
HAL Id: hal-02279553
https://inria.hal.science/hal-02279553

Submitted on 5 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

DLIR: An Intermediate Representation for Deep
Learning Processors

Huiying Lan, Zidong Du

To cite this version:
Huiying Lan, Zidong Du. DLIR: An Intermediate Representation for Deep Learning Processors. 15th
IFIP International Conference on Network and Parallel Computing (NPC), Nov 2018, Muroran, Japan.
pp.169-173, �10.1007/978-3-030-05677-3_19�. �hal-02279553�

https://inria.hal.science/hal-02279553
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


DLIR: An Intermediate Representation for Deep
Learning Processors

Huiying Lan123 and Zidong Du13

1 Intelligent Processor Research Center, Institute of Computing Technology (ICT),
CAS, China

2 University of Chinese Academy of Sciences (UCAS), China
3 Cambricon Tech. Ltd.

Abstract. The Deep learning processor (DLP), especially ASIC-based
accelerators, have been proved to be a promising device for accelerating
the computation of deep learning algorithms. However, the learning cost
of mastering these DLPs is high as they use different programming inter-
faces. On the other hand, many deep learning frameworks are proposed
to ease the burden of developing deep learning algorithms, but few of
them support DLPs. Due to the special features in DLPs, it is hard to
integrate a DLP into existed frameworks.
In this paper, we propose an intermediate representation (called DLIR)
to bridge the gap between DL frameworks and DLPs. DLIR is a tensor-
based language with built-in tensor intrinsics that can be directly mapped
to hardware primitives. We show that DLIR allows better developing ef-
ficiency and is able to generate efficient code.

Keywords: deep learning processor, intermediate representation, deep
learning framework, deep learning

1 Introduction

Deep learning processors (DLPs) have become powerful devices for processing
large scale neural networks, especially ASIC-based DLPs [1–6]. However, DLPs
are still not fully accepted by DL participants due to the lack of programming
supports. On the other hand, many DL programming frameworks [7–10] have
been proposed to ease the burden of developing DL algorithms but often only
on traditional devices (e.g., CPUs and GPUs). Primitives on such devices are
basically scalar computations and they use cache in their system. Therefore,
frameworks designed for such devices are often lower operators to fine-grained
operations and completely ignore the management of on-chip memories. For ex-
ample, TVM [11] is a software stack for deep learning, which leverages Halide IR
to present computation loops and extracts several useful scheduling primitives
to allow users to manually optimize the computation. However, TVM require
the user to describe the computation through scalar operations and use ten-
sor intrinsics scheduling primitive to map the tensor operation to instructions
in the backend DLP (which is VTA in the case of TVM). This complicates the



2

programming of the DLP as the code describing the computation of the tensor in-
trinsics is completely unnecessary. XLA is a recent proposed backend embedded
in TensorFlow to provide subgraph optimizations. It proposes an High-level op-
timizer (HLO) and also with an IR to represent the computation graph received
from the TensorFlow frontend. Although XLA provides tensor semantics that
in a way match DLP primitives, operators in XLA is very high-level and does
not provide hardware-specific operations such as memory copying between main
memory and on-chip scratchpad memory which is extensively used in DLPs. Such
frameworks lack necessary components to seamlessly support a DLP. Therefore,
an indirection layer that is specifically designed for DLPs is on demand to bridge
the gap between frameworks and DLPs.

Our solution is an indirection layer composed of an intermediate represen-
tation (called DLIR), a compiler and runtime. DLIR is a tensor-based IR, in-
herently support tensor types (neurons and synapses) and tensor intrinsics (e.g.,
convolution, pooling, matmul) that can be directly mapped to hardware prim-
itives. By leveraging such structures, DLIR compiler is able to generate highly
efficient code that is comparable to hand-optimized instructions.

2 Intermediate Representation Language

In this section, we introduce the intermediate representation language, i.e., DLIR,
which can be interpreted into operations supported by DLPs. In order to reduce
the learning costs, DLIR is designed to be embedded in C++ as a library. It can
be directly called by front-ends functions and generate instructions for backend.

2.1 Data Structure

DVIR defines two N-dimensional (N-D) tensor data types, Neuron and Synapse
to encapsulate data and be used as operands of HLIR operators (see Section 2.2).
Both types are defined using a built-in data structure, Dimension, which helps
specify the tiling of a dimension. Due to the limited on-chip resources, an N-
D array often needs to be partitioned into several segments to fit into on-chip
buffers. Computation partitioning on DLPs is complicated as there are multiple
dimensions for a N-D tensor. A dimension with size d can be tiled as d = n×s+r,
which requires at least three variables to describe the partitioning. Dimension is
introduced to encapsulate these variables. By iterating through combinations of
segments of different dimentions of a tensor, we are able to traverse all possible
segments in the tiled tensor. In addition, to enbale explicit memory copy between
the main memory and on-chip buffers, we provide two data structures, i.e., Neu-
ronBuffer and SynapseBuffer, to represent allocated data on on-chip buffers. A
segment in Neuron will be transferred to a corresponding NeuronBuffer.

2.2 Operators

We classify the programming supports of current DLPs according to whether
they require programmers to manually write tiling and computation partitioning



3

Framework Computational
Graph

Tiling 
Segmentation 
Data Management 

HLOP HLCG

Executable code

LLOP LLCG

Fig. 1. Compilation process of DLIR

within a layer, i.e., the ability to process arbitrary scale of computation. We
call the code generator (CG) provided by DLPs as high-level code generator
(HLCG) and low-level code generator (LLCG). HLCG refers to CGs that can
process arbitrary scale of computation, e.g., CG of DianNao and ShiDianNao.
LLCG refers to CG that can compile programs at the level of assembly or ISA,
e.g., Cambricon ISA. Accordingly, we provides two levels of operator that can
map to these two CGs, i.e., high-level operators (HLOP) and low-level operators
(LLOP). Therefore, both types of CG can be integrated into DLIR.

These two levels of OP are also corresponding to the data structures. HLOP
takes Neuron or Synapse as input and output parameters, and LLOP takes
segments in a Neuron or Synapse as input and output parameters. Both HLOP
and LLOP can be translated directly into hardware-specific assembly languages
or instructions by invoking HLCG and LLCG.

In addition to directly invoke vendor-provided CG to generate code, HLOPs
can also be first interpreted to LLOPs, and then translated to instructions.
With such transformation, DLPs with LLCGs can also use HLOPs as the official
programming interface which is typical for DL frameworks.

3 Compilation

The compilation process is shown in Figure 1. Operations in the computational
graph can be mapped to HLOPs. For DLPs using HLCGs, DLIR passes the
parameters to HLCGs to generate executable code. For those using LLCGs,
DLIR will invoke the HLOP defined with LLOPs and memory operations to
generate LLOP sequences, which will then be compiled by the LLCGs. In the
function that defines HLOPs by LLOPs, users need to specify loop tiling, data
segmentations and the use of on-chip buffers in such functions. In addition,
as DLPs have strict restriction on data layout, the compiler will rearrange a
tensor according to the dimension informations so that the required data can be
sequentially fetched.

4 Evaluation

We use Caffe as the front-end as it is a commonly used DL framework. We reim-
plement Setup, Forward and Backward functions in the layers in Caffe. Each call
of these functions will invoke the DLIR compiler to generate an instruction se-
quence that will be transferred to our backend and executed. We use Cambricon
as the backend, as it is a state-of-the-art ISA and architecture proposed for NN
algorithms, and it involves many representative features of DLPs.



4

Ci
fa

r1
0

Al
ex

Ne
t

VG
G1

6

VG
G1

9

Re
sN

et
34

Ge
oM

ea
n0

2

4

6

8

10

Co
de

 le
ng

th
 re

du
ct

io
n

Fig. 2. Code length reduction of using
DLIR compared to hand-written code.

Ci
fa

r1
0

Al
ex

Ne
t

VG
G1

6

VG
G1

9

Re
sN

et
34

Ge
oM

ea
n50

60

70

80

90

100

Pe
rfo

rm
an

ce
 (%

)

Fig. 3. Performance of DLIR com-
pared to hand-optimized code.

4.1 Developing Efficiency

We evaluate the developing efficiency of DLVM on five large realistic networks,
i.e., Cifar10, AlexNet, VGG16, VGG19 and ResNet34, covering five representa-
tive algorithms (convolution, pooling, fully-connected, batch normalization, and
local respond normalization) used in popular deep learning networks. Figure 2
shows that by using DLIR, we can reduce the source code by 4.19 × on average.
The highest reduction comes from ResNet34 (i.e, 9.72×), and the lowest re-
duction comes from Cifar10 (i.e., 1.75×). The more layers a network composed
of, the higher the reduction ratio is. Because the code reduction is primarily
gained from eliminating redundant implementations of the same algorithm with
different scales.

4.2 Performance

We evaluate the performance of DLVM on the mentioned networks to show that
DLIR is able to generate efficient code. The performance is demonstrated in Fig-
ure 3. DLIR achieves 89.37% performance compared to that of hand-optimized
code on average. The performance loss primarily comes from the missing overlap-
ping between computations and memory accesses especially between layers and
the memory accesses saved by layer fusion. However, the hand-optimized code
could takes seasoned programmers days to maximize the optimize. In DLIR,
we mostly concern about usability instead of performance, therefore this perfor-
mance loss is acceptable for us.

5 Conclusion

In this paper, we propose an intermediate representation (DLIR) to bridge the
gap between high-level DL frameworks and DLPs. DLIR is composed of an
intermediate representation language with special designed data structures (i.e.,
Dimension, Neuron and Synapse), hierarchic operators and memory operations.
By leveraging DLIR, we are able to shorten the code by 4.19 × on five large
networks on average. In addition, the compiler is able to generate code with up
to 89.37% performance compared to hand-optimized code using Cambricon as
the backend.



5

6 Acknowledgement

This work is partially supported by the National Key Research and Develop-
ment Program of China (under Grant 2017YFA07009022017YFB1003101), the
NSF of China (under Grants 6147239661432016, 61473275, 61522211, 61532016,
61521092, 61502446, 61672491, 61602441, 61602446, 61732002, and 61702478),
the 973 Program of China (under Grant 2015CB358800), National Science and
Technology Major Project (2018ZX01031102) and Strategic Priority Research
Program of Chinese Academy of Sciences (XDBS01050200).

References

1. Chen, T., Du, Z., Sun, N., Wang, J., Wu, C.: DianNao: a small-footprint high-
throughput accelerator for ubiquitous machine-learning. In: Proceedings of the
19th international conference on Architectural support for programming languages
and operating systems (ASPLOS), Salt Lake City, UT, USA (2014) 269–284

2. Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu, Z., Sun,
N., Temam, O.: DaDianNao: A Machine-Learning Supercomputer. In: Proceedings
of the 47th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-47). (2015) 609–622

3. Zhang, S., Du, Z., Zhang, L., Lan, H., Liu, S., Li, L., Guo, Q., Chen, T., Chen,
Y.: Cambricon-X : An Accelerator for Sparse Neural Networks. In: Proceedings
of the 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-49). (2016)

4. Liu, D., Chen, T., Liu, S., Zhou, J., Zhou, S., Temam, O., Feng, X., Zhou, X., Chen,
Y.: Pudiannao: A polyvalent machine learning accelerator. In: Proceedings of the
Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, Istanbul, Turkey, March 14-18,
2015. (2015) 369–381

5. Du, Z., Fasthuber, R., Chen, T., Ienne, P., Li, L., Luo, T., Feng, X., Chen, Y.,
Temam, O.: Shidiannao: shifting vision processing closer to the sensor. In: Pro-
ceedings of the 42nd Annual International Symposium on Computer Architecture,
Portland, OR, USA, June 13-17, 2015. (2015) 92–104

6. Liu, S., Du, Z., Tao, J., Han, D., Luo, T., Xie, Y., Chen, Y., Chen, T.: Cambricon:
An instruction set architecture for neural networks. In: 43rd ACM/IEEE Annual
International Symposium on Computer Architecture, ISCA 2016, Seoul, South
Korea, June 18-22, 2016. (2016) 393–405

7. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S.,
Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu,
Y., Zheng, X.: TensorFlow: A system for large-scale machine learning. (2016) 18

8. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: A matlab-like environment
for machine learning

9. System., N.: github.com/nervanasystems/neon. (2016)
10. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-

rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093 (2014)

11. Chen, T., Moreau, T., Jiang, Z., Shen, H., Yan, E.Q., Wang, L., Hu, Y., Ceze, L.,
Guestrin, C., Krishnamurthy, A.: TVM: end-to-end optimization stack for deep
learning. CoRR abs/1802.04799 (2018)


