
HAL Id: hal-02279556
https://inria.hal.science/hal-02279556

Submitted on 5 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Efficient Method for Determining Full Point-to-Point
Latency of Arbitrary Indirect HPC Networks

Chengchun Liu, Zhang Yang, Limin Xiao, Baicheng Yan, Zhihao Wang,
Hongyun Tian

To cite this version:
Chengchun Liu, Zhang Yang, Limin Xiao, Baicheng Yan, Zhihao Wang, et al.. An Efficient Method
for Determining Full Point-to-Point Latency of Arbitrary Indirect HPC Networks. 15th IFIP Interna-
tional Conference on Network and Parallel Computing (NPC), Nov 2018, Muroran, Japan. pp.52-63,
�10.1007/978-3-030-05677-3_5�. �hal-02279556�

https://inria.hal.science/hal-02279556
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


An Efficient Method For Determining Full
Point-to-point Latency Of Arbitrary Indirect

HPC Networks

Chengchun Liu1, Zhang Yang2(�), Limin Xiao1(�), Baicheng Yan1, Zhihao
Wang1, Hongyun Tian2

1 School of Computer Science and Engineering, Beihang University, Beijing 100191,
China.

2 Institute of Applied Physics and Computational Mathematics, No. 2 East Fenghao
Rd., Haidian Dist., Beijing 100094, China.

Abstract. Point-to-point latency is one of the most important metrics
for high performance computer networks and is used widely in com-
munication performance modeling, link-failure detection, and applica-
tion optimization. However, it is often hard to determine the full-scale
point-to-point latency of large scale HPC networks since it often requires
measurements to the square of the number of terminal nodes. In this pa-
per, we propose an efficient method to generate measurement plans for
arbitrary indirect HPC networks and reduces the measurement require-
ments from O(n2) to m, which is often O(n) in modern indirect networks
containing n nodes and m links, thus significantly reduces the latency
measure overhead. Both analysis and experiments show that the pro-
posed method can reduce the overhead of large-scale fat-tree networks
by orders of magnitudes.

1 Introduction

Point-to-point latency is a fundamental metric of high performance computer
networks, and is widely used in network performance modeling [1][2], commu-
nication performance optimization[3], and high performance computer main-
tainance. The first and formost step to make use of the latency is to measure
the lantency. A common method to get the latency is to measure the round-trip
time (RTT) between any pair of nodes. While one measurement of RTT is quick
enough, obtaining the full-network point-to-point latency can be extremly time-
consuming since it involves n(n− 1)/2 (or O(n2)) measurements, where n is the
number of terminal nodes. One may use parallel measurements to reduce the
round of measurements, but parallel measurements can interfere with each other
and reduce the accuracy of the results. Thus, it is essential to reduce the total
number of measurements, so as to make it possible to use these latency-based
methods on modern super-computers with tens of thousands of computer nodes.

In this paper, we propose a minimal and parallel method for full-scale point-
to-point latency measurements on super-computers with indirect networks (such



2

as fat-tree, dragonfly and slimfly networks), abbreviated as PMM. Our method
first construct a minimal set of node pairs between which the RTT is measured,
given the network topology and the routing table, then compute a measurement
plan to make use of the parallelism between the measurements with the gurantee
that concurrent measurements will not interfere with one another. The minimal
set of node pairs goes from n(n−1)/2 to m, where m is the number of links con-
necting the network interface and the routers, which is often propotional to the
number of nodes, thus reduces the number of measurements from O(n2) to O(n).
The parallel measurement plan can further reduce the round of measurements,
for example, by 33.3% in our experimental settings.

The reset of this paper is organized as follows. In Section 2, we introduce
some related works on network latency measurement. In Section 3, we present
our latency measurement method in detail. In Section 4, we prove the effective-
ness of our methods by theoretical analysis and experiments. We also present
performance analysis of the method itself. In Section 5, we discuss the possible
applications of our proposed method. In the last section comes the conclusions.

2 Related works

Communication latency or distance measurement are investigated in some litera-
tures. Authors in [4] proposed a latency system based on GNP for fast obtaining
latency information between arbitrary web client pairs distributed in wide area
networks. This method has been used in the Google’s content distribution net-
work which helps to find the nearest data center for a web client. This method
can estimate latency results quickly only with a small number of CDN modifi-
cations and decouples with web client, but is not suitable for the dense network
such as HPC network or data center network. The literatures [5][6] also aim to
obtain the latency in wide area network environment in different ways, but those
methods are not suitable for dense networks.

Authors in [7] proposed a system called Pingmesh for latency measurement
and analysis in large scale data center networks. The latency measurement sys-
tem represents the network topology as three complete graphs , namely the server
complete graph, the switch complete graph, and the data center complete graph.
The method needs to select some representative node pairs and measure the la-
tency information between those nodes. With these information, the method can
approximately estimate the latency between different nodes in the same switch,
in different switches, or in different data centers. But this method measures only
partially the network and can not be used in full-network measurements.

The work [8] is the most similar to our work. They proposed a method to mea-
sure the communication distance between nodes on the Internet. This method
also needs to construct the communication distance equations through a large
number of measurements and then solve the least squares solution of the equa-
tions, which is considered as the distance. The main concern of the method is
whether the calculation result of the communication distance is accurate with-
out considering the time cost caused by the inappropriate measurement set. In



3

contrast, our method carefully selects a minimal measurement set and then mea-
sures the latency between node pairs in the set in parallel to reduce the total
time cost.

3 The PMM Method

3.1 Definitions

In order to simplify the introduction of our measurement method, we introduce
some definitions, mathematical symbols and necessary assumptions in this sec-
tion. Data transmission in the network is a complex process, which is affected
by communication protocol, network topology, and hardware architecture. Since
point-to-point lantecy on direct networks can be easy, we only focus on indirect
networks in this paper. The data is transmitted from the source NIC, through
the links, to routers, and direct to other routers, and finally to the destination
NIC, as shown in Fig. 1. The NIC is connected to a computing node, which is
called a terminal node. We also assume the network uses static routing instead
of adaptive routing.

Fig. 1. Data transmission in indirect networks. The data is transmitted from the source
terminal node to the destination through links and routers.

Definition 1. a single link refers to a physical link between any adjacent devices
in an indirect network. The latency of a single link refers to the time for a
measuring packet to pass through the link from the buffer of the device at one
end of the link to the buffer of the device at another end.

Definition 2. a measuring path refers to the entire path contained in the trans-
mission of data between two communication nodes in an indirect network, which
passes through some middle routing devices and physical links. The latency of
the measuring path refers to the sum of latency of all single links in the path.

Definition 3. an aggregated link refers to a subpath of a measuring path which
consists of one or more adjacent links. The method is not able to calculate the
latency of any single link in an aggregated link, but is able to calculate the latency
of the aggregated link.

We provide some mathematical symbols to represent the elements in the
method, as shown in Table 1.



4
Table 1. All mathematical symbols used in the method

symbol description

kx Computing node

Px,y The measuring path from node x to node y

P rtt
x,y The round-trip measuring path between node x and node y

lx Single link

a<x,y>,z The times the single link z appears in the path P rtt
x,y

α<x,y> The vector form of a path whose elements are a<x,y>,z

ox The latency of link x

Ox the latency of path x

S The set of path whose elements are α<x,y>

S
′
x A maximal linearly independent subset of S

3.2 Method

Now we describe our latency measurement method in detail. Our method as-
sumes that one can get the route of arbitrary node pairs. Through our paper,
we use a simple network as shown in Fig. 2 for illustration. The network consists
of 3 switches, 6 nodes and 8 single links. We can find many redundant measure-
ments when we measure the latency between all node pairs. We take the 4 nodes
connected by r1 as an example. When measuring all pairs, we need to measure
the latency of 6 paths, i.e., P rtt

k1,k2
, P rtt

k1,k5
, P rtt

k1,k6
, P rtt

k2,k5
, P rtt

k2,k6
, P rtt

k5,k6
. But if we

just measure P rtt
k1,k2

, P rtt
k1,k5

,

P rtt
k1,k6

, P rtt
k2,k5

for latency, and make use of the fact link latency is additive, we
can get Equation 1. 

ol1 + ol2 = 1/2·OP rtt
k1,k2

ol1 + ol7 = 1/2·OP rtt
k1,k5

ol1 + ol8 = 1/2·OP rtt
k1,k6

ol2 + ol7 = 1/2·OP rtt
k2,k5

(1)

By solving Equation 1, we can obtain ol1 , ol2 , ol7 , ol8 and calculate OP rtt
k2,k6

= 2·(ol2 + ol8), OP rtt
k5,k6

= 2·(ol7 + ol8). Further more, there are redundant mea-

surements between the nodes connected to different switches. Suppose we have
measured the path latency between some nodes directly connected to the same
switch. We need to measure P rtt

k1,k3
, P rtt

k1,k4
, P rtt

k2,k3
, P rtt

k2,k4
, P rtt

k5,k3
, P rtt

k5,k4
, P rtt

k6,k3
,

P rtt
k6,k4

for latency when measuring one by one. In fact, we can only measure

P rtt
k1,k3

to get ol1 + ol3 + ol4 + ol5 = OP rtt
k1,k3

and calculate ol3 + ol4 . In addition,

we can measure node pairs which do not share any link in parallel. For example,
we can measure the latency of P rtt

k1,k2
and P rtt

k3,k4
in parallel.



5

Fig. 2. A sample network with 6 nodes, 8 single links and 3 switches. Only 7 rather
than 15 measurements are necessary for full-network point-to-point latency.

The example above illustrates the core idea of our method. By assuming the
node-to-node latency is the addition of link latencies, we can select a number
of node pairs which covers all links in the network and measure the node-to-
node latencies, then recover the link latencies by solving a linear equation. The
measurement can further be done in parallel. Although we only consider link
latency here, our method applies to cases where both link and router latency are
included, since they only add more variables and does not change the additive
nature of latency.

Concretely, for a network containing n nodes and m links, the method in-
cludes the following steps.

a. Construct full measurement path set S, which contains all measuring
paths.

By querying routing information, we can get the single link set of any path be-
tween node ki and kj . The lateny of path P rtt

ki,kj
can be expressed as Latency(P rtt

ki,kj
)

= a<i,j>,1·ol1 + a<i,j>,2·ol2 + · · · + a<i,j>,m·olm = α<i,j> · β where α<i,j> =
(a<i,j>,1, a<i,j>,2, · · · , a<i,j>,m−1, a<i,j>,m), β = (ol1 , ol2 , · · · , olm−1 , olm). The
full measuring path set S={α<1,2>,α<1,3>,· · ·, α<n−2,n>,α<n−1,n>} which con-
sists of n(n − 1)/2 measuring paths. For the network shown in Fig.2, S =
{α<k1,k2>, α<k1,k3>, α<k1,k4>, α<k1,k5>, α<k1,k6>, α<k2,k3>, α<k2,k4>, α<k2,k5>,
α<k2,k6>, α<k3,k4>, α<k3,k5>, α<k3,k6>, α<k4,k5>, α<k4,k6>, α<k5,k6>}. Taking
α<k1,k2> as an example. α<k1,k2> = (2, 2, 0, 0, 0, 0, 0, 0) means that the measur-
ing path P rtt

k1,k2
consists of l1, l2, l2, l1.

b. Select the minimal measurement path set S
′
, which is the subset after

removing redundant measurement path in S.

By linear algebra theory, any element in S can be expressed as a linear
combination of the maximal linearly independent subset of S. Thus, we choose
the maximal linearly independent subset of S as the minimal measurement path
set S

′
, and name it as MMSets. The maximal number of elements in any MMSet

is never greater than the dimension of the linear space, which is the number of
single links m. Thus, if we can find the MMSets, we can reduce the number of
measurements from n(n− 1)/2 to m. Given the fact that HPC networks contain



6

links only propotional to the number of terminal nodes, m = O(n), we reduce
the total number of measurements from O(n2) to O(n), which is very significant.

The MMSets can be found using the Gaussian elimination method. Due to
different order of elements in S, the Gaussian elimination method can result in
different valid MMSets. This suggests we have different minimal measurement
path sets. For the previous sample network, we can obtain three different MMSets
which are:

S
′

1 = {α<k1,k2>, α<k1,k3>, α<k1,k4>, α<k1,k5>, α<k1,k6>, α<k2,k5>, α<k3,k4>},

S
′

2 = {α<k1,k2>, α<k1,k3>, α<k1,k4>, α<k1,k5>, α<k1,k6>, α<k2,k6>, α<k3,k4>},

S
′

3 = {α<k1,k2>, α<k1,k3>, α<k1,k4>, α<k1,k5>, α<k1,k6>, α<k5,k6>, α<k3,k4>}

c. Measure the latency of paths in S
′

in parallel.
We can simultaneously measure the latency of paths that do not contain the

same single link. we define a measuring path graph MPG< V,E > in which each
vertex represents a measuring path and edge between the two vertexes indicates
that the two measuring paths represented by these two vertex share at least
one simple link. We propose an innovative method based on graph coloring to
divide the graph into a number of subsections and simultaneously measure the
latency of all paths in the same subsections. The method stipulates that adjacent
vertexes can not have same color. Finally, according to the graph coloring results,
we can determine the number of parallel measurements and the path set to
be measured in each measuring round. For graph coloring is essentially NP-
Hard problem, we use an adaptive coloring algorithm, such as the Welch Powell
algorithm, when the graph is large. Only when the measurement set is small
enough, we make use of the divide algorithm to get an optimal scheme.

It should be noted that there are often multiple S
′

for the same S. Although
different S

′
have the same number of measuring paths, the layout of measuring

paths in those set are different, which bring different coloring results. For small
networks, we determine an optimal S

′
as the final MMset by comparing the

coloring results of all S
′
. For large scale networks, we randomly select some sets

from all S
′

and find out the one with best dyeing scheme as the final optimized
MMSet. In the previous network, we select S

′

1 as the final MMSet because there
are the same coloring results for all three S

′
. The MPG< V,E > colored is

showen in Fig.3. Five rounds of measurement will be carried out finally.
d. Construct single link latency equations to calculate the latency of all paths

in S.
Let O

′
= (O1, O2, · · · , Ox) be the latency of all paths in MMset after parallel

measuring. We construct a matrix C which contains x rows andm columns whose
rows correspond to the single link composition of measuring paths in MMset. We
can get a general solution by solving equation C · βT = O

′
. Any solution can be

used to calculate the unique latency of all measuring paths in S
′
, which means

that we can also calculate the unique latency of all measuring paths in S. For
the previous network, suppose that the real latency of each path in the network
are Oprtt

k1,k2
= 16,Oprtt

k1,k3
= 37,Oprtt

k1,k4
= 36,Oprtt

k1,k5
= 18,Oprtt

k1,k6
= 17,Oprtt

k2,k3
=



7

Fig. 3. A coloring result of MMSet. Five instead of 7 rounds of measurement is needed
finally.

39,Oprtt
k2,k4

= 38,Oprtt
k2,k5

= 20,Oprtt
k2,k6

= 19,Oprtt
k3,k4

= 25,Oprtt
k3,k5

= 41,Oprtt
k3,k6

=

40,Oprtt
k4,k5

= 40,Oprtt
k4,k6

= 39,Oprtt
k5,k6

= 21. After only measuring the latency of x

paths in S
′
, we get a solution ol1 = 3.5,ol2 = 4.5,ol3 = 8.5,ol4 = 0,ol5 = 6.5,ol6 = 6,

ol7 = 5.5,ol8 = 5 which can be used to calculate the latency of all paths in S.
Although it is not necessary to calculate all aggregated links’ latency for

geting path latency, the latency of the aggregated link reflects the character-
istics of the network in more detail. It is useful in some application scenarios,
such as link fault detection. According to step b, we know rank(C) ≤ m. When
rank(C) = m, the equation has unique solution. When rank(C) < m, the equa-
tion has countless solutions which means that some single links’ latency in the
network can not by accurately calculated. We propose a method of link aggre-
gation, which can merge several single links into an aggregated link to ensure
all aggregated links’ latency in network is accurate and unique. We construct
augmented matrix (C|O′) and transfer it into row canonical form matrix G. All
non-zero columns in a row correspond to all single links in aggregated link and
the last column represents the latency of the aggregated link. In our example, the
matrix (C|O′) and G are shown in equation 2. The latency of all aggregated links
are ol1 = 3.5, ol2 = 4.5, ol3 + ol4 = 8.5, ol5 = 6.5, ol6 = 6, ol7 = 5.5, ol8 = 5. l3 and
l4 make up an aggregation link, which is reasonable for that they always transmit
the data at the same time.

(C|O
′
) =



2 2 0 0 0 0 0 0 16
2 0 2 2 2 0 0 0 37
2 0 2 2 0 2 0 0 36
2 0 0 0 0 0 2 0 18
2 0 0 0 0 0 0 2 17
0 2 0 0 0 0 2 0 20
0 0 0 0 2 2 0 0 25


, G =



1 0 0 0 0 0 0 0 3.5
0 1 0 0 0 0 0 0 4.5
0 0 1 1 0 0 0 0 8.5
0 0 0 0 1 0 0 0 6.5
0 0 0 0 0 1 0 0 6
0 0 0 0 0 0 1 0 5.5
0 0 0 0 0 0 0 1 5


(2)



8

4 Validation and Analysis

4.1 Exprimental Settings

Since our method is based on rigorious mathematical process, the method is
applicable to arbitrary indirect networks. Thus as a validation, we only evalu-
ate the effectiveness of our method in synthesised fat-tree networks. We imple-
ment a source routing fat tree network simulator using the topology described
in [9], to simulate fat-tree networks commonly used in data centers and super-
computers. p− port q− tree InfiniBand network which contains 2×(p/2)q nodes
and 2×q×(p/2)q single links are simulated. To simulate typical fat-tree networks,
we choose 7 different fat-tree configurations as shown in Table 2.

Table 2. Fat-tree configurations used in the experiments

Configuration Number of terminal nodes Number of links

4 − port2 − tree 8 16

4 − port3 − tree 16 48

6 − port3 − tree 54 162

8 − port3 − tree 128 384

10 − port3 − tree 250 750

12 − port3 − tree 432 1296

16 − port3 − tree 1024 3072

4.2 Accuracy of the Measurement

We first show our method can recover the link latency of the network. We design
the following experiments: Firstly, We set every link in the network a random
latency. Secondly, we compute a parallel measurement plan using our method.
We carry out the measurement by simply aggregating the link latencies along
the measuring path. Thirdly, we calculate the latency of all measuring paths and
aggregated links in the network. Finally, we check those calculated link latency
with the preset values. Our method finds the correct values for all the links.
Table.3 shows that the calculated latency of all measuring paths is the same as
the actual values in 4-port 2-tree network separately. In fact, we get the same
conclusion as this example in the other 6 networks.

4.3 Measurement Reduction

We then show that our method can greatly reduce the number of measurements
in full-network point-to-point lantency measurements. We compute the mea-



9

Table 3. Actual latency and calculated latency of all measuring paths in 4 − port
2 − tree network

(a) Actual latency of all mea-
suring paths

Node 1 2 3 4 5 6 7 8

1 0 25 54 51 67 49 58 54

2 25 0 55 52 68 50 59 55

3 54 49 0 25 61 53 52 58

4 57 52 25 0 64 56 55 61

5 67 55 61 61 0 31 65 64

6 62 50 56 56 31 0 60 59

7 58 53 52 59 65 57 0 30

8 60 55 54 61 67 59 30 0

(b) Calculated latency of all
measuring paths

Node 1 2 3 4 5 6 7 8

1 0 25 54 51 67 49 58 54

2 25 0 55 52 68 50 59 55

3 54 49 0 25 61 53 52 58

4 57 52 25 0 64 56 55 61

5 67 55 61 61 0 31 65 64

6 62 50 56 56 31 0 60 59

7 58 53 52 59 65 57 0 30

8 60 55 54 61 67 59 30 0

surement plan for 6 different network configurations, and compute the round
of measurements required. Each round of measurements involves a collection
of measurements can be done concurrently. We assume one measurement takes
T seconds, and compare the total measurement execution time in Fig.5. We
compare our method with the brute-force one-by-one measurement of all node
pairs. In the brute-force method, it takes us (n×(n−1)/2)T seconds to measure
the latency of all paths serially. In our measurement method, it takes about m
T seconds to serially measure the latency of all paths in MMset. In the net-
work with 3-tree, the total measurement time can be further reduced by 33.3%
compared with the serial measurement. With parallel measuring the latency of
paths in the same MMset, only n T seconds are needed. We can conclude that
the proposed methods can reduce the overhead of large-scale fat-tree networks
containing thousands of nodes by three orders of magnitude.

4.4 Complexity Analysis of the PMM Method

Although the proposed method reduces the time costed in measuring the latency,
it brings additional computing overhead. We analyze the complexity of the extra
computing here. We choose the time during which CPU completes an arithmetic
operation or access a variable in memory as the unit.

The first part of the computing overhead comes from generating the measure-
ment scheme. we use Gaussian elimination to tranfer matrix A into row echelon
form for getting all maximal linear independent subsets of S, during which about
m eliminations are required. In each elimination, we need to look up an main
row from n(n − 1)/2 rows firstly, and then carry out n(n − 1)/2 elementary
transformations. Thus the average time overhead of Gaussian elimination is
T1.

T1 = m(mn(n− 1)/2 +mn(n− 1)/2) = m2n(n− 1). (3)

The second part of the computing overhead comes from derivingMPG< V,E >
to get parallel measurement scheme. We use Welch Powell algorithm to get an



10

optimized solution of the NP-Hard Graph Dying problem in large-scale network.
The time complexity of the algorithm is O(m3).

The third part of the computing overhead comes from calculating the latency
of all paths and links. Our method use Gaussian elimination to solve m linear
equations for getting the latency of all aggregated links, and then calculate the
latency of all paths. The average time overhead is T2

T2 = 2m3 + n(n− 1)/2 (4)

For p − port q − tree network, n < m < n(n − 1)/2. As a result, a loose time
complexity of our method is O(n2·m2).

We further investigate reducing the computing overhead by parallel comput-
ing. We substitute the Gaussian elimination with a MPI based implementation
and run the computing of a 12− port 3− tree with 432 nodes and 1296 links on
Tianhe-2 super computer. The timing results are shown in Fig. 6 and it shows
than we can compute the measurment plan in less than 30 seconds with 116 MPI
proceses, which is pretty acceptable in HPC environments.

Fig. 4. The measurement time of two meth-
ods. Each measurement takes T seconds.

Fig. 5. The computing overhead of generat-
ing measurement plan and calculating the
latency of all paths and links in 12 − port
3 − tree network in parallel settings

5 Applications

Being a low level method, our PMM method can be used in many application
scenarios where full point-to-point lantency is required. We discuss some of these
applications in this section.

5.1 Communication Performance Modeling and Prediction

In many cases we want to model the communication network, so as to predicate
the application performance on given supercomputers, to inspect the communi-
cation bottlenecks of parallel applications, and to compare design alternatives



11

of network parameters. For example, when we optimize the application commu-
nication performance, we can use trace simulators such as LogGOPSim [10] to
simulate the communication and find the bottlenecks. The LogGOPSim relies on
point-to-point latency to make an accurate predication for small messages, which
often require one to measure the full-network point-to-point latency of a given
super-computer. Our methods can greatly reduce the number of measurements
and thus improve the model accuracy by being able to incoperate the difference
of per node pair latencies.

5.2 Transitional Link Failure Detection

Transitional link failures happens a lot on large scale high performance computer
networks, which often results in downgraded communication performance, and
grandual system failures. Exta hardware can be built into the network to moniter
each link to detect these problematic states, but this is not practical on many
networks. Our method provides a software-based alternative. One can generate
a measurement plan for any suspecting subnet and measure the point-to-point
latency quickly to obtain per-link latency, and flag links with larger latency than
expected as problematic for further investigation.

5.3 Parallel Communication Optimization

Automatic optimization of communication performance often requires knowning
the inter-node message latency of the running nodes, which can only be mea-
sured online. For example, in topology-aware process mapping algorithms, one
often needs to model the per-note message latency, and accurate online model-
ing of these latency is essential for real-world parallel applications. Our method
can help by generating the measurement plan and measure the point-to-point
latency on the fly quickly, thus make the optimization applicable to any indirect
networks.

6 Conclusion

In this paper, we propose an efficient method, namely PMM, to generate full-
network point-to-point latency measurement plans for arbitrary indirect HPC
networks. Our method reduces the measurements required from O(n2) to O(n)
for modern high performance computer networks such as fat-tree based infini-
band networks, and can be extremely useful in communication performance mod-
eling, transitional link failure detection, and parallel communication optimizatin.

Although being effective, there are still aspects to improve in our methods.
We go through some or all MMsets to find out an optimized one in our method,
which is ineffective. We also consider find out huristics to locate measurement
plans with the maximal parallelism. We can also make the measurement additive
to allow for continuously monitoring link latencies.



12

Acknowledgement

This work in this paper is supported by the National Key R&D Program of China
under Grant NO.2018YFB0203901, Science Challenge Project, NO.TZ2016002,
and the National Natural Science Foundation of China under Grant No.61772053.
The authors would like to thank the reviewers for their valuable comments.

References

[1] Alexandrov,A.,Ionescu,M,F.,Schauser,K,E.,Scheiman,C.: LogGP: Incorporat-
ing long messages into the LogP model. Journal of parallel and distributed
computing. 44 (1995) 71–79

[2] Ino,F.,Fujimoto,N.,Hagihara,K.: LogGPS: a parallel computational model for
synchronization analysis. ACM SIGPLAN Notices. 36 (2001) 133–142

[3] Bhanot,G.,Gara,A.,Heidelberger,P.,Lawless,E.,Sexton,J,C.,Walkup,R.: Op-
timizing task layout on the Blue Gene/L supercomputer. IBM Journal of
Research and Development. 49 (2005) 489–500

[4] Szymaniak,M.,Presotto,D.,Pierre,G.,Steen,M,V.: Practical large-scale latency
estimation. Computer Networks. 52 (2008) 1343–1364

[5] Sen,S.,Wang,J.: Analyzing peer-to-peer traffic across large networks. Proceed-
ings of the 2nd ACM SIGCOMM Workshop on Internet measurment. 2 (2002)
137–150

[6] Liu,J.,Zhang,X.,Li,B.,Zhang,Q.,Zhu,W.: Distributed distance measurement for
large-scale networks. Computer Networks. 41 (2003) 177-192

[7] Guo,C.,Yuan,L.,Xiang,D.,Dang,Y.,Huang,R.,Maltz,D.,Liu,Z.,Wang,V.,Pang,B.
,Chen,H.,Lin,Z,W.,Kurien,V.: Pingmesh: A large-scale system for data center
network latency measurement and analysis. ACM SIGCOMM Computer
Communication Review. 45 (2012) 139–152

[8] Shavitt,Y.,Sun,X.,Wool,A.,Yener,B.: Computing the unmeasured: An algebraic
approach to Internet mapping. IEEE Journal on Selected Areas in Communi-
cations. 22 (2004) 67–78

[9] Lin,X,Y.,Chung,Y,C.,Huang,T,Y.: A multiple LID routing scheme for fat-tree-
based InfiniBand networks. Parallel and Distributed Processing Symposium.
18 (2004) 11

[10] Hoefler,T.,Schneider,T.,Lumsdaine,A.: LogGOPSim: simulating large-scale ap-
plications in the LogGOPS model. Proceedings of ACM International Sympo-
sium on High Performance Distributed Computing. 19 (2010) 597–604


