
HAL Id: hal-01954407
https://inria.hal.science/hal-01954407

Submitted on 13 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Private yet Efficient Decision Tree Evaluation
Marc Joye, Fariborz Salehi

To cite this version:
Marc Joye, Fariborz Salehi. Private yet Efficient Decision Tree Evaluation. 32th IFIP Annual Confer-
ence on Data and Applications Security and Privacy (DBSec), Jul 2018, Bergamo, Italy. pp.243-259,
�10.1007/978-3-319-95729-6_16�. �hal-01954407�

https://inria.hal.science/hal-01954407
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Private yet Efficient Decision Tree Evaluation

Marc Joye1 and Fariborz Salehi2

1 NXP Semiconductors, San Jose, CA, USA
E-mail: marc.joye@nxp.com

2 California Institute of Technology, Pasadena, CA, USA
E-mail: fsalehi@caltech.edu

Abstract. Decision trees are a popular method for a variety of machine
learning tasks. A typical application scenario involves a client providing
a vector of features and a service provider (server) running a trained
decision-tree model on the client’s vector. Both inputs need to be kept
private. In this work, we present efficient protocols for privately evaluating
decision trees. Our design reduces the complexity of existing solutions
with a more interactive setting, which improves the total number of
comparisons to evaluate the decision tree. It crucially uses oblivious
transfer protocols and leverages their amortized overhead. Furthermore,
and of independent interest, we improve by roughly a factor of two the
DGK comparison protocol.

Keywords: Data mining; privacy; integer comparison; decision trees.

1 Introduction

Machine learning techniques are currently widely used for many real-world ap-
plications. These applications range from spam detection [1], face and pattern
recognition [21,25], to the analysis of genome sequencing and financial mar-
kets [17,22]. Unfortunately, in many cases, data mining and privacy are perceived
to be at odds since the data mining algorithm requires access to the user’s
information in the clear. Privacy is especially relevant to applications handling
sensitive data. As an example, consider the case of a medical study to diagnose a
certain disease. In this scenario, medical profiles of patients are considered as
highly sensitive data and their usage has to be compliant with regulations [7]
such as Health Insurance Portability and Accountability Act (HIPAA).

An important class of machine learning algorithms is known as classification
where each datapoint belongs to a certain class. The goal is to generate a
model that can predict the class of a new datapoint. These models are useful in
applications that provide personalized services, such as recommender systems [29],
credit scoring models [35], automatic medical assessments [4], etc.

In this paper, we address the problem of privacy-preserving classification.
We focus on commonly used classifiers: decision trees. Decision trees are simple
classifiers that consist of a collection of decision nodes in a tree structure. A
classical example is the twenty-question game where one player has in mind some



object and another player tries to guess the object with no more than 20 yes-or-no
questions. Decision trees are non-linear models for classification, yet they are
easy to interpret since their evaluation simply corresponds to a tree traversal.

The secure evaluation of decision trees involves two parties. A server possesses
a decision-tree model and a client wishes to evaluate the model. This is a typical
setting in a cloud-based query system, where the service provider has a model
which was trained by integrating the data of thousands of users and the client
wants to learn the output of the model for her input data. An evaluation protocol
is said to be secure, when at the conclusion of the protocol execution, the
server cannot learn anything about the client’s data and the client cannot learn
additional information about the server’s model.

The output of a decision-tree model is computed by traversing the tree,
level by level. At each level, an entry of the client’s input is compared against
a fixed threshold and the result indicates how to traverse to the next level.
The comparison at each visited node has to be performed in a secure way,
otherwise there would be information leakage about the client’s input and/or the
server’s model. At the heart of our privacy-preserving decision-tree evaluation
lies an efficient protocol for the secure comparison of private values. It is worth
mentioning that comparison is an essential building block for developing many
other secure machine learning algorithms. These include clustering [8], support
vector machines (SVM) [32], matrix factorization [26], regression [27], and neural
networks [23]. Hence, the proposed comparison algorithms can improve the
performance of a wide range of applications.

Related work. Privacy-preserving data mining was introduced in [2,20,12]. These
works present different approaches to securely construct decision trees. Protocols
for the private evaluation of decision trees were subsequently developed in [5] and
more recently in [7,34,31]. In [7], Bost et al. express the decision tree as a polyno-
mial whose output is the result of the classification. Their representation requires
a small number of multiplications and is evaluated using a fully homomorphic
encryption scheme. Wu et al. [34] reduce the problem of decision-tree evaluation
to the oblivious transfer of a leaf node. Assuming a complete decision tree, they
hide its structure to the client by applying a random permutation. They so gain
an order of magnitude reduction in client computation and bandwidth. Tai et
al. [31] replace the evaluation step in [34] via linear functions. This leads to better
performance for sparse decision trees. Finally, we note that [34] and [31] also
introduce extended protocols that are made secure against malicious adversaries.

In [9,10,11], Damg̊ard, Geisler, and Krøigaard (DGK) present an elegant
two-party protocol for comparing private values. It was later modified in [13]
and [33], and adapted in [7,34]. It relies on additively homomorphic encryption.
The DGK protocol and its variants are dominated by exponentiations in the group
underlying the homomorphic encryption scheme. Those are costly operations.
Another drawback in the DGK protocol is the communication cost. The former
issue was addressed by Veugen in [33]. The author was able to divide the compu-
tational workload by approximately a factor of two, on average. Unfortunately,
the resulting implementation is subject to timing attacks [16].



Our contributions. We devise privacy-preserving comparison protocols that
reduce by roughly a factor of two both the computational complexity and the
necessary bandwidth. Furthermore, unlike [33], provided proper implementation
the proposed protocols are made resistant against timing attacks.

Another contribution of this work is a new protocol for evaluating a decision
tree model. We borrow from [34] the astute idea of hiding the indexes of the
comparison nodes using a random permutation at each level of the tree. However,
we reduce the number of comparisons with a more interactive setting. Doing so,
we also take advantage of the amortized complexity of efficient OT protocols.
The works of [34] and [31] require a comparison for every internal node. In our
setting, a single comparison per level is required. For a decision tree of depth d,
this amounts to a total of d comparisons. This has to be compared with the m
comparisons in [31,34], where m� d is the number of internal nodes.

Paper outline. The rest of the paper is organized as follows. The next section
introduces some cryptographic tools. Sections 3 and 4 are the core of the paper.
They present a new design for evaluating decision trees in a privacy-preserving
fashion, making use of an enhanced comparison protocol. The security and
performance are discussed in Section 5. Finally, Section 6 concludes the paper.

2 Cryptographic Tools

2.1 Additively homomorphic encryption

An additively homomorphic encryption scheme [30] consists of a tuple of four
algorithms (KeyGen,Enc,Dec,AddH). On input a security parameter κ, the key
generation algorithm KeyGen returns a matching pair (pk , sk) of public key and
secret key. Let M denote the message space. The encryption algorithm Enc is
a randomized algorithm that takes as input pk and a plaintext m ∈ M, and
returns a ciphertext c. Given a valid ciphertext c, the decryption algorithm Dec,
using sk , returns the corresponding plaintext m.

For homomorphic encryption, the message space M is modeled as a finite
ring. Additional public-key algorithm AddH operates on ciphertexts. It takes as
input the encryption of two messages m,m′ ∈ M and returns an encryption
of m + m′. When the public key is clear from the context, it is customary to
write an encryption of m as JmK in lieu of Encpk (m). We then use the ‘boxplus’
operator (�) to denote the addition of two ciphertexts. Hence, an encryption of
m+m′ is obtained as Jm+m′K = JmK�Jm′K. Likewise, for a known constant d, the
encryption of d ·m can be obtained from the encryption of m as Jd ·mK = d · JmK;
i.e., as

∑d
i=1JmK = JmK� JmK · · ·� JmK (d times). Finally, we write JmK� Jm′K

for JmK� J−m′K = Jm−m′K.

2.2 Oblivious transfer

Oblivious transfer (OT) [28,14] is a two-party protocol between a chooser and a
sender. On a 1-out-of-N OT, the sender has a set of N t-bit strings {σ0, σ1, . . . ,



σN−1}. The chooser selects an index j ∈ {0, 1, . . . , N − 1} and exactly obtains
from the sender the string σj in an oblivious way (i.e., the sender does not
know the value of j). Oblivious transfer protocols can be constructed from many
cryptographic assumptions. Efficient implementations are provided in [24,3]; see
also Appendix A.

3 Private Comparison of Integers

In this section, we introduce our enhanced design for the secure comparison of t-bit
values based on additively homomorphic encryption. To make the presentation
easier to follow, we describe it in stages. We start with a basic protocol which is
not secure when some prior information is known. We then extend it to get full
security regardless of the inputs.

3.1 Basic protocol

The setting is as follows. Each party possesses a private t-bit value: Party A
(Alice) has x =

∑t−1
i=0 xi 2i while party B (Bob) has y =

∑t−1
i=0 yi 2i. The goal for

parties A and B is to respectively obtain at the conclusion of the protocol bits
δA and δB such that δA⊕ δB = 1{x 6 y}. Neither party can learn anything more
about the other party’s input.

We depict in Fig. 1 the protocol by describing the different steps performed by
the two parties. Party B is equipped with an additively homomorphic public-key
encryption scheme. We let JmK denote the encryption of a message m ∈M under
B’s public key; see Sect. 2.1. The message space M is assumed to be a finite
integral domain and to satisfy #M > t+ 1.

Remark 1. In Step 3 (Fig. 1), note that given JyiK, A can obtain Jxi⊕ yiK as JyiK
if xi = 0, and as J1K� JyiK if xi = 1.

To show the correctness of the protocol, it is useful to introduce some notation.
For a t-bit integer a =

∑t−1
i=0 ai 2i with ai ∈ {0, 1}, we let a denote the complement

of a; i.e., a = 2t − a − 1. In particular, for t = 1, a = a0 and a = a0 = 1 − a0.
With this notation, we can reformulate an observation made in [9, Section 3].

Proposition 1. Let x =
∑t−1
i=0 xi 2i and y =

∑t−1
i=0 yi 2i, with xi, yi ∈ {0, 1}, be

two t-bit integers. Define{
c−1 =

∑t−1
j=0(xj ⊕ yj) ,

ci = xi + yi +
∑t−1
j=i+1(xj ⊕ yj) for 0 6 i 6 t− 1 .

Then x < y if and only if there exists some unique index i with 0 6 i 6 t− 1 such
that ci = 0. Moreover, x = y if and only if c−1 = 0 and ci = 1 for 0 6 i 6 t− 1.

Proof. As defined, ci is the sum of nonnegative terms. Therefore, for 0 6 i 6 t−1,
ci = 0 is equivalent to (i) xi = yi = 0 and (ii) for i+ 1 6 j 6 t− 1, xj ⊕ yj = 0.



Fig. 1. Basic comparison protocol.

1. Party B encrypts the bits of y =
∑t−1
i=0 yi 2i under his public key and sends

JyiK, 0 6 i 6 t− 1, to A.
2. Party A computes the Hamming weight of x (i.e., the number of nonzero

bits of x). Let h denote the Hamming weight of x. There are three cases to
consider:
(a) if h > bt/2c, A sets δA = 0;
(b) if h < dt/2e, A sets δA = 1;
(c) if h = t/2 (this can only occur when t is even), A chooses a random value

in {0, 1} for δA.
3. Next, party A forms a set L of indexes i such that

(a) L ⊇ L ′ where L ′ =
{

0 6 i 6 t− 1 | xi = δA
}

; and
(b) #L = bt/2c.
For each i ∈ L , A draws at random a non-zero element ri ∈M and computes

Jc∗i K = ri ·
(
J1 + (1− 2δA)xiK�

(
(2δA − 1) · JyiK

)
�
(∑t−1

j=i+1Jxj ⊕ yjK
))

.

Finally, she computes

Jc∗−1K = r−1 ·
(
JδAK�

∑t−1
j=0Jxj ⊕ yjK

)
for a random non-zero element r−1 ∈M. Party A sends the bt/2c+ 1 cipher-
texts Jc∗i K in a random order to B.

4. Using his private key, party B decrypts the received Jc∗i K’s. If one is decrypted
to zero, B sets δB = 1. Otherwise, he sets δB = 0.

This in turn is equivalent to (i) xi < yi and (ii) for i + 1 6 j 6 t − 1, xj = yj ;
that is, x < y. To see that index i such that ci = 0 is unique, suppose that ci′ = 0
for some i′ 6= i. Without loss of generality, assume that i′ < i. This leads to
ci′ = xi′ + yi′ +

∑t−1
j=i′+1(xj ⊕ yj) > xi ⊕ yi = 1, a contradiction.

The second part of the proposition is clear. If
∑t−1
j=0 xj 2j =

∑t−1
j=0 yj 2j then

c−1 = 0 and ci = 1 for i > 0. ut

By reversing the roles of x and y in Proposition 1, we get as an immediate
corollary the following proposition.

Proposition 2. Let x =
∑t−1
i=0 xi 2i and y =

∑t−1
i=0 yi 2i, with xi, yi ∈ {0, 1}, be

two t-bit integers. For 0 6 i 6 t− 1, define

ci = yi + xi +
∑t−1
j=i+1(yj ⊕ xj) .

Then x 6 y if and only if there exists no index i with 0 6 i 6 t − 1 such that
ci = 0.

Proof. If there were such an index i, this would imply y < x by Proposition 1.
The absence of such an index therefore implies y > x. ut



We are now ready to show that the protocol must terminate with the correct
result. Following [33], depending on the value of h (see Step 2 in Fig. 1), we
distinguish three cases.

1. Suppose first that the Hamming weight of x is greater than bt/2c (and
thus δA = 0). This means that x has more ones than zeros in its binary
representation. Specifically, among the t bits of x, at most bt/2c bits are
equal to 0. Furthermore, for 0 6 i 6 t− 1, Proposition 1 shows that ci needs
only to be evaluated when xi = 0 since when xi = 1 we already know that
the corresponding ci cannot be zero. The case x = y is taken into account
using c−1.

2. Now suppose that the Hamming weight of x is less than dt/2e (and thus
δA = 1). In this case, among the t bits of x, at most bt/2c bits are equal to 1.
We can then make use of Proposition 2. With at most bt/2c tests for ci = 0
(i.e., when xi = 1), we can decide whether x 6 y.

3. The last case is when the Hamming weight of x is t/2 (and thus δA is
equiprobably equal to 0 or 1). This supposes t even. In this case, among the
t bits of x, t/2 bits are equal to 0 and t/2 bits are equal to 1. Proposition 1
or Proposition 2 can be used indifferently to decide after at most t/2 = bt/2c
tests for ci = 0 whether x 6 y.

The above analysis shows that (i) only the indexes i ∈ L ′ need to be tested,
and (ii) #L ′ 6 bt/2c. If #L ′ < bt/2c then additional indexes are added to
L ′ to form L . This ensures that #L is always equal to bt/2c and is aimed at
preventing timing attacks. Now the correctness follows by noting that the Jc∗i K’s
include the encryptions of ri · ci for all i ∈ L ′. It is also important to see that
Jc∗−1K is the encryption of a non-zero value when δB = 1.

By construction, δB = 1 if one of the Jc∗i K’s decrypts to 0.

– When δA = 0, Proposition 1 is used. A decryption to 0 means x 6 y. We
therefore have 1{x 6 y} = 1 = δA ⊕ δB , as desired.

– When δA = 1, Proposition 2 is used and a decryption to 0 means x 
 y.
Then, 1{x 6 y} = 0 = δA ⊕ δB , as desired.

If none of the Jc∗i K’s decrypts to 0 then δB = 0. When δA = 0, this means x 
 y;
when δA = 1, this means x 6 y. In both cases, we have 1{x 6 y} = δA ⊕ δB , as
desired.

3.2 Full protocol

The basic protocol needs special care. In particular, it requires that the Hamming
weight of x a priori has the same probability to be greater than bt/2c or less
than dt/2e. This guarantees that δA is uniformly distributed over {0, 1}. Indeed,
if party B knows for example that the Hamming weight of x is more likely less
than dt/2e (and thus δA is more likely equal to 1), a value δB = 0 tells party B
that x is more likely less than or equal to y since δA ⊕ δB = 1{x 6 y}.

We modify our basic protocol so that it remains secure when party B has
some prior knowledge on the Hamming weight of x. The resulting distribution of



δA will always be uniform over {0, 1}, independently of the value of x. The full
protocol is detailed in Fig. 2.

Fig. 2. Full comparison protocol.

1. (a) Party B generates a random mask η ∈ Z2t , forms y∗ = y + η mod 2t and
Y ∗ = b y+η

2t
c, and sends y∗ to A.

(b) Likewise, party A generates a random t-bit integer x′ ∈ Z2t , computes

z∗ = y∗ + x′ − x mod 2t and Z∗ = b y
∗+x′−x

2t
c, and sends z∗ to B.

(c) Party B removes the mask and defines the t-bit integer y′ = z∗−η mod 2t.

B also defines Y ′ = b z
∗−η
2t
c.

2. Parties A and B apply the basic comparison protocol (Fig. 1) on t-bit integers
x′ and y′.
Let δ′A and δ′B denote the respective outputs for A and B of the protocol,
with δ′A ⊕ δ′B = 1{x′ 6 y′}.

3. Party A sets δA = δ′A if Z∗ is even, and δA = δ′A ⊕ 1 otherwise.
4. Party B sets δB = δ′B if (Y ∗ + Y ′) is even, and δB = δ′B ⊕ 1 otherwise.

It is worth remarking that x′ as defined in Step 1b (Fig. 2) is a random t-bit
integer. There is therefore no way for party B to gain more information on its
Hamming weight.

The correctness of the protocol is easily verified. By definition, we have
y∗ = y+ η− 2tY ∗, z∗ = y∗+x′−x− 2tZ∗, and y′ = z∗− η−Y ′2t. This leads to

δA ⊕ δB = 1{x 6 y} =
⌊
y+2t−x

2t

⌋
=
⌊
y′+2t−x′

2t

⌋
+ Y ∗ + Y ′ + Z∗

= (δ′A ⊕ δ′B) + Y ∗ + Y ′ + Z∗ .

Reducing the above relation modulo 2 yields δA + δB ≡ δ′A + δ′B + Y ∗ + Y ′ + Z∗

(mod 2), a solution of which is δA = δ′A+Z∗ mod 2 and δB = δ′B+Y ∗+Y ′ mod 2.

3.3 Further settings

Encrypted comparison bit. Let δ denote the comparison bit; i.e., δ = 1{x 6 y}.
In certain settings, a party wishes to produce an encryption of δ at the end of
the protocol, rather than a share δA of δ (the other share, δB, being held by
the other party). In this case, we can add the following step to our comparison
protocols:

5. Party B encrypts δB using his public key and sends JδBK to A. Upon receiv-
ing JδBK, party A computes the encryption of δ as JδK = JδBK if δA = 0, and
JδK = J1K� JδBK otherwise.



Encrypted inputs. There exists another practical setting for the comparison of
private inputs. Suppose that one party possesses JxK and JyK, the encryption of

two t-bit values x =
∑t−1
i=0 xi 2i and y =

∑t−1
i=0 yi 2i. The other party possesses

the corresponding decryption key. Our protocols easily generalize to cover this
setting as well. An example is given in Sect. 4.2.

Other frameworks. The technique we employed is fairly generic and can be
adapted to increase the efficiency of other bit-wise comparison protocols, including
the protocol in [18].

4 Application: Private Evaluation of Decision Trees

Secure comparison protocols find numerous practical applications. We apply the
results of the previous section to the private evaluation of decision trees. As the
values being compared will be random, our basic protocol (Fig. 1) suffices.

4.1 Problem setup

There are two parties involved: a client and a server. The client has a private
feature vector x = (x1, x2, . . . , xn) ∈ Zn and the server possesses a decision tree
model T : Zn → Z. At the end of protocol, the client obtains the value zr := T(x)
and learns nothing else; the server learns nothing.

In a binary tree, each internal node ν
(`)
k (with 0 6 k 6 `) at level ` in the

tree is associated with a Boolean function

f
(`)
k (x) = 1

{
x
i
(`)
k

6 T (`)
k

}
, (1)

where i
(`)
k is an index in the feature vector x ∈ Zn, and T

(`)
k is a threshold.

The depth of the tree (i.e., the longest path from the root to a leaf) is denoted
by d. The number of internal nodes is denoted by m. Without loss of generality,
we assume that T is a complete binary decision tree; that is, a binary decision
tree with exactly 2` nodes at each level `. We note that it is easy to derive a
complete binary decision tree by introducing dummy internal nodes and assigning

an arbitrary value in {0, 1} for the corresponding Boolean function f
(`)
k (x) . This

is illustrated in the figure below on a decision tree of depth d = 2.

ν
(0)
0

ν
(1)
0

z0 z1

z2

ν
(0)
0

ν
(1)
0

z0 z1

ν
(1)
1

z2 z2

Fig. 3. Transforming a binary decision tree into a complete binary decision tree.



4.2 From public to private evaluation

On input x, the evaluation of a decision tree starts at the root node. At each

level `, depending on the result of f
(`)
k (x), either the left branch (for 0) or the

right branch (for 1) is taken. The process is repeated until a leaf node is reached.
The output of T(x) is zr, the value of the so-obtained leaf node.

Public evaluation. When the feature vector x and the decision tree T are available
in the clear, the decision tree can be evaluated by performing d comparisons. Let
β` ∈ {0, 1} denote the result of the decision (0 or 1) at level `, for ` = 0, 1, . . . , d−1.
It turns out that{

β0 = f
(0)
0 (x)

β` = f
(`)
(β0,...,β`−1)2

(x) for ` = 1, . . . , d− 1
. (2)

Consequently, the index r of the corresponding leaf node can be expressed as
r = (β0, β1, . . . , βd−1)2 =

∑d−1
`=0 β` 2d−1−`, where (β0, β1, . . . , βd−1)2 represents

the binary expansion of r.

Example 1. Figure 4 depicts an example of a binary decision tree with 4 levels.
In this example, the index r of the output, zr, is given by r = (β0, β1, β2, β3)2 =
(0, 1, 0, 1)2 = 5.

ν
(0)
0

ν
(1)
0

ν
(2)
0

ν
(3)
0

z0 z1

ν
(3)
1

z2 z3

ν
(2)
1

ν
(3)
2

z4 z5

ν
(3)
3

z6 z7

ν
(1)
1

ν
(2)
2

ν
(3)
4

z8 z9

ν
(3)
5

z10 z11

ν
(2)
3

ν
(3)
6

z12 z13

ν
(3)
7

z14 z15

0

1

0

1

Fig. 4. Evaluation of a decision tree.

Private evaluation. In the private setting, the server knows the model T (including

i
(`)
k and T

(`)
k , for 0 6 ` 6 d− 1) while the client knows x = (x1, . . . , xn).

– For ` = 0, we have β0 = 1
{
x
i
(0)
0
6 T

(0)
0

}
. However, the private comparison

protocols of Sect. 3 do not directly apply because the value of i
(0)
0 is unknown

to the client. This issue is resolved by providing the server with JJxiKK, for
1 6 i 6 n. Here, JJxiKK denotes an encryption3 of xi under the public-key of the

3 We use triple brackets rather than double brackets to indicate that the encryption
scheme may be different from the one used for the comparisons.



client. The encryption scheme is supposed being additively homomorphic with
message space M such that #M > 2t+κ for a certain security parameter κ.
Using the techniques developed in the previous section, the client and server
can now engage in a two-party protocol to secret-share the decision bit
β0 = b0 ⊕ b′0 —where the server holds b0 and the client holds b′0. Details are
provided in Step 2 of Fig. 6.

– For ` = 1, . . . , d−1, Equations (1) and (2) become β` = 1
{
x
i
(`)

k?
6 T (`)

k?

}
with

k? := k?(`) = (β0, . . . , β`−1)2. In particular, for ` = 1, we obtain

β1 = 1
{
x
i
(1)

k?
6 T (1)

k?

}
with k? = β0 =

{
b′0 if b0 = 0

b′0 ⊕ 1 otherwise
.

Specifically, if b0 = 0, the server knows that the client possesses the correct
result of the comparison; i.e., b′0 = β0. If b0 = 1, the server knows that the
client possesses the flipped result. To maintain the consistency, the server
uses a copied version T∗ of the initial tree. If b0 = 1, the server updates
T∗ by switching the left subtree and the right subtree at level ` = 1. What
is important to observe here is that k? coincides with b′0 in T∗. Hence, the

client can obtain
qq
x
i
(1)

k?
− T (1)

k? + µ1

yy
—and in turn x

i
(1)

k?
− T (1)

k? + µ1 after

decryption— from the server, where µ1 is a mask chosen by the server to hide

the value of x
i
(1)

k?
− T (1)

k? . Next, the client and server engage in a two-party

protocol to secret-share the decision bit β1 = b1 ⊕ b′1. To prevent the server

to learn the index k?,
qq
x
i
(1)

k?
− T (1)

k? + µ1

yy
is obtained via oblivious transfer.

Again, refer to Step 2 in Fig. 6 for details.
The same process is iterated for ` = 2, . . . , d− 1. Each time b` = 1, the server
switches all subtrees of T∗ at level ` and calls T∗ the so-obtained tree.

– At this stage the client knows (b′0, . . . , b
′
d−1)2, which is the index of the leaf

node containing the result in the permuted tree T∗. The client engages in a
1-out-of-2d OT with the server and thereby learns zr.

Example 2 (Example 1 cont’d). Suppose that the server successively obtains
b0 = 1, b1 = 0, b2 = 1, and b3 = 1. For ` = 1, . . . , 3: if b` = 1 the subtrees at
level ` are switched. This is illustrated in Fig. 5. The bottom picture is the final
permuted tree T∗.

Our decision-tree evaluation protocol is given in Figure 6. The permuted
tree T∗ is represented at level ` > 1 by the string σ(`) = (b0, . . . , b`−1)2; T∗ = T
for ` = 0. Step 2d in Fig. 6 outputs shares of the decision at level `. It is worth
noting that a single execution of the comparison protocol is run per level.

Proposition 3. With the notation of Fig. 6, for 0 6 ` 6 d− 1, the server and
the client secret-share the decision bit at each level; i.e.,

b` ⊕ b′` = β` = 1

{
x
i
(`)

k?
6 T (`)

k?

}
where k? = σ(`) ⊕ j .



ν
(0)
0

ν
(1)
0

ν
(2)
0

ν
(3)
0

z0 z1

ν
(3)
1

z2 z3

ν
(2)
1

ν
(3)
2

z4 z5

ν
(3)
3

z6 z7

ν
(1)
1

ν
(2)
2

ν
(3)
4

z8 z9

ν
(3)
5

z10 z11

ν
(2)
3

ν
(3)
6

z12 z13

ν
(3)
7

z14 z15

ν
(0)
0

ν
(1)
1

ν
(2)
2

ν
(3)
5

z11 z10

ν
(3)
4

z9 z8

ν
(2)
3

ν
(3)
7

z15 z14

ν
(3)
6

z13 z12

ν
(1)
0

ν
(2)
0

ν
(3)
1

z3 z2

ν
(3)
0

z1 z0

ν
(2)
1

ν
(3)
3

z7 z6

ν
(3)
2

z5 z4

Fig. 5. Public vs. private evaluation of a decision tree.

Proof. From m′` = M ′` − bM ′`/2tc2t and m` = µ` − bµ`/2tc2t, we can write

δ` ⊕ δ′` = 1{m′` 6 m`} =
⌊m`+2t−m′`

2t

⌋
=
⌊µ`+2t−M ′`

2t

⌋
−
⌊
µ`
2t

⌋
−
⌊M ′`

2t

⌋
.

Furthermore, defining s = σ(`)⊕ j, we have M ′` = M
(`)
j = x

i
(`)
s
−T (`)

s +µ`. Hence,
we get ⌊µ`+2t−M ′`

2t

⌋
=
⌊T (`)

s −xi(`)s
+2t

2t

⌋
= 1

{
x
i
(`)
s
6 T (`)

s

}
.

Putting the two relations together, modulo 2, yields

1
{
x
i
(`)
s
6 T (`)

s

}
≡ δ` + δ′` +

⌊
µ`
2t

⌋
+
⌊M ′`

2t

⌋
(mod 2) .

This concludes the proof by noting that s = k?, b` = δ` + bµ`/2tc (mod 2), and
b′` ≡ δ′` + bM ′`/2tc (mod 2). ut

As a result, the client learns the classification result T(x) at the end of the
protocol in Fig. 6.

5 Discussion

5.1 Security considerations

The decision tree evaluation protocol presented in Fig. 6 is secure in the semi-
honest model, a.k.a. honest-but-curious model. It assumes two semantically secure



Fig. 6. Secure decision tree evaluation protocol.

1. The client encrypts the entries of the feature vector x = (x1, x2, . . . , xn) and
sends JJxiKK, for 1 6 i 6 n, to the server.

2. For ` = 0, . . . , d− 1:
(a) The server chooses a random (t + κ)-bit mask µ`. It also defines m` =

µ` mod 2t and

σ(`) =

{
0 if ` = 0

(b0, . . . , b`−1)2 otherwise
.

For k = 0, . . . , 2` − 1:
i. The server sets s← k ⊕ σ(`).

ii. The server computesa JJM (`)
k KK =

qq
x
i
(`)
s
− T (`)

s + µ`
yy

.

(b) The client sets j ← (b′0, . . . , b
′
`−1)2 and engages in a 1-out-of-2` OT with

the server to obtain the value of JJM (`)
j KK.

(c) The client decrypts JJM (`)
j KK, gets M

(`)
j , and defines M ′` = M

(`)
j and

m′` = M
(`)
j mod 2t.

(d) Client and server run the basic comparison protocol (Fig. 1) on inputs m′`
and m`. At the end of the protocol, they respectively obtain a bit δ′` and
δ` such that δ` ⊕ δ′` = 1{m′` 6 m`}. The server sets b` = δ` if bµ`/2tc is
even, and b` = δ` ⊕ 1 otherwise. The client sets b′` = δ′` if bM ′`/2tc is even,
and b′` = δ′` ⊕ 1 otherwise.

3. For k = 0, . . . , 2d−1, the server sets z∗k ← zk⊕σ(d) where σ(d) = (b0, . . . , bd−1)2.

The client sets j ← (b′0, . . . , b
′
d−1)2 and engages in a 1-out-of-2d OT with the

server to obtain the value of z∗j .

a For dummy nodes, the server can instead draw a random ciphertext for JJM (`)
k KK.

additively homomorphic encryption schemes, J·K and JJ·KK, and a semi-honest
secure 1-out-of-N OT protocol. Informally, if the parties interact according to
the protocol specification, the semi-honest model guarantees that (i) the client
only learns the classification result and a bound d on the depth of the decision
tree, and (ii) the server learns nothing.

The security is defined via the ideal-world/real-world simulation paradigm;
see e.g. the excellent tutorial provided in [19, Chapter 6]. The security proof
of our main construction is standard. We refer the reader to [34, Sect. 2.3] for
precise security definitions and to [34, Theorem 3.2] for the proof technique.

Selecting parameter κ. Step 2a in Fig. 6 requires a random mask µ` to blind the

value of x
i
(`)
k⊕σ(`)

− T (`)

k⊕σ(`) in

M
(`)
k = x

i
(`)
k⊕σ(`)

− T (`)

k⊕σ(`) + µ` ,



for k = 0, . . . , 2` − 1. In Step 2c, as the output of the 1-out-2` OT, the client

obtains M ′` = M
(`)
j for a single value j ∈ [0, . . . , 2` − 1]. This justifies that the

same mask µ` can be re-used at level `, for each successive value of k.
Moreover, when the message space M for JJ·KK is much larger than the set

{0, 1}t, since x
i
(`)
k⊕σ(`)

and T
(`)

k⊕σ(`) are t-bit values, there is no need to draw the

mask µ` in the whole range of M. Any (t + κ)-bit value for a relatively short

security length κ will generate a mask that statistically hides x
i
(`)
k⊕σ(`)

− T (`)

k⊕σ(`) .

When the message space M = Z2t (like in [6]), µ` and M ′` are defined
modulo 2t as elements in Z2t (and thus bµ`/2tc = bM ′`/2tc = 0). Parameter κ
will be in this case set to 0.

5.2 Performance analysis

We compare the proposed evaluation protocol with the two most recent protocols,
Wu et al. (PETS 2016) and Tai et al. (ESORICS 2017), in the semi-honest setting.

Let T be a binary decision tree of depth d with m [non-dummy] internal
nodes (i.e., decision nodes). Let also n be the number of entries in the feature
vector; each entry being represented as a t-bit integer. Both the computation and
bandwidth are analyzed. For the computation complexity, we count the number
of public-key operations performed by each of the parties. For the bandwidth,
we count the number of ciphertexts sent by one party to the other.

Table 1. Comparison.

Bandwidth Computation

Client Server Client Server

Wu et al. [34] nt+m+ 1 mt+m+ 2d O((n+m)t+ d) O(mt+ 2d)
Tai et al. [31] nt+m mt+ 2(m+ 1) O((n+m)t) O(mt)

Ours (Fig. 6) d(bt/2c+ 2) + n dt+ 2d+1 − 1 O(n+ dt) O(m+ dt)

In our protocol, the client first encrypts the feature vector. This requires O(n)
public-key operations and produces n ciphertexts. Next, in the main loop, at each
level ` (for 0 6 ` 6 d− 1), the client mainly performs two steps with the server:
(1) one 1-out-of-2` OT where the client is the chooser and (2) one comparison of
two t-bit integers. We assume that the OT is implemented with the Naor-Pinkas
protocol (see Appendix A) and that the comparison makes use of our comparison
protocol (Fig. 1). So, on the client’s side, the OT requires in total for the main
loop O(d) public-key operations and d− 1 ciphertexts; the comparison requires
in total O(dt) public-key operations and d(bt/2c+ 1) ciphertexts. The last step
is a 1-out-of-2d OT, which requires O(1) public-key operation and one ciphertext.
Summing up, the total complexity for the client amounts to O(n + dt) with
n+ d− 1 + d(bt/2c+ 1) + 1 = d(bt/2c+ 2) + n ciphertexts. On the server’s side,



the server processes in addition m encryptions (Step 2a in Fig. 6) to form JJM (`)
k KK

for the non-dummy nodes. This corresponds to a complexity of O(m). The OT in
the main loop requires in total O(d) public-key operations and 2d− 1 ciphertexts.
The comparison requires O(dt) public-key operations and dt ciphertexts (we
suppose here that the server plays the role of Party B; cf. Fig. 1). The last
step for the final OT incurs for the server O(1) public-key operation and 2d

ciphertexts. Consequently, the total complexity for the server is of O(m + dt)
and the needed bandwidth is of 2d − 1 + dt+ 2d = dt+ 2d+1 − 1 ciphertexts.

A typical value for the precision is t = 64. As shown in Table 1, since
d� m, the proposed protocol greatly reduces the workload on both the client’s
and server’s sides. The bandwidth usage is also improved on the client’s side
with our protocol. On the server’s side, the savings depend on the tree sparsity.
Denser decision trees give rise to more savings; for a complete binary tree (i.e.,
m = 2d − 1), our protocol saves (2d − d)t ciphertexts on the server’s side.

5.3 Random forests

As in [34], our main construction extend to the evaluation of random forests.
Introduced by Ho [15], the random forest improves the quality of the classification
task by combining the results of a multitude of decision trees. A random forest F
can be defined as an ensemble of decision trees, F = {Ti}i. Its output is computed
by taking the majority vote; i.e., F(x) = maj{Ti(x)}i.

6 Conclusion and Future Work

In this work, we introduced an enhanced comparison protocol and several ex-
tensions thereof. As an application, combined with a novel design strategy and
a number of optimizations, we developed an efficient protocol for the private
evaluation of decision trees.

Future work. An interesting direction for future work is to design a privacy-
preserving evaluation protocol in the multi-user setting, wherein the feature
vector and/or the model are shared among multiple entities. Another interesting
direction is to extend the protocol to make it secure against malicious adversaries.

References

1. Abu-Nimeh, S., Nappa, D., Wang, X., Nair, S.: A comparison of machine learning
techniques for phishing detection. In: 2nd Annual eCrime Researchers Summit. pp.
60–69. ACM (2007), doi:10.1145/1299015.1299021

2. Agrawal, R., Shrikant, R.: Privacy-preserving data mining. ACM SIGMOD Record
29(2), 439–450 (Jun 2000), doi:10.1145/335191.335438

3. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
extensions. J. Cryptol. 30(3), 805–858 (2017), doi:10.1007/s00145-016-9236-6

http://dx.doi.org/10.1145/1299015.1299021
http://dx.doi.org/10.1145/335191.335438
http://dx.doi.org/10.1007/s00145-016-9236-6


4. Azar, A.T., El-Metwally, S.M.: Decision tree classifiers for automated medical
diagnosis. Neural Computing & Applications 23(7-8), 2387–2403 (2013), doi:10.
1007/s00521-012-1196-7

5. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.R., Schneider, T.:
Secure evaluation of private linear branching programs with medical applications.
In: Computer Security – ESORICS 2009. LNCS, vol. 5789, pp. 424–439. Springer
(2009), doi:10.1007/978-3-642-04444-1_26

6. Benhamouda, F., Herranz, J., Joye, M., Libert, B.: Efficient cryptosystems from
2k-th power residue symbols. J. Cryptol. 30(2), 519–549 (2017), doi:10.1007/
s00145-016-9229-5

7. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: 22nd Annual Network and Distributed System Security Sympo-
sium (NDSS 2015). The Internet Society (2015), doi:10.14722/ndss.2015.23241

8. Bunn, P., Ostrovsky, R.: Secure two-party k-means clustering. In: 14th ACM
Conference on Computer and Communications Security (CCS 2007). pp. 486–497.
ACM (2007), doi:10.1145/1315245.1315306

9. Damg̊ard, I., Geisler, M., Krøigaard, M.: Efficient and secure comparison for on-line
auctions. In: Information Security and Privacy (ACISP 2007). LNCS, vol. 4586, pp.
416–430. Springer (2007), doi:10.1007/978-3-540-73458-1_30

10. Damg̊ard, I., Geisler, M., Krøigaard, M.: Homomorphic encryption and secure
comparison. Int. J. Appl. Cryptography 1(1), 22–31 (2008), doi:10.1504/IJACT.
2008.017048

11. Damg̊ard, I., Geisler, M., Krøigaard, M.: A correction to ‘Efficient and secure
comparison for on-line auctions’. Int. J. Appl. Cryptography 1(4), 323–324 (2009),
doi:10.1504/IJACT.2009.028031

12. Du, W., Zhan, Z.: Building decision tree classifier on private data. In: IEEE
Workshop on Privacy, Security, and Data Mining. Conferences in Research and
Practice in Information Technology, vol. 14. Australian Computer Society (2002),
http://crpit.com/confpapers/CRPITV14Du.pdf

13. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.: Privacy-
preserving face recognition. In: Privacy Enhancing Technologies (PETS 2009). LNCS,
vol. 5672, pp. 235–253. Springer (2009), doi:10.1007/978-3-642-03168-7_14

14. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985), doi:10.1145/3812.3818

15. Ho, T.K.: The random subspace method for constructing decision forests. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998),
doi:10.1109/34.709601

16. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Advances in Cryptology – CRYPTO ’96. LNCS, vol. 1109,
pp. 104–113. Springer (1996), doi:10.1007/3-540-68697-5_9

17. Libbrecht, M.W., Noble, W.S.: Machine learning applications in genetics and
genomics. Nature Reviews Genetics 16(6), 321–332 (2015), doi:10.1038/nrg3920

18. Lin, H.Y., Tzeng, W.G.: An efficient solution to the millionaires’ problem based on
homomorphic encryption. In: Applied Cryptography and Network Security (ACNS
2005). LNCS, vol. 3531, pp. 456–466. Springer (2005), doi:10.1007/11496137_31

19. Lindell, Y. (ed.): Tutorials on the Foundations of Cryptography. Information
Security and Cryptography, Springer (2017), doi:10.1007/978-3-319-57048-8

20. Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Cryptol. 15(3), 177–206
(2002), doi:10.1007/s00145-001-0019-2

http://dx.doi.org/10.1007/s00521-012-1196-7
http://dx.doi.org/10.1007/s00521-012-1196-7
http://dx.doi.org/10.1007/978-3-642-04444-1_26
http://dx.doi.org/10.1007/s00145-016-9229-5
http://dx.doi.org/10.1007/s00145-016-9229-5
http://dx.doi.org/10.14722/ndss.2015.23241
http://dx.doi.org/10.1145/1315245.1315306
http://dx.doi.org/10.1007/978-3-540-73458-1_30
http://dx.doi.org/10.1504/IJACT.2008.017048
http://dx.doi.org/10.1504/IJACT.2008.017048
http://dx.doi.org/10.1504/IJACT.2009.028031
http://crpit.com/confpapers/CRPITV14Du.pdf
http://dx.doi.org/10.1007/978-3-642-03168-7_14
http://dx.doi.org/10.1145/3812.3818
http://dx.doi.org/10.1109/34.709601
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1038/nrg3920
http://dx.doi.org/10.1007/11496137_31
http://dx.doi.org/10.1007/978-3-319-57048-8
http://dx.doi.org/10.1007/s00145-001-0019-2


21. Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced Fisher
linear discriminant model for face recognition. IEEE Trans. Image Processing 11(4),
467–476 (2002), doi:10.1109/TIP.2002.999679

22. Min, J.H., Lee, Y.C.: Bankruptcy prediction using support vector machine with
optimal choice of kernel function parameters. Expert Systems with Applications
28(4), 603–614 (2005), doi:10.1016/j.eswa.2004.12.008

23. Mohassel, P., Zhang, Y.: SecureML: A system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy. pp. 19–38.
IEEE (2017), doi:10.1109/SP.2017.12

24. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: 12th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2001). pp. 448–457. ACM/SIAM
(2001), https://dl.acm.org/citation.cfm?id=365411.365502

25. Nasrabadi, N.M.: Pattern recognition and machine learning. J. Electronic Imaging
16(4), 049901 (2007), doi:10.1117/1.2819119

26. Nikolaenko, V., Ioannidis, S., Weinsberg, U., Joye, M., Taft, N., Boneh, D.:
Privacy-preserving matrix factorization. In: 20th ACM Conference on Com-
puter and Communications Security (CCS 2013). pp. 801–812. ACM (2013),
doi:10.1145/2508859.2516751

27. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-
preserving ridge regression on hundreds of millions of records. In: 2013 IEEE
Symposium on Security and Privacy. pp. 334–348. IEEE (2013), doi:10.1109/SP.
2013.30

28. Rabin, M.O.: How to exchange secrets by oblivious transfer. Tech. Rep. TR-81,
Harvard University (1981), https://ia.cr/2005/187

29. Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58
(1997), doi:10.1145/245108.245121

30. Rivest, R.L., Adleman, L., Dertouzous, M.L.: On data banks and pri-
vacy homomorphisms. In: Foundations of Secure Computation, pp. 169–
179. Academic Press (1978), https://people.csail.mit.edu/rivest/

RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf

31. Tai, R.K.H., Ma, J.P.K., Zhao, Y., Chow, S.S.M.: Privacy-preserving decision trees
evaluation via linear functions. In: Computer Security – ESORICS 2017, Part II.
LNCS, vol. 10493, pp. 494–512. Springer (2017), doi:10.1007/978-3-319-66399-9

32. Vaidya, J., Yu, H., Jiang, X.: Privacy-preserving SVM classification. Knowledge
and Information Systems 14(2), 161–178 (2008), doi:10.1007/s10115-007-0073-7

33. Veugen, T.: Improving the DGK comparison protocol. In: 2012 IEEE International
Workshop on Information Forensics and Security (WIFS 2012). pp. 49–54. IEEE
(2012), doi:10.1109/WIFS.2012.6412624

34. Wu, D.J., Feng, T., Naehrig, M., Lauter, K.: Privately evaluating decision trees and
random forests. Proceedings on Privacy Enhancing Technologies 2016(4), 335–355
(2016), doi:10.1515/popets-2016-0043

35. Yap, B.W., Ong, S.H., Husain, N.H.M.: Using data mining to improve assessment
of credit worthiness via credit scoring models. Expert Systems with Applications
38(10), 13274–13283 (2011), doi:10.1016/j.eswa.2011.04.147

A Naor-Pinkas OT Protocol

Let G = 〈g〉 be a group of order q, in which the Diffie-Hellman assumption holds.
Let also a cryptographic hash function H mapping to {0, 1}t, modeled as a random

http://dx.doi.org/10.1109/TIP.2002.999679
http://dx.doi.org/10.1016/j.eswa.2004.12.008
http://dx.doi.org/10.1109/SP.2017.12
https://dl.acm.org/citation.cfm?id=365411.365502
http://dx.doi.org/10.1117/1.2819119
http://dx.doi.org/10.1145/2508859.2516751
http://dx.doi.org/10.1109/SP.2013.30
http://dx.doi.org/10.1109/SP.2013.30
https://ia.cr/2005/187
http://dx.doi.org/10.1145/245108.245121
https://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf
https://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf
http://dx.doi.org/10.1007/978-3-319-66399-9
http://dx.doi.org/10.1007/s10115-007-0073-7
http://dx.doi.org/10.1109/WIFS.2012.6412624
http://dx.doi.org/10.1515/popets-2016-0043
http://dx.doi.org/10.1016/j.eswa.2011.04.147


oracle. The sender selects at random K1, . . . ,KN−1 ∈ G and computes y = gx

for some random integer x ∈ Zq. The sender’s public key is (g, y,K1, . . . ,KN−1)
and the secret key is x. The sender pre-computes Si = (Ki)

x for 1 6 i 6 N − 1.
The sender’s input is a set of N bit-strings σ0, . . . , σN−1 ∈ {0, 1}t. Suppose a

chooser (Carol) wishes to get string σj for some j ∈ {0, . . . , N−1}. The amortized
1-out-of-N Naor-Pinkas OT protocol [24, § 3.1] proceeds as follows.

1. The chooser draws a random integer r ∈ Zq and computes pk j = gr. If j 6= 0,
she sets pk0 = Kj/pk j . She sends pk0 to the sender.

2. The sender computes (pk0)x and then, for 1 6 i 6 N − 1, sets (pk i)
x as

(pk i)
x = Si/(pk0)x. Next, he chooses a nonce R and encrypts each string σi

as ci = H
(
(pk i)

x, R, i
)
⊕σi, for 0 6 i 6 N − 1. He sends (c0, . . . , cN−1, R) to

the chooser.
3. The chooser recovers σj as cj ⊕H(yr, R, j).

Interestingly, the protocol can be re-used multiple times. After the one-time
initialization phase, each transfer only costs a single exponentiation (in G) plus
N − 1 multiplications for the sender. The chooser essentially computes one
exponentiation per transfer.


	Private yet Efficient Decision Tree Evaluation

