us that the class of permutation
closures of context-free languages is the same as the class of permutation clo-
sures of regular languages, accepted by DFA/NFA in y mode ([5]). From here,
by Corollary 1, we can deduce that in y tape head mode, adding a stack to a
finite automaton does not change the class of accepted languages, i.e.,

yDFA = yDPDA = yNPDA.
Equation (1) also allows us to extend all the well-known pumping lemmas

trivially to the language classes defined through the new execution modes.

Remark 2. Let M be an NFA, DFA, DPDA or NPDA, and NM > 0 a constant
which depends on M . If a pumping lemma holds for all words w ∈ L(M,→)
with |w| ≥ NM , then for all words w ∈ L(M,y) ∪ L(M,�) with |w| ≥ NM ,
there exists a permutation φ such that the lemma holds for φ(w).

To close this section, we briefly discuss the special cases of unary and binary
alphabets for the new tape head modes.

Theorem 1. Let M be a deterministic or nondeterministic finite automaton or
pushdown automaton with |Σ| = 1, then L(M,y) = L(M,�) = L(M,→).

Proof. Straightforward, as the languages above are commutative and semilinear.
ut

It follows that there is no �NPDA that accepts {ap | p is a prime number},
providing separation of �NPDA from the class of context-sensitive languages.
Binary alphabets are also special cases for the y mode. As shown in [10], over bi-
nary alphabets all commutative semilinear languages are context-free, so we have
yNFA⊂→NPDA. This is in contrast with larger alphabets, where yNFA and
(→)-NPDA are incomparable.

3 One-Way Jumping Nondeterministic Finite Automata
(�NFA)

In previous papers [1, 2, 4] the class �DFA of languages accepted by one-way
jumping deterministic finite automata has been investigated. In [1] it was shown
that permutation closed languages in �DFA are characterized by having finitely
many positive Myhill-Nerode equivalence classes. This nice characterization gave
the corollary that a permutation closed language in �DFA is regular if and
only if its complement is in �DFA. However, not much more has been known
about the complements of �DFA languages. To tackle this, we look at the class

Enhancement of Automata with Jumping Modes 7

�NFA of languages accepted by one-way jumping nondeterministic finite au-
tomata (�NFA), that is, machines (M,�), where M is an NFA without ε-moves,
but with possibly multiple initial states. Then, we show that �NFA strictly in-
cludes yNFA, the class of permutation closed semilinear languages and, as a
corollary, the complements of permutation closed �DFA languages. Finally, we
go further by showing that �NFA contains the complements of all �DFA lan-
guages, but �NFA itself is not closed under complementation.

Definition 1. (�NFA) A (right) one-way jumping nondeterministic finite au-
tomaton is an ε-free NFA with multiple initial states in � execution mode.

Example 1. The language K = {w ∈ {a, b}∗ : |w|b = 0 or |w|a = |w|b} is
accepted by �NFA M = ({q0, q1, q2, q3, q4, q5}, {a, b}, δ, {q0}, {q1, q3}), where
δ(q0, a) = {q1, q3}, δ(q1, a) = {q2}, δ(q2, b) = {q1}, δ(q3, a) = {q3}.

In [1] it is shown that K /∈�DFA; this establishes �DFA(�NFA. To move
on to the inclusions in �NFA of the classes mentioned above, first we need to
state that, as expected, �NFA is closed under union, by a construction similar
to the case of classical NFA.

Proposition 3. The class �NFA is closed under union.

Proof. Let M1 = (Q1, Σ1, δ1, S1, F1) and M2 = (Q2, Σ2, δ2, S2, F2) be two NFA
such that Q1 ∩Q2 = ∅ (if this does not hold, we can simply rename the states).
It is straightforward to see that M3 = (Q1∪Q2, Σ1∪Σ2, δ1∪δ2, S1∪S2, F1∪F2)
accepts the union of the languages accepted by M1 and M2 in � execution mode,
that is, L(M3,�) = L(M1,�) ∪ L(M2,�). ut

Theorem 2. For any semilinear set S ∈ N|Σ| there exists an NFA M , such that
Ψ−1Σ (S) = L(M,�), where ΨΣ is the Parikh mapping for alphabet Σ.

Proof. S is semilinear, so we can write it as the finite union of linear sets. We give
the construction for a linear set. The statement then follows from Proposition 3,
by constructing disjoint NFA for all linear sets and taking their union to be M .
Let Σ = {a1, . . . , ak} and Lin ⊆ Nk be a linear set of vectors over non-negative
integers, i.e., there exist v0, . . . , vn ∈ Nk such that

Lin = {v0 + c1v1 + · · ·+ cnvn | c1, . . . , cn ∈ N}.

First we define the set of “starting vectors” as Lin0 = {v0, v0 + v1, . . . , v0 + vn},
the minimal subset of Lin such that all letters which occur in Lin, also occur
in Lin0. The set W (Lin0) of representative words for a set of vectors Lin0
will be a subset of the preimage of Lin0 under the Parikh mapping. For each
(m1, . . . ,mk) ∈ Lin0 we take k words such that all possible starting letters
are represented (there may be less than k if some mi = 0). Several choices for
W : N|Σ| → Σ∗ are possible. We set W such that

W (Lin0) =
⋃

(m1,...,mk)∈Lin0

{am1
1 am2

2 · · · a
mk

k , am2
2 · · · a

mk

k am1
1 , . . . , amk

k am1
1 · · · a

mk−1

k−1 }

8 Fazekas et al.

Now we construct M as follows. Let the initial state of M be s and for each
wi ∈ W (Lin0) add a new path from s to a new final state wi labeled by letters
of wi (see Fig. 3). To each of these new final states wi we add all possible loops
labeled by words in W ({v1, . . . , vn}) (see Fig. 3). Here we removed v0, because
it is only added once to each vector in Lin, according to the definition. It is clear

Fig. 3. For each wi ∈ Lin0, add a path to
a final state, labeled by the letters of wi.

Fig. 4. For each uj ∈
W ({v1, . . . , vn}) add a loop
to each wi, labeled by the letters
of uj .

from the construction that for each vector v ∈ Lin there is at least a path in
M labeled by a word in the preimage of v. Conversely, the labels of each path
form a word whose Parikh mapping is some v ∈ Lin. Even though not every
preimage of v forms a path in M , the � mode of execution allows M to read all
the letters. ut

At first sight it may seem that adding multiple paths for each vector in a
linear set to the NFA in the previous proof is an overkill. While in some cases
this could be avoided, as the next example shows, it is necessary in general.

Example 2. Consider the semilinear set, which is the union of linear sets Lin1 =
{(1, 0, 0, 0) + c1 · (0, 2, 2, 0) + c2 · (0, 0, 2, 2) + c3 · (0, 2, 0, 2) | c1, c2, c3 ∈ N} and
Lin2 = {(0, 1, 0, 0) + c1 · (2, 0, 0, 0) + c2 · (2, 2, 0, 0) | c1, c2 ∈ N} over alphabet
{a, b, c, d}. If in the first phase of the construction only v0 was to be added as a
path from s for each linear set, then for input bbcca, the machine would have to
choose the branch of Lin2, because the first letter to the right for which there is
a transition from s is b. This would mean bbcca is rejected, because (1, 2, 2, 0) /∈
Lin2, even though (1, 2, 2, 0) ∈ Lin1 and thus bbcca ∈ Ψ−1(Lin1 ∪ Lin2). If in
the second phase of the construction only one path per vector vi were to be
added to the states wi, then one of the inputs abbcc, accdd or addbb would be
rejected even though they are in the language.

Corollary 3. yNFA⊂�NFA.

Enhancement of Automata with Jumping Modes 9

Proof. As it was shown in [4], yNFA is the class of permutation closed semilin-
ear languages, that is, the class of languages which are preimages of semilinear
sets under the Parikh mapping. ut
Theorem 3. For any DFA M = (Q,Σ, δ, s, F), we can construct an NFA M ′

such that Σ∗ \ L(M,�) = L(M ′,�).

Proof. As we mentioned before, Σq denotes the set of letters for which there is an
outgoing transition from q ∈ Q. We construct the NFAM ′ = (Q′, Σ, δ′, {s, s′}, F ′)
by the following steps:

1. switch the accepting states and non-accepting states of M ;
2. ∀q ∈ Q \ F : if Σq 6= Σ, then add new state q′ ∈ F ′, and the transitions:

– δ′(p, a) = q′ for all p ∈ Q, a ∈ Σ such that q ∈ δ(p, a)
– δ′(q′, b) = q′, for each b ∈ Σ \Σq;

3. ∀q ∈ F : if Σq 6= Σ, then add new states q′ ∈ F ′ and q′′ /∈ F ′, and the
transitions:
– δ′(p, a) = q′′ for all p ∈ Q, a ∈ Σ such that q ∈ δ(p, a)
– δ′(q′′, b) = q′ and δ′(q′, b) = q′, for each b ∈ Σ \Σq;

4. if Σs 6= Σ then if s ∈ F , let s′′ be a new initial state, whereas if s /∈ F , let
s′ be a new initial state.

For each w ∈ Σ∗, the machine M ′ will read all of the input along some nondeter-
ministically chosen path. Some path will finish in an accepting state q ∈ F ′ ∩Q
if and only if (M,�) read the whole input and stopped in a non-accepting state.
Some path will finish in an accepting state q′ ∈ F ′ \ Q if and only if (M,�)
could not read the input and got stuck in state q, because the remaining letters
were all elements of Σq. In more detail, for each input w one of the following
happens:

– w ∈ L(M,�): this means M reads all the input and finishes in a state from
q ∈ F . The only branches of M ′ which read the whole input finish in q or
q′′ (if it exists), but since q, q′′ /∈ F ′, the input is rejected by M ′;

– w /∈ L(M,�) and M reads the whole input finishing in some state q /∈ F . In
this case, the same path in M ′ reads the whole input and finishes in q ∈ F ′,
so M ′ accepts the input;

– w /∈ L(M,�) and M cannot read the whole input, so M gets stuck in a state
q, with the remaining input being in (Σ \Σq)∗. Depending on whether q is
final or not, we distinguish two subcases:
• q ∈ F : from the states preceding q in the path, the branch that goes to
q gets stuck. The branch that goes to q′′ reads the remaining input after
transitioning to q′ ∈ F ′, so M ′ accepts;

• q /∈ F : from the states preceding q in the path, the branch that goes to
q gets stuck. The branch that goes to q′ ∈ F ′ reads the remaining input,
so M ′ accepts.

ut
Example 3. To illustrate how the construction works (Fig. 5), consider the non-
regular �DFA language Lab = {w ∈ {a, b}∗ | |w|a = |w|b}, which can be
accepted by the �DFA M = ({s, q}, {a, b}, δ, s, {s}), where δ(s, a) = q and
δ(q, b) = s.

10 Fazekas et al.

Fig. 5. Left: �DFA for Lab = {w ∈ {a, b}∗ | |w|a = |w|b}. Right: �NFA for Σ∗ \ Lab.

4 One-Way Jumping Pushdown Automaton:
(�)-NPDA, (�)-DPDA

In this section we initiate the study of how the � tape head mode affects the
computational power of PDA. In particular, we exhibit certain languages which
provide separation between the classes of languages accepted by DPDA and
NPDA in the � mode and their classical counterparts, as well as, finite automata
in � mode. We also present languages which show that several common closure
properties do not apply for �NPDA. The proofs for the results that follow are
based on extended versions of pumping lemmas for deterministic context-free
languages ([16]) and context-free languages (Bar-Hillel).

First, we state two extended pumping lemmas for � mode. The proofs of
these lemmas are trivial based on Remark 2.

Corollary 4 (Bar-Hillel lemma for �-NPDA). For any language L ac-
cepted by a �NPDA there exists a constant n, such that for every string w ∈ L
with |w| > n, there exists a permutation wσ, which can be written as wσ = uvxyz,
satisfying (1) |vy| ≥ 1, (2) |vxy| ≤ n and (3) uvixyiz ∈ L for every i ≥ 0.

Corollary 5 (Pumping Lemma for �DPDA, original version in [16]).
Suppose L is accepted by a �DPDA M . Then there exists a constant n for L
such that for any pair of words w,w′ ∈ L if

(1) s = xy and s′ = xz, |x| > n, and
(2) (first symbol of y) = (first symbol of z),

where s and s′ are permutations of w and w′, such that s, s′ ∈ L(M,→), then
either (3) or (4) holds:

(3) there is a factorization x = x1x2x3x4x5, |x2x4| ≥ 1 and |x2x3x4| ≤ n, such
that for all i ≥ 0, x1x2

ix3x4
ix5y and x1x2

ix3x4
ix5z are in L;

(4) there exist factorizations x = x1x2x3, y = y1y2y3 and z = z1z2z3, |x2| ≥ 1
and |x2x3| ≤ n, such that for all i ≥ 0, x1x2

ix3y1y2
iy3 and x1x2

ix3z1z2
iz3

are in L.

Enhancement of Automata with Jumping Modes 11

Let Lppal = {w#φ(w) | w ∈ {a, b}∗, φ ∈ S|w|}. Note that Lppal /∈→NPDA,
by a simple application of the Bar-Hillel lemma. By a construction mimicking the
DPDA accepting palindromes w#wR, it is easy to show that Lppal ∈�DPDA.

The following propositions provide us with the separation results which,
added to the previously known relationships, add up to Fig. 6.

Fig. 6. Relationship between REG=→DFA=→NFA, CF=→NPDA, and one-way
jumping classes.

Proposition 4. Lppal /∈�DFA.

Proof. Suppose that M = (Q,Σ, δ, q0, F) is a DFA, such that L(M,�) = Lppal.
Consider the word w = ap#ap ∈ Lppal, with p = |Q|+ 1. By Proposition 1 there
exists a permutation P such that P (w) ∈ L(M,→) ⊆ Lppal and the pumping
lemma for regular languages says that it can be written as P (w) = xyz, where
y 6= ε, |xy| ≤ |Q| and xyiz ∈ Lppal,∀i ≥ 0. Since Lppal ∩ (a + #)∗ has only
one word of each length, we have P (w) = ap#ap. From |xy| ≤ |Q|, we get a
contradiction when i = 2 as xyiz /∈ Lppal.

ut

Proposition 5. Lambig = {aibi|i ≥ 0} ∪ {aib2i|i ≥ 0} /∈�DPDA.

Proof. Assume there exists DPDA M=(Q,Σ, Γ, δ, q0, F) such that L(M,�) =
Lambig and let C be the constant for Lambig in Corollary 5.

Choose w = anbn and w′ = anb2n for some integer n > C, then there exist
permutations σ and σ′ such that wσ, w

′
σ′ ∈ L(M,→). By wσ, w

′
σ′ ∈ L(M,→) ⊆

L(M,�) = Lambig, we get that wσ = anbn and w′σ′ = anb2n. Let x = anbn−1,
y = b, and z = b2n−1. The choice of wσ = xy and w′σ′ = xz satisfies (1) and (2)
of Corollary 5. According to Corollary 5, either (3) or (4) should hold.

Let us consider (3) first. The only possible factorization x = x1x2x3x4x5 such
that |x2x4| > 0 and for all i, x1x2

ix3x4
ix5y ∈ Lambig must satisfy the condition

12 Fazekas et al.

x2 = ak and x4 = bk for some k > 0. But then x1x2
0x3x4

0x5z = x1x3x5z =
an−kb2n−k /∈ Lambig. Therefore (3) does not hold.

Now,we consider (4). Any factorization x = x1x2x3 such that |x2| > 0 and
|x2x3| ≤ C < n will result in x2 ∈ b+ and y2 ∈ b∗, so x1x3y1y3 = anbn−|x2|−|y2| /∈
Lambig. So (4) does not hold either.

This contradicts the �-DPDA pumping lemma, so Lambig /∈�DPDA. ut

The language Lambig is a classic example of nondeterministic context-free lan-
guage. At the same time, as mentioned in [4],

Labc = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c} ∈�DFA\→NPDA.
It is also straightforward that

Llin = {anbn | n > 0} ∈�DPDA∩→NPDA,
and Llin /∈�DFA, by [4, Cor.12]. Since→NPDA is trivially included in �NPDA,
by the same arguments as above, the union Lcd ∪ Lambig = Lcd+ambig, where
Lcd = {w ∈ {c, d}∗ | |w|c = |w|d}, is in �NPDA. At the same time, it is easy
to see that Lcd+ambig /∈(→NPDA∪�DPDA). This completes the separation
examples for Fig. 6. Finally, let us say a few words about closure properties of
�NPDA.

Proposition 6. L1 = {anbncn|n ≥ 0} /∈�NPDA.

Proof. Suppose that M=(Q, {a, b, c}, Γ, δ, q0, F) and L(M,�) = L3. Consider
the word w = anbncn ∈ L1. By Corollary 4 there exists a permutation σ such
that wσ ∈ L1 can be written as wσ = uvxyz, where |vy| ≥ 1, |vxy| ≤ n,
uvixyiz ∈ L1, for all i ≥ 0, where n is the contant from the Bar-Hillel lemma
for �NPDA. Depending on the decomposition uvxyz, we have two cases

1. If vxy is generated by one symbol, then uv2xy2z does not include the same
number of a, b, c. This contradicts uvixyiz ∈ L1, for i = 2.

2. If vxy contains two kinds of symbols, then uv2xy2z /∈ L1, because the number
of copies of the third letter (the one not in vxy) does not match the other
two. This contradicts uvixyiz ∈ L1, when i = 2.

Therefore, no �NPDA accepts L1. ut

Since both Labc = {w | |w|a = |w|b = |w|c} ∈�NPDA and a∗b∗c∗ ∈�NPDA,
from Proposition 6 we get that �NPDA is not closed under intersection. To-
gether with the fact that it is closed under union, we get that it is not closed
under complementation, either.

Theorem 4. L2 = {wa | |w|a = |w|b = |w|c} /∈�NPDA.

Proof. Suppose that there exist a �NPDA M = (Q, {a, b, c}, Γ, δ, q0, F), which
accepts L2. Consider the words w1 = ambmcma ∈ L2 and w2 = am+1bmcm /∈ L2,
where m is the constant from Corollary 4. By w1 = ambmcma ∈ L2, there exists
permutation P such that P (w1) ∈ L(M,→). Let P (w1) = x1x2...x3m+1, then
x3m+1 = a by P (w1) ∈ L2. We will use the fact that w2 is the cyclic shift of

Enhancement of Automata with Jumping Modes 13

w1. Let us look at the computation performed by the automaton on reading w1.
Before reading b or c, the automaton will read ak for some k ≥ 0, that is:

(q0, a
mbmcma, $) � (q1, a

m−1bmcma, z1) � � (qk, a
m−kbmcma, zk)

for some {q1, q2...qk} ⊂ Q and {z1, z2....zk} ⊂ Γ ∗ ($ is the bottom marker for
the pushdown). Since w ∈ L, there is an accepting computation from the last
configuration (qk, a

m−kbmcma, zk) in that sequence. Depending on k, we have
two cases.

(CASE 1) if k < m: we get that there is no transition defined from state qk on
reading a, therefore am−k, am−k+1 ∈ (Σ −Σ(qk,zk))

∗, where Σ(qk,zk) = {d ∈ Σ |
δ(qk, d, zk) 6= ∅}. We get that

(qk, uv, zk) = (qk, a
m−k+1bmcm, zk) �∗ (q, ε, z)

if and only if

(qk, vu, zk) = (qk, b
mcmam−K+1, zk) �∗ (q, ε, z).

This means (q0, a
m+1bmcm, $) �∗ (qk, a

m−k+1bmcm, zk) �∗ (q, ε, z), which con-
tradicts the initial assumption am+1bmcm /∈ L2.

(CASE 2) if k = m: This case says that (q0, a
mbmcma, $) �k (qm, b

mcma, zm).
Let �NPDA M then read b. Let us look at the computation performed by

the automaton on reading bmcma. Before reading c, the automaton will read bl

for some l ≥ 0, that is:

(qm, b
mcma, zm) � (qm+1, b

m−1cma, zm+1) � � (qm+l, b
m−lcma, zm+l)

for some {qm+1, qm+2...qm+l} ⊂ Q and {zm+1, zm+2....zm+k} ⊂ Γ ∗. There is an
accepting computation from the last configuration (qm+l, b

m−lcma, zm+l) in that
sequence. Depending on l, we have two cases.
(CASE 2-1) if l < m: This case is the same as (CASE 1).
(CASE 2-2) if l = m: This case is the same as (CASE 2). �NPDA M must read
c. Let us look at the computation performed by the automaton on reading cma.
Before reading the last letter, a, the automaton will read cn for some n ≥ 0:

(q2m, c
ma, z2m) �n (q2m+n, c

m−na, z2m+n)

for some q2m+n ∈ Q and z2m+n ∈ Γ ∗. There is an accepting computation from
the last configuration (q2m+n, c

m−na, z2m+n) in that sequence. Depending on n,
we have two cases.
(CASE 2-2-1) if n < m: This case is the same as (CASE 1).
(CASE 2-2-2) if n = m: This case says that

(q2m, c
ma, z2m) �m (q3m, a, z3m) � (q3m+1, ε, z3m+1)

14 Fazekas et al.

for {q3m, q3m+1} ⊆ Q and {z3m, z3m+1} ⊆ Γ ∗. In this case, P (w1) = ambmcma ∈
L(M,→), so we can write ambmcma = uvxyz, where |vy| ≥ 1, |vxy| ≤ m,
uvixyiz ∈ L2, for all i ≥ 0. The same argument as in the proof of Proposition 6
can be applied to reach a contradiction.

Therefore, no �NPDA accepts L2.

ut

Since Labc ∈�NPDA and {a} ∈�NPDA, from Theorem 4 we get that the
class �NPDA is not closed under concatenation. However, the reversal of L2,
that is, {aw | |w|a = |w|b = |w|c}, is in �NPDA, in fact, it is in �DFA, so we
get that �NPDA is not closed under reversal, either.

5 Summary

We discussed three modes of tape head, however, other established modes can
be considered, e.g., a two-way jumping mode. In such a mode, the tape head
does not erase the letters it read. The modes can be applied to linear bounded
automata, but one can show that none of these modes, including the two-way
jumping mode adds to the power of linear bounded automata. Therefore, the
language accepted by linear bounded automata with the mentioned alternative
modes of tape head coincides with the class of context sensitive languages. Sev-
eral questions remain open with respect to the jumping modes, particularly so
in the case of �. An unanswered decidability problem, which so far resisted
attempts, is whether there exists an algorithm which decides L(M,�) ∈REG
for a given DFA/NFA M . Here, the technique of completing �DFA presented
in Section 3 might help, but the problem seems rather difficult, because of the
unusual languages which these classes of machines can accept.

References

1. Beier, S., Holzer, M.: Decidability of right one-way jumping finite automata. In:
Hoshi, M., Seki, S. (eds.) Developments in Language Theory - 22nd International
Conference, DLT 2018, Tokyo, Japan, September 10-14, 2018, Proceedings. Lecture
Notes in Computer Science, vol. 11088, pp. 109–120. Springer (2018), https://
doi.org/10.1007/978-3-319-98654-8_9

2. Beier, S., Holzer, M.: Properties of right one-way jumping finite automata. In: Kon-
stantinidis, S., Pighizzini, G. (eds.) Descriptional Complexity of Formal Systems -
20th IFIP WG 1.02 International Conference, DCFS 2018, Halifax, NS, Canada,
July 25-27, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10952, pp.
11–23. Springer (2018), https://doi.org/10.1007/978-3-319-94631-3_2

3. Beier, S., Holzer, M., Kutrib, M.: Operational state complexity and decidability of
jumping finite automata. In: Charlier, É., Leroy, J., Rigo, M. (eds.) Developments
in Language Theory - 21st International Conference, DLT 2017, Liège, Belgium,
August 7-11, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10396,
pp. 96–108. Springer (2017), https://doi.org/10.1007/978-3-319-62809-7_6

Enhancement of Automata with Jumping Modes 15

4. Chigahara, H., Fazekas, S.Z., Yamamura, A.: One-way jumping finite automata.
Int. J. Found. Comput. Sci. 27(3), 391–405 (2016), https://doi.org/10.1142/
S0129054116400165

5. Fernau, H., Paramasivan, M., Schmid, M.L.: Jumping finite automata: Character-
izations and complexity. In: Drewes, F. (ed.) Implementation and Application of
Automata - 20th International Conference, CIAA 2015, Ume̊a, Sweden, August 18-
21, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9223, pp. 89–101.
Springer (2015), https://doi.org/10.1007/978-3-319-22360-5_8

6. Fernau, H., Paramasivan, M., Schmid, M.L., Vorel, V.: Characterization and com-
plexity results on jumping finite automata. Theor. Comput. Sci. 679, 31–52 (2017),
https://doi.org/10.1016/j.tcs.2016.07.006

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

8. Kocman, R., Meduna, A.: On parallel versions of jumping finite automata. In: Ad-
vances in Intelligent Systems and Computing, pp. 142–149. Springer International
Publishing (2016), https://doi.org/10.1007/978-3-319-46535-7_12

9. Krivka, Z., Meduna, A.: Jumping grammars. Int. J. Found. Comput. Sci. 26(6),
709–732 (2015), https://doi.org/10.1142/S0129054115500409

10. Latteux, M.: Cônes rationnels commutatifs. J. Comput. Syst. Sci. 18(3), 307–333
(1979), https://doi.org/10.1016/0022-0000(79)90039-4

11. Madejski, G.: Jumping and pumping lemmas and their applications. In: Eighth
Workshop on Non-Classical Models of Automata and Applications (NCMA 2016)
Short papers. pp. 25–33 (2016)

12. Meduna, A., Zemek, P.: Jumping finite automata. Int. J. Found. Comput. Sci.
23(7), 1555–1578 (2012), https://doi.org/10.1142/S0129054112500244

13. Meduna, A., Zemek, P.: Regulated Grammars and Automata. Springer (2014),
https://doi.org/10.1007/978-1-4939-0369-6

14. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966), https:

//doi.org/10.1145/321356.321364

15. Sipser, M.: Introduction to the Theory of Computation. Course Technology, second
edn. (2006)

16. Yu, S.: A pumping lemma for deterministic context-free languages. Inf. Process.
Lett. 31(1), 47–51 (1989), https://doi.org/10.1016/0020-0190(89)90108-7

