
HAL Id: hal-01824813
https://inria.hal.science/hal-01824813

Submitted on 27 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Modest Security Analysis of Cyber-Physical Systems:
A Case Study

Ruggero Lanotte, Massimo Merro, Andrei Munteanu

To cite this version:
Ruggero Lanotte, Massimo Merro, Andrei Munteanu. A Modest Security Analysis of Cyber-Physical
Systems: A Case Study. 38th International Conference on Formal Techniques for Distributed Objects,
Components, and Systems (FORTE), Jun 2018, Madrid, Spain. pp.58-78, �10.1007/978-3-319-92612-
4_4�. �hal-01824813�

https://inria.hal.science/hal-01824813
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Modest Security Analysis of Cyber-Physical
Systems: A Case Study

Ruggero Lanotte1, Massimo Merro2, and Andrei Munteanu2

1 Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, Como, Italy
ruggero.lanotte@uninsubria.it

2 Dipartimento di Informatica, Università degli Studi di Verona, Italy
{massimo.merro,andrei.munteanu}@univr.it

Abstract. Cyber-Physical Systems (CPSs) are integrations of network-
ing and distributed computing systems with physical processes. Although
the range of applications of CPSs include several critical domains, their
verification and validation often relies on simulation-test systems rather
then formal methodologies. In this paper, we use a recent version of the
expressive MODEST TOOLSET to implement a non-trivial engineering
application, and test its safety model checker prohver as a formal instru-
ment to statically detect a variety of cyber-physical attacks, i.e., attacks
targeting sensors and/or actuators, with potential physical consequences.
We then compare the effectiveness of the MODEST TOOLSET and its
safety model checker in verifying CPS security properties when compared
to other state-of-the-art model checkers.

1 Introduction

Cyber-Physical Systems (CPSs) are integrations of networking and distributed
computing systems with physical processes, where feedback loops allow the latter
to affect the computations of the former and vice versa. CPSs have three main
components: the physical plant, i.e., the physical process that is managed by
the CPS; the logics, i.e., controllers, intrusion detection systems (IDSs), and
supervisors that govern and control the physical process; the connecting network.

Historically, CPSs relied on proprietary technologies and were implemented
as stand-alone networks in physically protected locations. However, in recent
years the situation has changed considerably: commodity hardware, software
and communication technologies are used to enhance the connectivity of these
systems and improve their operation.

This evolution has triggered a dramatic increase in the number of attacks
to the security of cyber-physical and critical systems, e.g., manipulating sensor
readings and, in general, influencing physical processes to bring the system into a
state desired by the attacker. Some notorious examples are: (i) the Stuxnet worm,
which reprogrammed PLCs of nuclear centrifuges in Iran [7], (ii) the attack on
a sewage treatment facility in Queensland, Australia, which manipulated the
SCADA system to release raw sewage into local rivers [27], or the (iii) the recent
cyber-attack on the Ukrainian power grid, again through the SCADA system [15].

2 R. Lanotte et al.

Plant

wk

Logics

Actuators Sensors

ek
ua

k xk

uk ya
k

yk

Fig. 1. A threat model for CPSs

The common feature of the systems above is that they are all safety critical and
failures may cause catastrophic consequences. Thus, the concern for consequences
at the physical level puts CPS security apart from standard IT security, and
demands for ad hoc solutions to properly address such novel research challenges.

The physical plant of a CPS is often represented by means of a discrete-time
state-space model3 consisting of two difference equations of the form

xk+1 = Axk + Buk + wk

yk = Cxk + ek

where xk ∈ Rn is the current (physical) state, uk ∈ Rm is the input (i.e.,
the control actions implemented through actuators), wk ∈ Rn is the system
uncertainty, yk ∈ Rp is the output (i.e., the measurements from the sensors),
and ek ∈ Rp is the measurement error. A, B, and C are matrices modelling the
dynamics of the physical system.

Cyber-physical attacks typically tamper with both the physical (sensors and
actuators) and the cyber layer. In particular, cyber-physical attacks may affect
directly the sensor measurements or the controller commands (see Figure 1):
– Attacks on sensors consist of reading and possibly replacing the genuine

sensor measurements yk with fake measurements yak .
– Attacks on actuators consist of reading, dropping and possibly replacing

the genuine controller commands uk with malicious commands ua
k, affecting

directly the actions the actuators may execute.

One of the central problem in the safety verification of CPSs is the reachability
problem: can an unsafe state be reached by an execution of the system (possibly
under attack) starting from a given initial state? In general, the reachability
problem for hybrid systems (and hence CPSs) is stubbornly undecidable, although
boundaries of decidability have been extensively explored in the past couple of
decades [1, 14, 17, 30, 26]. Thus, despite the undecidability of the safety problem, a
number of formal verification tools for hybrid systems have been recently proposed,
based on approximation techniques to obtain an estimation of the set of reachable
states: SpaceEx [10], PHAVer [9] and SpaceEx AGAR [3], for linear/affine dynamics,
and HSolver [23], C2E2 [6] and FLOW∗ [5], for non-linear dynamics. Among these,
the hybrid solver PHAVer addresses the exact verification of safety properties
of hybrid systems with piecewise constant bounds on the derivatives, so-called
rectangular hybrid automata [14]. Affine dynamics are handled by on-the-fly
overapproximation and partitioning of the state space based on user-provided

3 See [31] for a taxonomy of the time-scale models used to represent CPSs.

A Modest Security Analysis of Cyber-Physical Systems 3

constraints and the dynamics of the system. To force termination and manage
the complexity of the computations, methods to conservatively limit the number
of bits and constraints are adopted.

Contribution. We implement in the MODEST TOOLSET [12], an integrated collec-
tion of tools for the design and the formal analysis of stochastic hybrid automata,
a simple but totally realistic and nuanced cyber-physical system. The exam-
ple has been proposed by Lanotte et al. [19] to highlight different classes of
attacks on sensors and actuators, in a way that is basically independent on
the size of the system. Our case study is implemented in the main modelling
language HMODEST [11], a process-algebra based language that has an expressive
programming language-like syntax to design complex systems.

The current version of the toolset comprises several analysis backends, in
particular it provides a safety model checker, called prohver, that relies on a
modified version of the hybrid solver PHAVer [9]. We use prohver to analyse
three simple but significative cyber-physical attacks targeting sensors and/or
actuators of our case study by compromising either the corresponding physical
device or the communication network used by the device. The three attacks
have already been carefully studied in [19] focussing on the time aspects of the
attacks (begin, duration, etc.) and the physical impact on the system under
attack (deadlock, unsafe behaviour, etc.). Here, we test the safety model checker
prohver as an automatic tool to get the same (or part of the) results that have
been manually proved in [19]. We then compare its effectiveness in verifying CPS
security properties, when compared to other state-of-the-art models checkers,
such as PRISM [16], UPPAAL [2] and Real-Time Maude [22].

Outline. In Section 2 we give a brief description of the MODEST TOOLSET. In
Sections 3 and 4 we first describe and then implement in HMODEST our case
study. In Section 5 we put under stress the safety model checker prohver for a
security analysis of our case study under three different cyber-physical attacks. In
Section 6 we draw conclusions, compare the expressivity of the MODEST TOOLSET

with respect to other model-checkers, and discuss related work in the context of
formal methods for CPS security.

2 The MODEST TOOLSET

The MODEST TOOLSET [4] has been originally proposed as an integrated collection
of tools for the design and the formal analysis of stochastic timed automata
(STA). More recently, it has been extended to add differential equations and
inclusions as an expressive way to model continuous system evolutions [11]. Thus,
the current version of the toolset [12] is now based on the rich semantic foundation
of networks of stochastic hybrid automata (SHA), i.e., sets of automata that run
asynchronously and can communicate via shared actions and global variables.

SHA combine three key modelling concepts:

4 R. Lanotte et al.

– Continuous dynamics to represent continuous processes, such as physical
laws or chemical reactions, the evolution of general continuous variables over
time can be described using differential (in)equations.

– Nondeterminism to model concurrency (via an interleaving semantics) or
the absence of knowledge over some choice, to abstract from details, or to
represent the influence of an unknown environment.

– Probability to model situations in which an outcome is uncertain but the
probabilities of the outcomes are known; these choices may be discrete
(“probabilistic”) or continuous (“stochastic”).
The current version of the MODEST TOOLSET comprises analysis backends

for model checking timed automata (mctau) and probabilistic timed automata
(mcpta), and for statistical model checking of stochastic timed automata (modes).
However, in this paper we focus on the safety model checker for SHA, called
prohver, that relies on a modified version of the hybrid solver PHAVer [9].

The main modelling language is HMODEST [11], a process-algebra based
language that has an expressive programming language-like syntax to design
complex models in a reasonably concise manner. Here, we provide a brief and
intuitive explanation of the main constructs.

A HMODEST specification consists of a sequence of declarations (constants,
variables, actions, and sub-processes) and a main process behaviour. The most
simple process behaviour is expressed by (prefixing) actions that may be used
for synchronising parallel components. The construct do serves to model loops,
i.e., unguarded iterations that can be exited via the special action break. There
is a construct par to launch two or more processes in parallel, according to
an interleaving semantics. The construct alt models nondeterministic choice.
The invariant construct serves to control the evolution of continuous variables.
Furthermore, all constructs can be decorated with guards, to represent enabling
conditions, by means of the when construct. We can use both invariant and when
constructs to specify that a behaviour should be executed after a precise amount
of time. Thus, we can write invariant(c ≤ k) when (c ≥ k) P(), where c is a clock
variable and k a real value, to model that the process P() may start is execution
only after k time units; if k = 0 then the execution of P() may start immediately.

In order to better explain these constructs, we model a small example described
by means of a standard timed process-calculus notation (say, Hennessy and
Regan’s TPL [13]). Consider a Master and a Slave process that may synchronise
via a private synchronisation channel sync, and use a private channel ins to
allow the Master to send instructions to the Slave. Depending on the received
instructions, the Slave either synchronises with the Master and then restart, or
sleeps for one time unit and then ends its execution. Once synchronised, the
Master sleeps for two time units. Formally,

Master
def
= ins〈go〉; sync; sleep(2); ins〈end〉

Slave
def
= ins(i); if (i = go) {sync; Slave} else {sleep.stop}

and the compound system is given by

(Master ‖ Slave)\{ins, sync} .

A Modest Security Analysis of Cyber-Physical Systems 5

1 // declarations
2 action sync, go, end;
3 process Master(){ // process declaration
4 clock cm;
5 invariant(cm <= 0) when(cm >= 0) go; sync {= cm = 0 =};
6 invariant(cm <= 2) when(cm >= 2) end
7 }
8 process Slave(){ // process declaration
9 clock cs ;

10 do{ alt{ :: go; sync
11 :: end {= cs = 0 =}; invariant(cs <= 1) when(cs >= 1) break
12 }
13 }
14 }
15

16 // main behaviour
17 par { :: Master() :: Slave()
18 }

Fig. 2. Master and Slave processes in HMODEST

Figure 2 shows an implementation in HMODEST of the system above. Both
master and slave declare private clocks that are reset each time is necessary to
impose a specific time delay. Value-passing communication is implemented via
the two actions go and end ; the testing via nondeterministic choice.

Besides these operators, the case study that we will present in the next section
includes specifications over continuous variables, such as constraints over the
derivate of continuous variables of the form a ≤ ẋ ≤ b, with a and b constant
(as in rectangular hybrid automata), or nondeterministic initialisations of the
form z ∈ [a, b]. The former requirement is realised in HMODEST by means of an
invariant construct: invariant(der(x ≥ a) && der(x ≤ b)). The latter constraint
is implemented via the any construct. For instance, any(z, z >= a && z <= b)
returns a value nondeterministically chosen in the real interval [a, b].

The safety model checker prohver allows the verification of reachability prop-
erties of the form Pmax(♦time≤T e). This query returns un upper bound of the
probability of reaching the states characterised by the deterministic expression e
within the time bound T .4 Moreover, as the models may be nondeterministic,
Pmax() computes the probability over all possible resolutions of nondeterminism.

3 A case study

In this section, we describe the case study recently introduced in [19]. Here, we
wish to remark that while the example is quite simple, it is actually far from
trivial and designed to describe a wide number of attacks. Furthermore, for
simplicity, in the description of the case study we use a discrete-time model,
although in its implementation we will adopt a continuous notion of time.

Consider a CPS Sys in which the temperature of an engine is maintained
within a certain range by means of a cooling system controlled by a controller.

4 Later in the paper, we will show how to get the exact probability.

6 R. Lanotte et al.

The system is also equipped with a IDS that does runtime safety verification.
Let’s describe both the physical and the cyber component of the CPS Sys.

The physical environment of Sys is constituted by:

– a variable temp, initialised to 0, for the current temperature of the engine;
– a sensor sens measuring the temperature of the engine;
– an actuator cool to turn on/off the cooling system; cool ranges over the set
{−1,+1} to denote active and inactive cooling, respectively;

– the evolution equation tempk+1 = tempk+coolk+wk, where wk ∈ [−0.4,+0.4]
denotes the uncertainty associated to temp; thus the variable temp is increased
(resp., is decreased) of one degree per time unit if the cooling system is inactive
(resp., active) up to a bounded uncertainty wk;

– a measurement equation sensk = tempk +ek, where ek ∈ [−0.1,+0.1] denotes
the noise associated to the sensor sens;

– an invariant function returning the Boolean true if the state variable temp
lays in the interval [0, 20], false otherwise;

– a safety function returning the Boolean true if the safety conditions are satis-
fied, false otherwise; the safety of the CPS depends on a (fictitious) variable
stress keeping track of the level of stress of the mechanical parts of the engine
due to high temperatures; stress ranges over the set {0, 1, 2, 3, 4, 5}, where 0
means no stress and 5 high stress; formally, stressk+1 = min(5, stressk + 1) if
tempk > 9.9, while stressk+1 = 0 if tempk ≤ 9.9.

Let us define the cyber component of the CPS Sys. For simplicity, we use a
simple process-calculus notation similar to that of Lanotte and Merro’s CaIT [18].
The logics of Sys is modelled by means of two parallel processes: Ctrl and IDS .
The former models the controller activity, consisting in reading the temperature
of the engine and in governing the cooling system; whereas the latter models a
simple intrusion detection system that attempts to detect and signal abnormal
behaviours of the system. Intuitively, Ctrl senses the temperature of the engine via
the sensor sens (reads the sensor) at each time slot. When the sensed temperature
is above 10 degrees, the controller activates the coolant via the actuator cool
(sending a command to the actuator). The cooling activity is maintained for 5
consecutive time units. After that time, the controller synchronises with the IDS
component via a synchronisation channel sync, and then waits for instructions,
via a value-passing channel ins. The IDS component checks whether the sensed
temperature is still above 10. If this is the case, it sends an alarm of “high
temperature”, via a specific channel, and then says to Ctrl to keep cooling for
a further 5 time units; otherwise, if the temperature is not above 10, the IDS
component requires Ctrl to stop the cooling activity. More formally,

Ctrl = read sens(x).if (x > 10) {Cooling} else {sleep.Ctrl}
Cooling = write cool〈on〉.sleep(5).Check

Check = sync.ins(y).if (y = keep cooling) {sleep(5).Check}
else {write cool〈off〉.sleep.Ctrl}

IDS = sync.read sens(x).if (x > 10) ins〈keep cooling〉.{alarm〈high temp〉.sleep.IDS}
else {ins〈stop〉.sleep.IDS}

A Modest Security Analysis of Cyber-Physical Systems 7

experiments

0 20 40 60 80 100

a
c
tu

a
l
te

m
p
e
ra

tu
re

 (
d
e
g
)

2

3

4

5

6

7

8

9

10

11

12

switch off cooling system

switch on cooling system

time

0 10 20 30 40 50

a
c
tu

a
l
te

m
p

e
ra

tu
re

 (
d

e
g

)

0

2

4

6

8

10

12

Fig. 3. Simulations in MATLAB of Sys

The whole cyber component of Sys is given by the parallel composition of the two
processes Ctrl and IDS in which the channels sync and ins have been restricted:
(Ctrl ‖ IDS)\{sync, ins}.

In Figure 3, the left graphic collect a campaign of 100 simulations of our
engine in MATLAB, lasting 250 time units each, showing that the value of the
state variable temp when the cooling system is turned on (resp., off) lays in
the interval (9.9, 11.5] (resp., (2.9, 8.5]); these bounds are represented by the
dashed horizontal lines. The right graphic of the same figure shows three possible
evolutions in time of the state variable temp: (i) the first one (in red), in which
the temperature of the engine always grows as slow as possible and decreases as
fast as possible; (ii) the second one (in blue), in which the temperature always
grows as fast as possible and decreases as slow as possible; (iii) and a third one
(in yellow), in which, depending whether the cooling is off or on, temperature
grows or decreases of an arbitrary offset laying in the interval [0.6, 1.4].

4 An implementation in HMODEST

In this section, we provide our implementation in HMODEST of the case study
presented in the previous section. The whole system is divided in three high level
processes running in parallel (see Figure 4):

– Plant(), modelling the physical aspects of the system;
– Logics(), describing the logical (or cyber) component of a CPS;
– Network(), representing the network connecting Plant() and Logics().

The process Plant() consists of the parallel composition of four processes: En-
gine(), Actuators(), Sensors() and Safety() (see Figure 5). The former models the
dynamics of the variable temp depending on the cooling activity. The temperature
evolves in a continuous manner, and its rate is described by means of differen-
tial inclusions of the form a ≤ ẋ ≤ b implemented via the construct invariant.
The on action triggers the coolant and drives the process Engine() into a state
CoolOn() in which the temperature decreases at a rate comprised in the range

8 R. Lanotte et al.

1 // global clock and global action declarations
2 clock global clock ;
3 action on, off ;
4 ...
5 // global variable declarations
6 var sens = 0; der(sens) = 0;
7 bool safe = true;
8 bool is deadlock = false ;
9 ...

10 //process declarations
11 process Plant() {
12 var temp = 0;
13 ...
14 par { :: Engine() :: Sensors() :: Actuators() :: Safety() }
15 }
16 process Logics() {
17 ...
18 par { :: Ctrl() :: IDS() }
19 }
20 process Network() {
21 ...
22 par { :: Proxy actuator() :: Proxy sensor() }
23 }
24

25 // main
26 par { :: Plant() :: Logics() :: Network() }

Fig. 4. Implementation in HMODEST of Sys

[−DT−UNCERT,−DT+UNCERT]. On the other hand, in the presence of a off ac-
tion the engine moves into a CoolOff() state in which the coolant is turned off, so
that the temperature increases at a rate ranging in [DT−UNCERT,DT+UNCERT].

The second parallel component of Plant() is the process Sensors() that receives
the requests to read the temperature, originating from the Logics(), and serves
them according to the measurement equation seen in the previous section. This
is modelled by updating the variable sens with an arbitrary real value laying in
the interval [temp −NOISE, temp + NOISE].

The process Actuators() relays the commands of the controller Ctrl() to the
Engine() to turn on/off the cooling system.

The last parallel component of the process Plant() is the process Safety().
This process defines a local variable stress depending on the temperature reached
by the engine; we recall that stress = 0 denotes no stress while stress = 5
represents maximum stress. Here, is worth mentioning that the variable stress
could be implemented either as a bounded integer variable, which would increase
the discrete complexity of the underlying hybrid automaton, or as a continuous
variable with dynamics set to zero (i.e., der(stress) = 0) that would increase the
continuous complexity of the automaton. We have adopted the second option
as it ensures better performances. The Safety() process sets the global Boolean
variable safe to false only when the system reaches the maximum stress, i.e.,
stress = 5, and reset it to true otherwise. Thus, this variable says when the
CPS is currently in a state that is violating the safety conditions. Similarly, the
global Boolean variable is deadlock is set to true whenever the system invariant
is violated; in that case the whole CPS stops.

A Modest Security Analysis of Cyber-Physical Systems 9

1 const real DT = 1;
2 const real UNCERT = 0.4; // uncertainty of variable temp
3 const real NOISE = 0.1; // sensor noise
4 clock c;
5

6 process Engine() {
7 process CoolOn() {
8 invariant(der(temp) >= (−DT − UNCERT) && der(temp) <= (−DT + UNCERT))
9 alt { :: on; CoolOn() :: off ; CoolOff() }

10 }
11 process CoolOff() {
12 invariant(der(temp) >= (DT − UNCERT) && der(temp) <= (DT + UNCERT))
13 alt { :: on; CoolOn() :: off ; CoolOff() }
14 }
15 CoolOff()
16 }
17

18 process Sensors() {
19 do { // detect temperature and write it in variable sens
20 read sensor {= sens = any(z, z >= temp − NOISE && z <= temp + NOISE), c = 0 =};
21 invariant(c <= 0) when(c >= 0) ack sensor
22 }
23 }
24

25 process Actuators(){
26 do { :: cool on actuator {= c = 0 =}; invariant(c <= 0) when(c >= 0) on // cool on
27 :: cool off actuator {= c = 0 =}; invariant(c <= 0) when(c >= 0) off // cool off
28 }
29 }
30

31 process Safety(){
32 var stress = 0; der(stress) = 0; // no continuous dynamics for stress
33 do { invariant(c <= 0) when(c >= 0)
34 alt{ :: when(temp >= 0 && temp <= 20) // invariant is preserved
35 alt{ :: when(temp > 9.9 && stress <= 3) {= stress = stress+1 =}
36 :: when(temp <= 9.9) {= stress = 0, safe = true =}
37 :: when(temp > 9.9 && stress >= 4) {= stress = 5, safe = false =}
38 // safety is violated
39 }
40 :: when(temp > 20 || temp < 0) {= is deadlock = true =}; stop // system deadlock
41 };
42 invariant(c <= 1) when(c >= 1) {= c = 0 =} // move to the next time unit
43 }
44 }

Fig. 5. Plant() sub-processes

The process Logics() consists of the parallel composition of two processes:
Ctrl() and IDS() (see Figure 6). The former senses the temperature by triggering a
read sensor ctrl action to request a measurement and waits for an ack sensor ctrl
action to read the measurement in the variable sens. Depending on the value
of sens the controller decides whether to activate or not the cooling system. If
sens ≤ 10 the process sleeps for one time unit and then check the temperature
again. If sens > 10 then the controller activates the coolant by emitting the
set cool on action that will reach the Engine() (via the Network()’s proxy).
Afterwards the control passes to the process Check() that verifies whether the
current cooling activity is effective in dropping the temperature below 10. The
process Check() maintains the cooling activity for 5 consecutive time units. After
that, it synchronises with the process IDS() via the action sync ids, and waits

10 R. Lanotte et al.

1 clock c;
2 process Ctrl() {
3 process Check() {
4 do{ invariant(c <= 0) when(c >= 0) tau;
5 invariant(c <= 5) when(c >= 5) {= c = 0 =}; // keep cooling for 5 time units
6 invariant(c <= 0) when(c >= 0) sync ids; // activate IDS
7 alt { // wait for instructions
8 :: keep cooling {= c = 0 =} // keep cooling a further 5 time units
9 :: stop cooling {= c = 0 =};

10 invariant(c <= 0) when(c >= 0) set cool off; // turn off the coolant
11 invariant(c <= 1) when(c >= 1) {= c = 0 =}; // move to the next time slot
12 invariant(c <= 0) when(c >= 0) break // returns the control to Ctrl()
13 }
14 }
15 }
16 // main Ctrl()
17 do { invariant(c <= 0) when(c >= 0) read sensor ctrl; // request temperature sensing
18 ack sensor ctrl {= c = 0 =};
19 invariant(c <= 0) when(c >= 0)
20 alt { :: when(sens <= 10) tau {= c = 0 =}; // temperature is ok
21 invariant(c <= 1) when(c >= 1) {= c = 0 =} // move to the next time slot
22 :: when(sens > 10) set cool on {= c = 0 =}; // turn on the cooling
23 invariant(c <= 0) when(c >= 0) Check() // check whether temperature drops
24 }
25 }
26 }
27

28 process IDS() {
29 do{ sync ids {= c = 0 =};
30 invariant(c <= 0) when(c >= 0) read sensor ids; // request temperature sensing
31 ack sensor ids ;
32 invariant(c <= 0) when(c >= 0)
33 alt { :: when(sens <= 10) stop cooling // temperature is ok
34 :: when(sens > 10) keep cooling; // temperature is not ok, keep cooling
35 invariant(c <= 0) when(c >= 0) {= alarm = true =}; // fire the alarm
36 invariant(c <= 0) when(c >= 0) {= alarm = false =}
37 }
38 }
39 }

Fig. 6. Logics() sub-processes

for instructions from IDS(): (i) keep cooling for other 5 time units and then check
again, or (ii) stop the cooling activity and returns. These two instructions are
represented by means of the actions keep cooling and stop cooling , respectively.

The second component of the process Logics() is the process IDS(). The
IDS() process waits for the synchronisation action sync ids from Check(). Then,
it triggers the action read sensor ids to request a measurement and waits for
the ack sensor ids action to read the measurement. If sens ≤ 10 it signals to
Ctrl() to stop cooling (via the action), otherwise, if sens > 10, it signals to keep
cooling and fires an alarm by setting a global Boolean variable alarm to true (for
verification reasons we immediately reset this variable to false).

The process Network() consists of the parallel composition of two processes:
Proxy actuator() and Proxy sensor() (see Figure 7). The former provides the
remote actuation. Basically, it forwards the actuators commands originating from
the process Ctrl() to the process Actuators(). The process Proxy sensor() waits
for requests of measurement originating from processes Ctrl() or IDS() (we use
different actions for each of them) and relay these requests to the process Sensor()

A Modest Security Analysis of Cyber-Physical Systems 11

1 process Network() {
2 clock c;
3 process Proxy actuator() {
4 do { alt { :: set cool on {= c = 0 =};
5 invariant(c <= 0) when(c >= 0) cool on actuator
6 :: set cool off {= c = 0 =};
7 invariant(c <= 0) when(c >= 0) cool off actuator
8 }
9 }

10 }
11 process Proxy sensor(){
12 do { alt { :: read sensor ctrl {= c = 0 =};
13 invariant(c <= 0) when(c >= 0) read sensor;
14 ack sensor;
15 invariant(c <= 0) when(c >= 0) ack sensor ctrl
16 :: read sensor ids {= c = 0 =};
17 invariant(c <= 0) when(c >= 0) read sensor;
18 ack sensor;
19 invariant(c <= 0) when(c >= 0) ack sensor ids
20 }
21 }
22 }
23

24 par{ :: Proxy actuator() :: Proxy sensor() }
25 }

Fig. 7. Network() process

that implements the measurement equation. When the temperature has been
detected an ack signal is returned and propagated up to the requesting process.

Verification. We conduct our safety verification using 4 notebooks with the
following set-up: (i) 2.8 GHz Intel i7 7700 HQ, with 16 GB memory, and Linux
Ubuntu 16.04 operating system; (ii) MODEST TOOLSET Build 3.0.23 (2018-01-19).

In order to assess the correct functioning of our implementation, we verify
a number of properties of our CPS Sys by means of the safety model checker
prohver. Here, it is important to recall that prohver relies on the hybrid solver
PHAVer which computes an overapproximation of the reachable states to ensure
termination and accelerate convergence [9]. As consequence, the probability
returned by the verification of a generic property Pmax (♦T eprop) is an upper
bound of the exact probability, and hence it is significant only when equal to
zero (i.e., when the property is not satisfied). However, as our CPS Sys presents
a linear dynamics it is possible to compute the exact probability by launching
our analyses with the NO CHEAP CONTAIN RETURN OTHERS flag (see [8]) which
enables the exact computation of the reachable sets, with obvious implications on
the time required to complete the analyses. As our case study does not present a
probabilistic behaviour, the results of our analyses will always range in the set
{0, 1} (unsatisfied/satisfied) with a 100% accuracy.

Furthermore, as a formula �e is satisfied if and only if ♦¬e is unsatisfied,
we can use prohver to verify properties expressed in terms of time bounded
LTL formulae of the form �[0,T]eprop or ♦[0,T]eprop. Actually, in our analyses
we will always verify properties of the form �[0,T]eprop, relying on the quicker

12 R. Lanotte et al.

overapproximation when proving that the property is satisfied, and resorting to
the slower exact computation when proving that the property is not satisfied.

Thus, we have formally proved that in all possible executions that are (at
most) 100 time instants long the temperature of the system Sys oscillates in the
real interval [2.9, 11.5] (after a short initial transitory phase):

�[0,100](global clock ≥ 5 =⇒ (temp ≥ 2.9 ∧ temp ≤ 11.5)) .

More generally, our implementation of Sys satisfies the following three properties:
– �[0,100](¬deadlock), saying that the system does not deadlock;
– �[0,100](safe), saying that the system does not violate the safety conditions;
– �[0,100](¬alarm): saying that the IDS does not fire any alarm.

The verification of these three properties requires around 15 minutes each, thanks
to the underlying overapproximation.

In the next section, we will verify our CPS in the presence of three different
cyber-physical attacks targeting either the sensor sens or the actuator cool . The
reader can consult our models at http://profs.scienze.univr.it/∼merro/MODEST-FORTE/.

5 A Static Security Analysis

In this section, we use the safety model checker prohver to test its limits when
doing static security analysis of CPSs. In particular, we implement three simple
cyber-physical attacks targeting our system Sys:

– a DoS attack on the actuation mechanism that may push the system to
violate the safety conditions and hence in the invariant conditions;

– a DoS attack on the sensor that may deadlock the CPS without being noticed
by the IDS;

– an integrity attack on the sensor, again undetected by the IDS , that may
drive the CPS into into a unsafe state but only for a limited period of time.

These attacks are implemented by tampering with either the physical devices
(actuators and/or sensors) or the communication network (man-in-the-middle).
In order to implement an attack on the sensor (resp., actuator) we suppose
the attacker is able to compromise the Sensors() (resp., Actuators()) process.
Whereas the attacks targeting the communication network compromise either
the Proxy sensor() or the Proxy actuator() process, depending whether they are
targeting the sensor or the actuator. In general, attacks on the communication
network do not require a deep knowledge on the physical dynamics of the CPS.

Attack 1. The first attack targets the actuator cool in a very simple manner.
It operates exclusively in a specific time instant m, when it tries to drop the
command to turn on the cooling system coming from the controller. Figure 8
shows the implementation of this man-in-the-middle attack compromising the
Proxy actuator() process.

We recall that the controller will turn on the cooling system only if it senses
a temperature above 10 (as NOISE = 0.1, this means temp > 9.9). It is not

A Modest Security Analysis of Cyber-Physical Systems 13

1 process E Proxy actuator(){
2 clock c;
3 do{ alt{ :: set cool on {= c = 0=};
4 invariant(c <= 0) when(c >= 0)
5 alt{ // drop the cool on command in the time instant m
6 :: when(global clock == m) tau
7 // in the other time instants forward correctly
8 :: when(global clock < m || global clock > m) cool on actuator
9 }

10 :: set cool off {= c = 0=};
11 invariant(c <= 0) when(c >= 0) cool off actuator
12 }
13 }
14 }

Fig. 8. DoS attack to the actuator

difficult to see that this may happen only if m > 7 (in the time instant 7 the
maximum temperature that may be reached by the engine is 7·(DT+UNCERT) =
7 · (1 + 0.4) = 9.8 degrees). Since the process Ctrl() never re-send commands to
the actuator, if the attacker is successful in dropping the command to turn on
the cooling system in the time slot m then the temperature will continue to rise,
and after 2 time instants, in the time instant m + 2, the system will violate the
safety conditions. This is noticed by the IDS() that will fire alarms every 5 time
instants, until the CPS deadlocks because temp > 20.

We have verified the same properties stated in the previous section for the
system Sys in isolation. None of those properties holds when the attack above
operates in an instant m > 7. In particular, for m > 7 the system becomes
unsafe in the time instant m+ 2, and the IDS() detects the violation of the safety
conditions with a delay of only 2 time instants. Summarising:

Attack 1: tested properties m ≤ 7 m > 7
�[0,100](¬deadlock) 4 6
�[0,100](safe) 4 6
�[0,100](¬alarm) 4 6
�[0,m+1](safe) 4 4
�[0,m+2](safe) 4 6
�[0,m+3](¬alarm) 4 4
�[0,m+4](¬alarm) 4 6

The properties above have been proved for all discrete time instants m, with
0 ≤ m ≤ 96. The longest among these analyses required 20 minutes when
overapproximating and at most 7 hours when doing exact verification.

Attack 2. The second attack compromises the sensor in order to provide fake
measurements to the controller. The compromised sensor operates as follows: (i)
in any time instant smaller than or equal to 1 the sensor works correctly, (ii) in
any time instant greater than 1 the sensor returns the temperature sensed at
time 1. Figure 9 provides an implementation of the compromised sensor.

14 R. Lanotte et al.

1 process E Sensors(){
2 clock c;
3 do{
4 alt{ :: when(global clock <= 1) //normal behaviour
5 req sensor {= sens = any(z, z >= temp−NOISE && z <= temp+NOISE), c = 0 =};
6 invariant(c <= 0) when(c >= 0) ack sensor
7 :: when(global clock > 1) //attack
8 req sensor {= c = 0 =}; //the measurement remains unchanged
9 invariant(c <= 0) when(c >= 0) ack sensor

10 }
11 }

Fig. 9. DoS attack to the sensor

In the presence of this attack, the process Ctrl() will always detect a temper-
ature below 10 and never activate the cooling system or the IDS. The system
under attack will move to an unsafe state until the system invariant will be
violated and the system will deadlock. Indeed, in the worst case scenario, after
d 9.9

DT+UNCERTe = d 9.9
1.4e = 8 time instants the value of temp will be above 9.9

degrees, and after further 4 time instants the system will violate the safety
conditions. Furthermore, in the time instant = d 20

1.4e = 15 the invariant may be
broken and the system may deadlock because the state variable temp reaches
20.4 degrees. This is a lethal attack as it causes a deadlock of the system. It is
also a stealthy attack as it remains unnoticed until the end.

The results of our security analysis are summarised in the following table:

Attack 2: tested properties
�[0,100](¬alarm) 4
�[0,100](safe) 6
�[0,100](¬deadlock) 6
�[0,11] (safe) 4
�[0,12] (safe) 6
�[0,14] (¬deadlock) 4
�[0,15] (¬deadlock) 6

The longest among these analyses required 35 minutes when overapproximating
and at most 5 hours when doing exact verification. Please, notice that this
attack does not require any specific knowledge of the sensor device (such as the
measurement equation). Thus, the same goal could be obtained by means of a
man-in-the-middle attack that compromises the Proxy sensor() process.

Attack 3. Our last attack is a variant of the previous one as it provides the
controller with a temperature decreased by an offset (in this case 2), for n
consecutive time instants. Unlike the previous attack, in case of encrypted
communication, this attack cannot be mounted in the network as it requires the
knowledge of the measurement equation. Figure 10 shows the implementation of a
compromised sensor device acting as required. Basically, when global clock <= n
the compromised sensor returns a measurement affected by the offset; on the

A Modest Security Analysis of Cyber-Physical Systems 15

1 process E Sensors() {
2 clock c;
3 do { req sensor {= c = 0 =};
4 invariant(c <= 0) when(c >= 0)
5 alt { :: when(global clock <= n) //send corrupted measurement
6 {= sens = any(z, z >= (temp − 2 − NOISE) && z <= (temp − 2 + NOISE)),
7 c = 0 =};
8 :: when(global clock > n) //send authentic measurement
9 {= sens = any(z, z >= (temp − NOISE) && z <= (temp + NOISE)), c = 0 =}

10 };
11 invariant(c <= 0) when(c >= 0) ack sensor
12 }
13 }

Fig. 10. Integrity attack to the sensor device

other hand, when global clock > n the sensor works correctly and returns the
authentic measurement.

The effects of this attack on the system depends on its duration n.

– For n ≤ 7 the attack is harmless as the variable temp may not reach a
(critical) temperature above 9.9; thus, all properties seen for the system in
isolation remain valid when the system is under attack.

– For n = 8, the variable temp might reach a temperature above 9.9 and the
attack would delay the activation of the cooling system of one time instant.
As a consequence, the system might get into an unsafe state in the time
instants 12 and 13, but no alarm will be fired (stealthy attack). This is proved
by verifying the following properties:

• �[0,100]((global clock < 12 ∨ global clock > 14) =⇒ safe) 4

• �[0,100]((global clock ≤ 12 ∧ global clock ≥ 12) =⇒ safe) 6

• �[0,100]((global clock ≤ 13 ∧ global clock ≥ 13) =⇒ safe) 6

• �[0,100](¬alarm) 4.

– For n > 8 the system may get into an unsafe state in a time instant between
12 and n+ 12. The IDS will fire the alarm but it will definitely miss a number
of violations of safety conditions as after the instant n+ 6 it does not fire any
alarm, although we prove there are unsafe states. This is a temporary attack
as the system behaves correctly after the time instant n + 12. Summarising:

• �[0,100](¬deadlock) 4

• �[0,100]((global clock < 12 ∨ global clock > n + 12) =⇒ safe) 4

• �[0,100]((global clock ≥ 12 ∧ global clock ≤ n + 12) =⇒ safe) 6

• �[0,100]((global clock > n + 6 ∧ global clock ≤ n + 12) =⇒ safe) 6

• �[0,100]((global clock < n+1 ∨ global clock > n + 6) =⇒ ¬alarm) 4

• �[0,100]((global clock ≥ n+1 ∧ global clock ≤ n + 6) =⇒ ¬alarm) 6.

The properties above have been proved for all discrete time instants n,
with 0 ≤ n ≤ 85. The longest among these analyses required 1 hour when
overapproximating and at most 7 hours when doing exact verification.

16 R. Lanotte et al.

6 Conclusions

As said in the Introduction, the safety model checker within the MODEST TOOLSET

relies on a modified version of the hybrid solver PHAVer, whose specification
language is a slight variation of hybrid automata supporting compositional
reasonings, where input and output variables are clearly distinguished [20].
Although, PHAVer would be a good candidate for the verification of small CPSs,
we preferred to specify our case study in the high-level language HMODEST,
supporting: (i) differential inclusion to model linear CPSs with constant bounded
derivatives; (ii) linear formulae to express nondeterministic assignments within
a dense interval; (iii) compositional programming style inherited from process
algebra (e.g., parallel composition, nondeterministic choice, loops, etc.); (iv)
shared actions to synchronise parallel components.

In HMODEST, we have implemented a simple but totally realistic and nuanced
cyber-physical system together with three cyber-physical attacks targeting the
sensor or the actuator of the system. In particular, we have proposed: (i) a DoS
attack on the actuator that operates as a man-in-the-middle on the connecting
network; (ii) a DoS attack on the sensor that is achieved by compromising the
sensor device; (iii) an integrity attack on the sensor, again by compromising
the sensor device. Our implementation is quite clean and concise, although the
current version of the language has still some problems in representing both
instantaneous and delayed behaviours in an effective manner (we did not use the
elegant delay() construct as each instance introduces a new clock, with heavy
implications on the verification performance). Furthermore, in order to verify our
safety and invariant conditions we have implemented a Safety() process that is not
really part of our CPS. From a designer point of view it would have been much
more practical to use some kind of logic formula, such as: ∃♦(�[t,t+5]temp > 9.9).

For the security analysis we have used the safety model checker prohver.
Basically, we have verified LTL properties on the system under attack. Although,
we have verified most of the properties that have been manually proved in [19],
we have not been able to capture time properties on the responsiveness of the
IDS to violations of the safety conditions. Properties such as:

– there are integers m and k such that the system may have an unsafe state at
some instant n > m, and the IDS detects this violation with a delay of at
least k time instants (k being a lower bound of the reaction time of the IDS);

– there is an instant n where the IDS fires an alarm but neither an unsafe
state nor a deadlock occurs between the instants n− k and n + k: this would
provide a tolerance of the occurrence of false positive.

Note that prohver has been designed to do probabilistic model-checking, while
in this paper we only do model checking. Actually, one of the reasons why we
implemented our case study in HMODEST is because we aim at strengthening
our security analysis by resorting to probabilistic model checking. This would
allow us to replace nondeterministic uncertainty and nodeterministic noise with
probability distributions (for instance, normal distributions are very common in
this context).

A Modest Security Analysis of Cyber-Physical Systems 17

A comparison with other model-checkers. We tried to verify our case study also
with other model-checkers for distributed systems providing high-level specifica-
tion languages and expressive query languages, such as PRISM [16], UPPAAL [2]
and Real-Time Maude [22]. In particular, as our example has a discrete notion
of time we started looking at verification tools supporting discrete time.

PRISM, for instance, relies on Markov decision processes or discrete-time
Markov chains, depending whether one is interested in modelling nondeterminism
or not. It supports the verification of both CTL and LTL properties (when
dealing with nonprobabilistic systems). This allowed us to express the formula
∃♦(�[t,t+5]temp > 9.9) to verify violations of the safety conditions, avoiding
the implementation of the Safety() process. However, using integer variables to
represent state variables with a fixed precision requires the introduction of extra
transitions (to deal with nondeterministic errors) that significantly complicates
the PRISM model.

In this respect, UPPAAL appears to be more efficient than PRISM, as we
have been able to concisely express the error occurring in integer state variables
thanks to the select() construct, in which the user can fix the granularity adopted
to approximate a dense interval. This discrete representation provides an under-
approximation of the system behaviour; thus, a finer granularity translates into an
exponential increase of the complexity of the system, with obvious consequences
on the verification performance. UPPAAL has provided us with a simple way to
implement the preemptive power of cyber-physical attacks by assigning priorities
to processes. Thus, a system under attack can be easily represented by simply
putting in parallel the system and the attacker. The tool supports the verification
of a simplified version of CTL properties (no nesting of path formulae is allowed).
Thus, as in HMODEST, we cannot express the formula ∃♦(�[t,t+5]temp > 9.9)
and we had to implement a Safety() process.

Finally, we tried to model our case study in Real-Time Maude, a completely
different framework for real-time systems, based on rewriting logic. The language
supports object-like inheritance features that are quite helpful to represent
complex systems in a modular manner. Communication channels have been used
to implement our attacks on the physical devices. Furthermore, we used rational
variables for a more concise discrete representation of state variables. We have
been able to verify LTL and T-CTL properties, although the verification process
resulted to be very slow due to a proliferation of rewriting rules when fixing a
reasonable granularity to approximate dense intervals. As the verification logic is
quite powerful, there is no need to implement the Safety() process.

Formal methods for CPS security. A few works use formal methods for CPS
security, although they apply methods, and most of the time have goals, that are
quite different from ours. As already said, the case study has been taken from
[19]. In that paper the authors present a threat model for a formal study of a
variety of cyber-physical attacks. They also propose a formal technique to assess
the tolerance of CPSs to classes of attacks. The paper provides a stepping stone
for formal and automated analysis techniques for checking the security of CPSs.

18 R. Lanotte et al.

In [28, 29], Vigo presents an attack scenario that addresses some of the
peculiarities of a cyber-physical adversary, and discussed how this scenario relates
to other attack models popular in the security protocol literature. Unlike us, this
paper focuses on DoS attacks without taking into consideration timing aspects.
Rocchetto and Tippenhaur [25] introduce a taxonomy of the diverse attacker
models proposed for CPS security and outline requirements for generalised
attacker models; in [24], they then propose an extended Dolev-Yao attacker
model suitable for CPS security. In their approach, physical layer interactions are
modelled as abstract interactions between logical components to support reasoning
on the physical-layer security of CPSs. This is done by introducing additional
orthogonal channels. Time is not represented. Nigam et al. [21] work around
the notion of Timed Dolev-Yao Intruder Models for Cyber-Physical Security
Protocols by bounding the number of intruders required for the automated
verification of such protocols. Following a tradition in security protocol analysis,
they provide an answer to the question: How many intruders are enough for
verification and where should they be placed? They also extend the strand space
model to CPS protocols by allowing for the symbolic representation of time, so
that they can use Real-Time Maude [22] along with SMT support. Their notion
of time is however different from ours, as they focus on the time a message needs
to travel from an agent to another. The paper does not mention physical devices,
such as sensors and/or actuators.

Acknowledgements. We thank the anonymous reviewers for their insightful and
careful reviews that allowed us to significantly improve the paper. We thank
Fabio Mogavero for stimulating discussions on model checking tools, and Arnd
Hartmanns for “tips and tricks” on the MODEST TOOLSET. This work has been
partially supported by the project “Dipartimenti di Eccellenza 2018-2022” funded
by the Italian Ministry of Education, Universities and Research (MIUR).

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183 – 235 (1994)

2. Behrmann, G., David, A., G., L.K., H̊akansson, J., Pettersson, P., Yi, W., Hendriks,
M.: UPPAAL 4.0. In: D’Argenio, P., Miner, A., Rubino, G. (eds.) QEST 2006. pp.
125–126. IEEE Computer Society (2006). https://doi.org/10.1109/QEST.2006.59

3. Bogomolov, S., Frehse, G., Greitschus, M., Grosu, R., S., P.C., Podelski, A.,
Strump, T.: Assume-Guarantee Abstraction Refinement Meets Hybrid Systems.
In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 116–131. Springer (2014).
https://doi.org/10.1007/978-3-319-13338-6

4. Bohnenkamp, H.C., Hermanns, H., Katoen, J.P.: motor: The modestTool envi-
ronment. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp.
500–504. Springer (2007). https://doi.org/10.1007/978-3-540-71209-1

5. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An Analyzer for Non-linear
Hybrid Systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 258–263. Springer (2013). https://doi.org/10.1007/978-3-642-39799-8

A Modest Security Analysis of Cyber-Physical Systems 19

6. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: A Verification Tool
for Stateflow Models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 68–82. Springer (2015). https://doi.org/10.1007/978-3-662-46681-0

7. Falliere, N., Murchu, L., Chien, E.: W32.Stuxnet Dossier (2011)
8. Frehse, G.: Phaver language overview v0.35 (2006), http://www-verimag.imag.

fr/~frehse/phaver_web/phaver_lang.pdf
9. Frehse, G.: Phaver: Algorithmic verification of hybrid systems past hytech. In-

ternational Journal on Software Tools for Technology Transfer 10(3), 263–279
(2008)

10. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable Verification of Hybrid Systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer (2011). https://doi.org/10.1007/978-3-642-22110-1

11. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.: A compositional modelling
and analysis framework for stochastic hybrid systems. Formal Methods in System
Design 43(2), 191–232 (2013)

12. Hartmanns, A., Hermanns, H.: The Modest Toolset: An Integrated Environ-
ment for Quantitative Modelling and Verification. In: Ábrahám, E., Havelund,
K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer (2014).
https://doi.org/10.1007/978-3-642-54862-8

13. Hennessy, M., Regan, T.: A process algebra for timed systems. Information and
Computation 117(2), 221–239 (1995)

14. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? Journal of Computer and System Sciences 57(1), 94 – 124 (1998)

15. ICS-CERT: Cyber-Attack Against Ukrainian Critical Infrastructure, https://ics-
cert.us- cert.gov/alerts/IR-ALERT-H-16-056-01

16. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer (2011). https://doi.org/10.1007/978-3-642-22110-1

17. Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. Mathematics
of Control, Signals, and Systems 13(1), 1–21 (2000)

18. Lanotte, R., Merro, M.: A semantic theory of the Internet of Things. Information
and Computation 259(1), 72–101 (2018)

19. Lanotte, R., Merro, M., Muradore, R., Viganò, L.: A Formal Approach to Cyber-
Physical Attacks. In: CSF 2017. pp. 436–450. IEEE Computer Society (2017).
https://doi.org/10.1109/CSF.2017.12

20. Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata. Information
and Computation 185(1), 105–157 (2003)

21. Nigam, V., Talcott, C., Urquiza, A.A.: Towards the Automated Verification of
Cyber-Physical Security Protocols: Bounding the Number of Timed Intruders. In:
Askoxylakis, I.G., Ioannidis, S., Katsikas, S.K., Meadows, C.A. (eds.) ESORICS
2016. LNCS, vol. 9879, pp. 450–470. Springer (2016). https://doi.org/10.1007/978-
3-319-45741-3

22. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

23. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation-
based abstraction refinement. ACM Transactions on Embedded Computing Systems
6(1), 8 (2007)

24. Rocchetto, M., Tippenhauer, N.O.: CPDY: Extending the Dolev-Yao Attacker with
Physical-Layer Interactions. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016.
LNCS, vol. 10009, pp. 175–192 (2016). https://doi.org/10.1007/978-3-319-47846-3

20 R. Lanotte et al.

25. Rocchetto, M., Tippenhauer, N.O.: On Attacker Models and Profiles for Cyber-
Physical Systems. In: Askoxylakis, I.G., Ioannidis, S., Katsikas, S.K., Meadows,
C.A. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 427–449. Springer (2016).
https://doi.org/10.1007/978-3-319-45741-3

26. Roohi, N.: Remedies for building reliable cyber-physical systems. Ph.D. thesis,
University of Illinois at Urbana-Champaign (2017)

27. Slay, J., Miller, M.: Lessons Learned from the Maroochy Water Breach. In: Goetz,
E., Shenoi, S. (eds.) ICCIP 2007. IFIP, vol. 253, pp. 73–82. Springer (2007).
https://doi.org/10.1007/978-0-387-75462-8 6

28. Vigo, R.: The Cyber-Physical Attacker. In: Ortmeier, F., Daniel, P.
(eds.) SAFECOMP 2012. LNCS, vol. 7613, pp. 347–356. Springer (2012).
https://doi.org/10.1007/978-3-642-33675-1

29. Vigo, R.: Availability by Design: A Complementary Approach to Denial-of-Service.
Ph.D. thesis, Danish Technical University (2015)

30. Vladimerou, V., Prabhakar, P., Viswanathan, M., Dullerud, G.: STORMED hybrid
systems. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 136–147. Springer
(2008). https://doi.org/10.1007/978-3-540-70583-3

31. Zacchia Lun, Y., D’Innocenzo, A., Malavolta, I., Di Benedetto, M.D.: Cyber-Physical
Systems Security: a Systematic Mapping Study. CoRR abs/1605.09641 (2016),
http://arxiv.org/abs/1605.09641

