
HAL Id: hal-01821037
https://inria.hal.science/hal-01821037

Submitted on 22 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Dynamic Early Stopping Criterion for Random Search
in SVM Hyperparameter Optimization

Adrian Cătălin Florea, Răzvan Andonie

To cite this version:
Adrian Cătălin Florea, Răzvan Andonie. A Dynamic Early Stopping Criterion for Random Search
in SVM Hyperparameter Optimization. 14th IFIP International Conference on Artificial Intelligence
Applications and Innovations (AIAI), May 2018, Rhodes, Greece. pp.168-180, �10.1007/978-3-319-
92007-8_15�. �hal-01821037�

https://inria.hal.science/hal-01821037
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Dynamic Early Stopping Criterion for Random Search

in SVM Hyperparameter Optimization

Adrian Cătălin Florea
1
 and Răzvan Andonie

2

1 Electronics and Computers Department, Transilvania University of Brașov, Brașov, Romania

acflorea@unitbv.ro
2 Computer Science Department, Central Washington University, Ellensburg, WA, USA

andonie@cwu.edu

Abstract. We introduce a dynamic early stopping condition for Random Search optimization

algorithms. We test our algorithm for SVM hyperparameter optimization for classification

tasks, on six commonly used datasets. According to the experimental results, we reduce signifi-

cantly the number of trials used. Since each trial requires a re-training of the SVM model, our

method accelerates the RS optimization. The code runs on a multi-core system and we analyze

the achieved scalability for an increasing number of cores.

1 Introduction

Most Machine Learning (ML) models are described by two sets of parameters.

The first set consists in regular parameters that are learned through training. The other

set, called hyperparameters or meta-parameters, consists of parameters which are set

before the learning starts. It is essential to identify the combination of hyperparameter

values which produce the best (or closed to the best) generalization performance. This

is done by re-training multiple models with different combinations of hyperparameter

values and evaluating their performance. We call this re-training + evaluation for one

set of hyperparameter values a trial. Since training a model can be very resource in-

tensive, it is important to reduce the number of trials.

In the specific case of SVM classifiers, the algorithm performance depends on

several parameters and it is quite sensitive to changes in any of those parameters [1].

The choice of the kernel, for example, can have a dramatic influence on the classifica-

tion performance [2]. The cost parameter , controlling the trade-off between mar-

gin maximization and error minimization is also highly important as, for the non-

separable case, the algorithm must allow training errors. For a polynomial kernel, a

wrong choice of the degree can easily lead to over-fitting [3].

The most commonly used hyperparameter optimization strategy is a combina-

tion of Grid Search (GS) and manual tuning
1
 [4-6]. More elaborate techniques are:

Nelder-Mead [7], simulated annealing [8], evolutionary algorithms [9], and Bayesian

1 https://github.com/jaak-s/nips2014-survey - 82 out of 86 optimization related papers presented

at the NIPS 2014 conference used GS

2 Adrian Cătălin Florea

and Răzvan Andonie

methods [10].

Random Search (RS) is another standard technique for hyperparameter optimi-

zation. A nice feature of RS is the possibility of adaptive early stopping. The key is to

define a good stopping criterion, representing a trade-off between accuracy and com-

putation time. The rise of the randomized methods begun with the work of Bergstra

and Bengio [11,12]. Using the same number of trials, RS generally yields better re-

sults than GS or more complicated hyperparameter optimization methods. Especially

in higher dimensional spaces, the computation resources required by RS methods are

significantly lower than for GS [13]. Also, RS methods are relatively simple and easy

to implement on parallel computer architectures.

Several software libraries dedicated to hyperparameter optimization exist,

some of them being autonomous, while others being built on top of existing ML soft-

ware. LIBSVM [14] and scikit-learn [15] come with their own implementation of GS,

with scikit-learn also offering support for RS. Spearmint [16] and Bayesopt [17] are

software packages dedicated to Bayesian optimization. Auto-WEKA [18] is also able

to perform Bayesian optimization but, unlike the previous two which are standalone

libraries, it is built on top of Weka [19]. Hyperopt [20] and Optunity [21] are current-

ly two of the most advanced libraries for hyperparameter optimization.

Our contribution is an improved RS optimization technique, which reduces the

number of trials, without a significant impact on the prediction performance. The key

is a new dynamically calculated early stopping condition for RS. The method is im-

plemented in parallel and achieves a good scalability. Our experiments are on the

SVM classification problem applied to six commonly used datasets and five hyperpa-

rameters. According to them, our method accelerates the RS optimization.

The paper proceeds as follows. Section 2 describes our algorithm and the dy-

namic stopping condition, with an emphasis on the algorithm's parallel nature. Section

3 presents the experimental results and the paper is concluded with Section 4.

2 Proposed Algorithm and Probabilistic Properties

A highly simplified version of a hyperparameter optimization algorithm is

characterized by an objective fitness function f and a generator of samples g . The

fitness function returns a classification accuracy measure of the target model, com-

puted either through cross-validation or on a separate validation set. The generator g

is in charge of providing the next set of values that will be used to compute the mod-

el's fitness. A hasNext method implemented by the generator offers the possibility to

terminate the algorithm before the maximum number of N evaluations is reached, if

some convergence criteria is satisfied.

In the particular case of RS, the generator g simply draws samples from the

specific distribution of each of the hyperparameters to be optimized. Our goal is to

reduce the computational complexity of the RS method in terms of number of trials.

In other words, we aim to compute less than N trials, without a significant impact on

the value of the fitness function.

For this, we introduce a dynamic stopping criterion, included in a randomized

Dynamic Early Stopping Criterion for Random Search in SVM Hyperparameter Optimization 3

optimization algorithm (Algorithm 1). The algorithm is a two step optimizer. First, it

iterates for a predefined number of steps n , Nn << , and finds the optimal combina-

tion of hyperparameter values, temp_opt. Then, it searches for the first result better

than temp_opt. The optimal result, opt, is either the first result better than temp_opt or

temp_opt if N is reached.

Algorithm 1. Parametric stop optimizer

func Maximize(f, g, n, N){

index = -1; tmp_opt = -math.MaxFloat64; opt = tmp_opt

for i := 0; i <= n; i++ {

rndPoint := g.Next(); f_rnd, _ := f(rndPoint)

if (f_rnd > tmp_opt) {

index = i; p = rndPoint; tmp_opt = f_rnd

 }

}

for i := n+1; i < N; i++ {

 rndPoint := g.Next(); f_rnd, _ := f(rndPoint)

if (f_rnd > tmp_opt) {

index = i; p = rndPoint; opt = f_rnd

break

}

}

return index, p, opt

}

The following problems arise: i) Can we determine a value for n that maxim-

izes the probability of obtaining the best results?; and ii) Can the algorithm be paral-

lelized without impacting the probability of obtaining an optimal value?

2.1. Sequential execution

Algorithm 1 finds the optimum under the assumption that opt is in any position

i , ni > , and no result better than temp_opt is in the range 1]1,[ in .

We denote by iE1 the event that opt is reached on the i -th trial, and by iE2

the event that no value better than temp_opt is obtained between the n -th and the i -

th trial. The probability of iE1 is

NiEP 1/=)1((1)

The probability that all values in the range 1]1,[ in are worse than

temp_opt is the same as the probability that the best result among the first 1i at-

tempts lays in the range][1,n :

1)/(=)2(iniEP (2)

Since the two events are independent, the probability that we hit opt after ni >

attempts is:

1))(/(=)2()1(=  iNniEPiEPiP (3)

The event E of finding opt after at most m trials, Nmn << (where

/2= Nm is a reasonable target), has probability

4 Adrian Cătălin Florea

and Răzvan Andonie

i

m

niN

n

i

m

niN

n
iP

m

ni
EP

11

=
=

1)(

1

1=
=

1=
=)(










 (4)

Since i1/ is monotonically decreasing, the right term of eq. (4) has a lower

bound:

i

m

niN

n
dx

m

n
xN

n 11

=

1



 (5)

We differentiate the left term of eq. (5):

  1),lnln(
1

=lnln 







 nm

N
nm

N

n

dn

d
 (6)

equate to zero and solve for n obtaining:

emn /= (7)

Fig.1. Lower bound heatmap of the probability to obtain best result from a target space of

maximum 300 attempts while terminating faster, depending on the values of m (x axis) and

n (y axis). Darker shades correspond to greater probability.

Choosing for n a value larger than the optimal one increases the probability

of finding the combination of values that yields the optimal result but with an in-

creased risk of a greater number of trials. The result from eq. (7) can be used to im-

plement an improved version of the Algorithm 1 that can automatically set the value

of n to eN/ . For example, in order to maximize the chances to obtain the best value,

after a target maximum of 150 attempts, we must set n to e150/ (55). For a target

maximum of 100 attempts, n should be 37, and so on. Fig. 1 shows the lower bound

heatmap of the probability to obtain the best results while stopping earlier with re-

spect to the values of m and n .

2.2. Parallel execution

We generate a parallel implementation of our method as follows:

- Split the work between W workers (can be anything from lightweight

threads of execution, OS threads, CPU cores or even different servers). We

Dynamic Early Stopping Criterion for Random Search in SVM Hyperparameter Optimization 5

decided to use the GOLANG [22] support for goroutines
2
, which are basical-

ly lightweight threads managed by the GO run-time.

- Each worker w executes WN/ trials using the same early stopping criteri-

on. In this case, Wnwn /= , signifying that on average, with /2= Nm , W

workers will terminate after)/(2WN trials, with WN/ being the worst case.

- The manager gathers the results from all workers and selects the best candi-

date.

Algorithm 2 implements the above steps. The random values are generated and

distributed by the manager, or each worker generates its own random sequence. Any

of the following parallel pseudo-random number generation strategies can be selected

[23]: Manager-Worker (MW), Sequence Splitting (SS), Leapfrog (LF), and Para-

metrization (P).

Algorithm 2 Parallel stop optimizer
func PMaximize(f, g, N, W){

// channels used by workers to communicate their results

resultsChans := make(chan fn.Sample, W)

for w := 0; w < W; w++ {

go func(w int) {

// index, point, function value, global optim, k

i, p, v, gv, k := Maximize(f, g, N/W, w)

resultsChans <- fn.Sample{i, p, v, gv, k}

}(w)

}

// Collect results

results := make([]fn.Sample, W)

for i := 0; i < W; i++ {

results[i] = <-resultsChans

}

}

2.3. The inverse problem

Given a restricted computational budget, expressed by a target number of trials m ,

we obtained the optimal value for n . We are now interested in solving the reverse

problem: Given an acceptable probability P to achieve the best result among the N

trials, which is the optimal value for n ?

For the RS algorithm without the dynamic stopping criterion, if all trials are

independent, the required number of trials needed to identify the optimum with a

probability is given by The problem becomes interesting in the context

of our stopping criterion when we are willing to compromise, by accepting a lower

probability , for a further reduction of the number of trials.

In case of Algorithm 2, according to eq. (5), probability P has a lower bound:

n

em

N

n
dx

x

m

n
N

n
P ln=

1
1














 (8)

2
https://tour.golang.org/concurrency/1

6 Adrian Cătălin Florea

and Răzvan Andonie

This, together with eq. (7) gives:

00
2 0.7357/2=ln)/(= PePeeNmP  (9)

The value from eq. (9) represents the probability to identify the optimum re-

gardless of the activation of the stopping criterion - might also be among the first

 trials in which case the algorithm will test all the possible combinations. The

probability to find the optimum after a number of trials strictly lower than N has a

lower bound given by relation (5), which translates to:
 (10)

The value of n in eq. (8) can be adjusted in the interval],/[mem to increase

the probability of identifying the optimal value, but at the same time increase the

computational cost (the number of trials).

3 Experiments

We use our method to optimize the following five hyperparameters of a SVM [1]

classifier: kernel type (RBF, Polynomial or Linear chosen with equal probability), 

(drawn from an exponential distribution with 10=); cost(C , drawn from an expo-

nential distribution with 10=); degree (chosen with equal probability from the set

{2,3,4,5}) and 0coef (uniform on [0,1]).

We run our experiments on six of the most popular datasets from UCI Machine

Learning Repository
3
: Adult (a1a), Adult (a6a), Breast Cancer, Diabetes, Iris and

Wine. Adult (a1a) and Adult (a6a) are variations of the same dataset but with different

number of samples; the second one is around six times larger. Details of the datasets

are presented in Table 1.

Table 1. Details on used datasets

Dataset Instances Features Classes #

Adult (a1a) 1,605 123 2

Adult (a6a) 11,220 123 2

Breast Cancer 683 10 2

Diabetes 768 8 2

Iris 150 4 3

Wine 178 13 3

We apply ten fold cross-validation to evaluate the classification accuracy [24]

and compare the obtained results, both in terms of classification performance and

number of trials. We use the following optimizers (all implemented in the Optunity

library): GS, RS, Particle Swarm, and Nelder-Mead. We also use the Weka SVM,

with its implicit hyperparameters.

We run the Algorithm 2 with 8=W and 250=N , which leads to 92=n . We

also run the four optimizers in Optunity, for a maximum number of 250 trials.

3
http://archive.ics.uci.edu/ml/index.php

Dynamic Early Stopping Criterion for Random Search in SVM Hyperparameter Optimization 7

3.1. Accuracy estimation

Table 2 presents the results of applying Algorithm 2 for four parallelization

strategies, compared with the results obtained with Optunity (RS, GS, Particle Swarm

and Nelder-Mead) as well as with the results obtained using Weka with each of the

three kernels (RBF, Polynomial and Linear) and the implicit values for the other pa-

rameters (1.0=C , featuresofnumber __1/= , 3=degree , 0.0=0coef). The best

results are marked in bold.

Table 2. Accuracy and number of trials for Algorithm 2 using different parallelization

strategies (MW, SS, LF, P), compared with Optunity (RS, GS, Particle Swarm and

Nelder-Mead) and Weka's SVM.

GO GO GO GO Optunity Optunity Optunity Optunity Weka Weka Weka

MW SS LF P RS GS PS NM RBF Poly Linear

Dataset Acc Runs Acc Runs Acc Runs Acc Runs Acc Acc Acc Acc Runs Acc Acc Acc

Adult

(a1a)
0.837 164 0.836 194 0.837 194 0.837 148 0.837 0.835 0.838 0.833 108 0.828 0.839 0.754

Adult

(a6a)
0.844 169 0.844 133 0.844 203 0.845 138 0.844 0.844 0.845 0.843 142 0.838 0.760 0.760

Cancer 0.975 172 0.975 167 0.975 214 0.975 187 0.975 0.975 0.975 0.968 17 0.969 0.974 0.969

Diabetes 0.776 223 0.776 203 0.780 220 0.779 130 0.777 0.777 0.776 0.651 6 0.775 0.686 0.777

Iris 0.973 224 0.980 156 0.980 189 0.973 158 0.980 0.987 0.967 0.940 6 0.953 0.727 0.960

Wine 0.989 194 0.989 215 0.989 162 0.989 177 0.989 0.984 0.989 0.956 62 0.983 0.404 0.972

Average 0.899 191 0.900 178 0.901 197 0.900 156.334 0.900 0.900 0.898 0.865 56.834 0.891 0.732 0.865

STDEV 0.091 27.188 0.092 31.241 0.091 20.746 0.090 22.223 0.092 0.092 0.090 0.120 57.711 0.088 0.190 0.112

Since we compare multiple classifiers on multiple datasets, we have to use ad-

ditional statistical tests for further investigation, as suggested in [25].

We calculate the Friedman [26] and the Iman-Davenport [27] statistics using

eq. (11), respectively eq. (12), with N being the number of datasets, k the number of

algorithms and jR the average rank of algorithm j from Table 3, and obtain

6.04=32.826,=2
FFF .













 


 4

21)(2

1=1)(

12
=2 kk

j
R

k

jkk

N
F (11)

21)(

21)(
=

FkN

FN

FF







 (12)

With 11 algorithms and six data sets, FF is distributed according to the F

distribution with 10=111 and 50=1)(6×1)(11  degrees of freedom. The criti-

cal value of (10,50)F for 0.05= is 2.03, so we reject the null-hypothesis, which

means the algorithms are not equivalent in terms of prediction performance.

8 Adrian Cătălin Florea

and Răzvan Andonie

The critical difference [28,25] is given by:

N

kk
qCD

6

1)(
=


 (13)

where critical values q are based on the Studentized range statistic divided by 2 .

At significance level of 0.05= , the critical difference is .

Table 3. Algorithms' accuracy ranking on the used datasets.

GO GO GO GO Optunity Optunity Optunity Optunity Weka Weka Weka

Dataset MW SS LF P RS GS PS NM RBF Poly Linear

Adult (a1a) 6 7 3.5 3.5 5 8 2 9 10 1 11

Adult (a6a) 3 4 7 1 5 6 2 8 9 10.5 10.5

Cancer 5.5 5.5 5.5 5.5 2.5 2.5 1 11 9.5 8 9.5

Diabetes 8 7 1 2 5 4 6 11 9 10 3

Iris 5.5 3 3 5.5 3 1 7 10 9 11 8

Wine 2.5 2.5 2.5 2.5 5.5 7 5.5 10 8 11 9

Average 5.083 4.833 3.750 3.333 4.333 4.750 3.917 9.833 9.083 8.583 8.500

This clearly rules out the Nelder-Mead algorithm, which is significantly worse

than the Parametrization based implementation of our RS (6.163>3.3339.833). At

significance level 0.1= , the critical difference is and we observe

that Optunity - NM is significantly worse than GO - LF and GO - P and also that GO -

P is significantly better than Optunity - NM and Weka - RBF.

3.2. Efficiency of the stopping condition

Based on the above results, we exclude Nelder-Mead (due to its significantly

worse classification performance) and the Weka SVM (since is it does not perform a

real hyperparameter optimization) from the analysis. Table 4 depicts the rank across

all datasets in terms of number of trials.

We perform another Friedman test and, using formulas (11) and (12), and ob-

tain: 28.554=2
F and 19.173=FF . The critical value for (6,30)F (17  and re-

spectively 1)1)(6(7 ) is 2.420 . This means that we can rule out the null-

hypothesis and state that the algorithms are not equivalent with respect to the number

of trials. We compute the critical difference according to formula (13) and obtain

3.678=0.05CD .

Table 5 shows the difference in the average rank values for each pair of algo-

rithms. The values greater than 0.05CD are marked in bold font. We can identify two

groups of algorithms, the first group (GO - SS and GO - P) performs significantly

better than the second group (Optunity - GS, Optunity - RS and Optunity - PS). It is

not clear to which of the two groups GO - MW and GO - LF belong to. One possible

explanation for the better results obtained by GO - SS and GO - P may be related to

the superior parallel implementation of the random generators. However, since the

number of random values generated in our tests is relatively small, this difference in

Dynamic Early Stopping Criterion for Random Search in SVM Hyperparameter Optimization 9

performance is most probably coincidental.

Table 4. Algorithms ranking in terms of number of runs.

GO GO GO GO Optunity Optunity Optunity

Dataset MW SS LF P RS GS PS

Adult (a1a) 2 3.5 3.5 1 6 6 6

Adult (a6a) 3 1 4 2 6 6 6

Cancer 2 1 4 3 6 6 6

Diabetes 4 2 3 1 6 6 6

Iris 4 1 3 2 6 6 6

Wine 3 4 1 2 6 6 6

Average 3.000 2.083 3.083 1.833 6.000 6.000 6.000

Table 5. Algorithms ranking difference in terms of number of runs.

 GO

MW

GO

SS

GO

LF

GO

P
Optunity

RS

Optunity

GS

Optunity

PS

GO MW - -0.917 0.084 -1.167 3 3 3

GO SS - 1 -0.25 3.917 3.917 3.917

GO LF - -1.25 2.917 2.917 2.917

GO P - 4.167 4.167 4.167

Optunity RS - 0 0

Optunity GS - 0

Optunity PS -

Finally, since the main goal of our work is to obtain an improved version of

RS, we compare our method directly with Optunity RS, using the Holm [29] test. The

standard error for our experiment is 1.247=)1)/(6(= NkkSE  . Table 6 shows the

results of the Holm rejection test.

Table 6. Performance in terms of number of trials required for GO - MW, GO - P,

GO - SS and GO - LF against Optunity - RS in terms of the Holm test.

 i SERiRz)/0(=  p i/

GO P 1 3.341 0.00084 0.0084

GO SS 2 3.140 0.00043 0.01

GO MW 3 2.405 0.00808 0.0125

GO LF 4 2.339 0.009668 0.0167

The Holm test rejects all four hypotheses, since the corresponding p values

are smaller than the adjusted  's, leading to the conclusion that all four versions of

our algorithm are significantly more efficient in terms of number of trials than the

standard RS implementation.

3.3. Scalability

Besides the accuracy and the number of runs we also measure the algorithm's

speedup (the ratio of the sequential execution time to the parallel execution time) as a

10 Adrian Cătălin Florea

and Răzvan Andonie

measure of its scalability. The values are depicted in Table 7.

Table 7. Algorithm speedup with increasing number of cores.

Dataset/Cores 2 3 4 6 8

Adult(a1a) 1.37 2.96 3.48 4.13 4.52

Adult (a6a) 1.97 2.71 3.02 3.35 3.70

Cancer 1.98 2.91 3.53 3.91 4.09

Diabetes 1.86 2.72 3.34 3.70 3.88

Iris 1.94 2.75 3.10 3.43 3.54

Wine 1.99 2.81 3.28 3.96 4.11

Average 1.85 2.81 3.29 3.75 3.97

4 Conclusions

We introduced a new dynamic stopping condition for RS based hyperparame-

ter optimization, together with its parallel implementation. In the context of SVM

classification, on six of the most commonly used datasets, we obtained on par accura-

cy values with the existing mainstream hyperparameter optimization techniques. With

all four of the parallel random generators used, the algorithm terminates after a signif-

icantly reduced number of trials compared to the standard implementation of RS,

which leads to an important decrease in the computational budget required for the

optimization.

The present work opens further research directions in terms of optimizing the

hyperparameters for other ML algorithms where the search space has a larger number

of dimensions and the required computational budget is currently a major issue. The

algorithm implementation is flexible enough to allow a gradient-free optimization of

any function.

References

1. C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3,

pp. 273–297, Sep. 1995. [Online]. Available:

http://dx.doi.org/10.1023/A:1022627411411

2. O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, “Choosing multiple pa-

rameters for support vector machines,” Machine Learning, vol. 46, no. 1, pp. 131–

159, Jan 2002. [Online]. Available: https://doi.org/10.1023/A:1012450327387

3. C. M. Bishop, Pattern Recognition and Machine Learning (Information Science

and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

4. Y. LeCun, L. Bottou, G. Orr, and K. Mller, Efficient Backprop, ser. Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics). Springer, 2012, vol. 7700 LECTURE NO,

pp. 9–48.

5. G. E. Hinton, “A practical guide to training Restricted Boltzmann Machines.” in

Neural Networks: Tricks of the Trade (2nd ed.), ser. Lecture Notes in Computer

Science, G. Montavon, G. B. Orr, and K.-R. Mller, Eds. Springer, 2012, vol. 7700,

pp. 599–619.

Dynamic Early Stopping Criterion for Random Search in SVM Hyperparameter Optimization

11

6. S. Smusz, W. M. Czarnecki, D. Warszycki, and A. J. Bojarski, “Exploiting uncer-

tainty measures in compounds activity prediction using support vector machines,”

Bioorganic & medicinal chemistry letters, vol. 25, no. 1, pp. 100–105, 2015.

7. J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Com-

puter Journal, vol. 7, pp. 308–313, 1965.

8. S.Kirkpatrick,“Optimization by simulated annealing:Quantitative studies,”Journal

of Statistical Physics, vol. 34, no. 5, pp. 975–986, Mar 1984.

9. N. Hansen, S. D. Muller, and P. Koumoutsakos, “Reducing the time complexity of

the derandomized evolution strategy with covariance matrix adaptation (cma-es),”

Evol. Comput., vol. 11, no. 1, pp. 1–18, Mar. 2003. [Online]. Available:

http://dx.doi.org/10.1162/106365603321828970

10. C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-WEKA: Com-

bined selection and hyperparameter optimization of classification algorithms,” in

Proceedings of the 19th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, ser. KDD ’13. New York, NY, USA: ACM, 2013,

pp. 847–855. [Online]. Available: http://doi.acm.org/10.1145/2487575.2487629

11. J. Bergstra, R. Bardenet, Y. Bengio, and B. Kgl, “Algorithms for hyper-parameter

optimization.” in NIPS, J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. C. N. Pe-

reira, and K. Q. Weinberger, Eds., 2011, pp. 2546–2554. [Online]. Available:

http://dblp.uni-trier.de/db/conf/nips/nips2011.html

12. J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,”

Journal of Machine Learning Research, vol. 13, pp. 281–305, 2012.

13. J. Lemley, F. Jagodzinski, and R. Andonie, “Big holes in big data: A monte carlo

algorithm for detecting large hyper-rectangles in high dimensional data,” in 2016

IEEE 40th Annual Computer Software and Applications Conference

(COMPSAC), vol. 1, June 2016, pp. 563–571.

14. C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,”

ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27,

2011, software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

15. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.

Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine

learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–

2830, 2011.

16. J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of

machine learning algorithms,” in Advances in Neural Information Processing Sys-

tems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran

Associates, Inc., 2012, pp. 2951– 2959. [Online]. Available:

http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-

learning-algorithms.pdf

17. R. Martinez-Cantin, “Bayesopt: A bayesian optimization library for nonlinear

optimization, experimental design and bandits,” CoRR, vol. abs/1405.7430, 2014.

[Online]. Available: http://arxiv.org/abs/1405.7430

18. L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown, “Auto-

WEKA 2.0: Automatic model selection and hyperparameter optimization in

WEKA,” Journal of Machine Learning Research, vol. 18, no. 25, pp. 1–5, 2017.

[Online]. Available: http://jmlr.org/papers/v18/16-261.html

12 Adrian Cătălin Florea

and Răzvan Andonie

19. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,

“The WEKA data mining software: An update,” SIGKDD Explor. Newsl., vol. 11,

no. 1, pp. 10–18, Nov. 2009. [Online]. Available:

http://doi.acm.org/10.1145/1656274.1656278

20. J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and D. D. Cox, “Hyperopt: a

Python library for model selection and hyperparameter optimization,” Computa-

tional Science and Discovery, vol. 8, no. 1, p. 014008, 2015. [Online]. Available:

http://stacks.iop.org/1749-4699/8/i=1/a=014008

21. M. Claesen, J. Simm, D. Popovic, Y. Moreau, and B. D. Moor, “Easy Hyperpa-

rameter Search Using Optunity,” CoRR, vol. abs/1412.1114, 2014. [Online].

Available: http://arxiv.org/abs/1412.1114

22. Google. (2007) The Go programming language. [Online]. Available:

https://golang.org/pro ject/

23. M. J. Quinn, Parallel Programming in C with MPI and OpenMP. McGraw-Hill

Education Group, 2003.

24. M. Sokolova and G. Lapalme, “A systematic analysis of performance measures

for classification tasks,” Inf. Process. Manage., vol. 45, no. 4, pp. 427–437, Jul.

2009. [Online]. Available: http://dx.doi.org/10.1016/j.ipm.2009.03.002

25. J. Demsar, “Statistical comparisons of classifiers over multiple data sets,” Journal

of Machine Learning Research, vol. 7, pp. 1–30, 2006. [Online]. Available:

http://www.jmlr.org/papers/volume7/demsar06a/demsar06a.pdf

26. M. Friedman, “A comparison of alternative tests of significance for the problem of

m rankings,” Ann. Math. Statist., vol. 11, no. 1, pp. 86–92, 03 1940. [Online].

Available: http://dx.doi.org/10.1214/aoms/1177731944

27. R. Iman and J. Davenport, “Approximations of the critical region of the Friedman

statistic,” Communications in Statistics-Theory and Methods, vol. 9, pp. 571–595,

01 1980.

28. P. Nemenyi, Distribution-free Multiple Comparisons. Thesis Princeton University,

1963. [Online]. Available: https://books.google.ro/books?id=nhDMtgAACAAJ

29. S. Holm, “A simple sequentially rejective multiple test procedure,” Scandinavian

Journal of Statistics, vol. 6, pp. 65–70, 1979.

