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Abstract. Many clustering protocols have been proposed for Wireless
Sensor Networks (WSNs). However, most of these protocols focus on se-
lecting the optimal set of Cluster Heads (CHs) in order to reduce or
balance the network’s energy consumption and unfortunately, how to
effectively cover the network area is often overlooked. Coverage opti-
mization in WSNs is a well-known Non-deterministic Polynomial (NP)-
hard optimization problem. In this paper, we propose a Genetic Algo-
rithm (GA)-based Coverage Control Mechanism (GA-CCM) for clus-
tered WSNs. GA-CCM provides an add-on mechanism that is designed
to be integrated with any centralized clustering protocol to enhance its
energy efficiency. GA-CCM finds the optimal set of active nodes that
provides full area coverage and puts the redundant sensors into sleep
mode to save energy. Extensive simulations of GA-CCM on 25 different
WSNs topologies are conducted. Performance results are evaluated and
compared against several well-known clustering protocols as well as a
coverage-aware clustering protocol. Results show that GA-CCM always
achieves full area coverage while minimizing the redundancy degree and
the number of active nodes. To further evaluate the performance of GA-
CCM as an add-on to existing clustering protocols, we integrate it with a
Particle Swarm Optimization based CH selection protocol (PSO-CH), a
comprehensive clustering protocol that considers many clustering objec-
tives. To the best of our knowledge, PSO-CH has the lowest overall en-
ergy consumption among well-known clustering protocols. Experimental
results show that this integration of GA-CCM to PSO-CH further im-
proves its performance in terms of energy efficiency and packets delivery
rate.

Keywords: Sleep Scheduling · Clustering · WSNs

1 Introduction

Wireless Sensor Networks (WSNs) are frequently used, among other applica-
tions, in environmental monitoring, industry and disaster management. In these
applications, a large number of sensors with limited battery capacity and com-
munication capabilities are usually deployed randomly and in high density in
order to observe/measure a certain phenomenon or to detect the occurrence of
an event in the network field. Such random and dense deployment is unavoid-
able due to the hazardous environment, in which WSN application needs to be
implemented. Consequently, maintaining connectivity and coverage ratio while
maximizing the network lifetime constitutes the biggest challenge on the wide
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spread of WSNs usage. This is because due to the random and dense deployment
of the sensors, there may exist many redundant sensors covering the same area
and therefore causing unnecessary energy consumption. Therefore, the intuitive
solution is to have a set of sensors activated while keeping redundant nodes
in sleep mode periodically. The Optimal Coverage Problem (OCP) in WSNs
is defined as finding the smallest number of sensors to monitor the network
area while maintaining the coverage ratio requirement of the application. The
main approach to solve such problem is to employ sleep scheduling protocols, in
which the redundant sensors are scheduled to be asleep/deactivated alternately
to minimize the energy consumption, hence, increase the overall network lifetime
while meeting the connectivity and coverage requirement. On the other hand,
clustering protocols provide efficient methods to achieve energy-efficient com-
munication, namely, connectivity in WSNs. However, most existing clustering
protocols overlook this redundant sensors fact. Despite the close relationship be-
tween the clustering problem and the sleep scheduling problem, they are studied
separately and very few works consider a joint solution for both problems. To en-
hance the energy efficiency of WSNs, integrated protocols that solve both of these
problems are highly recommended. As both of these problems are well-known
Non-deterministic Polynomial (NP)-hard optimization problems, Evolutionary
Algorithms (EA) can be used to solve such problems.

1.1 Contributions of this Paper

In this paper, we propose a GA-based Coverage Control Mechanism (GA-CCM)
for clustered WSNs. We assume that the network operating time is divided
into rounds and the network is clustered using [3]. In each round, GA-CCM is
executed to find an optimal set of active nodes to provide full area coverage. Re-
dundant sensors are put into sleep mode to save energy. The main contributions
are listed below:
– We formulate the OCP in clustered WSNs as an optimization problem. Up

to our best knowledge, the proposed formulation is the first to consider the
OCP problem in a clustered WSN. The proposed formulation ensures that
the network area is fully covered by the least number of sensor nodes. To do
so, the sub-objective functions of GA-CCM aim at minimizing the sensors’
redundancy while balancing the energy consumption of the active sensors to
avoid selecting the same set of active nodes in each round. Most importantly,
GA-CCM is designed and developed as an add-on mechanism which can be
integrated to any centralized clustering protocol in order to achieve a better
energy efficiency.

– We introduce new ways to assess the level of coverage in WSNs. Most of
the previously proposed protocols assume that the number of active nodes
and/or the coverage ratio are useful metrics to assess the coverage perfor-
mance of their proposed protocols [9]. The coverage ratio is defined as the
ratio of the covered area to the whole network area [13]. The covered area is
calculated as the product of the number of active nodes and the sensing area
of each active node. However, these two metrics ignore the overlaps in the
sensing areas, hence, do not reflect the real coverage degree. According to
the current definition of coverage ratio, two sets of active nodes may result
in the same coverage ratio but not necessarily the same redundancy degree,
that is defined as the number of sensors monitoring a Point of Interest (PoI).
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In this paper, we redefine a new coverage ratio in order to assess the coverage
more accurately. Furthermore, we also measure the redundancy degree using
different metrics.

– Contrary to other coverage protocols, we test and examine the performance
of the proposed protocol against other protocols under a more realistic en-
ergy consumption model that is based on the characteristics of the Chipcon
CC2420 radio transceiver data sheet.
Extensive simulations of GA-CCM on 25 different WSNs topologies are con-

ducted, evaluated and compared against several well-known clustering protocols
as well as a coverage-aware clustering protocol. To further evaluate the perfor-
mance of GA-CCM as an add-on to the existing clustering protocols, we integrate
it with the Particle Swarm Optimization based cluster head selection (PSO-CH)
protocol, a comprehensive clustering protocol that considers many clustering ob-
jectives. It is also known to have the lowest overall energy consumption among
well-known clustering protocols [4].

1.2 Paper Organization

The remainder of this paper is organized as follows: Section 2 presents the related
work on clustering protocols and coverage-aware clustering protocols. Section 3
presents the system model. The general design and the problem formulation are
provided in Section 4. A detailed analysis of the simulation results is provided
in Section 5. Finally, Section 6 concludes this paper.

2 Related Work

Many probability-based clustering algorithms have been proposed in the lit-
erature. In such algorithms, the Cluster Heads (CHs) are elected based on a
probability function in a random fashion. Examples of such algorithms include:
Low Energy Adaptive Clustering Hierarchy (LEACH) [5]; Energy Efficient Het-
erogeneous Clustered (EEHC) scheme [7] and Multi-hop Overlapping Clustering
Algorithm (MOCA) [14]. All these algorithms are distributed, self-organized and
have low overhead. However, these algorithms have some problems in terms of
the form and distribution of the clusters [1]. These algorithms do not consider
the residual energy of the sensors. Moreover, the random mechanism of selecting
the CHs does not guarantee the selection of the optimal set of CHs [4]. This, in
turn, will reduce the reliability of these algorithms [1].

In order to select the optimal set of CHs, many research works propose cen-
tralized EA-based clustering algorithms. In these algorithms, the Base Station
(BS) adopts an EA to find the optimal set of CHs based on a set of predefined
objective functions. An Example of such algorithms is the GA-based Clustering
(GA-C) algorithm [10] which define one objective function as the minimization
of the total distance from cluster members to their respective CHs in addition
to the distance from the CHs to the BS. However, GA-C does not consider the
energy efficiency of the selected CHs. A PSO-based Clustering (PSO-C) protocol
[8] defines two objective functions which consider both the residual energy of the
sensor nodes and the physical distances between the CHs and their associated
cluster members. However, the objective functions are not scaled, hence the fi-
nal solution is biased towards one of them. Another PSO-based CH (PSO-CH)
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selection algorithm is proposed in [3]. PSO-CH considers the following proper-
ties: the network’s energy efficiency, data transmission reliability, and the proto-
col’s scalability. The objective function is defined as the weighted sum of three
sub-objectives, each of which is related to the aforementioned properties. The
sub-objectives are scaled to avoid any bias.

All the aforementioned clustering protocols focus only on selecting CHs to
reduce or to balance the network’s energy consumption, without adopting any
sleep scheduling mechanism for the redundant sensors. Only a few integrated
protocols consider them in a joint way. An example of such protocols is the
Coverage-Preserving Clustering Protocol (CPCP) [11]. CPCP is a distributed
coverage-aware clustering protocol which defines different cost metrics for each
sensor. The minimum-weight coverage cost metric is defined such that sensors
deployed in densely populated network areas and that has higher remaining
energy are better candidates to act as CHs and/or to stay active. The main
operation of CPCP depends mainly on the values of activation timers. Although
the authors of CPCP recommend the activation time to be proportional to the
coverage cost, no specific recommendation is given on how to set this value.
CPCP provides an integrated protocol to solve both the clustering and sleep
scheduling problems in WSNs, it lacks a redundancy check mechanism and since
it is a distributed protocol, there is no guarantee it will find the optimal status
of the nodes. PSO-CH is a comprehensive clustering protocol that adopts a
realistic energy consumption model and has well-defined objective functions.
Experimental results of PSO-CH have proven that it has higher Packet Delivery
Rate (PDR) at the CHs and at the same time has low energy consumption.
However, PSO-CH lacks a mechanism for detecting the redundant sensors in the
network and no sleep scheduling mechanism is adopted to put the redundant
sensors into sleep mode.

In this paper, we address the aforementioned concerns by extending the PSO-
CH protocol with a sleep scheduling mechanism.

3 The System Model

We consider a two-tiered WSNs with N sensors randomly and uniformly de-
ployed. There are K cluster heads and 1 BS among N sensors. Each sensor has
a unique ID, and the BS ID is 0. In the cluster formation process, each sensor
node (including a CH) belongs to only one cluster. We assume that all nodes are
stationary after deployment and that the sensors are aware of their location.

The Boolean sensing model [2] is assumed in this paper as it is the most
commonly used sensing model. In this model, if a point p in the network field
is located within the sensing range r of sensor node n, then it is assumed that
p is covered/detected by n. The sensing area of n is defined as a disk centred
at n with a radius of the sensing range r. In this model, the coverage function,
C(n, p), of sensor node n and point p is given by the following equation, where
d(n, p) is the euclidean distance between sensor node n and point p:

C(n, p) =

{
1, if d(n, p) ≤ r

0, otherwise
(1)
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For the energy consumption model, a realistic model which is based on the
characteristics of the Chipcon CC2420 radio transceiver data sheet [12] is used.
The total energy consumed by sensor node n, En, is calculated as follows [3]:

En =
∑

statej

Pstatej × tstatej +
∑
tr

Etransitions (2)

Where statej refers to the energy states of a sensor: sleep, reception, or
transmission. Pstatej is the power consumed in each statej, tstatej is the time
spent in the corresponding state, and tr is the number of transitions for S. The
energy spent in transitions between states, Etransitions, is also added to the
node’s total energy consumption. The different values of Pstatej and Etransitions

can be found in [12].

4 General Design and Problem Formulation

First, the optimal set of CHs is determined using the PSO-CH protocol described
in [3]. Then, the GA-CCM is adopted to solve the OCP in the clustered net-
work. We choose the PSO-CH protocol as it has high PDR at the CHs and at
the same time maintains reasonable energy consumption. We refer to the inte-
grated protocol as EA-based Coverage-aware, Clustering Protocol (EA-CCP).
The formulation of the OCP in clustered WSNs is given below.

In this paper, we assume that the network area A is divided into M virtual
cells. At the start of EA-CCP, the BS constructs a coverage matrix CM that
has N − 1 rows and M columns as follows, where CM(n,m) = 1 when sensor
n, 1 ≤ n ≤ N − 1 covers cell m, 0 ≤ m ≤ M and CM(n,m) = 0 otherwise:

CM =


CM(1, 1) CM(1, 2) · · · CM(1,M)
CM(2, 1) CM(2, 2) · · · CM(2,M)

...
...

. . .
...

CM(N − 1, 1) CM(N − 1, 2) · · · CM(N − 1,M)


According to the boolean sensing model 1, sensor n is said to cover cell m if the
distance between sensor n and cell m is less than the sensing range of sensor
n. Unlike other coverage protocols, we measure the distance from the farthest
corner of cell m rather than its center to ensure that cell m is totally covered by
sensor n.

In GA-CCM , the dimension of each potential solution is equal to the num-
ber of sensor nodes in the network minus the BS (i.e., N − 1). Let, Ci =
[Xi,1, Xi,2, Xi,3, ..., Xi,N−1] be the ith chromosome of the population where each
gene, Xi,d, 1 ≤ d ≤ N − 1 maps the status of the sensor node with the ID nd.
Each gene Xi,d of chromosome Ci is initialized with either 0 to indicate that
sensor nd is in inactive mode, or 1 to indicate that nd is in active mode. Due
to this problem formulation, GA is used instead of PSO since the velocity and
position updates in PSO result in real values.

Each chromosome Ci is evaluated as follows:
– Create a new coverage matrix UpdatedCMi as a copy of CM .
– Update UpdatedCMi as follows: if Xi,d = 0 then UpdatedCMi(d,m) = 0 for

m, 0 ≤ m ≤ M .
– Based on the updated UpdatedCMi, evaluate Ci using the below-mentioned

objective functions.
In order to save more energy, fewer sensor nodes need to be active during

each round. The main approach of GA-CCM to achieve that is to minimize the



6 R. Elhabyan et al.

average number of redundant nodes per cell, avgRedNodes which is calculated
for chromosome Ci as follows:

avgRedNodesCi =

M∑
m=1

N−1∑
n=1

UpdatedCMi(n,m)

M
(3)

Furthermore, sensor nodes with higher level of energy are better candidates

for activation during each round. Let the number K =

N−1∑
n=1

Xi,d represents the

number of active nodes for chromosome Ci. The remaining energy ratio for sensor
node n with ID d, is E(nd) =

Remainingenergyofnd

Initialenergyofnd
. Then, the average remaining

energy per an active node in chromosome Ci is calculated as follows:

avgRemEnergyCi =

N−1∑
n=1

E(nd), ifXi,d = 1

K
(4)

It should be noted that both avgRedNodesCi
and avgRemainingEnergyCi

are not scaled and may lead to values that are not in the same range. This will
cause the final objective function to be biased towards one sub-objective. More-
over, it can be very difficult to precisely and accurately select the final objective
function weights, even for domain experts [6]. In order to avoid this drawback,
each sub-objective is scaled to result in the scaled values sAvgRedNodesCi

and
sAvgRemEnergyCi , respectivly. Therefore, the final objective function to be
minimized, assuming each sub-objective is equally important, is expressed as
follows:

FitnessCi = sAvgRedNodesCi + (1− sAvgRemEnergyCi) (5)

In the case that a CH is set to inactive in Ci or that a covered cell becomes
uncovered, the final objective function is assigned a high penalty value to narrow
the search to optimal valid solutions only.

5 Simulations and Results

The performance of EA-CCP is investigated against CPCP in terms of the num-
ber of active nodes, the minimum, maximum and average number of sensors
monitoring a cell, and the coverage ratio. We choose the CPCP for comparison
as it can provide full area coverage. Authors of CPCP claim that the minimum-
weight coverage cost provides the best results where the sensor network has
to provide complete (100%) coverage of the monitored area [11]. Moreover, the
performance of EA-CCP is investigated against CPCP, LEACH, PSO-C, GA-
C, and PSO-CH in terms of the average consumed energy per node and the
Packet Delivery Rate (PDR). Although LEACH, PSO-C, GA-C, and PSO-CH
do not use any coverage control, we choose them for comparison as they are
well-known clustering protocols and experimental results have shown that they
have high PDR and low energy consumption due to their adapted cluster-based
sleep scheduling mechanism [3].
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Simulations are carried on Castalia, which is based on the OMNeT++ plat-
form. The simulations are performed on a group of homogeneous sensor networks
consisted of 5 different network sizes ranging from 100 to 500 sensor nodes. Over-
all, the simulation results are averaged over five simulation runs for a total of
25 different playground topologies. Table 1 summarizes the configuration of the
network’s simulation environment.

Table 1. Summary of the WSNs simulation settings for EA-CCP

Parameter Value
BS location (0,0)
Data transmission rate 1 packet/s
Network Size (100 - 500) sensor nodes
Field size 100 m ×100 m
MAC protocol TMAC
Simulation time 2500 s
Round length 500 s
Slot length 1 s
Initial energy 18,720 J
Sensing Range 20 meters
Cell Width 5 meters

The CHs selection problem is solved using PSO while the OCP is solved using
GA. Table 2 summarizes the configuration of the different EAs parameters.

Table 2. The EAs parameters settings for EA-CCP

Parameter Value
PSO-CH
Problem dimension (Number of CHs) [5 - 25]
Population size 50
Number of iterations 500
Learning Factor c1 2
Learning Factor c2 2
Interia weight w 0.9
GA-CCM
Problem dimension (Network Size - 1) [99 - 455]
Population size 100
Number of iterations 25000
Mutation probability, pm 1 / Problem dimension
Crossover probability, pc 0.9

5.1 Coverage Performance

In this section, we compare between CPCP and EA-CCP in terms of their cov-
erage performance. We choose these two particular protocols since they provide
a coverage control mechanism and assume that they can provide full area cov-
erage. The results presented in this section represent the average of 5 different
runs for 5 different network sizes and for one round of operation.

The coverage ratio for both CPCP and EA-CCP is assessed and the results
are shown in Table 3. We define the coverage ratio as the ratio of the number
of covered cells to the total number of cells. Column 2 in Table 3 shows the
coverage ratio before applying any Coverage Control (CC), i.e. before running
any of the protocols. Table 3 shows that EA-CCP achieves higher coverage ratio



8 R. Elhabyan et al.

than CPCP. In most of the cases, EA-CCP achieve full area coverage. In the
case of 100 nodes, the network area is not fully covered even before applying any
CC, as shown in the second column. That is why EA-CCP did not provide full
coverage in that case. Although we are assuming uniform sensors deployment,
the cell width determines the granularity of the network area. Choosing smaller
cell width may have led to higher coverage ratio for both protocols and full
coverage in EA-CCP.

Table 3. Coverage Ratio

Network Size No CC CPCP EA-CCP
100 0.999 0.645 0.999
200 1 0.7365 1
300 1 0.803 1
400 1 0.8375 1
500 1 0.8495 1

To assess the redundancy degree, Table 4 shows the minimum (MIN), max-
imum (MAX) and average (AVG) number of sensors, including the CHs, moni-
toring a cell for both EA-CCP and CPCP. In Table 4, columns 2, 3 and 4 show
the same values before applying any Coverage Control (CC), i.e. before running
any of the protocols. In CPCP, the MIN column shows that, in all the networks,
there are cells that are not monitored by any sensor. Hence, CPCP fail to provide
full area coverage. Moreover, the MAX column shows that there is a high degree
of redundancy in monitoring a cell. This degree of redundancy increases as the
network density increases. Therefore, the average number of sensors monitoring
a cell increases too. On the other hand, EA-CCP shows more stable and consis-
tent performance, regardless of the network density. EA-CCP always succeeded
in providing full area coverage and all the cells has at least 1 sensor monitoring
it. The reason for the lower value in case of 100 nodes is justified in the results of
Table 3. Furthermore, EA-CCP has much lower redundancy degree. Regardless
of the network density, EA-CCP has on average around 1 node monitoring each
cell.

Table 4. Average number of sensors monitoring a cell

Network
Size No CC CPCP EA-CCP

MIN MAX AVG MIN MAX AVG MIN MAX AVG
100 1.2 15.8 7.406 0 5.4 1.5524 0.8 3.2 1.602
200 3.8 28 14.76 0 10.6 2.5642 1 3.4 1.6307
300 6.4 37.4 22.09 0 23.8 3.6861 1 3.6 1.6503
400 9.2 47 29.417 0 28 5.1626 1 3.4 1.6329
500 12.4 58 36.6315 0 34.6 6.7182 1 3.8 1.7172

Table 5 shows the average number of active nodes per round (Ns). This
number represents both the CHs and other Active Nodes (ANs) involved in the
communication. The main operation of CPCP depends mainly on the values of
the activation timers. Hence, it is more likely that more than one sensor with the
same timer value will announce themselves as CHs at the same time which will
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lead to a higher number of CHs. These CHs mark their sensing areas as covered
areas. In CPCP, the activation stage occurs after the CH selection which leads
to activating less number of sensor nodes.

Table 5. Average number of active nodes per round

Network
Size CPCP EA-CCP

Ns CHs ANs Ns CHs ANs
100 21.4 15.8 5.6 25.2 5 20.2
200 30 24.8 5.2 33 10 23
300 70.2 64.6 5.6 38.2 15 23.2
400 80.8 75.6 5.2 41.8 20 21.8
500 95 90.6 4.4 48.6 25 23.6

5.2 Clustering Performance

Fig.1 records the average consumed energy per node for the different protocols.
The results presented here represent the average of 5 different runs, for each
network size, with a confidence level of 0.99. It can be clearly shown that EA-
CCP protocol outperforms the other protocols in terms of energy efficiency.
This is due to minimizing the number of active nodes by minimizing the nodes
redundancy as illustrated in Tables 5 and 4, respectivly. Although CPCP also
minimizes the number of active nodes, a higher number of CHs are selected as
shown in Table 5. Higher levels of energy consumptions are recorded in CPCP
because the CHs stay active for the whole round. Moreover, the decision of
whether a sensor will stay active or not in CPCP is not taken at the beginning
of the round. This decision could be taken by the node anytime during the round,
depending on its activation time. This will lead to unnecessary consumed energy
by the redundant nodes who are waiting for their timer to expire to take the
decision to be inactive. In EA-CCP, a centralized approach is adopted so each
node knows its status at the start of each round. The clustering process in EA-
CCP employs the PSO-CH protocol which leads to less number of CHs (5% of
network size) and more scalable clusters [3].

The results obtained in Fig.1 are also confirmed by Fig. 2 which shows the
average consumed energy per node for a different number of rounds in case of a
300 sensors networks. Fig. 2 shows that EA-CCP consistently outperforms the
other protocols in terms of energy efficiency for different network operation time.

Fig. 3 shows the average PDR for the different protocols. The PDR is calcu-
lated as the ratio of the total packets received by all the cluster heads against
all the packets sent by all the active nodes. Fig. 3 clearly shows that the EA-
CCP protocol significantly outperforms the other protocols in terms of PDR.
Minimizing the number of redundant nodes enhances the network topology and
minimize the network collisions, which in turn enhances the PDR. Although the
CPCP also reduces the number of redundant nodes, there are no link quality
measures taken when the clusters are constructed. This is also confirmed by Fig.
4 which shows the average PDR for a different number of rounds, when net-
work size is 300. The results Fig. 4 represent the average of 5 different runs for
one round of operation, for each network size. Fig. 4 shows that the EA-CCP
protocol consistently outperforms the other protocols in terms of the PDR for
different network operation time.
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Fig. 1. Average consumed energy per node for different network sizes
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6 Conclusions

Both network clustering and coverage optimization can help to conserve energy.
In this paper, we propose GA-CCM as an add-on mechanism that can be adopted
by any centralized clustering protocol to solve the OCP. Simulation results show
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that integrating GA-CCM into PSO-CH results in better energy consumption
and PDR comparing to other popular clustering protocols. Moreover, the pro-
posed mechanism greatly enhances the coverage ratio, reduces redundancy de-
gree and the number of active nodes.
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