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Abstract. Scalable distributed join processing in a parallel environmen-
t requires a partitioning policy to transfer data. Online theta-joins over
data streams are more computationally expensive and impose higher
memory requirement in distributed data stream management systems
(DDSMS) than database management systems (DBMS). The complete
bipartite graph-based model can support distributed stream joins, and
has the characteristics of memory-efficiency, elasticity and scalability.
However, due to the instability of data stream rate and the imbalance
of attribute value distribution, the online theta-joins over skewed and
varied streams lead to the load imbalance of cluster. In this paper, we
present a framework D-JB (Dynamic Join Biclique) for handling skewed
and varied streams, enhancing the adaptability of the join model and
minimizing the system cost based on the varying workloads. Our pro-
posal includes a mixed key-based and tuple-based partitioning scheme
to handle skewed data in each side of the bipartite graph-based model,
a strategy for redistribution of query nodes in two sides of this model,
and a migration algorithm about state consistency to support full-history
joins. Experiments show that our method can effectively handle skewed
and varied data streams and improve the throughput of DDSMS.

Keywords: Distributed Data Stream Management System, Online Join,
State Migration, Bipartite Graph-based Model

1 Introduction

Nowadays, with the increasing number of data types and the emergence of
data intensive applications, the number and speed of data increase rapidly. It
makes that data stream real-time analysis and processing has become one of
the hottest research areas. So, distributed data stream management systems
(DDSMS) are widely used in real-time processing and query analysis of large-
scale data streams.

In applications such as analytic over microblogs, monitoring of high frequency
trading and real-time recommendation, it often involves joins on multiple data
streams to get the query result and to maintain large state for full-history query
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requests based on the full-history data [1, 2]. In these applications, data rate
tends to fluctuate and the distribution of attribute values is also imbalance. It
makes the join operation over skewed and varied streams prone to cluster load
imbalance. The phenomenon leads to the decrease of query efficiency and the
increase of computation cost in the cloud environment. Due to the imbalance of
data rate and distribution, it causes attribute value skew (AVS) [3]. Due to data
partition, it causes tuple placement skew (TPS) [3]. So, how to deal with the
efficient joins over skewed and varied streams and the load balance of clusters is
the focus of our attention.

In order to design an efficient distributed stream theta-join processing sys-
tem, there are several models designed for join operator over data streams. The
join-matrix model [4] and the join-biclique model [5] are two representative ap-
proaches to deal with the scalable join processing. For supporting arbitrary
join-predicates and coping with data skew, the join-matrix model uses a par-
titioning scheme to randomly split the incoming data stream into a non-overlap
substreams. As a representative of alternative model, the join-biclique model is
to organize the processing units as a complete bipartite graph (a.k.a biclique),
where each side corresponds to a relation. Two streams are divided into the dif-
ferent side. And, according to the key-based partitioning method (such as, hash
function), tuples are distributed to the different nodes for storing in the same
side. At the same time, tuples also are sent to the opposite side to do the join
operation using the same hashing strategy. After obtaining the results, these
tuples are discarded.

Join-matrix and join-biclique models can effectively deal with the online join
operation of distributed data streams, but are faced with the following problems
and challenges.

1. The join-matrix model needs high memory usage to replicate and store in
an entire row or column. Although join-biclique model has the strength of
memory-efficiency, it cannot dynamically adjust the distribution of process-
ing units based on skewed streams.

2. Due to the inconsistency of streams distribution, the balance of DDSMS is
lost. It leads to performance degradation of DDSMS.

3. It is necessary to have a good salability of DDSMS for join operation. When
the pressure of a node is too large/small, the cluster size can dynamically
scale out/down according to its application workloads.

So, in this paper, we propose the mixed workload partitioning strategy D-JB
for handling the skewed online join based on the join-biclique model, so as to
achieve load balancing and high throughput of DDSMS. The contributions of
our work are summarized as follows:

1. We propose a mixed key-based and tuple-based partitioning scheme to han-
dle skewness in each side of the join-biclique model, and a normalized opti-
mization objective by combined with the different cost types involved in the
dynamic migration strategy.
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2. We present a strategy for redistribution of processing units in two sides
of this model. The load balance of D-JB is implemented by repartitioning
query nodes logically. And, we prove the efficiency and feasibility by using
the different query tasks.

3. We use the operator states manager to migrate processing units between
different nodes to ensure the consistency and scalability of the full-history
join operation.

The rest of the paper is organized as follows. Section 2 surveys the related
work. Then, there are the preliminaries in section 3. And, in Section 4, we give
the architecture of D-JB and describe details of data migration. Section 5 gives
the results of our experiment evaluation. Finally, Section 6 concludes this paper.

2 Related Work

In recent years, there has been a lot of research work on the online join
operation for skew resilience.

Online joins often require un-blocking tuple processing for getting query re-
sults in real-time. The join-matrix and join-biclique models are the most pop-
ular research models in parallel and distributed environment. Intuitively, the
join-matrix model design a join between two data stream R and S as a ma-
trix, where each side corresponds to one relation. In data stream processing,
DYNAMIC [4] supports adaptive repartitioning according to the change of data
streams. To ensure the load balancing and skew resilience, Aleksandar el.al [6]
proposed a multi-stage load-balancing algorithm by using a novel category of
equi-weight histograms. However, [4, 6] assumes that the number of partitions
must be 2n. So, the matrix structure suffers from bad flexibility. For reducing
the operational cost, Junhua et.al [7] proposed the cost-effective stream join al-
gorithm by building irregular matrix scheme. However, The basic model is also
matrix-based, data redundancy is still more. JB [5] can save resource utilization
significantly. And in order to solve the problem of load imbalance by key-based
partitioning, it adopt a hybrid routing strategy, called ContRand [5], to make
use of both the key-based and random routing strategies. ContRand logically
divide processing units into disjoint subgroups in each side, and each subgroup
contains one or more units. The key-based (content-sensitive) routing strategy
is used between the subgroups, and the tuple-based (content-insensitive) routing
strategy is used in each subgroup. However, this strategy requires the user to
define parameters of subgroupings, and cannot be adjusted dynamically accord-
ing to the dataflow. Moreover, if the data stream is too skew, it will cause a key
to be overloaded in a processing unit and exceed the upper bound of imbalance
tolerance. So, we need to partition the tuples with the same key into several
processing units. In this case, the problem cannot be reduced to Bin-packing
problem [8] in paper [9], which is not considered that a processing unit exceeds
the threshold storing tuples with the same key. So, In this paper, we propose the
mixed workload partitioning strategy for handling the skewed and varied online
join based on the join-biclique model.
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3 Preliminaries

We gives the relevant preliminaries for the full-history online join operation
in this section.

3.1 Concept Description

In order to make clear the optimization target, the notations involved in our
proposed model are listed in Table 1.

Notations Description

Ktup the key of a tuple

pu the processing unit (called task instance in Storm [10])

m,n the number of pu in two sides of B

L(pu) the total workload in pu

θ(pu) load balance factor of pu

θmax the maximum bound of imbalance factor

Table 1: Table of Notations

Definition 1. At time t, the load balance factor of a pu is defined as:

θt(pu) =
∣∣Lt(pu)− L̄t

∣∣ /L̄t (1)

where L̄t represents the mean of total workloads in PU . L̄t is defined as:

L̄t =

NPU∑
pu=1

(Lt(pu))/NPU (2)

So, the pu is relatively balanced at time t, if θt(pu) 6 θmax.

Definition 2. There are three types of migration at time t, when ∃ pu (
pu ∈ PU) θt(pu) > θmax. (1) data immigration. Tuples with the same Ktup at
different pus merge to the starting pu. (2) data emigration. All tuples with the
same k are migrated to other pu. (3) data splitting. Some tuples with the same
k are migrated to other pu, the other tuples are not moved.

Definition 3. According to the distribution and skewness of data streams,
we need to design the migration strategy dynamically. It involves three types of
costs: (1) routing cost Crouting is the cost of maintaining the routing table for
mapping relationships between Ktup and pus. (2) duplication cost Cduplication

is the cost of replicating tuples with the same Ktup after data splitting. (3)
migration cost Cmigration is the cost of migrating tuples from a pu to the other.

From definition 2 and 3, it is known that data immigration involves Cmigration;
data emigration involves Crouting and Cmigration; data splitting involves Crouting,
Cduplication and Cmigration.
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3.2 Optimization Objective

Let F = (f1, f2, f3, ...) be the set of all migration functions at time t. The
migration cost by using each function fi can be defined as follows.

Ct(fi) = α∗Crouting(fi)+β∗Cduplication(fi)+γ∗Cmigration(fi) (α+β+γ = 1)
(3)

where, α, β and γ are the weight of three costs respectively. In order to determine
the specific weights, we use the consumed time to calculate. For detail, the hash
routing time Thash affects Crouting; one tuple transferring time Ttrans affects
Cduplication and Cmigration. So, the total time Ttotal = Thash + m*Ttrans +
n*Ttrans, where, m is the number of duplication tuples, n is the number of
migration tuples. Finally, α = Thash / Ttotal; β = m*Ttrans / Ttotal; γ = n*Ttrans
/ Ttotal.

The optimization objective is as below:

min
fi∈F

Ct(fi)

s.t. θt(pu) ≤ θmax,∀pu ∈ PU.
(4)

The target is to minimize the total costs, while meeting the constraint on
load balance factor. It involves the range of Ktup, the number of PU and the
maximum bound of imbalance factor θmax, which is a combinatorial NP-hard
problem. And, this problem is more complex than Bin-packing problem, due to
the data inside a pu may be split. Therefore, in the next section, we set up a
number of heuristics to optimize it.

4 D-JB Model Design

This section gives the architecture of D-JB and the algorithms of data mi-
gration.

4.1 D-JB Architecture

The architecture of D-JB is shown in Fig.1, we design the controller on Storm
by using the join-biclique model. The basic process of the workflow is as follows.

(1) Firstly, data stream R (resp. S) are partitioned by the key-based hash
function, stored to n (resp. m) pus, and sent to the opposite side for online join
operation.

(2) At each time interval (the setting is 5 seconds in our experiment), we pe-
riodically monitor the statistical information of each pu load on both sides of B,
and collect the information to controller. And, we develop migration strategies
based on the heuristics (see in section 5.1).

(3) Then, new data streams are temporarily stored in Kafka [11] and post-
poned online joins before data migration. Meanwhile, we migrate data streams
and the state based on migration strategies, and update the routing table syn-
chronously.
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(4) Finally, we continue to send data streams and do the online join operation.

R1

Router

...

...

Hash: F(x)

Route Table

Controller

Data Flow

Control Flow R2 Rn

S1 S2 Sm

Stream S

Stream R

Fig. 1: architecture of D-JB

4.2 Algorithms of Data Migration

The problem of minimizing migration cost is the NP-hard problem. So, we
need to set some heuristics to optimize the objective function. There are two
migration strategies: the data migration strategy in one side of B, called internal-
side migration (ISM); and the logical migration strategy in two sides of B, called
side-to-side migration (S2SM).

Heuristics At time t, it is assumed that the load of pu exceeds the upper limit
of the non-equilibrium factor, which is Lt(pu) > (1+θmax)*L̄t, or the load of
pu is lower than the lower limit of the non-equilibrium factor, which is Lt(pu)
< (1-θmax)*L̄t. In order to satisfy the balance of each pu and minimize data
migration, heuristics are as follows.

H1. For data emigration, we can directly migrate keys, if the threshold re-
quirements can be met after migrating these keys, and record them in the routing
table.

H2. For data emigration, if the threshold requirements cannot be met after
migrating some keys, we need to partition the keys with a larger number of
tuples. Then, we migrate some tuples, and record them in the routing table.

H3. For data immigration, if there are records in the routing table, we need to
merge data into the key-based hashing pu, and then clear the records in routing
table.

According to the above heuristics, we propose the process of moving out
tuples, which called MoveOut(PUout, PUin, RT ). Firstly, we judge the range of
key values of moving out tuples and determine the processing units waiting to
move in tuples. Then, for each emigration key, we move out tuples by H1 and
H2, and update the routing table.

Next, we propose the process of moving in tuples, which calledMoveIn(PUin,
PUout, RT ). Firstly, we judge the range of key values of moving in tuples and
determine pus waiting to move out tuples. Then, for each immigration key, we
move in tuples by H3, and update the routing table.
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ISM At time t, in order to satisfy the balance of one side of B and minimize
the data migration, the ISM algorithm is described in algorithm 1. Firstly, we
compute the each Lt(pu) and L̄t at time t (line 1-4). Then, for the pu that needs
to emigrate data, we call the MoveOut algorithm (6-8 lines). Finally, for the pu
that needs to immigrate data, we call the MoveIn algorithm (9-11 lines).
Algorithm 1 ISM Algorithm.

Require:
Processing units PU in one side of B;
Routing table RT ;
The threshold of imbalance factor θmax;

Ensure:
The Migration Plan MP ;

1: for (i = 1; i < Number of PU ; i+ +) do
2: Computing Lt(pui);
3: end for
4: Computing L̄t;
5: for (i = 1; i < Number of PU ; i+ +) do
6: if (Lt(pui) > (1+θmax)*L̄t ) then
7: MoveOut(PU, PU,RT );
8: end if
9: if (Ltpui

< (1-θmax)*L̄t ) then
10: MoveIn(PU, PU,RT );
11: end if
12: end for

S2SM Because the stream rate is often dynamic, which results in a large gap
between two sides and affects the throughput of DDSMS. In this section, we
design the S2SM algorithm for dynamically changing data distribution on both
sides. The overall migration is shown in algorithm 2.

Firstly, at time t, we compute the workload of each pu, and the average
workload in each side and the whole cluster (line 1-4). Then, we choose the side
of data emigration and the side of data immigration (line 5). Finally, for the
side of data emigration, we judge pus that need to move out tuples and call the
MoveOut algorithm (line 6-10). For the side of data immigration, we judge pus
that need to move in tuples and call the MoveIn algorithm (line 11-15).

State Migration BiStream [5] adopts a requesting phase and a scaling phase
to adaptively adjust the resource management. However, it can only be adjusted
in the window-based join model. In this section, we introduce the Tachyon [12]
as a in-memory file server to store the state information, and use the operator
states manager (OSM) [13] to achieve live migration from different nodes. This
help us to complete the adaptive resource management in the full-history join
model.

5 Evaluation

5.1 Experimental Setup

Environment. The testbed is established on a cluster of fourteen nodes
connected by a 1Gbit Ethernet switch. Five nodes are used to transmit data
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Algorithm 2 S2SM Algorithm.

Require:
Processing units PUm and PUn in two sides of B;
Routing table RT ;
The threshold of imbalance factor θmax;

Ensure:
The Migration Plan MP ;

1: for (i = 1; i < (Number of PUm +Number of PUn); i+ +) do
2: Computing Lt(pui);
3: end for
4: Computing ¯Ltm , L̄tn and L̄t;
5: Choosing the PUout and PUin based on θmax

6: for (j = 1; j < Number of PUout; j + +) do
7: if (Lt(puj) > (1+θmax)*L̄t ) then
8: MoveOut(PUout, PUin, RT );
9: end if

10: end for
11: for (k = 1; k < Number of PUin; k + +) do
12: if (Lt(puj) < (1-θmax)*L̄t ) then
13: MoveIn(PUin, PUout, RT );
14: end if
15: end for

source through Kafka. One node serves as the nimbus of Storm, and the remain-
ing eight nodes act as supervisor nodes. Each data source node and the nimbus
node have a Intel E5-2620 2.00GHz four-core CPU and 4GB of DDR3 RAM.
Each supervisor node has two Intel E5-2620 2.00GHz four-core CPU and 64G
of DDR3 RAM. We implement comprehensive evaluations of our prototype on
Storm-0.9.5 and Ubuntu-14.04.3.

Data Sets. We use TPC-H benchmark [14] to test the proposed algorithms,
and generate the TPC-H data sets using the dbgen tool shipped with TPC-H
benchmark. All the input data sets are pre-generated into Kafka before feeding to
the stream system. We adjust the data sets with different degrees of skew on the
join attributes under Zipf distribution by choosing a value for skew parameter
z. By default, we set z=1, and generate 10GB data.

Queries. We employ three join queries, namely two equi-joins from the TPC-
H benchmark (Q3 and Q5) and one synthetic band-join (Band) is used in [4,5].
The Band are expressed as follows:

SELECT *, FORM LINEITEM L1, LINEITEM L2

WHERE ABS(L1.orderkey-L2.orderkey) <= 1

AND (L1.shipmode=’TRUCK’ AND L2.shipinstruct=’NONE’)

AND L1.Quantity > 48

Models. We use three algorithms for evaluating the query performance,
namely D-JB, JB [5] and JB6 [5]. D-JB is proposed in this paper. JB divides
the pus on average, and each half of the pus corresponds to a data stream. JB6
means there are 6 subgroups in each side for random routing.
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5.2 Throughput and Latency

We compare the throughput and latency among the different models by using
queries of Q3, Q5 and Band. As shown in Fig.2(a), the throughput of D-JB is
largest than JB and JB6. However, the throughput of JB is lowest due to it
needs to do the whole network broadcast operation, the communication is too
large. Fig.2(b) shows that the latency of D-JB is lowest, and the latency of JB
is highest.

(a) Throughput (b) Latency

Fig. 2: Throughput and Latency

5.3 Scalability

When the cluster scales out, we further study the scalability of D-JB, JB and
JB6. Since JB and JB6 do not support scaling out dynamically for full-history
online join, we use Taychon to implement these models, which can scale out
processing nodes without restarting topologies in Storm. As shown in Fig.3(a),
Fig.3(b) and Fig.3(c), the run time of D-JB is the shortest in these models, and
the scalability of D-JB is the strongest. Moreover, since Q5 involves the largest
number of data streams and the most complex join operation, the run time of
Q5 is more than Q3 and Band. And, because of Band involves only one data
stream, it can get the minimum run time.

6 Conclusion

In this paper, we propose online join method for skewed and varied data
streams. Based on the join-biclique model, we give a mixed key-based and tuple-
based partitioning scheme to handle data skew in one side of the join-biclique
model, and present a strategy for redistribution of processing units in two sides of
this model. Finally, we design a migration algorithm about state consistency to
support full-history joins and adaptive resource management. Our experimental
results demonstrate that our proposed framework can be better to deal with data
skew, significantly improve the throughput and reduce the latency of DDSMS.
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Fig. 3: Runtime
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