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Chapter 10

TRAFFIC CLASSIFICATION AND
APPLICATION IDENTIFICATION
IN NETWORK FORENSICS

Jan Pluskal, Ondrej Lichtner and Ondrej Rysavy

Abstract Network traffic classification is an absolute necessity for network moni-
toring, security analyses and digital forensics. Without accurate traffic
classification, the computational demands imposed by analyzing all the
IP traffic flows are enormous. Classification can also reduce the number
of flows that need to be examined and prioritized for analysis in forensic
investigations.

This chapter presents an automated feature elimination method based
on a feature correlation matrix. Additionally, it proposes an enhanced
statistical protocol identification method, which is compared against
Bayesian network and random forests classification methods that offer
high accuracy and acceptable performance. Each classification method
is used with a subset of features that best suit the method. The methods
are evaluated based on their ability to identify the application layer pro-
tocols and the applications themselves. Experiments demonstrate that
the random forests classifier yields the most promising results whereas
the proposed enhanced statistical protocol identification method pro-
vides an interesting trade-off between higher performance and slightly
lower accuracy.

Keywords: Protocol identification, application identification, machine learning

1. Introduction
Network traffic classification is an important technique used in net-

work monitoring, security analyses and digital forensics. In digital foren-
sics, file types can be identified by file extensions or by searching for
magic numbers at the beginning of files; known files can be identified us-
ing databases of hash values. The identification of file types and filtering
of known files reduce the amount of data that needs to be analyzed. Do-
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ing the same with network traffic is much more complicated because each
data transfer contains specific and temporary characteristics that depend
on the network state, network utilization and locations of communica-
tions endpoints. The correct classification of network traffic enables an
automated analyzer to determine which application protocol parser to
use to extract information carried by an IP flow (a packet sequence
identified by the same source and destination IP addresses, transport
protocol ports and transport protocol type). This, in turn, helps speed
up a forensic investigation by reducing the number of unclassified IP
flows.

Traditional traffic classification methods identify applications based
on the TCP or UDP ports that are used. This provides only limited ac-
curacy (60–80%) because many applications use random or non-standard
ports [3, 24], for example, peer-to-peer applications, multimedia stream-
ing applications, computer games and tunneled traffic. Advanced traf-
fic classification utilizes supervised machine learning methods based on
payload analysis, statistical methods and hybrid approaches [17, 19, 26,
27, 29]. Each technique has its advantages and disadvantages. For ex-
ample, payload analysis of encrypted communications is unacceptably
inaccurate. Statistical and hybrid approaches demonstrate that it is
not necessary to rely exclusively on packet content [5, 12, 21], but that
it is possible to combine structural and behavioral features to increase
detection accuracy [16].

Unsupervised machine learning methods can classify unknown net-
work traffic [9] into unlabeled clusters based on their similarity. An
expert investigator, upon inspection of a few samples of a cluster, can
label the entire cluster.

Several researchers have investigated machine learning approaches for
traffic classification. Most of the research has focused on classifying net-
work traffic to identify the application layer protocol in order to support
intelligent network filtering and security monitoring. While traffic classi-
fication for network forensics stems from the same ideas, there are some
notable differences. Network forensics analysis can be performed off-line
on captured data. In this case, accuracy is more important than speed.
Thus, a combination of several methods or applications that are slower,
but more accurate, can be considered.

In network forensics, an investigator can compensate for incorrect
results by performing additional manual inspections of results. For ex-
ample, some methods return a probability vector that can be inspected
to consider different results.

Additionally, in network forensics, classification must be determin-
istic because forensic principles require that all results be verifiable.
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Also, classification methods can be tuned by an investigator and can
be repeated with different parameter sets to increase sensitivity while
decreasing specificity.

Machine learning algorithms for network traffic classification have
been studied since the 1990s. The most common algorithms include
support vector machines [12], decision tree algorithms [21] and proba-
bilistic [5] and statistical methods [16, 19], all of which involve supervised
learning. The unsupervised k-means clustering algorithm [9] groups traf-
fic based on its significant features. If the feature set is selected properly,
a machine learning method can exceed 90% accuracy [26].

Surveys of classification methods by Nguyen and Armitage [27] and
Namdev et al. [26] discuss protocol identification. Classification meth-
ods for encrypted traffic are reviewed in [29]. Al Khater and Overill [2]
have proposed the use of machine learning algorithms to improve traf-
fic classification methods for digital forensic applications. Foroushani
and Zincir-Heywood [10] have demonstrated the possibility of identi-
fying high-level application behaviors from encrypted network service
communications. Dai et al. [6] and Miskovic et al. [23] have described
methods for fingerprinting mobile applications based on their communi-
cations. Erman et al. [8] have explored flow-based classification and have
proposed a semi-supervised classification method that can accommodate
known and unknown applications.

While traffic classification has been applied extensively to network
monitoring and security analysis, significantly less research has focused
on traffic discrimination for network forensics. This research makes some
key contributions to the field of network forensics. The first is the cre-
ation of a dataset that provides a means to reliably acquire ground
truth for experiments. Typical datasets use information inferred from
l7-filter [28] or nmap [1] and, therefore, offer only approximations of
the real information. Shang and Huang [28] have shown that the preci-
sion of these techniques is always one (no false positives), but the recall
varies between 0.67 and 0.87. This means that 13–33% of the samples
are not labeled and the researchers would have excluded them from the
datasets because they lacked labels [1, 12]. Therefore, the remaining
dataset is already classifiable via deep packet inspection and is less rele-
vant to finding better classification methods. In other cases, researchers
do not include information about the data used in their experiments,
or the descriptions are vague and not reproducible [28], or they do not
describe how to annotate data with labels without errors [5].

For these reasons, this research captured one week’s worth of packet
data in an environment with eight hosts, which translates to roughly
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20 GB. The data was automatically tagged with complete information
about the origin application.

This research has also developed an enhanced statistical protocol iden-
tification (ESPI) method that leverages a machine-learning-based clas-
sifier. Upon evaluating the results of related studies, two additional
classifiers, a Bayesian network classifier and a random forests classifier,
were selected for comparison. This chapter describes all three methods
and shows that they can be used to identify application layer protocols
and even the applications that used the protocols. This is important
because application identification provides more information about net-
work traffic compared with what can be gleaned from the identified ap-
plication layer protocols. Consider a situation where HTTPS is used to
create an encrypted tunnel. A tool capable of recognizing applications
(e.g., Google Drive, iTunes and OneDrive) in network traffic instead of
merely the application layer protocol (e.g., HTTPS) is useful in several
domains. Notably, in forensic analysis, application identification could
significantly reduce the amount of data to be analyzed compared with
conventional approaches.

2. Data Collection and Preprocessing
Network traffic classification takes a network traffic capture file as in-

put, typically in the PCAP format. The captured traffic is then split into
a collection of layer 4 conversations represented by one or two IP flows
for one-way or two-way communications, respectively. The experiments
described in this chapter employed an annotated dataset captured by Mi-
crosoft Network Monitor, which provides application labels for almost
all conversations. The dataset contains regular network traffic generated
by eight user workstations running the Windows operating system. The
final capture file has the following characteristics:

PCAP File Size: 19.5 GB.
PCAP Format: Microsoft NetMon 2.x.
Capture Duration: 119 hours.

Number of Packets: 27,616,138.
Number of Layer 7 Conversations: 269,459.
Number of Application Protocols: 58.
Number of Communicating Applications: 93.

Information about the dataset is available at pluskal.github.io/
AppIdent and the dataset itself can be downloaded from nes.fit.
vutbr.cz/AppIdent.
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Before the capture file could be used, additional post-processing steps
from previous work [22] were applied to enhance data extraction. The
final post-processing step used a round of experiments with the enhanced
statistical protocol identification method. Based on these initial results,
a second instance of the dataset was created that contained ground truth
about the application protocols. The ground truth supported manual
hierarchical clustering analysis of the results.

The post-processing steps improved the traffic classification accuracy
by reducing the noise in the extracted features caused by the following
items:

Important TCP session control information, such as synchroniza-
tion segments and finalization segments, may be missing.

Sequence numbers may overflow in long-running TCP conversa-
tions. This can result in incorrect interpretation, causing single
conversations to be split or two unrelated IP flows to be joined
into a single conversation.

The joining of capture files from multiple probes must address is-
sues related to possible packet duplication and the proper ordering
of packets belonging to the same conversation.

Some IP packets may be missing or be duplicated (e.g., in the case
of TCP retransmission).

Finally, associated IP flows in bidirectional conversations must be
paired correctly.

Matousek et al. [22] have shown that other network forensic solu-
tions do not effectively address these issues. This implies that adopting
the proposed additional steps would also be beneficial in the context
of network traffic classification. To address these issues, Netfox Detec-
tive (github.com/nesfit/NetfoxDetective), a custom tool created for
these use cases, was used to process the captured PCAP files.

2.1 Application Conversations and Messages
In addition to addressing the basic issues related to processing layer 4

conversations, Netfox Detective also enabled the dataset to be processed
to track layer 7 conversations and to approximate individual application
messages. This increased the classification accuracy by identifying appli-
cation communications patterns. It also eliminated remnants of network
packet fragmentation in the Internet layer and TCP retransmission in
the transport layer. Packet fragmentation and TCP retransmission are
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independent of application communications patterns and, thus, can neg-
atively impact classification.

An application message was identified in the reassembled stream based
on the transport protocol. The following rules were used for identifica-
tion:

If a stream uses the UDP transport protocol, then the entire pay-
load of each UDP datagram is considered to be a single application
message.

In the case of the TCP transport protocol, segments are separated
into application messages based on packets with PSH, RST or FIN
flags, or based on timeouts.

These rules are simple to implement and yield accurate approximations
of application messages in most cases.

3. Classification Methods
Using machine learning algorithms to classify traffic is by no means a

new concept in the field of network forensics. However, the typical use
case is to identify the application protocol [27, 29]. In this research, the
approach was expanded to also identify the application that created the
traffic. This provides more information that can be used by a forensic
investigator for easier and more precise analysis.

This section describes revisions to the commonly-used feature sets [16,
19, 25] to address the task at hand and presents a feature elimination
method based on feature correlation to improve the accuracy of the
created classifiers. Finally, the proposed enhanced statistical protocol
identification method is described along with two other classification
methods from the literature that have yielded promising traffic identifi-
cation results.

3.1 Feature Set
The quality of a feature set directly influences classification accu-

racy [32]. Common features used for traffic classification are related to
key aspects of packet communications and network architecture. These
include port numbers, transport protocol type, starting sequence of pay-
load bytes, pattern occurrence, message length and message timing. Re-
searchers have identified a list of possible features comprising 92 items
that are invariant to network line characteristics [16, 19, 25]. The list is
available at github.com/pluskal/AppIdent.

Machine learning algorithms achieve the best performance when the
selected features are orthogonal (i.e., no correlation exists between the
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features) [14]. Several approaches have been proposed for calculating
feature correlations, including the Pearson, Spearman, Kendall correla-
tion formulas [31] and covariance matrix [13]. This research opted for
the covariance matrix method due to its ease of implementation.

The covariance matrix provides a correlation value for each pair of
features. This matrix was used to design an automated two-step pro-
cedure for eliminating features. In the first step, a covariance matrix
was calculated based on a chosen ratio of training data to verification
data (t/v). In the second step, based on a maximum allowed correla-
tion value, feature pairs with higher correlation values were identified
and features that were, on average, more correlated with all the other
features, were iteratively removed from the feature set. The resulting
feature set was used by the selected classification method and could be
evaluated to find the optimal set.

In the experiments, more than 80% of the feature pairs had corre-
lation values of 0.5 or higher. Table 1 lists the features that remained
after feature elimination was performed on sample data with training to
verification ratios of 0.1 and 0.2, based on accepted correlation values
up to 0.5. Note that the correlation column shows the maximal-allowed
correlation values of features listed on the corresponding line and higher.
These feature sets were used by the Bayesian network and random forests
classifiers.

Most of the features describe flow characteristics instead of individual
packet characteristics. This confirms the assumption that relying on
a signature or some pattern in packet content gives better results for
encrypted or less-structured traffic.

3.2 Enhanced Statistical Protocol Identification
Hjelmvik [16] developed the statistical protocol identification (SPID)

method for use with the NetworkMiner tool. The learning phase of
the method creates a database of protocol fingerprints for identifying
application protocols. The features utilized by the statistical protocol
identification method are called “protocol attribute meters,” each con-
veying different information. Some items are scalar values representing
payload data size, number of packets in a session or port number. Other
items are composite values, such as a tuple comprising packet direction,
packet ordering, packet size and byte value frequency.

The original implementation uses about 35 protocol attribute me-
ters and extracts information from the first few packets of IP flows to
achieve better speed compared with other classification methods that
analyze entire IP flows. The distance between the analyzed data to a
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Table 1. Features remaining after elimination based on t/v ratios of 0.1 and 0.2.

Correlation Feature (t/v = 0.1) Feature (t/v = 0.2)

BytePairsReoccuringDownFlow
DirectionChanges
First3BytesEqualDownFlow First3BytesEqualDownFlow
FirstBitPositionUpFlow FirstBitPositionUpFlow
FirstPayloadSize
MinInterArrivalTimeDownFlow
MinInterArrivalTimePackets MinInterArrivalTimePackets
UpAndDownFlow UpAndDownFlow
MinPacketLengthDownFlow MinPacketLengthDownFlow
NumberOfBytesDownFlow
NumberOfPacketsUpFlow
PacketLengthDistribution PacketLengthDistribution
DownFlow DownFlow
PacketLengthDistribution
UpFlow

ThirdQuartileInterArrival
TimeUp
ByteFrequencyUpFlow
MaxSegmentSizeDown
MaxSegmentSizeUp
MinInterArrivalTimePackets
UpFlow
NumberOfBytesUpFlow
ThirdQuartileInterArrival
TimeDown

<0.25 PUSHPacketsDown PUSHPacketsDown
ThirdQuartileInterArrival
TimeDown

NumberOfBytesUpFlow

<0.3 FirstPayloadSize
ByteFrequencyUpFlow
MinPacketLengthUpFlow MinPacketLengthUpFlow
NumberOfPacketsPerTimeUp

DirectionChanges
BytePairsReoccuringDownFlow

<0.4 MeanPacketLengthUpFlow

<0.5 MeanPacketLengthUpFlow

known protocol fingerprint is computed using the Kullback-Leibler di-
vergence and the best matching protocol fingerprint has the smallest
sum of Kullback-Leibler divergences over all the attributes. Kohnen et
al. [19] have developed a new version of the statistical protocol iden-
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tification method by adding support for UDP and handling streaming
protocols using a different set of protocol attribute meters.

The research described here has drawn on this work in creating the
enhanced statistical protocol identification method. The research was
motivated by the fact that a forensic investigator is more interested in
the precision of identification than its speed (although quicker identi-
fication is important); therefore, completed conversations are analyzed
instead of just the first few packets. Additionally, as mentioned above,
the intent is to identify application protocols as well as the applications
themselves; therefore, approximated application messages instead of in-
dividual packets are analyzed. The enhanced statistical protocol identi-
fication method also uses a different set of features (92 features selected
as described in Section 3.1) and a different method for computing the
distances between measured values and learned protocol fingerprints.

The following three functions are employed:

Function f computes the divergence of a measured value to a fin-
gerprint value.

Function g returns a normalized feature value for an actual mea-
sured value.

Function w returns the weight of a feature for a protocol finger-
print.

The divergence from a learned fingerprint is computed as the Eu-
clidean distance [7] of the weighted divergences for individual features:

dx,c =

√√√√ n∑
i=0

(wi(c)·fi(gi(xi), ci))
2 (1)

where x1, . . . , xn denote the current flow protocol feature values; c1, ..., cn

denote the normalized feature values in the protocol fingerprint; and
wi(c) denotes the weight of the ith feature in protocol fingerprint c.

Equation (1) is used to compute the difference dx,cj for each protocol
fingerprint cj . The identified protocol or application k is the one such
that dx,ck = min(dx,c1 . . . dx,cm).

Compared with other machine learning methods, the enhanced sta-
tistical protocol identification method does not suffer from overfitting
due to the use of correlated features because it assigns weights on a
per-feature basis. This property renders the enhanced statistical proto-
col identification method readily extensible to classifying new protocols
and incorporating features unique to the new protocols, which could be
correlated with features of other protocols.
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3.3 Bayesian Network Classifier
The Bayesian network classifier [11] relies on Bayes’ theorem, which

defines the probability of an event based on prior knowledge about the
conditions related to the occurrence of the event. The classifier incorpo-
rates Bayesian belief networks that are constructed during the learning
phase. A Bayesian network is a directed acyclic graph and a set of
conditional probability tables. Nodes in the network represent feature
variables and edges represent conditional dependencies. The probability
tables provide probability functions for the nodes.

A Bayesian network classifier identifies the application protocol by
determining the node (or set of nodes) with the highest probability for
the given input feature values. The advantage of the Bayesian network
classifier is that it also computes the probability that the conversation
belongs to the identified protocol. This information enables a forensic
investigator to decide whether or not to analyze the conversation.

3.4 Random Forests Classifier
Random forests is an ensemble method that constructs multiple C4.5

decision trees during the training phase; the trees are used for classifi-
cation in the verification phase, where the mode of the partial results
is selected as the resulting class [4]. This makes the random forests
classifier prone to overfitting [15]. Random forests are parametrized by
multiple variables such as the forest count, join, and training to ver-
ification ratio. Optimal values for the parameters are determined by
cross-validation and computation of an out-of-bag error that estimates
the performance of specific parameter combinations. Because the classi-
fier computes the out-of-bag error, there is no need to employ a separate
data verification phase. Therefore, the random forests classifier can be
trained on the entire dataset, although this approach can be computa-
tionally expensive.

4. Experimental Procedures and Results
This section presents the experimental procedures and the results ob-

tained using the three classification methods. The experiments were
designed with three goals in mind. The first goal was to compare re-
sults yielded by machine learning and statistical methods that share the
same base feature set, but involve fundamentally-different approaches
to classification. The second goal was to observe how the training set
size and feature elimination ratio impact the accuracy of application
protocol and application classification. The third goal was to prove (or
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disprove) that application classifiers can identify network traffic based
on the applications that generated the traffic.

The Netfox Detective tool was employed as middleware for parsing
and processing the captured traffic into application conversations and
messages. The feature elimination algorithm and classification methods
were implemented as modules in Netfox Detective for easy integration
with input data. A standalone application was used to automate the
experimental procedure with different parameters. The enhanced statis-
tical protocol identification method was implemented from scratch. The
Bayesian network and random forests classifiers were implemented using
the Accord.NET library of machine learning algorithms.

4.1 Experimental Procedures
As mentioned above, Netfox Detective was used to parse and process

the captured traffic and to extract the full set of feature values for the
resulting conversations (feature vectors). Each feature vector was an-
notated with a label that identified the level of classification using the
ground truth from the original capture file. The following labels were
used:

Application Protocol: Each application protocol was labeled
using a tuple with the components: (i) transport protocol type;
and (ii) destination transport layer port or manually assigned label
(e.g., TCP http).

Application: Each application was labeled using a tuple with the
components: (i) transport protocol type; (ii) destination transport
layer port or manually assigned label; and (iii) application process
information (e.g., tcp http skypeexe).

Because this task was time-intensive, but only had to be done once,
the results were saved in a separate binary file. A custom application was
developed to automatically execute the same experiment, but with dif-
ferent configuration parameter values (classification method, training to
verification ratio and accepted correlation value for feature elimination).

All the experiments involved the following five steps:

Step 1 (Dataset Generation): The available data was split
into two disjoint datasets based on the training to verification ra-
tio. The first dataset was used for training and the second for
verification.

Step 2: (Feature Elimination): The experiments using the
Bayesian network and random forests classifiers used the training
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dataset created in Step 1 with the feature elimination algorithm
described in Section 3.1. The experiments using the enhanced
statistical protocol identification method employed the accepted
correlation value of one to include all the features; this is because,
as explained in Section 3.2, the enhanced statistical protocol iden-
tification method does not require feature elimination.

Step 3: (Training): The training dataset created in Step 1 was
used to train the three classifiers:

– Bayesian Network Classifier: A classifier was trained for
each group of feature vectors with the same label.

– Random Forests: The optimal parameters specified in Sec-
tion 3.4 corresponded to the most accurate classifier.

– Enhanced Statistical Protocol Identification Classi-
fier: For each group of feature vectors with the same label, an
application protocol fingerprint was computed using function
g.

Step 4 (Verification): A cross-validation phase was used to de-
termine the best classifiers created in Step 3. Specifically, the
classifiers were used to classify each conversation from the verifi-
cation dataset. They returned either: (i) multiple labels; or (ii)
single labels:

– Multiple Labels: Multiple labels were returned as a set
of probabilities or distances. The set was ordered and the
label with the highest probability or shortest distance was
selected. In the case of the Bayesian network classifier, each
Bayesian classifier yielded a probability of the current conver-
sation belonging to the class of interest (application protocol
or application) represented by the classifier. In the case of
the enhanced statistical protocol identification classifier, the
Euclidean distance between the specific conversation to each
application protocol or application fingerprint was returned.

– Single Label: The random forests classifier returned a single
label.

Step 5 (Label Comparison): In each case, the label was com-
pared against the annotation and the statistical properties of each
classification method were computed.
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Table 2. Configurations of the classification methods.

Classification Experiment Training to Highest Feature
Method ID Verification Ratio Correlation Used

Bayesian Network

B1 0.1 0.3
B2 0.2 0.5
B3 0.5 0.5
B4 0.1 0.2
B5 0.2 0.25
B6 0.5 0.25

ESPI
ESPI1 0.7 1
ESPI2 0.2 1

Random Forests
RF1 0.1 0.4
RF2 0.2 0.4
RF3 0.1 0.5
RF4 0.2 0.5

4.2 Experimental Results
The automated application ran many experiments with various con-

figurations of parameters with the goal of identifying the configurations
that yielded the best results. The experiments were organized based on
the classification methods. For better comparisons, the most successful
experiments for each method with various training to verification ratios
were employed.

Table 2 lists the configurations of the classification methods with the
best results. The last column specifies the highest feature correlation val-
ues used for feature elimination. The experiments were split into two cat-
egories. Experiments B1, B2, B3, ESPI1, RF1 and RF2 used classifiers
for application protocol identification, for which the complete dataset
contained 58 application protocol tags. The remaining experiments B4,
B5, B6, ESPI2, RF3 and RF4 used classifiers for application identifica-
tion, for which the complete dataset contained 93 application tags. All
the experimental results are available at pluskal.github.io/AppIdent.
The figures and tables in this section show the truncated results of the
experiments. The truncation was performed by selecting the best exper-
iment in each category as a baseline. The 20 most accurately identified
labels are shown for all the experiments in a category.

The labels returned by the classification methods were compared with
the ground truth from the original captured data and separated into four
categories defined by the confusion matrix in Table 3. Note that a classi-
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Table 3. Confusion matrix for a single label (application protocol or application).

Classification Result Positive Negative Total
Ground Truth

Positive True Positive (TP ) False Positive (FP ) P
Negative False Negative (FN) True Negative (TN) N

Total P ′ N ′ P + N

fication result is positive when the classifier returns that the conversation
can be labeled with the label and negative when it cannot. The ground
truth is positive when the conversation in the dataset is actually labeled
with the label and negative when it is not.

The F-measure, also referred to as the balanced F-score [14], was used
to compare the classification methods. This single score is computed as
the harmonic mean of the precision and recall using the equation:

F = 2 × precision × recall

precision + recall
(2)

where the precision and recall are computed from the corresponding
confusion matrix values using the equations:

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
=

TP

P
(4)

Figure 1 presents the visualization of the application protocol identi-
fication results. The two random forest classifiers (RF1 and RF2) were
very accurate. The Bayesian network classifier (B3) also performed very
well, but it required a larger training set, a training to verification ratio
of 0.5 and more features (see Table 2).

Figure 2 presents the visualization of the application identification
results. The two random forest classifiers again yielded the best results.
However, in this case, the Bayesian network classifiers were outperformed
by the enhanced statistical protocol identification classifier, which also
provided the best trade-off between performance and accuracy.

Figure 3 provides the aggregate statistics for all the classes. The num-
ber in each cell corresponds to the number of labels that were classified
with F-measures greater than or equal to the F-measure value. Note
that the size of the shaded area in a cell is proportional to the number
of labels classified in the cell.
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0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

B1 B2 B3 ESPI1 RF1 RF2

tcp_pop3tlsssl tcp_teamviewer tcp_icslap udp_spotify tcp_netbiosss
udp_wsd udp_mdns udp_https udp_dhcps udp_teamviewer
udp_onlinegames udp_stun tcp_http udp_dns tcp_https
udp_ssdp udp_llmnr udp_natpmp udp_netbiosdgm udp_sapv1

Figure 1. Performance of application protocol classifiers using the F-measure.

0.0
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0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

B4 B5 B6 ESPI 2 RF3 RF4

tcp_smtptlsssl-thunderbirdexe tcp_https-firefoxexe tcp_https-svchostexe

tcp_http-steamwebhelperexe tcp_icslap-system tcp_https-onedriveexe

tcp_https-skypeexe tcp_http-utorrentexe tcp_http-teamviewer_serviceexe

tcp_skype-skypeexe tcp_https-itunesexe tcp_https-utorrentexe

tcp_dns-system tcp_ssh-winscpexe tcp_pop3tlsssl-thunderbirdexe

tcp_http-spotifyexe tcp_tripe-spotifyexe tcp_jabberssl-apsdaemonexe

tcp_jabber-pidginexe tcp_netbiosss-system

Figure 2. Performance of application classifiers using the F-measure.

Figure 4 presents the results of the performance comparison of ap-
plication protocol classifiers. The first row shows the times required to
complete all the steps involved in the experiments. The remaining rows
show the F-measure scores of each evaluated method for the top 20 labels
based on the most successful experiment in the category.

Figure 5 presents the results of the performance comparison of ap-
plication classifiers. Once again, the first row shows the times required
to complete all the steps involved in the experiments. The remaining
rows show the F-measure scores of each evaluated method for the top
20 labels based on the most successful experiment in the category.
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GreaterOrEqual 
F-Measure

B1 B2 B3 ESPI1 RF1 RF2 B4 B5 B6 ESPI2 RF3 RF4

0.0 58 58 58 58 58 58 93 93 93 93 93 93
0.1 21 19 23 33 47 51 22 25 36 43 83 83
0.2 16 18 23 31 45 47 22 23 34 40 77 77
0.3 14 18 22 29 41 45 20 22 34 37 74 75
0.4 14 16 22 29 40 43 19 22 30 36 68 70
0.5 14 14 22 28 37 41 19 22 29 31 63 63
0.6 13 14 22 26 36 39 16 20 27 27 54 58
0.7 12 13 21 24 34 37 15 17 26 22 45 47
0.8 11 12 19 21 32 36 13 13 26 20 38 41
0.9 8 12 18 17 26 31 7 12 15 17 25 28

Figure 3. Summary of classification method performance.

AppProtocol B1 B2 B3 ESPI1 RF1 RF2
Time [h] 1:01 1:08 1:13 0:50 2:41 13:21
tcp_pop3tlsssl 0.00 0.00 0.00 0.00 0.92 0.97
tcp_teamviewer 0.10 0.49 0.94 0.94 0.94 0.97
tcp_icslap 0.29 0.97 0.99 0.27 0.96 0.98
udp_spotify 0.99 0.99 1.00 0.15 0.99 0.99
tcp_netbiosss 0.00 0.00 1.00 0.97 0.99 0.99
udp_wsd 0.00 0.08 0.98 0.98 0.99 0.99
udp_mdns 0.00 0.00 0.91 0.92 1.00 0.99
udp_https 0.88 0.95 0.95 0.92 0.99 0.99
udp_dhcps 0.83 0.91 0.98 0.99 0.99 0.99
udp_teamviewer 0.00 0.00 0.00 0.66 0.93 0.99
udp_onlinegames 0.98 0.98 0.99 0.04 0.99 0.99
udp_stun 0.00 0.39 0.99 0.96 1.00 1.00
tcp_http 0.97 0.99 1.00 0.96 1.00 1.00
udp_dns 0.99 0.99 0.99 0.93 1.00 1.00
tcp_https 1.00 1.00 1.00 0.99 1.00 1.00
udp_ssdp 0.96 0.97 0.98 0.00 1.00 1.00
udp_llmnr 0.99 0.99 0.99 1.00 1.00 1.00
udp_natpmp 0.00 0.00 0.00 0.96 0.88 1.00
udp_netbiosdgm 0.98 0.98 0.95 0.94 1.00 1.00
udp_sapv1 0.00 0.00 0.00 0.75 1.00 1.00

Figure 4. Performance comparison of application protocol classifiers.

5. Conclusions
This research has focused on the important network forensics problem

of identifying network applications in addition to just application proto-
cols in network traffic flows. It has studied various aspects of applying
machine learning methods and the selection of features that character-
ize application behavior, such as message timing, content length and
TCP flags instead of features related to network line characteristics. An
automated feature elimination method based on the feature correlation
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AppProtocol B4 B5 B6 ESPI 2 RF3 RF4
Time [h] 0:53 1:03 2:00 1:11 20:13 23:20
tcp_smtptlsssl-thunderbirdexe 0.00 0.00 0.00 0.03 0.89 0.75
tcp_https-firefoxexe 0.88 0.93 0.91 0.41 0.71 0.77
tcp_https-svchostexe 0.00 0.00 0.00 0.00 0.71 0.77
tcp_http-steamwebhelperexe 0.00 0.00 0.38 0.52 0.72 0.79
tcp_icslap-system 0.00 0.00 0.00 0.00 0.70 0.81
tcp_https-onedriveexe 0.00 0.03 0.82 0.00 0.72 0.81
tcp_https-skypeexe 0.86 0.99 0.87 0.53 0.78 0.82
tcp_http-utorrentexe 0.01 0.11 0.32 0.01 0.84 0.83
tcp_http-teamviewer_serviceexe 0.00 0.00 0.00 0.87 0.88 0.86
tcp_skype-skypeexe 0.27 0.24 0.00 0.96 0.51 0.87
tcp_https-itunesexe 0.86 0.89 0.89 0.65 0.86 0.87
tcp_https-utorrentexe 0.00 0.00 0.00 0.00 0.92 0.89
tcp_dns-system 0.00 0.00 0.00 0.97 1.00 0.89
tcp_ssh-winscpexe 0.00 0.00 0.00 0.51 0.65 0.91
tcp_pop3tlsssl-thunderbirdexe 0.00 0.00 0.00 0.00 0.98 0.92
tcp_http-spotifyexe 0.93 0.91 0.93 0.90 0.93 0.93
tcp_tripe-spotifyexe 0.00 0.00 0.92 0.91 0.94 0.94
tcp_jabberssl-apsdaemonexe 0.00 0.72 0.81 0.91 0.94 0.95
tcp_jabber-pidginexe 0.00 0.00 0.00 0.97 0.94 0.97
tcp_netbiosss-system 0.00 0.00 0.90 0.44 0.98 0.99

Figure 5. Performance comparison of application classifiers.

matrix was employed to improve the classification results. Additionally,
this research has developed the enhanced statistical protocol identifica-
tion method, which was compared against the Bayesian network and
random forests classification methods from the literature that offer high
accuracy and acceptable performance.

The experimental results confirm that application protocols as well
as the applications that generate network traffic can be classified with
high confidence. For example, NetBIOS service and DNS were identi-
fied accurately and several common applications that use the HTTP(S)
application protocol were identified with high accuracy. Similarly, it
was possible to distinguish between communications traces of OneDrive,
Skype, iTunes, Spotify, Steam and μTorrent clients, although all of them
use the same application protocol (HTTPS).

The random forests classifier achieved the best results, confirming the
results obtained by other researchers [20, 30] who experimented with
machine learning approaches for traffic classification. The enhanced sta-
tistical protocol identification classifier yielded better results than the
Bayesian network classifier and was much faster than the Bayesian net-
work and random forests classifiers.
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Classification accuracy is mainly determined by the quality of the se-
lected features. This research has employed features based on previous
observations and intuition. Future research should focus on the system-
atic analysis and selection of feature sets that could improve classification
accuracy and robustness.

To improve the identification of applications that employ the same
application protocol (e.g., removing errors when tcp http skypeexe is
classified as tcp http firefoxexe, or vice-versa), future research should
focus on hierarchical classification methods. An example is hierarchical
clustering based on enhanced statistical protocol identification finger-
prints. A forensic investigator could then infer the actual application
classes by visual cluster analysis. This approach could also be extended
to other levels such as application message level.

Future research should also consider combining multiple classifiers [18]
to increase the confidence in the results. Research should also focus on
semi-supervised classification methods [8] that enable the creation of
models from partially-labeled data.

Finally, experiments should be conducted to extend the classification
models and evaluate the properties of other datasets. The classifica-
tion methods considered in this work require accurate models. Creating
such models requires the analysis of large numbers of traffic samples.
Experimenting with different datasets could provide more accurate clas-
sification models and valuable insights into the properties of individual
classification methods.

A reference implementation is available under an MIT license from
GitHub at pluskal.github.io/AppIdent. This includes the framework
for parsing captured data, extracting features and eliminating features,
along with the three classifiers described in this chapter and the stan-
dalone application that automated the experiments. The dataset is avail-
able at nes.fit.vutbr.cz/AppIdent to facilitate the reproducibility of
the experiments and to serve as a benchmarking platform for testing
other machine-learning-based application identification methods.
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