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Abstract: Leaf nitrogen concentration (LNC) of winter wheat can reflect its 

nitrogen (N) status. Rapid, non-destructive and accurate monitoring of LNC of 

winter wheat has important practical applications in monitoring N nutrition and 

fertilizing management. The experimental site of winter wheat was located at 

Xiaotangshan National Demonstration Base of Precision Agricultural Research 

located in Changping District, Beijing, China. High spatial resolution digital 

images of the winter wheat were acquired using a low-cost unmanned aerial 

vehicle (UAV) with digital camera system at three key growth stages of booting, 

flowering and filling during April to June in 2015. Firstly, the acquired UAV 

digital images were mosaicked to generate a Digital Orthophoto Map (DOM) of 

the entire experimental site and 15 digital image variables were constructed. 

Then, based on the ground measured data onto LNC and digital image variables 

derived from the DOM for 48 sampling plots of winter wheat, linear and 

stepwise regression models were constructed for estimating LNC. Finally, the 

optimum model for estimating LNC was screened out by comprehensively 

considering the coefficient of determination (R2), the root mean square error 

(RMSE), the normalized root mean square error (nRMSE) and the simplicity of 

model calibrating and validating. The experimental results showed that the 

linear regression model of r/b that was one of the digital image variables for 

estimating LNC had the best accuracy with the model’s calibration and 

validation of R2, RMSE and nRMSE were 0.76, 0.40, 11.97% and 0.69, 0.43, 

13.02%, respectively. The results suggest that it is feasible to estimate LNC of 

winter wheat based on the DOM acquired by UAV remote sensing platform 

carrying a low-cost, high-resolution digital camera, which can rapidly and 

non-destructively obtains the LNC of winter wheat experiment site and provide 

a quick and low-cost method for monitoring N nutrition and fertilizing 

management. 
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1 Introduction 

 
Nitrogen (N) is one of the essential nutrient elements for crop growth and is closely 

related to the growth status, photosynthesis and yield of crops[1-2]. It is difficult to 

timely and appropriately computes the amount of fertilizer that crops need and to 

avoid excess fertilization according to the demand for crop growth. In addition, it has 

become an important issue to minimize the pollution of fertilizer to the environment 

while maintaining the high crop yield at the same time to achieve sustainable 

development 3. Leaf nitrogen concentration (LNC) is an important indicator of the 

crop N nutrition. It is an important guiding significance of crop N nutrition monitoring 

and fertilizer management to rapidly, non-destructively, accurately and low-costly 

estimate crop LNC using remote sensing technology [4-6].  

Agriculture is one of the most important and widely used fields of remote sensing 

technology. Remote sensing technology has the characteristics of rapid, 

non-destructive and high-throughput acquisition of ground feature information and is 

developing towards the direction of quantification and high precision 7. Satellite, 

aviation, and proximal remote sensing are limited in the application of precision 

agriculture because of their limitations[4, 8-9]. Unmanned aerial vehicle (UAV) 

remote sensing has the advantages of easy platform construction, low operation and 
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maintenance cost, flexible mobility, controllable flight height and short operation 

cycle[5,10-12].  

Multispectral, hyperspectral or light detection and ranging (LIDAR) sensors are 

relatively heavy, which greatly reduces the flight time of UAV when mounted on, and 

these sensors are more expensive than digital cameras, and the subsequent processing 

of data is complex, which seriously hinders their extensive applications in precision 

agriculture [10, 13-16]. With the rapid development of UAV and sensor technology, 

UAV platforms and digital cameras are developed toward the mass consumption 

levels. They have the characteristics of low-price, miniaturization, light, and 

intelligence, and the spatial resolution of digital cameras is becoming higher and 

higher. The above reasons make it possible for a UAV to mounted with digital 

cameras as a low-cost remote sensing data acquisition platform, which has become a 

hot spot of practical research in precision agriculture[5, 10, 17-20].  

At present, UAV remote sensing platform is equipped with low-cost and 

high-resolution digital cameras, which is used to estimate crop phenotypic parameters. 

The parameters are mainly about the morphological structure parameters. However, 

the crop physiological and biochemical parameters are few. In this study, 

high-resolution digital camera images were acquired and used to generate a DOM of 

the research area and corresponding LNC values of 48 sampling plots were measured 

synchronously.  Linear and stepwise regression analysis models are constructed to 

estimate LNC of winter wheat using digital image variables from the DOM and 

measured LNC. In the end, the optimum model for estimating LNC was screened out 

by comprehensively considering the coefficient of determination (R2), root mean 

square error (RMSE), normalized root mean square error (nRMSE) and the simplicity 

of model calibrating and validating. This study proves that digital camera mounted on 

UAV remote sensing system can be applied to winter wheat to rapidly, 

non-destructively monitor and evaluate N nutrition and yield potential, which 

provides a rapid, low-cost and high efficient technical mean for N management and 

growth monitoring of winter wheat. 

 

2 Materials and methods 

 
2.1 Experiment design 

The experiment was carried out from September 2014 to June 2015 at Xiaotangshan 

National Demonstration Base of Precision Agricultural Research (40°10′N, 116°

26′E) in Changping District, Beijing, China. It has a flat terrain with an altitude of 

30 m above sea level and features a typical semi-humid continental monsoon climate. 

The soil type is fluvio-aquatic soil and the previous crop was maize. The winter wheat 

varieties were “zhongmai175 (ZM175)” and “jing 9843 (J9843)”.  

The size of winter wheat field was 85 m32 m. There were 48 sampling plots, 16 

treatments, three replicates and orthogonal test. The area of each plot was 48 m2 (6 

m8 m), and the planting spacing was 15 cm. There were four different N level 

treatments, namely, 0kg urea/mu (N1), 13kg urea/mu (N2), 26kg urea/mu (N3) and 

39kg urea/mu (N4). Each of the 16 plots was treated with N at four different N levels 

(Fig.1).  



 

Fig. 1 Experiment design of variable rate fertilization of winter wheat 

Note: N1, N2, N3, and N4 correspond to 0kg urea/mu, 13kg urea/mu, 26kg urea/mu and 39kg 

urea/mu, respectively 

 

2.2 Acquisition and preprocessing of UAV digital images and LNC 

The winter wheat data of LNC and UAV high-resolution digital images were obtained 

at the booting stage (April 26, 2015), flowering stage (May 13, 2015) and filling stage 

(May 22, 2015). A fixed quadrat (2 0.15 m1 m) with group representation was 

selected as the sampling area for LNC measurements of every plot. In the fixed 

quadrat, the 20 winter wheat plants of representative were selected, and the leaves 

were placed in paper bags after organ separation. The picked leaves were then put into 

an oven with 105℃ for a half-hour to inactivate enzymes in plants rapidly. Next, the 

oven will be set at 80℃ for more than 48 hours until the weight remained unchanged. 

LNC (LNC, %) was measured on crushed leaves using Kjeldahl apparatus (Buchi 

B-339, Sweden, FOSS). A total of 144 winter wheat samples were obtained at three 

key growth stages (The maximum value of LNC was 4.45%, the minimum value of 

LNC was 1.16%, the average value of LNC was 3.34%, the standard deviation of 

LNC was 0.80 and the coefficient of variation of LNC was 0.24).  

The UAV remote sensing data was obtained by data acquisition platform of an eight 

rotors electric UAV (single arm length:386mm, airframe net quality: 4.2kg, mass load: 

6kg, endurance time: 15~20min) equipped with a high-resolution digital camera and 

position and orientation (POS) which aimed at acquiring the position and orientation 

information of digital camera. The high-resolution digital camera model was SONY 

Cyber-shot DSC-Q100 with the weight and size were 179 g and 62.5 mm62.5 

mm55.5 mm; it had a 20 million pixel CMOS sensor and had a fixed focal length at 

10mm (fixed focus shooting). The high-resolution true color digital images of a spatial 

resolution of 0.013 m were obtained using the UAV system, which flew at the height 

of 50 m during 12:00-13:00 in synchronously with the ground data acquisition when 

the weather was clear and the solar radiation intensity was stable. The three UAV 

remote sensing experiments used the same design of flying routes. 

The mosaic of UAV high-resolution digital images was performed with the aid of 

Agisoft PhotoScan software. The digital images were matched with the corresponding 

POS data and after photos alignment and dense cloud points building in PhotoScan. 

The optimized camera location parameters were estimated and sparse and dense cloud 

points of the experimental area were generated. A 3D polygon mesh model of 

experimental area was reconstructed based on the generated dense cloud points, which 

represented the surface geometry of winter wheat canopies. Finally, the canopy 

orthoimage of the winter wheat experimental area was generated and exported as 

TIFF format. 

 

2.3 Digital image variable selection 

The average digital number (DN) values of canopies red (R), green (G) and blue (B) 

channels of each measured plot were extracted from canopy orthoimage of the winter 

wheat experimental area. The normalized red (r), green (g) and blue (b) digital image 



variables were calculated based on the DN values from the canopy orthoimage. The 

normalized formulas were as follows[21-23]: 
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Where R, G, and B were the DN values extracted from canopy orthoimage, 

respectively. According to the existing research results and the relationship between 

LNC and visible vegetation index, 12 vegetation indices within the range of visible 

light spectrum were selected. In this study, 15 digital image variables were selected to 

estimate LNC of winter wheat (Table 1). 

 
Table 1 Digital image variables associated with LNC 

 

Image variable Formula Reference Variable encoding 

r r=r  VI1 

g g=g  VI2 

b b=b  VI3 

MGRVI MGRVI=(g2-r2)/ 

(g2+r2) 

19 VI4 

RGBVI RGBVI=(g2-b*r)/

(g2+b*r) 

19 VI5 

GRVI GRVI=(g-r)/(g+r) 24 VI6 

GLA GLA=(2*g-r-b)/(

2*g+r+b) 

25 VI7 

ExR ExR=1.4*r-g 26 VI8 

ExG ExG=2*g-r-b 27 VI9 

ExGR ExGR=ExG-1.4*

r-g 

26 VI10 

CIVE CIVE=0.441*r-0.

881*g+0.385*b+

18.78745 

28 VI11 

VARI VARI=(g-r)/(g+r-

b) 

29 VI12 

g/r g/r=g/r  VI13 

g/b g/b=g/b  VI14 

r/b r/b=r/b  VI15 

Note:” ” indicates the experience of visible vegetation parameters and r, g, and b represent 

normalized DN values of R, G and B channels from orthoimage. 
 

2.4 Methods and statistical analysis 

Firstly, the DN values of R, G and B channels were extracted based on the 

high-resolution digital orthoimage of winter wheat and the digital image variables 

were calculated. 70% of the total sample data were randomly selected as the modeling 

data set and the correlation between digital image variables and LNC was analyzed. 

Secondly, based on the result of above correlation analysis, the LNC estimation 

models were constructed by methods of the linear and stepwise regression analysis. 

The predictive ability of the LNC estimation models was evaluated by using 

remaining 30% sample data (as the validation dataset) that were not involved in model 

calibrating. 

Linear regression analysis was based on the correlation analysis between digital image 

variables and LNC. The estimation model of LNC was constructed according to the 

absolute value of correlation coefficients from large to a small order for LNC. In 

stepwise regression analysis, the estimation model added or removed a variable at a 

time when the model was built. 

At the same time, variables were reevaluated, including the degree of significance of 

the regression coefficients and whether to delete variables based on its importance. 

Predictor variables might be added or deleted several times until the best model was 

obtained. The Akaike information criterion (AIC) took into account the statistical 

fitting of the model and the number of variables fitted. A model with smaller AIC 

values needs to be selected firstly, which shows that the model obtains sufficient fit 

with fewer variables. 



The coefficient of determination (R2), the root mean square error (RMSE) and the 

normalized root mean square error (nRMSE) were chosen as the indices to evaluate 

the accuracy of estimation and verification model. The larger R2 of calibration and 

verification model and the smaller the corresponding RMSE and nRMSE, the better of 

the predictive ability of models. The computational formulas are as follows: 

( ) ( )

( ) ( ) 



= =

=

−−

−−

=
n

i

n

i

ii

n

i

ii

YYXn

YYXX

R

1 1

22

1

22

2

X

             （4） 

( )

n

XY

RMSE

n

i

ii
=

−

= 1

2

                    （5） 

X
RMSE

RMSE
n =                              （6） 

In the formula, iX , X , iY  and Y  represent the measured values, the mean value of 

measured value, the estimated value and the mean value of estimated value; n 

represents the sample size of the model. 

 

3 Results and analysis 

 
3.1 Correlation analysis between LNC of winter wheat and digital image variables 

 

70% of the sample data, which contains a total of 101 items, were randomly selected 

as the modeling data set. The digital image variables were constructed based on the 

modeling data set and the correlation between digital image variables and LNC were 

calculated. The results of the correlation analysis were shown in Fig.2. The 

significance test of variables was carried out by referring to the table of critical values 

of correlation coefficients. When the degree of freedom of variable was 99, the 

absolute value of the correlation coefficient was great than 0.26, reaching 0.01 of the 

significant level. The degree of freedom of the correlation analysis was 99 in this 

study and the significance of the variable reached 0.01 significant level when the 

absolute value of the correlation coefficient of the variable was greater than 0.26. The 

absolute value of the correlation coefficient between digital image variable, r/b, b, r, 

ExR, VARI, GRVI and g/r and MGRVI, ExGR, g/b, CIVE, g and GLA and ExG, 

RGBVI and LNC were 0.87, 0.84, 0.82, 0.75, 0.74, 0.73, 0.69, 0.61, 0.45, 0.41, 0.31, 

greater than 0.26 in Figure 2. The results of correlation analysis showed that the 

correlation between the selected digital image variables and LNC was 0.01 

significant. 



 

Fig.2 Result of Pearson correlation analysis between digital image variables and LNC 

 

3.2 Establishment of linear regression analysis model 

Based on the results of correlation analysis between digital image variables and LNC, 

the variables were sorted by correlativity. Then, a linear regression model of each 

digital image variable for estimating LNC was constructed. The results of linear 

regression analysis were shown in Table 2. The AIC value, R2, RMSE, and nRMSE of 

the linear regression model were considered comprehensively. The optimal linear 

estimation model of LNC was chosen, whose variable was r/b. The AIC value, R2, 

RMSE and nRMSE of the optimal model were 108.66, 0.76, 0.40, 11.97%, 

respectively. 

 
Table 2 Result of linear regression analysis of digital image variables and LNC 

 

Digital 

image 

variable 

Regression equation AIC value R2 RMSE nRMSE/% 

r/b y=-5.06*x+9.67 108.86 0.76 0.40 11.97 

b y=46.58*x-9.43 126.66 0.71 0.44 13.07 

r y=-31.95*x+14.24 140.14 0.67 0.47 13.97 

ExR y=-15.81*x+4.82 170.64 0.55 0.55 16.25 

VARI y=8.58*x+2.49 171.50 0.55 0.55 16.32 

GRVI y=14.01*x+2.50 176.39 0.53 0.56 16.72 

g/r y=6.34*x-3.83 176.88 0.53 0.56 16.76 

MGRVI y=7.08*x+2.50 176.36 0.53 0.56 16.72 

ExGR y=11.50*x+11.50 188.35 0.47 0.60 17.74 

g/b y=-6.30*x+12.22 205.56 0.37 0.65 19.32 

CIVE y=-23.69*x+446.51 229.98 0.20 0.73 21.80 

g y=29.02*x-7.80 234.12 0.17 0.75 22.25 

GLA y=13.89*x+1.82 233.89 0.17 0.75 22.22 

ExG y=9.67*x+1.87 234.12 0.17 0.75 22.25 

RGBVI y=5.91*x+2.03 241.96 0.10 0.78 23.13 

 

3.3 Establishment of stepwise regression analysis model 

The 15 digital image variables selected were analyzed by stepwise regression and the 

estimation models of LNC of winter wheat were constructed. The AIC value, R2, 

RMSE, and nRMSE of the stepwise regression model were calculated and the degree 

of significance of the coefficients of the regression model was judged. The results of 

stepwise regression analysis were shown in table 3. Evaluation indices of the stepwise 

regression analysis model were comprehensively considered. The optimal stepwise 



regression model for LNC of winter wheat was selected, consisting of 3 variables, r, 

g/b and r/b. The regression equation of the optimal stepwise regression model was 

LNC=142.56*r+12.18*g/b-29.98*r/b-24.91, and the model’s R2, RMSE and nRMSE 

were 0.79, 0.8, 11.34%, respectively. 

 
Table 3 Result of stepwise regression analysis of digital image variables and LNC 

 

Number of 

independen

t variables 

AIC 

value 

Significance of regression 

coefficient 

R2 RMSE nRMSE/

% 

15 103.36 Neither of the 16 was 

significant 

0.81 0.36 10.65 

6 96.65 3 were 0.05 significant, 4 were 

not significant 

0.81 0.36 10.72 

5 97.47 5 were 0.05 significant, 1 was 

not significant 

0.80 0.37 10.87 

4 100.16 1 was 0.001 significant, 2 were 

0.05 significant, 2 were not 

significant 

0.79 0.37 11.13 

3 100.15 2 were 0.001 significant, 1 was 

0.01 significant, 1 was 0.05 

significant 

0.79 0.38 11.24 

2 108.11 2 were 0.001 significant, 1 was 

not significant 

0.77 0.40 11.81 

Note: degree of significance,”***”:0.001, “**”:0.01, “*”:0.05.   
 

3.4 Optimal LNC estimation model selection 

The predictive ability of the linear and stepwise regression analysis model was 

evaluated using 101 sample data involved in modeling and 43 sample data not 

involved in modeling. The optimal estimation model was screened taking R2, RMSE 

and nRMSE as evaluation indices and the results were shown in Table 4 and Figure 3. 

 
Table 4 Comparison of LNC of winter wheat estimation models 

 

Regression 

model 

R2 RMSE nRMSE/% 

Modeling indicators (101 samples) 

Linear 0.76 0.40 11.97 

Stepwise 0.79 0.38 11.24 

 Validating indicators (43 samples) 

Linear 0.69 0.43 13.02 

Stepwise 0.39 0.43 13.16 

 

The evaluation indices of model calibration and verification of LNC of winter wheat 

and the degree of simplicity of model application were considered comprehensively. 

The R2, RMSE, and nRMSE of linear regression model were compared with the 

stepwise regression model. The R2 of linear regression was 0.76, smaller than 0.03 

from the stepwise regression model. The RMSE of linear regression model was 0.40, 

0.02 larger than that of the stepwise regression model. The nRMSE of linear 

regression was 11.97%, 0.73% larger than that of the stepwise regression model. 

Therefore, the calibrating accuracies of linear and stepwise regression were 

approximate. However, model validation capabilities were evaluated using samples 

not involved in modeling. The R2, RMSE, and nRMSE of linear regression model 

validation were 0.69, 0.43 and 13.02%, respectively. Compared with the stepwise 

regression model, R2 and RMSE were equal and nRMSE was 0.14% smaller. The 

results showed that the linear regression model used only one variable and the 

stepwise regression model had three variables. The linear regression modeling 

variables were less than two and its predictive ability was a little better compared with 

the stepwise regression model. Comprehensively considering the accuracy and 

simplicity of the model, the linear regression model LNC=-5.06*r/b+9.67, which 

constructed by the digital image variable of r/b, was used to estimate LNC of winter 

wheat in this study. 



 

     (a) Linear regression model             (b) Stepwise regression model 

Fig. 3 Relationship of LNC of winter wheat between measured and model estimated values 

The spatial distribution of LNC of the winter wheat experimental area was estimated 

based on the optimal regression equation. The results of the LNC spatial distribution 

map were shown in Figure 4. The LNC in booting stage, flowering stage, and filling 

stage of winter wheat was significantly affected by N treatment. With the increase of 

N application rate, the corresponding LNC of winter wheat increased in turn. 

However, with the growth period advancing, LNC of winter wheat showed a 

downward trend and it was consistent with the physiological process of winter wheat 

N from the leaves to the grain. At booting stage of LNC, on the whole, LNC treated 

with N1 was between 2-3, LNC treated with N2 was between 3.5-4, LNC treated with 

N3 and N4 were more than 4 and LNC treated with N4 was much higher than that of 

N3. LNC in the flowering stage was lower than booting stage on the whole. However, 

LNC treated with N1 and N2 increased and still lower than that of N3 and N4. At the 

filling stage, LNC decreased as a whole, mainly due to the rapid transfer of N from 

leaves to grain.  

 

 

(a) Booting stage 

 



 

(b) Flowering stage 

 

 

(c) Filling stage 

Fig. 4 Spatial distribution of LNC estimation of winter wheat 

 

 

4 Discussion 
 

At present, rapid prediction of morphological structure and physiological and 

biochemical parameters of crops based on UAV remote sensing technology has 

become a hot spot of remote sensing research in precision agriculture. Yang 10 

summed up the status of precision agricultural applications using UAV as the remote 

sensing platform, equipped with a variety of light remote sensing sensors. Jin 5 used 

UAV to carry low-cost and high-resolution digital camera flying at the height of 3 to 7 

m and at the speed of 1m/s and obtained the high-resolution digital images of the 

experimental area. Then, the planting density of winter wheat was estimated with high 

precision. The above cases show that remote sensing platforms couple high-resolution 

digital cameras with UAVs have become one of the focuses of research because of 

their traits of low-cost, simple operation, convenient to use and high spatial resolution. 

However, relatively few studies on LNC of winter wheat are carried out based on 

UAV remote sensing platforms equipped with low-cost and high-resolution digital 

camera. In this study, the high-resolution digital orthoimages of UAV and measured 

LNC values were acquired at booting, flowering and filling stages of winter wheat. 

The linear regression model of r/b was used to establish the estimation model of LNC 

based on the random selection of 101 sample data. By using the remaining 43 sample 



data which were not involved in modeling, the estimation model was validated. The 

analysis showed that the linear regression model of r/b had higher accuracy when 

estimating LNC and the stability of the model was better, which is consistent with the 

results of [17-19, 23], using the digital images of UAV to estimate yield, LNC and 

biomass of maize, biomass of barley, leaf area index and yield of winter wheat. In the 

field of crop LNC estimation studies, the result of this study and the reference17 using 

the visible vegetation indices based on orthoimage of UAV to estimate LNC of maize 

had the similar conclusion. 

In this study, the LNC of winter wheat was estimated based on UAV high-resolution 

digital orthoimage. The linear regression estimation model of LNC constructed by 

digital image variable r/b, whether it can be well applied to LNC of winter wheat 

monitoring in other areas, needs further verification. As well as, whether similar 

problems such as the saturation effect of vegetation index will interfere with the 

predictive power of the LNC estimation model, which will serve as a follow-up 

research focus. 

 

 

5 Conclusion 
 

The high-resolution digital images were acquired for three winter wheat growth stages 

(booting, flowering, filling) using a UAV remote sensing platform with low-cost and 

high-resolution digital camera. Digital image variables were extracted based on the 

digital orthoimages. The correlation analyses of digital image variables and LNC were 

carried out and linear and stepwise regression models were constructed. The R2, 

RMSE, and nRMSE of model calibration and validation and the simplicity of model 

were evaluated comprehensively. Finally, the linear regression model constructed by 

r/b was used to estimate the LNC of winter wheat. Conclusions were drawn as 

follows: 

 (1) The selected 15 digital image variables were significantly related to LNC at the 

0.01 significance level. Among them, r/b got the strongest correlation with LNC 

(-0.87) and RGBVI got the weakest correlation with LNC (0.31). 

 (2) The LNC estimation models were established by selecting 70% of sample data at 

random (a total of 101 samples). The remaining 30% sample data (a total of 43 

samples) which were not involved in calibrating, were used to validate the estimation 

model. Among them, the r/b linear regression estimation model was the best. The 

calibration and validation accuracy of this model R2=0.76, RMSE=0.40, 

nRMSE=11.97% and R2=0.69, RMSE=0.43, nRMSE=13.02%. 

 (3) UAV remote sensing platform equipped with low-cost and high-resolution 

digital camera can quickly, non-destructively and accurately estimate LNC of winter 

wheat from orthoimage, which provides a rapid and low-cost technique for N 

monitoring and N management in winter wheat. 
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