
HAL Id: hal-01852635
https://inria.hal.science/hal-01852635

Submitted on 2 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Generic Web Cache Infrastructure for the Provision
of Multifarious Environmental Data

Thorsten Schlachter, Eric Braun, Clemens Düpmeier, Christian Schmitt,
Wolfgang Schillinger

To cite this version:
Thorsten Schlachter, Eric Braun, Clemens Düpmeier, Christian Schmitt, Wolfgang Schillinger. A
Generic Web Cache Infrastructure for the Provision of Multifarious Environmental Data. 12th Inter-
national Symposium on Environmental Software Systems (ISESS), May 2017, Zadar, Croatia. pp.360-
371, �10.1007/978-3-319-89935-0_30�. �hal-01852635�

https://inria.hal.science/hal-01852635
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

ISESS 2017 – A Generic Web Cache Infrastructure for the Provision of Multifarious Environmental Data

A Generic Web Cache Infrastructure for the
Provision of Multifarious Environmental Data

Thorsten Schlachter1, Eric Braun1, Clemens Düpmeier1,
Christian Schmitt1, Wolfgang Schillinger2

1Karlsruhe Institute of Technology, Karlsruhe, Germany
thorsten.schlachter@kit.edu | clemens.duepmeier@kit.edu |

eric.braun2@kit.edu | christian.schmitt@kit.edu
2Baden-Wuerttemberg State Institute for Environment, Measurements,

and Nature Conservation, Karlsruhe, Germany
wolfgang.schillinger@lubw.bwl.de

Abstract. As a basis for the efficient data supply for web portals, web-based
and mobile applications of several German environmental authorities, a micro-
service-based infrastructure is being used. It consists of a generic data model
and a series of corresponding generic services, e.g. for the provision of master
data, metrics, spatial data, digital assets, metadata, and links between them. The
main objectives are the efficient provision of data as well as the use of the same
data by a wide range of applications. In addition, the used technologies and ser-
vices should enable data supply as open (government) data or as linked data in
the sense of the Semantic Web. In a first version, these services are used exclu-
sively for read access to the data. For this purpose, the data are usually extract-
ed from their original systems, possibly processed and then stored redundantly
in powerful backend systems (“Web Cache”). Generic microservices provide
uniform REST interfaces to access the data. Each service can use different
backend systems connected via adapters. In this way, consuming components
such as frontend modules in a Web portal can transparently access various
backend systems via stable interfaces, which can therefore be selected optimally
for each application. A number of tools and workflows ensure the updating and
consistency of the data in the Web Cache. Microservices and backend systems
are operated on the basis of container virtualization using flexible cloud infra-
structures.

Keywords: Environmental information systems, Generic data model, Master
data, Time series, Spatial data, Semantics, Schema, Microservices, REST, Web
portals, Mobile apps, Container-based virtualization, Cloud computing, Open
government data, Linked data, Semantic Web.

1 Introduction

A direct consequence of the Aarhus Convention was the adoption of the EU directive
2003/4/EG [1]. This directive, respectively its implementation into national law, e.g.
the Environmental Information Act in Germany [2], regulates access to environmental

mailto:clemens.duepmeier@kit.edu
mailto:eric.braun2@kit.edu@
mailto:wolfgang.schillinger@lubw.bwl.de

information for the public. Authorities are obliged to the active dissemination of envi-
ronmental information [2, §7]. The Internet provides a perfect platform for this pur-
pose. Therefore, a lot of environmental information, as well as (raw) data in the sense
of open (government) data [3], are already made available using Internet based appli-
cations, e.g. websites, portals, mobile applications [4].

Nevertheless, even today, 15 years after the Aarhus Convention entered into force,
much environmental information are not yet or only partially available online. The
reasons are manifold and correspond with the challenges of providing open govern-
ment data [4, pp. 30-39]: political, technical, legal, organizational, cultural, and eco-
nomic reasons are hindering the free dissemination of environmental information. The
majority of these barriers cannot be broken down technically, but modern technolo-
gies can help in reducing them.

In some cases, however, long-term processes must lead to a rethinking and rerout-
ing of people and institutions in politics and administration. With the concept of a
Web Cache presented in this paper, we want to give an impulse how more environ-
mental information can be made accessible to a wider public by addressing at least
some of the inhibitory causes.

2 Idea and Basic Concepts

Starting point of our considerations is that environmental information is made availa-
ble through central entry points such as Web portals and mobile applications. Most of
these applications ultimately use data that have been arisen in the daily work of envi-
ronmental agencies. Mostly the primary purpose of this (original) data is not infor-
mation for the public, which leads to the problems and challenges listed above. For
example, environmental information include personal data, are subject to licenses,
consist of large amounts of information, require appropriate user rights, are stored in
special data formats, are not accessible via the Internet, are incomprehensible to lay
people, aren’t available around the clock, etc.
Our basic idea is to provide "Internet-enabled" copies1 of the original data on a "Web
Cache" (Figure 1). The information is being extracted automatically from the original
systems (data sources), e.g. professional databases and specialist applications, then
being processed (data ingestion) and provided in redundant systems (data manage-
ment). The avoidance of direct access to original data sources allows for better avail-
ability and usage-based scaling of services (data services and data management), and
offers security benefits by strict separation of internal and external/public requests.
Data flow is designed unidirectional from data sources to the Web Cache. So the Web
Cache represents a read-only copy of the data. Consistency or coherence conditions
are set for each data type and any data source influencing the nature and frequency of
synchronization between data source and Web Cache.
Limited to mainly unidirectional data flows, the Web Cache application is ideally
suited to be implemented as a horizontally scalable microservice-based framework. In

1 An excerpt of the original data meeting all the conditions for publication on the Internet.

general, however, the framework provides the full range of functionality for data
management, i.e. functions for adding, updating and deleting data are also available
(known as CRUD for create, read, update, delete), also including mechanisms for
authentication and authorization, which do not apply for the Web Cache, which ex-
clusively contains public data and does not have any access restrictions for reading.

Fig. 1. Web Cache architecture at a glance

3 Architecture and Components

In order to keep efforts of setting up the Web Cache on an acceptable level, it is an
essential objective of the project to provide the entire information by means of a lim-
ited number of generic services which have to be able to handle a large variety of data
semantics. For this purpose, a small set of generic data services and their functionality
have been defined allowing the storage of multifarious kinds of data as well as addi-
tional semantic metadata in order to provide applications with strongly typed data
where necessary. Depending on the application, in addition to newly developed ser-
vices the use of cloud services off the shelf is eligible2.
For the implementation of environmental portals, e.g. the LUPO environmental portal
family [6], a total of 8 generic services has been identified:

• Master Data Service
• Schema Service
• Time Series Service
• (Media and) Digital Asset Service
• (Full Text) Search Service

2 Since they may not meet all future requirements, such standard cloud services are rather

regarded as interim solutions.

• Geo Data Service
• Metadata Service
• Link Service

These 8 core services are supplemented by two additional services supporting config-
uration management of (and therefore rather belonging to) consuming applications:

• Application Configuration Service
• Data Discovery Service

These services are described in more detail in section 5.
In a microservice-oriented architecture all services should be independently de-

ployable and usable, and only being coupled loosely. This requirement corresponds to
the term “functional decomposition” being used for microservices [7]. Therefore,
each data service provides functionality for managing one single generic type of data.

Packed in runtime containers such as Docker3, the services can be operated without
any additional effort on a variety of possible infrastructures, like dedicated servers,
clusters, or in the cloud [8]. Using runtime infrastructures like Kubernetes4, opera-
tional aspects such as (rolling) updates, monitoring, horizontal scalability and load
balancing are just a matter of configuration – assumed an appropriate computing in-
frastructure and software design.

All services use suitable backend systems, which in particular ensure the persis-
tence of the data. Here, again, the architecture is abstracted from concrete systems, so
that backend systems can easily be replaced by others, or different backend systems
can be used simultaneously. The selection of suitable backend systems, e.g. various
NoSQL technologies, also ensures dynamic properties such as load balancing, scala-
bility, etc. at this level. All services provide their functionality through versioned
RESTful interfaces via content negotiation [9]. This facilitates the development,
maintenance, and replacement of individual services.

The postulated independence of services must not lead to a loss of possible func-
tionality, for example by a lack of inter-service interaction. For this purpose, a micro-
service-based architecture provides a messaging infrastructure (channels) for loose
asynchronous coupling of services. However, unlike Gartner's microservice architec-
ture [10], in applications similar to the Web Cache the functionality of the messaging
layer "below" the microservices may be delegated to the data ingestion phase and/or
to consuming applications using an event bus [11], a simplification, which is suffi-
cient for a wide range of given use cases with unidirectional data flow.

4 Generic Data Model

The services mentioned in section 3 are the basic elements of a well-considered ge-
neric data model resulting from a use case analysis in different application domains

3 https://www.docker.com
4 http://kubernetes.io

beyond the environmental field. However, we do not claim it to be completely univer-
sal. Although the model implements generic data types, it compensates the loss of a
strong (relational) schema by using additional semantic services which add missing
semantics back into the service-oriented data management infrastructure (like it is
done for the Semantic Web). One main advantage of the external provision of seman-
tic information by means of dedicated services is that schema information is not hard-
coded anymore, so it can easily be shared between applications.

The core data type of the generic data model is the master data object. A master da-
ta object may be a digital model of any entity (of the application-relevant part) of the
real world, e.g. a nature protection area, a measuring station, a wind turbine, or a legal
document. Each master data object is described by a set of structured properties iden-
tifiable by a certain key attribute. This structure can be formalized in a data schema.
Objects of the same type use the same schema and belong to the same class of objects
(master data). This classification step is of great importance as it directly assigns par-
ticular semantics to classes and the respective objects. Relationships between master
data objects (or between master data types) can be expressed in various ways, e.g. a
composition within a schema (an object consisting of sub-objects), or by the explicit
provision of a certain relation between two objects. In general, relations can be typed,
directed or undirected, and may have properties as well.

A number of master data types need special consideration. Environmental monitor-
ing often consists of measured values, e.g. time series describing the concentration of
ozone on a certain location or the performance of a wind turbine over time. In addi-
tion, most environmental objects do have a spatial reference, i.e. (at a certain time)
they are located at a specific place in the world and may have specific geometry. The
generic data model takes this into account and therefore provides generic data types
(and respective services) for time series and spatial data. Digital assets can also be
viewed as a special case. Just like other "real world objects", they are usually assigned
properties (metadata). In addition, however, the concrete digital object may be pro-
vided as well, e.g. as image file, HTML snippet, PDF document or audio/video
stream. The generic data types mentioned thus form the basis for specialized services,
which offer specific access (service interfaces) to the respective data type.

5 Data Services

The services are divided into data services, which form the core of the framework,
and supplementary services, which focus on the support of consuming applications.
For the Web Cache, the following sections only describe the core data services. Fur-
ther services, e.g. Link Service and Data Discovery Service, are described in the con-
ference paper by Eric Braun et al. [12].

5.1 Master Data Service and Schema Service

Almost all real-world objects have properties which can be expressed in a correspond-
ing data model. In general, this is not only static or structured data, but there are also

dynamic or unstructured parts, e.g. objects can contain components which can be
regarded as independent objects, too (subobjects or compositions).
The Master Data Service considered here represents a simplification in comparison to
such a general master data model since it essentially stores static and structured data.
Other properties, in particular dynamic parts, compositions and relationships, are
stored by means of references which can refer to both master data and various data
types from other services.

Fig. 2. Example of master data using a composition (measurement series as sub-objects of air
measurement station) and references to actual measurement values in the time series service

shown as UML-like diagram and JSON schema

For example, the master data of an air measurement station (id, name, location,
references to multiple measurement series, etc.) are stored in the Master Data Service
(Fig. 2). A measurement series is also stored in the Master Data Service (id, sub-
stance, unit, accuracy, references to the measured values, etc.), while the actual meas-

ured values are stored in the Time Series Service. The reference type “timeSeries”
defines a custom data type not shown here (timeSeries ~ array of measurement).

The Master Data Service primarily provides a service facade, which guarantees a
uniform and stable interface to applications. The actual persistent storage of the data
takes place in different backend systems, which are each connected to the Master
Data Service via adapters. This allows the connection and exchange of various
backend systems (e.g. relational or NoSQL databases, search engines) depending on
the specific requirements or applications.

In order to store and provide different data types using a generic service, a struc-
tural as well as a semantic description of the data is required. The descriptions of all
data types are provided via a Schema Service. Since data types can change over time,
schemas have to be versioned. Schemas do not only refer to the data types used in the
Master Data Service, but also to the contents of all data services within the frame-
work. Services and consuming applications may use these schemas, e.g. to validate
incoming data or to use the structure when visualizing the data. The Schema Service
and its implementation based on JSON schema5 are described in more detail in [12].

Using schemas, the Master Data Service and other services may resolve references,
i.e. replace references by the corresponding data, or provide references as
URLs/HTTP URIs 6 . Using server-side communication via message channels, the
former can lead to a considerable performance gain and possibly reduce complexity in
the client or the consuming application.

On the code base of the Master Data Service, specialized content-specific variants
can be set up, e.g. a service for storing and providing metadata. Another possible use
is described as "Application Configuration Service" below.

5.2 Time Series Service

Since the corresponding master data is already stored in the Master Data Service, the
Time Series Service simply stores the actual measured values (time stamp and value
per measurement). This again corresponds to the paradigm of the single responsibility
per microservice7. In the sense of this single responsibility, the Time Series Service,
with the aid of the underlying specialized time series databases, is capable of perform-
ing specific, time series-related tasks, e.g. filtering of data, data aggregation or unit
transformations.

5.3 Geo Data Service

The Geo Data Service is used to store and provide spatial data. In many cases, these
data correspond to master data, whereby one or more attributes describe the position
and/or the geometry of the objects. Therefore, depending on the application, e.g. if no

5 http://json-schema.org
6 The use of HTTP URIs as references between objects applies to the core ideas of Linked Data.
7 As known from Unix as “Do one thing and do it well.”

complex spatial operations are required, it is possible to provide spatial data exclu-
sively via the Master Data Service, e.g. using the GeoJSON format.

However, if specific spatial operations or special data formats are required, the
provision of the data on the spatial data service is useful and necessary.

Since the requirements for the Geo Data Service are still fully supported by a
(Cloud-based) solution off the shelf (CARTO8), the implementation of this service is
currently postponed. For some applications, data is stored redundantly in both the Geo
Data Service and the Master Data Service and synchronized automatically.

5.4 Digital Asset Service

Digital assets have the special characteristic that in addition to the descriptive proper-
ties (depending on the context called master data or metadata), the object itself can be
accessed as binary data stream. Depending on the application, sometimes a link
(HTTP URI) on the original asset may be sufficient, in other cases the provision of a
copy may be useful or necessary.

Although the range of types of digital assets, their formats, and use cases is signifi-
cant, the service just considers them as binary data with a certain format (MIME type)
and different properties. In other words, the Digital Assets Service generally does not
look into the digital assets. If necessary e.g. the Search Service can be used for that.

A digital asset may exist in several variants and/or formats, e.g. images may be
available in different resolutions, or a text document either in MS Word or PDF for-
mat. According to the mechanisms of content negotiation the client application usual-
ly determines required format.

The Digital Asset Service can be connected to different backend systems via
adapters, e.g. document management systems providing a CMIS 9 interface. Using
suitable backend systems, streaming services (e.g. for videos) can be applied as digital
assets, too.

5.5 Search Service

The last actual data service presented here is the Search Service. It provides index
information related to unstructured data, often in the form of text documents. To be
more specific, it provides access to full-text indexes, which usually provide relevant
excerpts (snippets) from as well as references on the entire document.

The Search Service serves as a uniform interface for connecting various full-text
search engines, again connected using adapters. The Search Service can also be used
in conjunction with the Digital Asset Service, e.g. if an application needs to search the
actual content of a document in addition to its metadata.

However, the Search Service can also provide structured data, e.g. when structured
and unstructured search results have to be presented in a single view, or when the
search engine provides structured information for a facetted search.

8 https://carto.com
9 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cmis

The use of the Search Service also simplifies the replacement of a search engine
product, usually by creation of an additional adapter. Many search engines can be
connected via the existing OpenSearch 10 adapter, and web catalogues using the
CSW11 interface.

5.6 Application Configuration Service

The Application Configuration Service allows applications to store structured infor-
mation. The service focusses on the reuse of information beyond application bounda-
ries, e.g. complex visualization configurations, map configurations (a map as a compi-
lation of several specific layers), or cross-system settings for individual users.

Technically the Application Configuration Service shares most of its code with the
Master Data Service, but there exist some specific extensions, e.g. relaxations with
regard to the use of schemas, extended multi-tenant capabilities, vastly limited access,
and the use of special service-accounts for authentication and authorization.

6 Technologies

The diversity of services directly implies the use of different technologies for data
management, e.g. geographic information systems, different types of NoSQL data-
bases, time series databases, document management systems, full-text search engines,
structured search engines, etc. to match the specific requirements of each case. Ser-
vices can implement facades accessing underlying (Cloud) services, such as Google
Cloud SQL, Bigtable, DataStore, storage, etc.

In addition, tools for data ingestion are required, for example Apache Flume12,
Logstash13 or FME14. These tools are essential to ensure the necessary degree of au-
tomation for the management of large and diverse data sets, and to be able to control
workflows easily and transparently. In addition, they already offer many prefabricated
interfaces for the processing of standard data formats, or for adding further interfaces
by configuration or by programming of small additional modules.

All services are implemented as microservices based on Java using the "Spring
Boot" framework15, are packaged in Docker containers, and operated on a Kubernetes
infrastructure in the Cloud (Google Container Engine). Development instances run on
dedicated servers and on a (local) computer cluster, also based on Kubernetes.

Table 1 gives a brief overview of the data services, used frameworks for imple-
mentation and runtime environment, and a selection of connectable backend systems.

10 http://www.opensearch.org/Home
11 http://www.opengeospatial.org/standards/cat
12 https://flume.apache.org
13 https://www.elastic.co/products/logstash
14 http://www.safe.com
15 http://projects.spring.io/spring-boot/

Service Implementation and
Runtime Environment

Persistence Layer

Master Data Service Spring Boot,
Docker, Kubernetes

Elasticsearch16
MongoDB17
Google Cloud SQL18

Master Data Service
(Interim version)

Google App Engine Google Cloud SQL

Schema Service Spring Boot,
Docker, Kubernetes

Elasticsearch,
MongoDB

Time Series Service Spring Boot,
Docker, Kubernetes

OpenTSDB19
InfluxDB20
Elasticsearch

Geo Data Service CARTO (Cloud) CARTO
Digital Asset Service
experimental

Spring Boot
Docker, Kubernetes

Alfresco21 (CMIS-
Interface)

Search Service Spring Boot,
Docker, Kubernetes

Google Search Appli-
ance22
Elasticsearch
OpenSearch (Atom)

Application Configuration
Service experimental

Spring Boot,
Docker, Kubernetes

Elasticsearch
MongoDB

Link Service
experimental

Spring Boot,
Docker, Kubernetes

neo4j23

Table 1. Services, their underlying frameworks, and backend systems

7 Experiences

The Web Cache has gradually grown and the presented architecture is in operation
since the beginning of 2016. Some precursors of individual services were based on
other technologies (Servlets, Google App Engine). With the general idea of the mi-
croservice-based architecture in mind during their development, those services could
be refactored to "real" microservices.

Experiences in development and operation are very positive. Because of the inde-
pendence and loose coupling of services a gradual start-up was possible. The devel-

16 https://www.elastic.co/de/products/elasticsearch
17 https://www.mongodb.com
18 https://cloud.google.com/sql/
19 http://opentsdb.net
20 https://www.influxdata.com
21 https://www.alfresco.com
22 https://enterprise.google.com/search/products/gsa.html
23 https://neo4j.com

opment of individual services is straightforward and requires relatively short periods
of time.

Nowadays, significantly more data are available for more applications than ever
before. Data that previously haven’t been available, or have been hidden in business
applications, now can be used in many ways, for example, by other special applica-
tions, websites, portals and mobile apps. Rising requirements in operation, for exam-
ple a growing number of accesses, can easily be scaled out on the fly using the hori-
zontal scaling capabilities of the container virtualization infrastructure. The use of
container technologies allows a greater independence in the selection of infrastructure
operators. Also, the relocation of single or several services is easily possible.

Within consuming applications the use of a generic family of services enables the
implementation and reuse of generic, highly configurable frontend components. This
additionally simplifies the work of online editors and increases the recognition value
for users.

Existing generic services are suitable for many new applications and use cases,
usually implemented just by configuration.

By abstracting the (versioned) interfaces (REST APIs) from the underlying internal
modules, components or even whole services can be exchanged transparently for
consuming applications, depending on the infrastructure even without interrupting
operations.

For the synchronization of data sources and services, a high level of automation is
possible.

The Web Cache has some positive side effects: With the help of its generic ser-
vices, it is possible to combine data from different sources, or to create comprehen-
sive views on (disjoint) databases, e.g. from different federal states.

Drawbacks can be seen as opportunities, depending on the approach. The funda-
mental problem of redundancy (dual operation and redundant data storage with the
corresponding additional expenses) generates operational flexibility, and facilitates
the provision of "Internet-enabled" data. The necessity of concepts for legal issues,
operations, consistency, data schemas and formats, provides opportunities to clarify
issues, responsibilities and the (re-)definition of (operational) processes.

Although the provision of data for a wide range of users creates transparency, it al-
so reveals poor data quality in some cases.

8 Conclusion and Outlook

The Web Cache concept presented in this paper defines a complete architecture for
the dissemination of environmental information. The keystone of this architecture is
the provision of multifarious types of data by a limited number of generic micro-
services. Consistent implementation of these services with (versioned) RESTful APIs,
and use of container virtualization offer the greatest possible degree of flexibility in
the (further) development and operation. In contrast to the development of monolithic
applications, individual services or data containers can be provided very quickly. This

leads to a gradual improvement of the consuming applications, allowing the "release
early, release often" philosophy in the development of modern (mobile) applications.

The development of individual services is not yet completed. Existing APIs have to
be partly replaced by new, unified, and more powerful versions. This entails a better
automatic processing of data, with the aim of being able to provide information ac-
cording to the ideas of the Semantic Web [12], e.g. using relevant standard formats
such as RDF. This also includes, for example, information on provenance of data as
well as usage and exploitation rights.

Currently, only freely accessible data is stored in the Web Cache. In order to pro-
vide data with limited access via the Web Cache the existing mechanisms for authen-
tication and authorization have to be instrumented.

References

1. European Union: “Directive 2003/4/EG” (2003)
http://eur-lex.europa.eu/legal-content/DE/ALL/?uri=CELEX:32003L0004

2. Bundesrepublik Deutschland: “Umweltinformationsgesetz” (2004)
https://www.bgbl.de/xaver/bgbl/start.xav?jumpTo=bgbl104s3704.pdf

3. Ubaldi, Barbara: “Open Government Data - Towards Empirical Analysis of Open Gov-
ernment Data Initiatives”; OECD Working Papers on Public Governance, No. 22, OECD
Publishing 2013; ISSN 1993-435; DOI: 10.1787/5k46bj4f03s7-en;
http://www.oecd-ilibrary.org/governance/open-government-data_5k46bj4f03s7-en

4. Schlachter, Thorsten et al.: “My Environment - A Dashboard for Environmental Infor-
mation on Mobile Devices”; Environmental Software Systems. Fostering Information
Sharing - 10th IFIP WG 5.11 International Symposium, ISESS 2013, Neusiedl am See,
Austria, October 9-11, 2013; pp.196-203; DOI: 10.1007/978-3-642-41151-9_19

5. Wikipedia: “Web Cache” https://en.wikipedia.org/wiki/Web_cache; visited August 29th,
2016

6. Schlachter, Thorsten et al.: “LUPO Umsetzung einer (micro-)serviceorientierten Architek-
tur (SOA) für Landesumweltportale”; in: Weissenbach, K.; Schillinger, W.; Weidemann,
R. (Edts.) “F+E-Vorhaben INOVUM - Innovative Umweltinformationssysteme - Phase I
2014/2016“; KIT Scientific Reports 7715; 2016; pp. 25-38

7. Fowler, Martin; Lewis, James: “Microservices – definition of this new architectural term”;
http://martinfowler.com/articles/microservices.html; visited August, 31st 2016

8. Cohen, Uri: “Containers, microservices, and orchestrating the whole symphony”; open-
source.com; https://opensource.com/business/14/12/containers-microservices-and-
orchestrating-whole-symphony; visited August, 31st 2016

9. Seemann, Mark: “REST implies Content Negotiation”;
http://blog.ploeh.dk/2015/06/22/rest-implies-content-negotiation/; visited August, 31st
2016

10. Olliffe, Gary: “Microservices : Building Services with the Guts on the Outside”; Gartner
Blog Network; http://blogs.gartner.com/gary-olliffe/2015/01/30/microservices-guts-on-
the-outside/; visited August, 31st 2016

11. Schlachter, Thorsten et al.: “LUPO Umsetzung einer (micro-)serviceorientierten Architek-
tur (SOA) für Landesumweltportale”; in: Weissenbach, K.; Schillinger, W.; Weidemann,
R. (Edts.) „F+E-Vorhaben INOVUM - Innovative Umweltinformationssysteme - Phase I
2014/2016“; KIT Scientific Reports 7715; 2016; pp. 25-38o

http://eur-lex.europa.eu/legal-content/DE/ALL/?uri=CELEX:32003L0004

12. Braun, Eric at al.: “A Generic Microservice Architecture for Environmental Data Man-
agement”; submitted to ISESS 2017

	1 Introduction
	2 Idea and Basic Concepts
	3 Architecture and Components
	4 Generic Data Model
	5 Data Services
	5.1 Master Data Service and Schema Service
	5.2 Time Series Service
	5.3 Geo Data Service
	5.4 Digital Asset Service
	5.5 Search Service
	5.6 Application Configuration Service

	6 Technologies
	7 Experiences
	8 Conclusion and Outlook
	References

