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Abstract. To solve the Maximum Mutual Information (MMI) and Maximum 

Likelihood (ML) MI for tests, estimations, and mixture models, it is found that 

we can obtain a new iterative algorithm by the Semantic Mutual Information 

(SMI) and R(G) function proposed by Chenguang Lu (1993) (where R(G) 

function is an extension of information rate distortion function R(D), G is the 

lower limit of the SMI, and R(G) represents the minimum R for given G). This 

paper focus on mixture models. The SMI is defined by the average log 

normalized likelihood. The likelihood function is produced from the truth 

function and the prior by the semantic Bayesian inference. A group of truth 

functions constitute a semantic channel. Letting the semantic channel and 

Shannon channel mutually match and iterate, we can obtain the Shannon channel 

that maximizes the MMI and the average log likelihood. Therefore, this iterative 

algorithm is called Channels’ Matching algorithm or the CM algorithm. It is 

proved that the relative entropy between the sampling distribution and predicted 

distribution may be equal to R-G. Hence, solving the maximum likelihood 

mixture model only needs minimizing R-G, without needing Jensen’s inequality. 

The convergence can be intuitively explained and proved by the R(G) function. 

Two iterative examples of mixture models (which are demonstrated in an excel 

file) show that the computation for the CM algorithm is simple. In most cases, 

the number of iterations for convergence (as the relative entropy <0.001 bit) is 

about 5. The CM algorithm is similar to the EM algorithm; however, the CM 

algorithm has better convergence and more potential applications. 

Keywords: Shannon channel; semantic channel; semantic information; 

likelihood; mixture models; EM algorithm; machine learning; statistical 

inference  

1   Introduction 

To obtain maximum likelihood mixture models, The EM algorithm [1] and the Newton 

method [2] are often used. There have been many papers on applying or improving the 

EM algorithm. Compared with the EM algorithm, Channels’ Matching algorithm (or 

the CM algorithm) proposed by this paper is seemly similar yet essentially different1. 

                                                           
1 Excel files demonstrating iterative process for tests, estimations, and mixture models can be 

download from http://survivor99.com/lcg/CM-iteration.zip 



In this study, we use the sampling distribution instead of the sampling sequence. 

Assume the sampling distribution is P(X) and the predicted distribution by the mixture 

model is Q(X). The goal is to minimize the relative entropy or Kullback-Leibler (KL) 

divergence H(Q||P) [8, 9]. With the semantic information method, we may prove 

H(Q||P)=R(G)-G. Then, maximizing G and modifying R alternatively, we can 

minimize H(Q||P). 

We first introduce the semantic channel, semantic information measure, and R(G) 

function in a way that is as compatible with the likelihood method as possible. Then we 

discuss how the CM algorithm is applied to mixture models. Finally, we compare the 

CM algorithm with the EM algorithm to show the advantages of the CM algorithm. 

2   Semantic channel，Semantic information Measure, and the 

R(G) function 

2.1   From the Shannon Channel to the Semantic Channel  

First, we introduce the Shannon channel. 

Let X be a discrete random variable representing a fact with alphabet A={x1, x2, …, 

xm}, and let Y be a discrete random variable representing a message with alphabet B={y1, 

y2, …, yn}. A Shannon channel is composed of a group of transition probability 

functions [6]: P(yj|X), j=1, 2, …, n. 

In terms of hypothesis-testing, X is a sample point and Y is a hypothesis or a model 

label. We need a sample sequence or sampling distribution P(X|.) to test a hypothesis 

to see how accurate it is. 

Let ϴ be a random variable for a predictive model, and let θj be a value taken by 

ϴ when Y=yj. The semantic meaning of a predicate yj(X) is defined by θj or its (fuzzy) 

truth function T(θj|X)ϵ[0,1]. Because T(θj|X) is constructed with some parameters, we 

may also treat θj as a set of model parameters. We can also state that T(θj|X) is defined 

by a normalized likelihood, i. e., T(θj|X)=k P(θj|X)/P(θj)= k P(X|θj)/P(X), where k is a 

coefficient that makes the maximum of T(θj|X) be 1. The θj can also be regarded as a 

fuzzy set, and T(θj|X) can be considered as a membership function of a fuzzy set 

proposed by Zadeh [10]. 

In contrast to the popular likelihood method, the above method uses sub-models 

θ1 , θ2, …, θn instead of one model θ or ϴ. The P(X|θj) is equivalent to P(X|yj, θ) in the 

popular likelihood method. A sample used to test yj is also a sub-sample or a conditional 

sample. These changes will make the new method more flexible and more compatible 

with the Shannon information theory. 

A semantic channel is composed of a group of truth value functions or membership 

functions: T(θj|X), j=1, 2, …, n. 

Similar to P(yj|X), T(θj|X) can also be used for Bayesian inference to produce 

likelihood function [4]: 
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where T(θj) is called the logical probability of yj. The author now know that this formula 

was proposed by Thomas as early as 1981 [11]. We call this inference the semantic 

Bayesian inference. If T(θj|X)∝P(yj|X), then the semantic Bayesian inference is 

equivalent to the Bayesian inference.  

2.2   Semantic Information Measure and the Optimization of the Semantic 

Channel 

The semantic information conveyed by yj about xi is defined by normalized likelihood 

as [3]: 
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where the semantic Bayesian inference is used; it is assumed that prior likelihood 

function P(X|ϴ) is equal to prior probability distribution P(X).  

After averaging I(xi; θj), we obtain semantic (or generalized) KL information: 
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The statistical probability P(xi|yj)， i=1, 2, …，on the left of “log” above, 

represents a sampling distribution to test the hypothesis yj or model θj. Assume we 

choose yj according to observed condition ZϵC. If yj=f(Z|ZϵCj), where Cj is a cub-set of 

C, then P(X|yj)=P(X|Cj).  

After averaging I(X; θj), we obtain semantic (or generalized) mutual information: 
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where H(X) is the Shannon entropy of X, H(X|Θ) is the generalized posterior entropy 

of X. Each of them has coding meaning [4, 5].  

Optimizing a semantic Channel is equivalent to optimizing a predictive model ϴ. 

For given yj=f(Z|ZϵCj), optimizing θj is equivalent to optimizing T(θj |X) by 
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It is easy to prove that when P(X|θj)=P(X|yj), or 
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I(X; θj) reaches the maximum. Set the maximum of T(θj|X) to 1. Then we can obtain 

 

T*(θj|X)=P(yj|X)/P(yj|xj*)=[P(X|yj)/P(X)]/[P(xj*|yj)/P(xj*)]   (7) 

 

In this equation, xj* makes P(xj*|yj)/P(xj*) be the maximum of P(X|yj)/P(X). 

2.3   Relationship between Semantic Mutual Information and Likelihood  

Assume that the size of the sample used to test yj is Nj; the sample points come from 

independent and identically distributed random variables. Among these points, the 

number of xi is Nij. Assume that Nj is infinite, P(X|yj)= Nij/Nj。 Hence, there is log 

normalized likelihood: 
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After averaging the above likelihood for different yj, j=1, 2, …, n, we have the 

average log normalized likelihood (which is equal to the semantic mutual information 

by N (N=N1+N2+…+Nn)): 
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It shows that the ML criterion is equivalent to the minimum generalized posterior 

entropy criterion and the Maximum Semantic Information (MSI) criterion. When 

P(X|θj)=P(X|yj) (for all j), the semantic mutual information I(X; ϴ) is equal to the 

Shannon mutual information I(X;Y), which is the special case of I(X; ϴ). 

2.4   The Matching Function R(G) of R and G 

The R(G) function is an extension of the rate distortion function R(D) [7]. In the R(D) 

function, R is the information rate, D is the upper limit of the distortion. The R(D) 

function means that for given D, R=R(D) is the minimum of the Shannon mutual 

information I(X;Y).  

Let distortion function dij be replaced with Iij= I(xi; yj)=log[T(θj|xi)/T(θj)]= 

log[P(xi|θj)/P(xi)], and let G be the lower limit of the semantic mutual information I(X; 

ϴ). The information rate for given G and P(X) is defined as 
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Following the derivation of R(D), we can obtain [3, 12] 
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where mij=T(θj|xi)/T(θj)=P(xi|θj)/P(xi) is the normalized likelihood; λi =∑jP(yj)mi
s
j. We 

may also use mij= P(xi| θj), which results in the same mij
s/λi. The shape of an R(G) 

function is a bowl-like curve as shown in Fig. 1. 

The R(G) function is different from the R(D) function.  For a given R, we have 

the maximum value G+ and the minimum value G-, which is negative and means that 

to bring a certain information loss |G| to enemies, we also need certain objective 

information R.  

 

 

Fig. 1. The R(G) function of a binary source. When the slope s=1, G=R, and information 

efficiency G/R reaches its maximum 1. 

 

In the rate distortion theory, dR/dD=s (s≤0). It is easy to prove that there is also 

dR/dG=s, where s may be less or greater than 0. The increase of s will raise the model’s 

prediction precision. If s changes from positive s1 to -s1, then R(-s1)=R(s1) and G 

changes from G+ to G - (see Fig. 1). 

When s=1, λi=1, and R=G, which means that the semantic channel matches the 

Shannon channel and the semantic mutual information is equal to the Shannon mutual 

information. When s=0, R=0 and G<0. In Fig. 1, c= G(s=0). 



3   The CM algorithm for Mixture Models 

3.1   Explaining the Iterative Process by the R(G) Function 

Assume a sampling distribution P(X) is produced by the conditional probability P*(X|Y) 

being some function such as Gaussian distribution. We only know that the number of 

the mixture components is n, without knowing P(Y). We need to solve P(Y) and model 

(or parameters) Θ, so that the predicted probability distribution of X, denoted by Q(X), 

is as close to the sampling distribution P(X) as possible, i. e. the relative entropy or 

Kullback-Leibler divergence H(Q||P) is as small as possible. The fig. shows the 

convergent processes of two examples. 

 

 

Fig. 2. Illustrating the CM algorithm for mixture models. There are two iterative examples. One 

is for R>R* and another is for R<R*. The Left-step a and Left-step b make R close to R*; whereas 

the Right-step increases G so that (G,  R) approaches line R=G. 

 

We use P*(Y) and P*(X|Y) to denote the P(Y) and P(X|Y) that are used to produce 

the sampling distribution P(X), and use P*(Y|X) and R*=I*(X;Y) to denote the 

corresponding Shannon channel and Shannon mutual information. When Q(X)=P(X), 

there should be P(X|Θ)=P*(X|Y)，and G*=R*. 

For mixture models, when we let the Shannon channel match the semantic channel 

(in Left-steps), we do not maximize I(X;Θ), but seek a P(X|Θ) that accords with P*(X|Y) 

as possible (Left-step a in Fig. 2 is for this purpose), and a P(Y) that accords with P*(Y) 

as possible (Left-step b in Fig. 2 is for this purpose). That means we seek a R that is as 

close to R* as possible. Meanwhile, I(X;Θ) may decrease. However, in popular EM 



algorithms, the objective function, such as P(XN, Y|Θ), is required to keep increasing 

without decreasing in both steps.  

With CM algorithm, only after the optimal model is obtained, if we need to choose 

Y according to X (for decision or classification), we may seek the Shannon channel 

P(Y|X) that conveys the MMI Rmax(Gmax) (see Left-step c in Fig. 2).  

Assume that P(X) is produced by P*(X|Y) with the Gaussian distribution. Then the 

likelihood functions are 

 

P(X|θj)= kj exp[-(X-cj)2/(2dj)2], j=1,2,…, n 

 

If n=2, then parameters are c1, c2, d1, d2. In the beginning of the iteration, we may 

set P(Y)=1/n. We begin iterating from Left-step a. 

Left-step a Construct Shannon channel by  
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This formula has already been used in the EM algorithm [1]. It was also used in 

the derivation process of the R(D) function [12]. Hence the semantic mutual 

information is 
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Left-step b Use the following equation to obtain a new P(Y) repeatedly until the 

iteration converges. 
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The convergent P(Y) is denoted by P+1(Y). This is because P(Y|X) from Eq. (12) is 

an incompetent Shannon channel so that ∑i P(xi)P(yj|xi)≠P(yj). The above iteration 

makes P+1(Y) match P(X) and P(X|Θ) better. This iteration has been used by some 

authors, such as in [13].  

When n=2, we should avoid choosing c1 and c2 so that both are larger or less than 

the mean of X; otherwise P(y1) or P(y2) will be 0, and cannot be larger than 0 later.  

If H(Q||P)is less than a small number, such as 0.001 bit, then end the iteration; 

otherwise go to Right-step. 

Right-step: Optimize the parameters in the likelihood function P(X|Θ) on the right 

of the log in Eq. (13) to maximize I(X; Θ). Then go to Left-step a.  



3.2   Using Two Examples to Show the Iterative Processes 

3.2.1   Example 1 for R<R* 

In Table 1, there are real parameters that produce the sample distribution P(X) and 

guessed parameters that are used to produce Q(X). The convergence process from the 

starting (G, R) to (G*, R*) is shown by the iterative locus as R<R* in Fig. 2. The 

convergence speed and changes of R and G are shown in Fig. 3. The iterative results 

are shown in Table 1.  

Table 1. Real and guessed model parameters and iterative results of Example 1 (R<R*) 

Y 

 

Real parameters 

 

Start parameters 

H(Q||P)=0.410 bit 

Parameters after 5 iterations 

H(Q||P)=0.00088 bit 

 c d P*(Y) c d P(Y) c d P(Y) 

y1 35 8 0.7 30 15 0.5 35.4 8.3 0.72 

y2 65 12 0.3 70 15 0.5 65.2 11.4 0.28 

 

 

 

Fig. 3. The iterative process as R<R*. Rq is RQ in Eq. (15). H(Q||P) = RQ-G decreases in all steps. 

G is monotonically increasing. R is also monotonically increasing except in the first Left-step b. 

G and R gradually approach G*=R* so that H(Q||P) = RQ -G is close to 0. 

 

Analyses: In this iterative process, there are always R<R* and G<G*. After each 

step, R and G increase a little bit so that G approaches G* gradually. This process seams 

to tell us that each of Right-step, Left-step a, and Left-step b can increase G; and hence 

maximizing G can minimize H(Q||P), which is our goal. Yet, it is wrong. The Left a 

and Left b do not necessarily increase G. There are many counterexamples. Fortunately, 

iterations for these counterexamples can still converge. Let us see Example 2 as a 

counterexample. 
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3.2.2   Example 2 for R>R* 

Table 2 shows the parameters and iterative results for R>R*. The iterative process is 

shown in Fig. 4. 

Table 2. Real and guessed model parameters and iterative results for Example 2 (R >R*) 

Y 

 

Real parameters 

 

Start parameters 

H(Q||P)=0.680 bit 

Parameters after 5 iterations 

H(Q||P)=0.00092 bit 

 c d P*(Y) c d P(Y) c d P(Y) 

y1 35 8 0.1 30 8 0.5 38 9.3 0.134 

y2 65 12 0.9 70 8 0.5 65.8 11.5 0.886 

 

 

 
 

Fig. 4. The iterative process as R>R*. Rq is RQ in Eq. (15). H(Q||P)=RQ-G decreases in all steps. 

R is monotonically decreasing. G increases more or less in all Right-steps and decreases in all 

Left-steps. G and R gradually approach G*=R* so that H(Q||P)=RQ-G is close to 0. 

 

Analyses: G is not monotonically increasing nor monotonically decreasing. It 

increases in all Right steps and decreases in all Left steps. This example is a challenge 

to all authors who prove that the standard EM algorithm or a variant EM algorithm 

converges. If G is not monotonically increasing, it must be difficult or impossible to 

prove that logP(XN, Y|Θ) or other likelihood is monotonically increasing or no-

decreasing in all steps. For example, in Example 2, Q*=-NH*(X, Y)=-6.031N. After the 

first optimization of parameters, Q=-6.011N>Q*. If we continuously maximize Q, Q 

cannot approach less Q*. 

We also use some other true models P*(X|Y) and P*(Y) to test the CM algorithm. 

In most cases, the number of iterations is close to 5. In rare cases where R and G are 

much bigger than G*, such as R≈G>2G*,  the iterative convergence is slow. In these 

cases where logP(XN, Y|Θ) is also much bigger than logP*(XN,Y), the EM algorithm 

confronts similar problem. Because of these cases, the convergence proof of the EM 

algorithm is challenged.   
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3.3   The convergence proof of the CM algorithm 

Proof To prove the CM algorithm converges, we need to prove that H(Q||P) is 

decreasing or no-increasing in every step.  

Consider the Right-step. Assume that the Shannon mutual information conveyed 

by Y about Q(X) is RQ, and that about P(X) is R. Then we have 
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According to Eqs. (13) and (15), we have 

 
1( || ) = ( || )QH Q P R G R H Y Y G        (17) 

 

Because of this equation, we do not need Jensen's inequality that the EM algorithm 

needs.  

In Right-steps, the Shannon channel and RQ does not change, G is maximized. 

Therefore H(Q||P) is decreasing and its decrement is equal to the increment of G. 

Consider Left-step a. After this step, Q(X) becomes Q+1(X)=∑j P(yj)P+1(X|θj). 

Since Q+1(X) is produced by a better likelihood function and the same P(Y), Q+1(X) 

should be closer to P(X) than Q(X), i. e. H(Q+1||P) < H(Q||P) (More strict mathematical 

proof for this conclusion is needed).  

Consider Left-step b. The iteration for P+1(Y) moves (G, R) to the R(G) function 

cure ascertained by P(X) and P(X|θj) (for all j) that form a semantic channel. This 

conclusion can be obtained from the derivation processes of R(D) function [12] and 

R(G) function [3]. A similar iteration is used for P(Y|X) and P(Y) in deriving the R(D) 

function. Because R(G) is the minimum R for given G, H(Q||P)=RQ-G=R-G becomes 

less. 

Because H(Q||P) becomes less after every step, the iteration converges. Q.E.D. 

3.4   The Decision Function with the ML Criterion 

After we obtain optimized P(X|Θ), we need to select Y (to make decision or 

classification) according to X. The parameter s in R(G) function (see Eq. (11)) reminds 

us that we may use the following Shannon channel 
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which are fuzzy decision functions. When s→+∞, the fuzzy decision will become crisp 

decision. Different from Maximum A prior (MAP) estimation, the above decision 

function still persists in the ML criterion or MSI criterion. The Left-step c in Fig. 2 

shows that (G, R) moves to (Gmax, Rmax) with s increasing.  

3.5   Comparing the CM Algorithm and the EM Algorithm 

In the EM algorithm [1], the likelihood of a mixture model is expressed as logP(XN|

Θ)>L=Q-H. If we move P(Y) or P(Y|Θ) from Q into H, then Q will become -NH(X|Θ) 

and H becomes -NRQ. If we add NH(X) to both sides of the inequality, we will have 

H(Q||P)≤RQ-G, which is similar to Eq. (17). It is easy to prove 

 

Q=NG-NP(X)-NH(Y)    (19). 

 

where H(Y)= -∑j P+1(yj)logP(yj) is a generalized entropy. We may think the M-step 

merges the Left-step b and the Right-step of the CM algorithm into one step. In brief, 

 

The E-step of EM = the Left-step a of CM 

The M-step of EM ≈ the Left-step b + the Right-step of CM 

In the EM algorithm, if we first optimize P(Y) (not for maximum Q) and then optimize 

P(X|Y, Θ), then the M-step will be equivalent to the CM algorithm.  

There are also other improved EM algorithms [13, 15-17] with some advantages. 

However, no one of these algorithms facilitates that R converges to R*, and R-G 

converges to 0 as the CM algorithm.  

The convergence reason of the CM algorithm is seemly clearer than the EM 

algorithm (see the analyses in Example 2 for R>R*). According to [7, 15-17], the CM 

algorithm is faster at least in most cases than the various EM algorithms.  

The CM algorithm can also be used to achieve maximum mutual information and 

maximum likelihood of tests and estimations. There are more detailed discussions 

about the CM algorithm2. 

4   Conclusions 

Lu’s semantic information measure can combine the Shannon information theory and 

likelihood method so that the semantic mutual information is the average log 

                                                           
2 https://arxiv.org/abs/1706.07918  

https://arxiv.org/abs/1706.07918


normalized likelihood. By letting the semantic channel and Shannon channel mutually 

match and iterate, we can achieve the mixture model with minimum relative entropy. 

The iterative convergence can be intuitively explained and proved by the R(G) function. 

Two iterative examples and mathematical analyses show that the CM algorithm has 

higher efficiency at least in most cases and clearer convergence reasons than the 

popular EM algorithm.  
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