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Chapter 6

REVERSING A LATTICE ECP3 FPGA
FOR BITSTREAM PROTECTION

Daniel Celebucki, Scott Graham and Sanjeev Gunawardena

Abstract Field programmable gate arrays are used in nearly every industry, in-
cluding consumer electronics, automotive, military and aerospace, and
the critical infrastructure. The reprogrammability of field programmable
gate arrays, their computational power and relatively low price make
them a good fit for low-volume applications that cannot justify the non-
recurring engineering costs of application-specific integrated circuits.
However, field programmable gate arrays have security issues that stem
from the fact that their configuration files are not protected in a satis-
factory manner. Although major vendors offer some sort of encryption,
researchers have demonstrated that the encryption can be overcome.
The security problems are a concern because field programmable gate
arrays are widely used in industrial control systems across the critical
infrastructure. This chapter explores the reverse engineering process
of a Lattice Semiconductor ECP3 field programmable gate array con-
figuration file in order to assist infrastructure owners and operators in
recognizing and mitigating potential threats.

Keywords: Field programmable gate arrays, threats, reverse engineering

1. Introduction
As field programmable gate arrays (FPGAs) become more powerful and less

expensive, they are increasingly being adopted in industry. Key applications
areas of FPGAs are industrial control systems used for managing critical infras-
tructure assets and hardware-in-the-loop simulations used for industrial process
system design and training [15]. Low latency, high computational power and an
abundance of embedded resources enable FPGAs to implement complex con-
trol algorithms with an excellent performance-to-cost ratio. However, FPGAs
have security issues that stem from the fact that their configuration files are
not protected in a satisfactory manner. A number of attacks targeting FPGAs
and FPGA-based systems have been devised. These include hardware Trojans,
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crippling attacks and fault injection attacks, as well as attacks that reveal sen-
sitive information for subsequent exploitation, such as side-channels, reverse
engineering, readback and counterfeiting [2, 4, 9, 16].

This chapter explores the reverse engineering process of a Lattice Semicon-
ductor ECP3 FPGA. The focus is on two key FPGA building blocks – the
input/output block and look-up tables. The reverse engineering efforts have
resulted in a proof-of-concept parser that analyzes FPGA bitstreams (circuit
configuration files) for errors and malicious modifications without revealing any
sensitive intellectual property.

2. Background
This section discusses FPGAs, bitstream synthesis, the applications of FP-

GAs in the critical infrastructure and FPGA threats.

2.1 Field Programmable Gate Arrays
FPGAs were first introduced in 1984 by Xilinx and have since increased

in capacity and speed by factors of 10,000 and 100, respectively [17]. Unlike
traditional application-specific integrated circuits (ASICs) that are customized
for a particular use, FPGAs are reprogrammable. This is accomplished using a
combination of configurable logic blocks (CLBs), an input/output block and a
series of configurable interconnects. The interconnects are sometimes referred
to as the switching matrix.

Figure 1 shows an example FPGA architecture with configurable logic blocks,
an input/output block and interconnects. Configurable logic blocks, which com-
prise digital circuits such as look-up tables, multiplexers and flip-flops, can be
configured to perform various combinational functions. These functions can
also be registered within a configurable logic block to implement synchronous
logic. An input/output block provides connections to external stimuli. The
interconnects link the configurable logic blocks and input/output block to com-
plete the desired circuit.

The penalties incurred for FPGA reconfigurability include larger chip area,
slower speed and higher power consumption compared with an ASIC that im-
plements the same circuit [6]. This is primarily due to the additional area and
propagation delays introduced by the programming circuitry in an FPGA.

The initial steps in designing a digital system are largely identical for FPGAs
and ASICs; they involve design capture and simulation using a hardware de-
scription language (HDL). After the correct functionality is verified via simula-
tion, the hardware-description-language-based design is synthesized into a form
that represents logic elements and registers, which is referred to as the register-
transfer level. At this point, the logic elements and registers are mapped to
implementable components contained in a target technology library. In the
case of ASICs, this is usually a standard cell library. However, for FPGAs,
the design is mapped to functional primitives comprising look-up tables and
registers. Following the placement and routing, the final design is converted
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Figure 1. FPGA architecture [12]

.

to a “bitstream,” a series of zeros and ones that specifies the configuration op-
tions of the configurable logic blocks, input/output block and interconnects in
order to implement a given circuit. FPGA vendors have their own proprietary
bitstream formats whose details are rarely released to the public.

Configurable Logic Blocks. Configurable logic blocks enable an FPGA
to implement logic. Although there are differences in vendor implementations
of configurable logic blocks, they commonly include look-up tables, multiplex-
ers and flip-flops. Unlike traditional ASICs that use hardware logic gates to
implement digital logic for the desired circuits, FPGAs employ look-up tables.
Figure 2 shows a two-input look-up table that uses multiplexers to implement
digital logic. Inputs a and b are selectors for the multiplexers and the inputs to
the multiplexers are the output values of the desired truth table. The look-up
table implements a circuit that is logically equivalent to an AND gate by setting
the inputs to the multiplexers as 0001. Different input values are provided to
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Figure 2. Two-input look-up table example.

the multiplexers to implement a new digital circuit without having to change
the hardware. Look-up tables trade space for reprogrammability; the hardware
needed to implement a look-up table is larger than that needed to implement
the digital circuit replicated by the look-up table. However, a look-up table
can be reprogrammed to implement any logic function that can be modeled
by a truth table. Designs that require more inputs are implemented by daisy
chaining look-up tables.

Input/Output Block. An input/output block connects the internal logic
of an FPGA to external components. Since an input/output block usually
allows inputs and outputs on the same physical pad, the choice of whether
a certain pin is an input or output is decided at configuration time. Other
configuration options determine the physical characteristics of the signal at a
pin such as pullmode, slew rate and drive level; these may vary from FPGA to
FPGA. Figure 3 shows an example input/output block that is configured as an
output.

Switching Matrix. A switching matrix connects the configurable logic
blocks and the input/output block to produce the desired digital logic circuit [5].
The large number of routes that have to be accommodated make the switching
matrix the largest portion of an FPGA in terms of silicon area.

2.2 Bitstream Synthesis
Before a circuit design can be implemented on an FPGA it must be trans-

formed into a configuration file – called a bitstream – that can be loaded on
the FPGA. Figure 4 shows how a design proceeds from a hardware description
language file to the final bitstream for a specific FPGA. Hardware description
language code is first synthesized into a netlist that contains the list of com-
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Figure 3. Example input-output block.

Figure 4. Process for generating a bitstream from HDL [8]

.

ponents in the circuit and the nodes to which they are connected. The map
function maps the components in the netlist to the components on the FPGA.
The place function then selects the locations of the components on the FPGA.
Since the FPGA typically has numerous instances of the same components,
the place function determines which components will actually be part of the
circuit. The route function then makes the connections between all the placed
components on the board. After the circuit has been placed and routed, it
is converted to a bitstream file that configures the correct components and
connections on the board to create the circuit.

2.3 Critical Infrastructure Applications
Industrial control systems rely heavily on FPGAs. These systems must be

powerful and have low latency to ensure high performance, flexibility and re-
liability [10]. FPGAs are well suited for this purpose. They provide a higher
performance-to-cost ratio than ASICs due to continual advances in FPGA com-
puting power and high per-unit costs for low-volume ASIC designs [14]. The
reconfigurability of FPGAs supports rapid prototyping as well as control algo-
rithm upgrades throughout the lifespan of an industrial control system using
the same deployed hardware. Additionally, system-on-a-chip (SoC) platforms
can implement advanced control techniques [15]. Finally, the availability of
third-party intellectual property cores that can be licensed or purchased enables
infrastructure owners to implement portions of, or complete, FPGA systems
by outsourcing the work.
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2.4 FPGA Threats
FPGA complexity increases the potential cyber attack surface and, hence,

the risk of cyber attacks [1]. These threats can be particularly dangerous
to FPGAs used in the critical infrastructure due to the potential impacts on
industry, the economy and society.

Bitstream Modification. Chakraborty et al. [2] have demonstrated that
a bitstream can be modified to introduce hardware Trojans without knowing
the hardware description language (source) code used to create the bitstream.
In one instance, they inserted ring oscillators to elevate the temperature of an
FPGA, which increased the probability of failure. This attack could be im-
plemented by an insider who is responsible for loading the bitstream on the
FPGA or by an adversary who intercepts the original bitstream and deliv-
ers the modified bitstream to the FPGA. Although an adversary could simply
synthesize a malicious bitstream without ever interacting with the original bit-
stream, reverse engineering and subsequently modifying the bitstream enable
the adversary to implement a hard-to-detect attack that maintains the original
functionality of the FPGA design.

Covert Channels. Covert channels allow for the transmission of informa-
tion between components that are not supposed to be communicating. In an
industrial control system setting, this could involve the exfiltration of the con-
trol algorithm or sensitive data while the industrial control system is performing
its intended functions. The exfiltration of a proprietary control algorithm and
sensitive data could give competitors an advantage.

Intellectual Property Theft. An industrial control system vendor that
develops its own FPGAs should be wary of adversaries potentially reverse en-
gineering its designs. This is important because bitstreams are not inherently
protected and, given enough time, an adversary could reverse engineer them
and obtain valuable intellectual property [13]. Malicious entities also would be
interested in reverse engineering bitstreams and creating exploits that could be
used in future attacks on critical infrastructure assets.

In theory, encryption can be used to protect a bitstream, but this feature
is usually offered by expensive FPGA models. In any case, encryption has
been shown to be breakable through side-channel analysis [11]. Additionally,
encryption requires an energy source, usually in the form of a battery, to keep
the key from being cleared if the board loses power. Also, in some cases, an
FPGA cannot be accessed after it is deployed or its battery cannot be replaced
without significant effort [3].

3. Reverse Engineering Methodology
This section discusses the reverse engineering methodology for a Lattice

Semiconductor ECP3 FPGA configuration file.
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3.1 Target System
Numerous articles have been published about reverse engineering efforts di-

rected at Xilinx and Altera (now part of Intel) FPGAs. However, Lattice
FPGAs have received much less attention apart from the very small iCE40
FPGAs [18]. The target system chosen for this research was the Lattice ECP3
LFE3-35EA-8FN484C FPGA with the Lattice ECP3 Versa Development Kit.
Comparisons are made between the reverse engineering process for Lattice FP-
GAs and the reverse engineering processes for Xilinx and Altera FPGAs.

All the bitstreams were designed using Lattice Diamond software version
3.9.1 and the Lattice Synthesis Engine. Additionally, Tool Command Language
scripts were used to generate design variations to explore the effects on the
bitstreams.

3.2 Input/Output Block Reversal
This section describes the process of mapping the relationship between a

bitstream file and the configuration of the input/output block; this was easily
set using the spreadsheet view provided by the Lattice Diamond software. Be-
cause changes made to the configuration options in the spreadsheet view were
present in the Lattice preference file (LPF) when the changes were saved, mod-
ifying the Lattice preference file directly enabled the automated generation of
a bitstream.

The reverse engineering of the input/output block has three goals: (i) map a
number of the configuration options for each pin to their respective indices and
values in the bitstream file; (ii) determine whether a pin is an input or output
based on the bitstream file; and (iii) determine whether a pin is connected to
logic blocks in the design based on the bitstream file.

Pullmode. Although input/output blocks have a variety of configuration
options, the reverse engineering process of the different configuration options is
very similar. Therefore, only the process for reverse engineering the pullmode
attribute is described here.

The pullmode is responsible for describing how a signal is interpreted at a
pin. The pullmode can be set to the following four modes:

Up: The input is attached to a pull-up resistor, i.e., the pin is tied to a
logical 1.

Down: The input is attached to a pull-down resistor, i.e., the pin is tied
to ground or a logical 0.

Keeper: This mode is neither pull-up nor pull-down. It drives a weak 0
or 1 level to match the level of the last logic state present on the pad to
prevent the pad from floating.

None: The input is not set to any of the above three modes.



98 CRITICAL INFRASTRUCTURE PROTECTION XII

Algorithm 1 : Pullmode bitstream generation.
1: for Pin p in all I/O Pins do
2: for val in UP, DOWN, KEEPER, NONE do
3: Replace IOBUF line in LPF with “IOBUF PORT “a” PULLMODE=val”
4: end for
5: Replace Location line in LPF with “LOCATE COMP “<input/output pin

name>” SITE p”
6: end for

In this chapter, an index refers to the byte address where the contents of
a bitstream have been changed due to a design modification. A change to
the pullmode of a pin resulted in three to six change indices in the bitstream.
This was much more manageable compared with the 70 to 100 indices when
the location of a configurable logic block was moved slightly. The reason for
the varying change indices is because the bitstream did not abide by the byte
boundaries; this is discussed later in this chapter.

After the configuration option was sufficiently isolated, a Tool Command
Language script synthesized bitstreams for every pullmode option for every
pin; every pin set was first used as an input and subsequently every pin set
was used as an output. Algorithm 1 shows the pseudocode of the script. The
objectives were to determine which indices were responsible for the pullmode
option for each pin and whether a common pattern could be used for every
pin to identify the pullmode. The hypothesis was that each pin would have a
different location in the bitstream where its configuration options were stored,
and the values at each location would follow the same pattern in terms of
representing the pullmode in the bitstream.

The 2,296 bitstreams generated by the script were compared to find the in-
dices responsible for the pullmode configuration option for each pin. Table 1
shows the bitstream indices responsible for the pullmode configuration option
for six pins. The indices for each pin were generated by comparing the four
bitstreams (pull-up, pull-down, bus keeper and none) for the pin and listing
all the indices in the bitstreams that were different from any of the other bit-
streams. For each pin, the first column with hex values (i.e., second column
overall) refers to the values in the bitstream associated with pullmode pull-up,
the second refers to pull-down, the third refers to bus keeper and the fourth
column refers to none. The numbers in the leftmost (i.e., first) column are the
bitstream indices where the changes occurred. For example, when comparing
the four bitstreams generated for pin A2 and set as an input, the only differ-
ences between the four bitstreams were at bytes 429, 476 and 477. In fact,
Table 1 reveals that relatively few indices were changed.

Note that indices 476 and 477 appear for almost every pin. However, for the
generated bitstreams, it was impossible to know whether all the indices listed
for each pin were necessary to configure the various pullmode options or if only
a subset of the indices for each pin was necessary.
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Table 1. Indices for the pullmode configuration option for various pins.

Pin A2 Pin A3
429 00 06 02 04 416 00 06 02 04

476 f3 9e 57 3a 476 20 5e 0a 74

477 dc b4 07 6f

Pin A4 Pin A6
412 00 18 08 10 395 01 61 21 41

476 82 e2 a2 c2 476 d4 cd 5c 45

477 ba ea 8a da 477 bf 30 39 b6

Pin A7 Pin A8
326 01 61 21 41 308 00 01 00 01

476 c5 63 27 81 309 04 84 84 04

477 02 ab 66 cf 476 47 e3 a4 00

477 7c 44 97 af

To solve this problem the bitstream generation script was executed again
with different logic designs mapped to different portions of the FPGA. The
reasoning was to isolate the indices responsible for the pullmode configuration
option. If the same generation script was executed with different logic designs
and the logic mapped to different portions of the FPGA, then the indices re-
sponsible for the pullmode configuration would have the same values across all
the runs while the indices affected by the switching matrix or configurable logic
blocks would change. The following gates and placements were employed:

One-input NOT gate at R2C73D.

One-input NOT gate at R23C53A.

Two-input AND gate at R3C70B.

1553 encoder placed by the compiler.

When exploring the designs and placements required to isolate the indices, it
became clear that the configurable logic blocks had to be varied in diverse ways.
This was achieved using a NOT gate, an AND gate and the intellectual property
core of a MIL-STD-1553 encoder. The simple gates represented small designs
whereas the encoder represented a large design. Each gate was then placed in
a different slice within the configurable logic blocks on different corners of the
FPGA and the 1553 encoder was placed by the tool. This variation proved
to be enough initially. If none of the indices expressed different values, then
additional variation could be introduced before considering that all the indices
listed were necessary to represent the pullmode configuration.

The assumption that all the indices listed were responsible for the pullmode
was excluded for a few reasons. First, the number of indices that changed for
each pin when comparing bitstreams was not constant. Some pins only had
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three indices change whereas other pins had six indices change. It is unlikely
that a designer would use extra indices to represent the same change in different
pins. Additionally, each pin had indices that were different, but some pins also
had indices that were the same. A designer would likely not have the same
information located in two locations, especially since a larger file would increase
the FPGA configuration time and complexity of the process used to parse the
bitstream. In fact, it is more likely that some indices were being changed due to
some other variation that was occurring as a result of changing the pullmode.
The difference in the numbers of changed indices and shared indices was later
attributed to the bitstream not abiding by the byte boundaries and some indices
acting as internal checksums.

After analyzing which indices were changing for each pin, the pins were
organized into six groups based on the indices responsible for their changes.
Pins that shared the same indices were grouped together as well as pins that
shared a pattern in the offset of their indices. The binary values located at all
the indices in each of the six groups were then printed for each pullmode for each
pin in a group, facilitating the visual inspection of all the indices simultaneously
in order to discern changes. If the hypothesis was correct, there would be a
regular pattern of 1s and 0s cascading down the created file. To facilitate visual
inspection, 1s were replaced with black spaces and 0s with white spaces.

Figure 5 shows a selection of the pins in the first group after the 1s were
replaced with black spaces and 0s with white spaces. A single bitstream runs
horizontally from left to right and each group of four bitstreams relates to the
same pin. For example, the first four bitstreams in Figure 5 are the bitstreams
related to the pullmode configuration of D19. The first is pull-up, the second
pull-down, the third bus-keeper and the fourth none. The next four bitstreams
follow the same pullmode pattern, but for pin D18, the next four for pin B20,
and so on.

Additionally, the first bitstream for each pin is always pullmode up, followed
by down, keeper and none. The figure reveals significant information about
how the bitstream is organized with respect to the pins. First, the bitstreams
do not adhere to strict byte boundaries. The columns of black squares running
vertically through the picture represent 1s that are the boundaries for where
information about a certain pin appears. The 1s between the columns corre-
spond to different configuration options. The pullmode configuration option
can be observed at each of the pins as the only change in a pin’s space in the
boxes. Pullmode up is represented as 00, down as 11, keeper as 01 and none as
10. This pattern was observed in all six pin groups investigated in the research.

3.3 Configurable Logic Block Reversal
Configurable logic blocks were more difficult to reverse engineer than the in-

put/output block because there are many more configurable logic blocks, and
the Lattice preference file modification cannot be used to change the configura-
tion options in a straightforward manner. This is because the look-up tables in
the configurable logic blocks are configured based on the hardware description
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Table 2. Derived truth table.

A 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
B 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
C 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

F 0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 1

language when they were synthesized. The Lattice preference file is not used
until the map, place and route steps in the bitstream generation process; there-
fore, it was not even considered until after the look-up tables were configured.

In order to overcome this issue, Lattice primitives were used along with
hardware description language attributes. Each Lattice FPGA has a library
of primitives supported by the device. In the case of the ECP3, the LUT4
primitive was used so that the look-up table could be directly initialized to the
desired configuration value. The hardware description language attributes were
used to set other attributes such as location instead of modifying the Lattice
preference file simply to avoid having to change two different files. The look-
up tables were initialized based on the outputs of their desired truth tables
shown in Table 2. An initialization value of 0xF444 yielded a look-up table
that produced the outputs in the truth table. When the synthesis process
translates hardware description language code to the bitstream, it replaces
the logic in the design with the look-up tables that are initialized to produce
the same outputs. Based on this information, it was hypothesized that the
initialization information appears somewhere in the bitstream. Therefore, in
order to understand the digital logic implemented in the configurable logic
block, it is only necessary to determine how the look-up tables were initialized
and then recreate the truth table.

Single Look-Up Table Reversal. The process for reverse engineering
the configuration of a look-up table involved the creation of a set of bitstreams
using Tool Command Language scripts that had a variety of configuration
values for the same look-up table. The bitstreams were compared to identify the
indices that were responsible for the configuration information. The bitstreams
were then visually compared with each other at the indices to reveal how the
configuration information was encoded in the bitstream.

Since each look-up table has a 16-bit configuration value, the 16-bit value
was assumed to be stored somewhere in the bitstream. Therefore, at least
sixteen bitstreams had to be generated for each look-up table in order to locate
the indices. However, if other indices were also changed as a result of modifying
the configuration value, additional bitstreams may be necessary to identify the
correct configuration indices. Therefore, in the experiments, 61 bitstreams were
initially generated for the look-up table – 0x0 through 0xF for each symbol in
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Figure 6. Bitstreams with different configuration values.

the four-digit hex number. This provided adequate information to determine
how the configuration was stored in the bitstream.

When comparing a set of bitstreams with different configuration options for
the same look-up table, between six to eight bytes were observed to change
in the bitstream. The variation in the number of changed bytes has to do
with the bitstream not abiding by the byte boundaries and the presence of
some checksum-like bits that also change. Sixteen indices correspond to the
16-bit initialization value used for look-up table configuration and 32 bits serve
as a checksum. However, the configuration information is encoded. If the
initialization value of the look-up table is considered to a 16-bit binary number,
then the indices are negated in that 1s are replaced with 0s, and vice versa.
Additionally, the 16-bits are not placed next to each other, but are spread
across two to four bytes that can be hundreds of indices apart in the bitstream.
The bits responsible for encoding the configuration information were discerned
by analyzing the differences between the individual bitstreams.

Figure 6 illustrates this process. Each line corresponds to one of the first
sixteen bitstreams from look-up table 1 in R2C40D, each with a different con-
figuration value. The four values on the left show the hex representation of
the 16-bit value used to initialize the look-up table and the indices enclosed by
boxes correspond to the 1-, 2-, 4- and 8-place locations of the corresponding
hex value. This is observed by comparing which locations change from line to
line. For example, the 1-place for the first hex value was confirmed by compar-
ing the 0x0002 and 0x0003 initialization value lines. All the indices in the last
sixteen indices were not changed in a regular manner, so they can be ignored.
However, the change from 0x0002 to 0x0003 has a 0 in in the same location
where the 0x0001 line has a 0. This was also confirmed by comparing the
0x0004 line and the 0x0005 line or any other line where the binary representa-
tion was changed in the 1-place. This process was repeated for the remaining
configuration values.

After the process was completed, many of the remaining bitstreams were
removed to reveal the mask shown in Figure 7. The mask is the set of locations
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Figure 7. Mask for R2C40D look-up table 1.

that encode the 16-bit initialization value for the look-up table. The same
process was then performed for the remaining look-up tables on the board to
obtain their masks.

Table 3. HDL used to generate a three-input AND gate.

module four_and_gate (a, b, c, d, i) /* synthesis LOC="R2C40D" */;

input a /* synthesis LOC="E18" */;

input b /* synthesis LOC="B20" */;

input c /* synthesis LOC="A20" */;

input d /* synthesis LOC="D18" */;

output i /* synthesis LOC="D19" */;

assign i = a&b&c;

endmodule

Mask Correctness Confirmation. After the mask for a specific look-
up table was fully reversed, it was necessary to confirm that the information
was correct and useful for understanding a bitstream. To accomplish this,
bitstreams for a three-input AND gate and a more complicated design of AB +
CD̄ were synthesized at look-up table 1 in the R2C40D configurable logic block.
As shown in Tables 3 and 4, both were designed using hardware description
language operators instead of initializing the primitives directly to ensure the
initialization value in the bitstream was generated by the synthesis engine when
translating the design. The bitstreams were then inspected at the locations
corresponding to the look-up table configuration value and the truth tables
were recovered.

Table 5 shows the bitstream values (underlined) at the R2C40D look-up
table 1 indices for a three-input AND gate. Compared with the mask for the
look-up table shown in Figure 7, there are 0s in the 16,384-place and 32,768-
place, resulting in a hex value of 0xC000. When this value was used to derive
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Table 4. HDL used to generate a more complicated logic function.

module four_logic_gate (a, b, c, d, i) /* synthesis LOC="R2C40D" */;

input a /* synthesis LOC="E18" */;

input b /* synthesis LOC="B20" */;

input c /* synthesis LOC="A20" */;

input d /* synthesis LOC="D18" */;

output i /* synthesis LOC="D19" */;

assign i = (a&b)|(c&~d);

endmodule

Table 5. Bitstream values for a three-input AND gate.

00000011 11110000 00011100 10111111 00001111 11110000 00101101 10111101

the truth table, the inputs 1110 and 1111 yielded an output of 1. This matches
the logic for a three-input AND gate, implying that the mask is correct.

Table 6. Bitstream values for a more complicated logic function.

00000100 11000000 00001100 00001011 00000101 11110000 11000010 01001010

The logic for the second design is more difficult to reconstruct. Table 6 shows
the bitstream values (underlined) at the R2C40D look-up table 1 indices.

Table 7 shows the reconstructed truth table. This truth table was used to
recover the digital logic function:

ĀB̄CD + ĀBCD + AB̄C̄D̄ + AB̄C̄D + AB̄CD + ABCD

which can be further reduced to:

AB̄ + CD

Although this function is not in the same form as the hardware description
language, it is important to note that the synthesis process has control over
how the inputs are routed to the look-up table. This is logically equivalent to
what was specified in the hardware description language and that the mask can
be used to correctly predict the logic in a look-up table. Although the routing
cannot be inferred, it is still possible to understand the logic function embodied
in a look-up table by analyzing the bitstream. Thus, the logic embodied in every
look-up table on the board can be analyzed although the connections between
the look-up tables are not fully reverse engineered.
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Table 7. Recovered truth table.

W X Y Z F

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1

0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1

1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1

1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

3.4 Bitstream Modification Attack
A bitstream modification attack was attempted using the information gained

via reverse engineering – specifically, how the configuration information for a
look-up table was stored. The goal was to simulate an attack where an adver-
sary intercepts a bitstream en route from the designer to the target system. The
adversary then modifies the bitstream, which is loaded on the target system.
This demonstrates the feasibility of a more complicated attack than the hard-
ware Trojan described in [2] and further confirms the validity of the look-up
table mask.

Experimental Design. The initial logic function chosen was a simple
four-input OR gate. The OR gate was implemented using hardware descrip-
tion language operators instead of configuring the look-up table directly. This
ensured that the attack scenario would be similar to the actual process involv-
ing an intellectual property design. The inputs were connected to four dip
switches based on the Lattice preference file constraints and the output was
connected to an LED. After confirming that the design was functioning cor-
rectly on the target system, the bitstream was modified directly to implement
a four-input AND gate and the new design was loaded on the target system,
where the functionality was observed.

Modification Results. Table 8 shows the hardware description language
code used to generate the four-input OR gate. Table 9 shows the Lattice
preference file used to incorporate the design in a look-up table. The design
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Table 8. HDL used to generate the OR gate for bitstream modification.

module orgate (a,b,c,d,e);

input a,b,c,d;

output e;

assign e = a|b|c|d;

endmodule

Table 9. LPF constraints used to generate the OR gate for bitstream modification.

BLOCK RESETPATHS;

BLOCK ASYNCPATHS;

Locate comp "a" site "j7";

Locate comp "b" site "j6";

Locate comp "c" site "h2";

Locate comp "d" site "h3";

Locate comp "e" site "u19";

Locate comp "orgate" site "r2c40d";

was then loaded on the board and the correct functionality was observed. On
this board, the LEDs turned off when they were driven high.

Figure 8. Dip switch states showing the correct function of an OR gate.

Figure 8 shows a subset of the states for the OR gate, demonstrating that
the LED correctly lit up when the input was 0000 and the LED was turned off
for all other inputs. The bitstream was then modified at the indices related to
the first look-up table in the R2C40D configurable logic block.

Table 10 shows the indices that were replaced in the bitstream. The under-
lined indices correspond to the look-up table configuration bits and the indices
in bold font correspond to the checksum bits. The checksum bits were iden-
tified when attempting to load the modified bitstream on the target system.
The programmer tool was able to detect the modifications and returned an
invalid file report or an XCF file reading error. (An XCF configuration file
contains information about the device, data files targeted and the operations
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Table 10. Indices modified to transform an OR gate into an AND gate.

OR Gate
00000000 00000000 00100100 01101001
00000000 00010000 11111010 01111100

AND Gate
00000111 11110000 10001111 10001011
00001111 11110000 00101101 10111101

to be performed [7].) However, when the checksum bits were replaced with the
checksum bits obtained by reverse engineering the mask, the programmer tool
accepted the file.

Figure 9. Dip switch states showing the correct AND gate function after the attack.

Figure 9 shows the target system after the modified bitstream attack. The
LED was turned on for every input except for 1111. This demonstrates that
the correct behavior was obtained after loading the modified bitstream on the
target system, implying that the attack was successful. Although the presence
of the checksum bits increased the difficulty of the modification attack and
the use of pre-synthesized checksums was not feasible, the checksum can, in
fact, be defeated. In the case of a simple modification, the checksum can be
brute-forced because the indices that are verified by the checksum are known.

The other option is to reverse engineer the checksum algorithm. This is
accomplished by running the programmer or the Lattice Diamond software
through a debugger to observe the operations that compute and verify the
checksum. This method has been used in a similar scenario where the encryp-
tion schemes used by the Stratix II and Stratix III FPGAs were defeated [16].

4. Experimental Results
The experiments demonstrate that the locations and values of the various

configuration options of the Lattice ECP3 LFE3-35EA-8FN484C FPGA could
be reverse engineered successfully. In the case of the input/output block, the
pullmode locations and values were reverse engineered for every pin. For the
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slew rate, drive level, input and output configuration options, the locations and
values were found for all the pins in Groups 1 through 4, as well as one pin in
Group 5. This equates to a total of 139 pins. For the configurable logic blocks,
the encoding of the configuration information for a small set of the look-up
tables was located and recorded, which was used in the successful bitstream
modification attack.

This research also created a bitstream parser. The parser processes a bit-
stream synthesized for the LFE3-35EA-8FN484C FPGA and outputs configu-
ration information about the reverse-engineered input/output block. The in-
formation obtained for each look-up table after it was fully reversed is passed
to the parser to obtain additional information such as the percentage of the
look-up table utilized and its logic function.

Although the bitstream parser does not provide complete information about
a bitstream, it should be of value to the industrial control system community.
Consider a scenario where a critical infrastructure asset owner receives an up-
dated bitstream from a vendor. Running the new and old bitstreams through
the parser would help detect errors and/or malicious modifications. The ad-
dition of new input or output pins would indicate potential covert channels.
Large increases in look-up table utilization could indicate the insertion of ma-
licious hardware. Although the bitstream parser was developed specifically for
the LFE3-35EA-8FN484C FPGA, the underlying process can be applied to
other Lattice FPGAs that use the Lattice Diamond software, and, with some
modifications and enhancements, to other FPGAs.

5. Conclusions
FPGAs are commonly used in critical infrastructure assets. Their power-to-

cost ratio and their reprogrammability make them particularly attractive for
industrial control applications. However, their complexity increases the risk of
attacks. This chapter has demonstrated the process of reverse engineering a
portion of a previously-unexplored Lattice FPGA, which has been incorporated
in a parser that enables the analysis of bitstreams for errors and malicious
modifications without revealing any sensitive intellectual property.

Future research will continue the reverse engineering efforts on the switching
matrix and also concentrate on other FPGAs. Additionally, research will focus
on automating the reverse engineering process for Lattice FPGAs and FPGAs
from other vendors.

Note that the views expressed in this chapter are those of the authors and do
not reflect the official policy or position of the U.S. Air Force, U.S. Department
of Defense or U.S. Government.
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