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Abstract. We introduce a dynamic early stopping condition for Random Search optimization 

algorithms. We test our algorithm for SVM hyperparameter optimization for classification 

tasks, on six commonly used datasets. According to the experimental results, we reduce signifi-

cantly the number of trials used. Since each trial requires a re-training of the SVM model, our 

method accelerates the RS optimization. The code runs on a multi-core system and we analyze 

the achieved scalability for an increasing number of cores. 

1 Introduction 

Most Machine Learning (ML) models are described by two sets of parameters. 

The first set consists in regular parameters that are learned through training. The other 

set, called hyperparameters or meta-parameters, consists of parameters which are set 

before the learning starts. It is essential to identify the combination of hyperparameter 

values which produce the best (or closed to the best) generalization performance. This 

is done by re-training multiple models with different combinations of hyperparameter 

values and evaluating their performance. We call this re-training + evaluation for one 

set of hyperparameter values a trial. Since training a model can be very resource in-

tensive, it is important to reduce the number of trials. 

In the specific case of SVM classifiers, the algorithm performance depends on 

several parameters and it is quite sensitive to changes in any of those parameters [1]. 

The choice of the kernel, for example, can have a dramatic influence on the classifica-

tion performance [2]. The cost parameter    , controlling the trade-off between mar-

gin maximization and error minimization is also highly important as, for the non-

separable case, the algorithm must allow training errors. For a polynomial kernel, a 

wrong choice of the degree can easily lead to over-fitting [3]. 

The most commonly used hyperparameter optimization strategy is a combina-

tion of Grid Search (GS) and manual tuning
1
 [4-6]. More elaborate techniques are: 

Nelder-Mead [7], simulated annealing [8], evolutionary algorithms [9], and Bayesian 

                                                           
1 https://github.com/jaak-s/nips2014-survey - 82 out of 86 optimization related papers presented 

at the NIPS 2014 conference used GS 
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methods [10]. 

Random Search (RS) is another standard technique for hyperparameter optimi-

zation. A nice feature of RS is the possibility of adaptive early stopping. The key is to 

define a good stopping criterion, representing a trade-off between accuracy and com-

putation time. The rise of the randomized methods begun with the work of Bergstra 

and Bengio [11,12]. Using the same number of trials, RS generally yields better re-

sults than GS or more complicated hyperparameter optimization methods. Especially 

in higher dimensional spaces, the computation resources required by RS methods are 

significantly lower than for GS [13]. Also, RS methods are relatively simple and easy 

to implement on parallel computer architectures. 

Several software libraries dedicated to hyperparameter optimization exist, 

some of them being autonomous, while others being built on top of existing ML soft-

ware. LIBSVM [14] and scikit-learn [15] come with their own implementation of GS, 

with scikit-learn also offering support for RS. Spearmint [16] and Bayesopt [17] are 

software packages dedicated to Bayesian optimization. Auto-WEKA [18] is also able 

to perform Bayesian optimization but, unlike the previous two which are standalone 

libraries, it is built on top of Weka [19]. Hyperopt [20] and Optunity [21] are current-

ly two of the most advanced libraries for hyperparameter optimization.  

Our contribution is an improved RS optimization technique, which reduces the 

number of trials, without a significant impact on the prediction performance. The key 

is a new dynamically calculated early stopping condition for RS. The method is im-

plemented in parallel and achieves a good scalability. Our experiments are on the 

SVM classification problem applied to six commonly used datasets and five hyperpa-

rameters. According to them, our method accelerates the RS optimization. 

The paper proceeds as follows. Section 2 describes our algorithm and the dy-

namic stopping condition, with an emphasis on the algorithm's parallel nature. Section 

3 presents the experimental results and the paper is concluded with Section 4. 

2  Proposed Algorithm and Probabilistic Properties 

A highly simplified version of a hyperparameter optimization algorithm is 

characterized by an objective fitness function f  and a generator of samples g . The 

fitness function returns a classification accuracy measure of the target model, com-

puted either through cross-validation or on a separate validation set. The generator g  

is in charge of providing the next set of values that will be used to compute the mod-

el's fitness. A hasNext  method implemented by the generator offers the possibility to 

terminate the algorithm before the maximum number of N  evaluations is reached, if 

some convergence criteria is satisfied. 

In the particular case of RS, the generator g  simply draws samples from the 

specific distribution of each of the hyperparameters to be optimized. Our goal is to 

reduce the computational complexity of the RS method in terms of number of trials. 

In other words, we aim to compute less than N  trials, without a significant impact on 

the value of the fitness function. 

For this, we introduce a dynamic stopping criterion, included in a randomized 



Dynamic Early Stopping Criterion for Random Search in SVM Hyperparameter Optimization 3 

optimization algorithm (Algorithm 1). The algorithm is a two step optimizer. First, it 

iterates for a predefined number of steps n , Nn << , and finds the optimal combina-

tion of hyperparameter values, temp_opt. Then, it searches for the first result better 

than temp_opt. The optimal result, opt, is either the first result better than temp_opt or 

temp_opt if N  is reached. 

 

Algorithm 1. Parametric stop optimizer   

func Maximize(f, g, n, N){ 

index = -1; tmp_opt = -math.MaxFloat64;  opt = tmp_opt  

for i := 0; i <= n; i++ {  

rndPoint := g.Next(); f_rnd, _ := f(rndPoint)  

if (f_rnd > tmp_opt) {  

index = i; p = rndPoint; tmp_opt = f_rnd 

 }  

}  

for i := n+1; i < N; i++ { 

 rndPoint := g.Next(); f_rnd, _ := f(rndPoint)  

if (f_rnd > tmp_opt) {  

index = i; p = rndPoint; opt = f_rnd  

break  

}  

}  

return index, p, opt  

}  

The following problems arise: i) Can we determine a value for n  that maxim-

izes the probability of obtaining the best results?; and ii) Can the algorithm be paral-

lelized without impacting the probability of obtaining an optimal value? 

2.1. Sequential execution 

Algorithm 1 finds the optimum under the assumption that opt is in any position 

i , ni > , and no result better than temp_opt is in the range 1]1,[  in . 

We denote by iE1  the event that opt is reached on the i -th trial, and by iE2  

the event that no value better than temp_opt is obtained between the n -th and the i -

th trial. The probability of iE1  is  

NiEP 1/=)1(            (1) 

The probability that all values in the range 1]1,[  in  are worse than 

temp_opt is the same as the probability that the best result among the first 1i  at-

tempts lays in the range ][1,n :  

1)/(=)2( iniEP           (2) 

Since the two events are independent, the probability that we hit opt after ni >  

attempts is: 

1))(/(=)2()1(=  iNniEPiEPiP           (3) 

The event E  of finding opt after at most m  trials, Nmn <<  (where 

/2= Nm  is a reasonable target), has probability  
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Since i1/  is monotonically decreasing, the right term of eq. (4) has a lower 

bound:  
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We differentiate the left term of eq. (5):  
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equate to zero and solve for n obtaining:  

emn /=                   (7) 

 
Fig.1. Lower bound heatmap of the probability to obtain best result from a target space of 

maximum 300 attempts while terminating faster, depending on the values of m  (x axis) and 

n  (y axis). Darker shades correspond to greater probability.   

 

Choosing for n  a value larger than the optimal one increases the probability 

of finding the combination of values that yields the optimal result but with an in-

creased risk of a greater number of trials. The result from eq. (7) can be used to im-

plement an improved version of the Algorithm 1 that can automatically set the value 

of n  to eN/ . For example, in order to maximize the chances to obtain the best value, 

after a target maximum of 150 attempts, we must set n  to e150/  ( 55 ). For a target 

maximum of 100 attempts, n  should be 37, and so on. Fig. 1 shows the lower bound 

heatmap of the probability to obtain the best results while stopping earlier with re-

spect to the values of m  and n . 

2.2. Parallel execution 

We generate a parallel implementation of our method as follows: 

- Split the work between W  workers (can be anything from lightweight 

threads of execution, OS threads, CPU cores or even different servers). We 
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decided to use the GOLANG [22] support for goroutines
2
, which are basical-

ly lightweight threads managed by the GO run-time.  

- Each worker w  executes WN/  trials using the same early stopping criteri-

on. In this case, Wnwn /= , signifying that on average, with /2= Nm , W  

workers will terminate after )/(2WN  trials, with WN/  being the worst case.  

- The manager gathers the results from all workers and selects the best candi-

date.  

 

Algorithm 2 implements the above steps. The random values are generated and 

distributed by the manager, or each worker generates its own random sequence. Any 

of the following parallel pseudo-random number generation strategies can be selected 

[23]: Manager-Worker (MW), Sequence Splitting (SS), Leapfrog (LF), and Para-

metrization (P). 

 

Algorithm 2 Parallel stop optimizer    
func PMaximize(f, g, N, W){ 

// channels used by workers to communicate their results  

resultsChans := make(chan fn.Sample, W) 

for w := 0; w < W; w++ { 

go func(w int) { 

// index, point, function value, global optim, k 

i, p, v, gv, k := Maximize(f, g, N/W, w ) 

resultsChans <- fn.Sample{i, p, v, gv, k} 

}(w) 

} 

// Collect results  

results := make([]fn.Sample, W) 

for i := 0; i < W; i++ { 

results[i] = <-resultsChans 

} 

}  

2.3. The inverse problem 

Given a restricted computational budget, expressed by a target number of trials m , 

we obtained the optimal value for n . We are now interested in solving the reverse 

problem: Given an acceptable probability P  to achieve the best result among the N  

trials, which is the optimal value for n ? 

For the RS algorithm without the dynamic stopping criterion, if all trials are 

independent, the required number of trials needed to identify the optimum with a 

probability    is given by        The problem becomes interesting in the context 

of our stopping criterion when we are willing to compromise, by accepting a lower 

probability     , for a further reduction of the number of trials. 

In case of Algorithm 2, according to eq. (5), probability P  has a lower bound: 

n

em

N
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2
https://tour.golang.org/concurrency/1 
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This, together with eq. (7) gives: 

00
2 0.7357/2=ln)/(= PePeeNmP         (9) 

The value from eq. (9) represents the probability to identify the optimum re-

gardless of the activation of the stopping criterion -     might also be among the first 

  trials in which case the algorithm will test all the   possible combinations. The 

probability to find the optimum after a number of trials strictly lower than N  has a 

lower bound given by relation (5), which translates to: 
                                (10) 

The value of n  in eq. (8) can be adjusted in the interval ],/[ mem  to increase 

the probability of identifying the optimal value, but at the same time increase the 

computational cost (the number of trials). 

3 Experiments 

We use our method to optimize the following five hyperparameters of a SVM [1] 

classifier: kernel type (RBF, Polynomial or Linear chosen with equal probability),   

(drawn from an exponential distribution with 10= ); cost( C , drawn from an expo-

nential distribution with 10= ); degree (chosen with equal probability from the set 

{2,3,4,5}) and 0coef  (uniform on [0,1] ). 

We run our experiments on six of the most popular datasets from UCI Machine 

Learning Repository 
3
: Adult (a1a), Adult (a6a), Breast Cancer, Diabetes, Iris and 

Wine. Adult (a1a) and Adult (a6a) are variations of the same dataset but with different 

number of samples; the second one is around six times larger. Details of the datasets 

are presented in Table 1. 

Table 1. Details on used datasets 

Dataset Instances Features Classes # 

Adult (a1a) 1,605 123 2 

Adult (a6a) 11,220 123 2 

Breast Cancer 683 10 2 

Diabetes 768 8 2 

Iris 150 4 3 

Wine 178 13 3 

 

We apply ten fold cross-validation to evaluate the classification accuracy [24] 

and compare the obtained results, both in terms of classification performance and 

number of trials. We use the following optimizers (all implemented in the Optunity 

library): GS, RS, Particle Swarm, and Nelder-Mead. We also use the Weka SVM, 

with its implicit hyperparameters. 

We run the Algorithm 2 with 8=W  and 250=N , which leads to 92=n . We 

also run the four optimizers in Optunity, for a maximum number of 250 trials. 

 

                                                           
3
http://archive.ics.uci.edu/ml/index.php 
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3.1. Accuracy estimation 

Table 2 presents the results of applying Algorithm 2 for four parallelization 

strategies, compared with the results obtained with Optunity (RS, GS, Particle Swarm 

and Nelder-Mead) as well as with the results obtained using Weka with each of the 

three kernels (RBF, Polynomial and Linear) and the implicit values for the other pa-

rameters ( 1.0=C , featuresofnumber __1/= , 3=degree , 0.0=0coef ). The best 

results are marked in bold. 

Table 2. Accuracy and number of trials for Algorithm 2 using different parallelization 

strategies (MW, SS, LF, P), compared with Optunity (RS, GS, Particle Swarm and 

Nelder-Mead) and Weka's SVM.  

 
GO GO GO GO Optunity Optunity Optunity Optunity Weka Weka Weka 

 
MW SS LF P RS GS PS NM RBF Poly Linear 

Dataset Acc Runs Acc Runs Acc Runs Acc Runs Acc Acc Acc Acc Runs Acc Acc Acc 

Adult 

(a1a) 
0.837 164 0.836 194 0.837 194 0.837 148 0.837 0.835 0.838 0.833 108 0.828 0.839 0.754 

Adult 

(a6a) 
0.844 169 0.844 133 0.844 203 0.845 138 0.844 0.844 0.845 0.843 142 0.838 0.760 0.760 

Cancer 0.975 172 0.975 167 0.975 214 0.975 187 0.975 0.975 0.975 0.968 17 0.969 0.974 0.969 

Diabetes 0.776 223 0.776 203 0.780 220 0.779 130 0.777 0.777 0.776 0.651 6 0.775 0.686 0.777 

Iris 0.973 224 0.980 156 0.980 189 0.973 158 0.980 0.987 0.967 0.940 6 0.953 0.727 0.960 

Wine 0.989 194 0.989 215 0.989 162 0.989 177 0.989 0.984 0.989 0.956 62 0.983 0.404 0.972 

Average 0.899 191 0.900 178 0.901 197 0.900 156.334 0.900 0.900 0.898 0.865 56.834 0.891 0.732 0.865 

STDEV 0.091 27.188 0.092 31.241 0.091 20.746 0.090 22.223 0.092 0.092 0.090 0.120 57.711 0.088 0.190 0.112 

Since we compare multiple classifiers on multiple datasets, we have to use ad-

ditional statistical tests for further investigation, as suggested in [25]. 

We calculate the Friedman [26] and the Iman-Davenport [27] statistics using 

eq. (11), respectively eq. (12), with N  being the number of datasets, k  the number of 

algorithms and jR  the average rank of algorithm j  from Table 3, and obtain 

6.04=32.826,=2
FFF . 













 


 4

21)(2

1=1)(

12
=2 kk

j
R

k

jkk

N
F        (11) 

 
21)(

21)(
=

FkN

FN

FF







            (12) 

With 11 algorithms and six data sets, FF  is distributed according to the F  

distribution with 10=111  and 50=1)(6×1)(11   degrees of freedom. The criti-

cal value of (10,50)F  for 0.05=  is 2.03, so we reject the null-hypothesis, which 

means the algorithms are not equivalent in terms of prediction performance. 
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The critical difference [28,25] is given by:  

N

kk
qCD

6

1)(
=


          (13) 

where critical values q  are based on the Studentized range statistic divided by 2 . 

At significance level of 0.05= , the critical difference is             . 

Table 3. Algorithms' accuracy ranking on the used datasets. 

 
GO GO GO GO Optunity Optunity Optunity Optunity Weka Weka Weka 

Dataset MW SS LF P RS GS PS NM RBF Poly Linear 

Adult (a1a) 6 7 3.5 3.5 5 8 2 9 10 1 11 

Adult (a6a) 3 4 7 1 5 6 2 8 9 10.5 10.5 

Cancer 5.5 5.5 5.5 5.5 2.5 2.5 1 11 9.5 8 9.5 

Diabetes 8 7 1 2 5 4 6 11 9 10 3 

Iris 5.5 3 3 5.5 3 1 7 10 9 11 8 

Wine 2.5 2.5 2.5 2.5 5.5 7 5.5 10 8 11 9 

Average 5.083 4.833 3.750 3.333 4.333 4.750 3.917 9.833 9.083 8.583 8.500 

 

This clearly rules out the Nelder-Mead algorithm, which is significantly worse 

than the Parametrization based implementation of our RS ( 6.163>3.3339.833 ). At 

significance level 0.1= , the critical difference is             and we observe 

that Optunity - NM is significantly worse than GO - LF and GO - P and also that GO - 

P is significantly better than Optunity - NM and Weka - RBF. 

3.2. Efficiency of the stopping condition 

Based on the above results, we exclude Nelder-Mead (due to its significantly 

worse classification performance) and the Weka SVM (since is it does not perform a 

real hyperparameter optimization) from the analysis. Table 4 depicts the rank across 

all datasets in terms of number of trials. 

We perform another Friedman test and, using formulas (11) and (12), and ob-

tain: 28.554=2
F  and 19.173=FF . The critical value for (6,30)F  ( 17   and re-

spectively 1)1)(6(7  ) is 2.420 . This means that we can rule out the null-

hypothesis and state that the algorithms are not equivalent with respect to the number 

of trials. We compute the critical difference according to formula (13) and obtain 

3.678=0.05CD . 

Table 5 shows the difference in the average rank values for each pair of algo-

rithms. The values greater than 0.05CD  are marked in bold font. We can identify two 

groups of algorithms, the first group (GO - SS and GO - P) performs significantly 

better than the second group (Optunity - GS, Optunity - RS and Optunity - PS). It is 

not clear to which of the two groups GO - MW and GO - LF belong to. One possible 

explanation for the better results obtained by GO - SS and GO - P may be related to 

the superior parallel implementation of the random generators. However, since the 

number of random values generated in our tests is relatively small, this difference in 
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performance is most probably coincidental. 

Table 4. Algorithms ranking in terms of number of runs. 

 
GO GO GO GO Optunity Optunity Optunity 

Dataset MW SS LF P RS GS PS 

Adult (a1a) 2 3.5 3.5 1 6 6 6 

Adult (a6a) 3 1 4 2 6 6 6 

Cancer 2 1 4 3 6 6 6 

Diabetes 4 2 3 1 6 6 6 

Iris 4 1 3 2 6 6 6 

Wine 3 4 1 2 6 6 6 

Average 3.000 2.083 3.083 1.833 6.000 6.000 6.000 

Table 5. Algorithms ranking difference in terms of number of runs. 

 GO 

MW 

GO 

SS 

GO 

LF 

GO 

P 
Optunity 

RS 

Optunity 

GS 

Optunity 

PS 

GO MW  - -0.917 0.084 -1.167 3 3 3 

GO SS  - 1 -0.25 3.917 3.917 3.917 

GO LF   - -1.25 2.917 2.917 2.917 

GO P    - 4.167 4.167 4.167 

Optunity RS     - 0 0 

Optunity GS      - 0 

Optunity PS       - 

  

Finally, since the main goal of our work is to obtain an improved version of 

RS, we compare our method directly with Optunity RS, using the Holm [29] test. The 

standard error for our experiment is 1.247=)1)/(6(= NkkSE  . Table 6 shows the 

results of the Holm rejection test. 

Table 6. Performance in terms of number of trials required for GO - MW, GO - P, 

GO - SS and GO - LF against Optunity - RS in terms of the Holm test. 

 i SERiRz )/0(=   p i/  

GO P 1 3.341 0.00084 0.0084 

GO SS 2 3.140 0.00043 0.01 

GO MW 3 2.405 0.00808 0.0125 

GO LF 4 2.339 0.009668 0.0167 

 

The Holm test rejects all four hypotheses, since the corresponding p  values 

are smaller than the adjusted  's, leading to the conclusion that all four versions of 

our algorithm are significantly more efficient in terms of number of trials than the 

standard RS implementation. 

3.3. Scalability 

Besides the accuracy and the number of runs we also measure the algorithm's 

speedup (the ratio of the sequential execution time to the parallel execution time) as a 
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measure of its scalability. The values are depicted in Table 7. 

Table 7. Algorithm speedup with increasing number of cores. 

Dataset/Cores    2 3 4 6 8 

Adult(a1a)   1.37 2.96 3.48 4.13 4.52 

Adult (a6a)    1.97 2.71 3.02 3.35 3.70 

Cancer    1.98 2.91 3.53 3.91 4.09 

Diabetes    1.86 2.72 3.34 3.70 3.88 

Iris    1.94 2.75 3.10 3.43 3.54 

Wine    1.99 2.81 3.28 3.96 4.11 

Average    1.85 2.81 3.29 3.75 3.97 

4 Conclusions 

We introduced a new dynamic stopping condition for RS based hyperparame-

ter optimization, together with its parallel implementation. In the context of SVM 

classification, on six of the most commonly used datasets, we obtained on par accura-

cy values with the existing mainstream hyperparameter optimization techniques. With 

all four of the parallel random generators used, the algorithm terminates after a signif-

icantly reduced number of trials compared to the standard implementation of RS, 

which leads to an important decrease in the computational budget required for the 

optimization. 

The present work opens further research directions in terms of optimizing the 

hyperparameters for other ML algorithms where the search space has a larger number 

of dimensions and the required computational budget is currently a major issue. The 

algorithm implementation is flexible enough to allow a gradient-free optimization of 

any function. 

References 

1. C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, 

pp. 273–297, Sep. 1995. [Online]. Available: 

http://dx.doi.org/10.1023/A:1022627411411 

2. O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, “Choosing multiple pa-

rameters for support vector machines,” Machine Learning, vol. 46, no. 1, pp. 131–

159, Jan 2002. [Online]. Available: https://doi.org/10.1023/A:1012450327387 

3. C. M. Bishop, Pattern Recognition and Machine Learning (Information Science 

and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.  

4. Y. LeCun, L. Bottou, G. Orr, and K. Mller, Efficient Backprop, ser. Lecture Notes 

in Computer Science (including subseries Lecture Notes in Artificial Intelligence 

and Lecture Notes in Bioinformatics). Springer, 2012, vol. 7700 LECTURE NO, 

pp. 9–48.  

5. G. E. Hinton, “A practical guide to training Restricted Boltzmann Machines.” in 

Neural Networks: Tricks of the Trade (2nd ed.), ser. Lecture Notes in Computer 

Science, G. Montavon, G. B. Orr, and K.-R. Mller, Eds. Springer, 2012, vol. 7700, 

pp. 599–619.  



Dynamic Early Stopping Criterion for Random Search in SVM Hyperparameter Optimization 

11 

6. S. Smusz, W. M. Czarnecki, D. Warszycki, and A. J. Bojarski, “Exploiting uncer-

tainty measures in compounds activity prediction using support vector machines,” 

Bioorganic & medicinal chemistry letters, vol. 25, no. 1, pp. 100–105, 2015.  

7. J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Com-

puter Journal, vol. 7, pp. 308–313, 1965.  

8. S.Kirkpatrick,“Optimization by simulated annealing:Quantitative studies,”Journal 

of Statistical Physics, vol. 34, no. 5, pp. 975–986, Mar 1984.  

9. N. Hansen, S. D. Muller, and P. Koumoutsakos, “Reducing the time complexity of 

the derandomized evolution strategy with covariance matrix adaptation (cma-es),” 

Evol. Comput., vol. 11, no. 1, pp. 1–18, Mar. 2003. [Online]. Available: 

http://dx.doi.org/10.1162/106365603321828970  

10. C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-WEKA: Com-

bined selection and hyperparameter optimization of classification algorithms,” in 

Proceedings of the 19th ACM SIGKDD International Conference on Knowledge 

Discovery and Data Mining, ser. KDD ’13. New York, NY, USA: ACM, 2013, 

pp. 847–855. [Online]. Available: http://doi.acm.org/10.1145/2487575.2487629  

11. J. Bergstra, R. Bardenet, Y. Bengio, and B. Kgl, “Algorithms for hyper-parameter 

optimization.” in NIPS, J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. C. N. Pe-

reira, and K. Q. Weinberger, Eds., 2011, pp. 2546–2554. [Online]. Available: 

http://dblp.uni-trier.de/db/conf/nips/nips2011.html  

12. J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,” 

Journal of Machine Learning Research, vol. 13, pp. 281–305, 2012.  

13. J. Lemley, F. Jagodzinski, and R. Andonie, “Big holes in big data: A monte carlo 

algorithm for detecting large hyper-rectangles in high dimensional data,” in 2016 

IEEE 40th Annual Computer Software and Applications Conference 

(COMPSAC), vol. 1, June 2016, pp. 563–571.  

14. C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” 

ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27, 

2011, software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.  

15. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. 

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. 

Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine 

learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–

2830, 2011.  

16. J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of 

machine learning algorithms,” in Advances in Neural Information Processing Sys-

tems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran 

Associates, Inc., 2012, pp. 2951– 2959. [Online]. Available: 

http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-

learning-algorithms.pdf  

17. R. Martinez-Cantin, “Bayesopt: A bayesian optimization library for nonlinear 

optimization, experimental design and bandits,” CoRR, vol. abs/1405.7430, 2014. 

[Online]. Available: http://arxiv.org/abs/1405.7430  

18. L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown, “Auto-

WEKA 2.0: Automatic model selection and hyperparameter optimization in 

WEKA,” Journal of Machine Learning Research, vol. 18, no. 25, pp. 1–5, 2017. 

[Online]. Available: http://jmlr.org/papers/v18/16-261.html  



12    Adrian Cătălin Florea
 
and Răzvan Andonie 

19. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, 

“The WEKA data mining software: An update,” SIGKDD Explor. Newsl., vol. 11, 

no. 1, pp. 10–18, Nov. 2009. [Online]. Available: 

http://doi.acm.org/10.1145/1656274.1656278  

20. J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and D. D. Cox, “Hyperopt: a 

Python library for model selection and hyperparameter optimization,” Computa-

tional Science and Discovery, vol. 8, no. 1, p. 014008, 2015. [Online]. Available: 

http://stacks.iop.org/1749-4699/8/i=1/a=014008  

21. M. Claesen, J. Simm, D. Popovic, Y. Moreau, and B. D. Moor, “Easy Hyperpa-

rameter Search Using Optunity,” CoRR, vol. abs/1412.1114, 2014. [Online]. 

Available: http://arxiv.org/abs/1412.1114  

22. Google. (2007) The Go programming language. [Online]. Available: 

https://golang.org/pro ject/  

23. M. J. Quinn, Parallel Programming in C with MPI and OpenMP. McGraw-Hill 

Education Group, 2003.  

24. M. Sokolova and G. Lapalme, “A systematic analysis of performance measures 

for classification tasks,” Inf. Process. Manage., vol. 45, no. 4, pp. 427–437, Jul. 

2009. [Online]. Available: http://dx.doi.org/10.1016/j.ipm.2009.03.002  

25. J. Demsar, “Statistical comparisons of classifiers over multiple data sets,” Journal 

of Machine Learning Research, vol. 7, pp. 1–30, 2006. [Online]. Available: 

http://www.jmlr.org/papers/volume7/demsar06a/demsar06a.pdf  

26. M. Friedman, “A comparison of alternative tests of significance for the problem of 

m rankings,” Ann. Math. Statist., vol. 11, no. 1, pp. 86–92, 03 1940. [Online]. 

Available: http://dx.doi.org/10.1214/aoms/1177731944  

27. R. Iman and J. Davenport, “Approximations of the critical region of the Friedman 

statistic,” Communications in Statistics-Theory and Methods, vol. 9, pp. 571–595, 

01 1980.  

28. P. Nemenyi, Distribution-free Multiple Comparisons. Thesis Princeton University, 

1963. [Online]. Available: https://books.google.ro/books?id=nhDMtgAACAAJ  

29. S. Holm, “A simple sequentially rejective multiple test procedure,” Scandinavian 

Journal of Statistics, vol. 6, pp. 65–70, 1979.  


