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Abstract. Deep learning framework plays an important role in con-
necting hardware platform and algorithm. In recent years, some domain-
specific deep learning accelerators with better performance and energy
efficiency were proposed by researchers. However, current framework-
s lack enough considerations about how to better support the possible
new features brought by accelerators. In this paper, we propose to build
a performance portable programming framework with subgraph extrac-
tion. The intuition is that increasing ratio of optimizations are taken
from the top-level framework to the low-level software stack of accel-
erator. In response to this development trend, framework needs to pay
more attention to the splitting strategy of computation graph for the
heterogeneous computation.

1 Introduction

In recent years, we have witnessed many significant breakthroughs of deep learn-
ing algorithm in a multitude of domains. This superior accuracy, however, comes
at the cost of high computational complexity. Researchers try to design more
efficient architectures based on the features of deep learning algorithm and get
some promising results [3, 5, 10, 4, 7–9]. These results show that domain-specific
accelerators outstand in both speed and energy efficiency compared to tradition-
al solutions.

On the other hand, in order to explore and deploy deep learning algorithm
conveniently, both academia and industry have developed several deep learning
frameworks, such as MXNet [2], TensorFlow [1] and Caffe [6]. Those frameworks
automatically optimize the computation flow, generate high-performance kernels
and schedule kernels in parallel if possible.

However, there is a gap between emerging DL accelerators and existing pro-
gramming frameworks. In order to run deep learning algorithm with the highest
performance, some accelerators and its software stacks have tried to break the
wall and search optimal solution in a large space. Unfortunately, current deep
learning frameworks only provide limited adaptions for this new feature.



2 Motivation

2.1 DLA and Graph Fusion

We designed and implemented a deep learning accelerator and its software s-
tack, and we call the accelerator DLA in following sections. The design of DLA
is concluded from multiple deep learning accelerators, including NVidia DLA,
DaDianNao [4] and TPU. There are multiple cores in DLA. Each core in D-
LA can complete a computation task independently, which makes it actually a
parallel model with shared global memory.

Compared to traditional limited method that fusing some specific sequence
composed of element-wise operators issued by framework, software stack of D-
LA offers a more radical solution. It optimizes and fuses the total graph (see the
Figure 1). This strategy has several benefits. First, the experts developed lower
stack can give better solution because they know more about hardware architec-
ture. Also, fusing a large graph into a single node greatly saves the kernel launch
cost, which is important for inference task.

Fig. 1: In left part, the framework searches limited templates and generates new kernels
to replace them. In right part, optimization stack of accelerator receives the whole
graph, optimizes and generates a new executor back to framework.

2.2 Heterogeneous Computation

Heterogeneous computation is unavoidable for DLA and other accelerators. Some
operators in new algorithms are hard to parallelize or to abstract to the tensor
operators offered by accelerators, and the frequency of embedding accelerator
in mobile device might be reduced to save energy. As a result, assigning some
parts on CPU might bring better total performance. Thus, before we use lower
software stack to optimize graph, we need to extract a subgraph composed by
operators assigned on DLA. In other words, framework should have a clever
split strategy and method to extract appropriate subgraph from the original
deep networks.

3 Subgraph Extraction

When we try to extract a subgraph based on whether each operator is well-
supported by accelerator, the direct intuition is to make it a maximum connected



convex subgraph. Connectivity guarantees data relation between operators which
is necessary for most optimizing methods. Maximum grants the largest searching
space and reduces kernel launch overheads. Convexity is used as a constraint to
avoid circle which leads to dead lock when scheduling. A subgraph S of a directed
acyclic graph G is convex if and only if there is no directed path between two
vertices of S which contains an arch not in S (see the Figure 2).

Fig. 2: Example of convex and non-convex subgraph.

Fig. 3: Post-prune strategy. The ACC node represents operator assigned on accelerator,
and the CPU node represents operator assigned on CPU.

Merging a large subgraph into a single node helps the corresponding computa-
tion to run faster, however, it may hinder scheduler to get maximum parallelism
in some case. As Figure 3 shows, the fused graph must wait for all its input
to be ready even though some inputs are not necessary at the early stage of its
computation. Similarly, although not all the outputs of a subgraph are generated
at the final stage, all descendants must keep waiting until computation of total
subgraph finishes. So, we append a post-prune process to split each subgraph
into smaller parts, each of which has only one input and output operator.

4 Evaluation

The experiment platform is DLA, a multi-core deep learning accelerator as we
mentioned before. We first evaluate the performance before and after the graph
fusion to demonstrate the validation of graph fusion. As shown in Figure 4, per-
formance of all six entire-network benchmarks are improved, which achieves a



Fig. 4: Relative speedup of graph.

Fig. 5: Left figure shows the structure of the inception-v3 block. Right figure shows
speedup after the post-prune strategy. Horizontal axis label represents part of the block
assigned to CPU

speedup of 1.18× on average compared with the baseline, which we do not imple-
ment the graph fusion. Specifically, the improvement of ResNet34 and ResNet50
is clearly higher than other four networks.

Then we evaluate the speedup of the post prune process. We use the intuitive
maximum connected convex subgraph extraction strategy as the baseline. In or-
der to accurately evaluate the prune strategy, we choose a basic block of operators
with multiple branches from inception-v3 networks for its enough braches. To
trigger subgraph extraction, we seperately assign operators on different branch
to CPU and evaluate the speedup. As the result shown in the figure 5, except
for assigning operator on the critical path to CPU, performance of the other
three heterogeneous computation get a speedup of 1.1× on average, which is an
obvious improvement.

5 Conclusion

In this paper, we propose a performance portable programming framework. The
key motivation is that framework needs a subgraph extraction strategy to better
balance schedule parallelism and fusion efficiency. We implement such a frame-
work by migrating MXNet. This strategy is designed to cooperate framework
with lower software stack in heterogeneous computation task, because none of
them can complete the whole task independently. This strategy can be used
in a wider field if accelerators choose to take over framework to optimize the
computation graph by themselves.
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