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Chapter 16

SECURING BLUETOOTH LOW ENERGY
LOCKS FROM UNAUTHORIZED ACCESS
AND SURVEILLANCE

Anthony Rose, Jason Bindewald, Benjamin Ramsey, Mason Rice and
Barry Mullins

Abstract  This chapter describes several vulnerabilities that affect commercial and
residential Bluetooth Low Energy security devices and outlines methods
for exploiting plaintext, obfuscated and hard-coded passwords, brute
forcing passwords and hashes, fuzzing commands and performing man-
in-the-middle attacks. Evaluations reveal that 75% of the tested security
and access control systems have vulnerabilities that grant unauthorized
access. In addition to obtaining access, malicious actors can extract
sensitive information that can be used to develop patterns of human
behavior. This chapter discusses five solutions for preventing or miti-
gating Bluetooth Low Energy security breaches, most of which involve
minimal implementation overhead on the part of developers.

Keywords: Bluetooth Low Energy, access control, locks, vulnerabilities, security

1. Introduction

Bluetooth Low Energy, also marketed as Bluetooth Smart, is a wireless pro-
tocol designed for interconnecting Internet of Things (IoT) devices. The Inter-
net of Things is an expanding market that includes linkages from home automa-
tion systems to industrial control systems and is expected to grow to more than
$19 trillion devices by 2020 [20]. Bluetooth Low Energy devices, with nearly
8.2 billion already in use worldwide, currently constitute more than one-third
of all Internet of Things devices [3]. Meanwhile, Internet of Things devices
are becoming increasingly intertwined with water, power, emergency services,
health care, agriculture, transportation and security systems [15].

Physical security relies on access control to manage admittance to sensitive
locations. Typical access control implementations involve the use of personal
identification numbers (PINs), radio frequency identification (RFID), public
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key infrastructures and biometrics [5]. These solutions limit the ability of an or-
ganization to control credentials (e.g., granting or revoking access on demand).
In some cases, access revocation may be impossible or expensive without revok-
ing the credentials of all the users. A major appeal of Bluetooth Low Energy
and other wireless systems is that access can be centrally managed. This re-
quires authentication between the user and organization database, which helps
eliminate the need to manage devices independently.

Several vendors have released security systems that use Bluetooth Low En-
ergy locks to grant access to server rooms, power plants, water treatment fa-
cilities, manufacturing plants and ATMs. Onity [18] offers automation, manu-
facturing and security products; more than one million of its Bluetooth locking
systems are being used in 115 countries.

The growth of Bluetooth within the Internet of Things paradigm has moti-
vated the evaluation of commercial lock systems. Tests conducted as part of
this research have revealed vulnerabilities in thirteen of the seventeen evalu-
ated Bluetooth Low Energy locks. This chapter describes the vulnerabilities
and proposes implementation guidance for securing the devices.

2. Bluetooth Low Energy

Bluetooth is an umbrella term that covers two completely different protocols:
(i) Bluetooth Classic (BTC); and (ii) Bluetooth Low Energy (BLE). Bluetooth
Classic focuses on sending the maximum amount of data without regard to
power consumption (e.g., music streaming and data storage). Conversely, power
saving is a top priority for Bluetooth Low Energy devices. Bluetooth Low
Energy offers an interface for low-data-rate devices (e.g., temperature monitors
and door locks). Bluetooth Low Energy is also designed to provide a secure
and robust wireless communications mechanism that requires minimal energy
at data rates up to 1 Mbps [12].

The Bluetooth Low Energy connection process differs from Bluetooth Classic
by limiting the device transmission time, thereby minimizing the expended
energy. Devices advertise themselves on three channels that are dispersed across
the 2.4 GHz band to avoid interference from IEEE 802.11 wireless local area
networks (WLANSs) [24]. A user connects to a device on an advertising channel
to initiate a connection. Bluetooth Low Energy operates under a master/slave
model, where the master is typically the user (e.g., phone or tablet) and the
slave is the device that awaits a connection (e.g., lock, thermostat or heart rate
monitor). Bluetooth Low Energy devices are split into two categories depending
on their function: (i) client; and (ii) server. The client is the master in most
cases, while the slave is the server. Common Bluetooth Low Energy operations
include read, write, notify and indicate, which push or pull data between the
client and server through the Generic Attribute Profile (GATT).

The Generic Attribute Profile is constructed as a hierarchy in which the
profile is at the top level and is composed of a series of services. Services are
collections of characteristics that represent the behavior of a device. For exam-
ple, a service could be listed as a blood pressure monitor or heart rate monitor
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Figure 1. Bluetooth Low Energy stack hierarchy.

for medical devices or temperature readings for thermostats. Characteristics
fall into a few different categories below a service. Each service has a univer-
sally unique identifier (UUID), value, properties (e.g., read, write, notify and
indicate) and permissions. The UUID is a 16-bit or 128-bit identifier used by a
manufacturer to specify custom services; however, some UUIDs are universally
used across manufacturers. Finally, descriptors fall under characteristics and
contain configuration flags and metadata that a manufacturer may desire to
share. Figure 1 presents the Bluetooth Low Energy hierarchy.

3. User Behavioral Analytics

User behavior analytics (UBA) detects anomalies that indicate potential in-
sider threats and targeted attacks by tracking and analyzing user behavior.
Defensive mechanisms employ user behavior analytics to help prevent attacks.
This research proposes an offensive approach that leverages user behavior an-
alytics.

Reconnaissance is one of the most important stages in penetration testing
because it helps acquire detailed knowledge of a target prior to an attack [16].
During this phase, a target is continuously monitored for all activity.

Time is critical when it comes to gaining information about a target and
acting on it. Minimizing the time spent between target reconnaissance and
infiltration greatly enhances the likelihood of an attack being successful [21].
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Table 1. Exploited Bluetooth Low Energy devices by type.

Device Name Type A B C D E F
Safetech Quicklock Doorlock Deadbolt v v v
Vians Doorlock Deadbolt v v
Lagute Sciener Doorlock Deadbolt v v
Okidokeys Deadbolt v v
Poly-Control Danalock Deadbolt v v
Ceomate Doorlock Deadbolt v v v
Safetech Quicklock Padlock Padlock v v v
Elecycle EL797 Padlock v v
Elecycle EL797G Padlock v v
Mesh Motion Bitlock Padlock v
iBlulock Padlock v v v
Safetech Gunbox 2.0 Gun Safe v v v
Plantraco Phantomlock Cabinet Lock v v v

In the past, an attacker would physically monitor a target to gain information;
however, attackers can now leverage information present in Bluetooth Low
Energy devices in developing attacks.

A number of devices store system logs that contain valuable user behavior
analytics information (e.g., user names and timestamps). Applying statistical
analysis methods to system logs generates meaningful information that can be
leveraged in attacks. For example, user behavior patterns can be inferred, which
would provide the ideal times to inject malicious code and avoid detection.

4. Bluetooth Security Vulnerabilities

A wide variety of attacks against Bluetooth Low Energy devices have been
developed; most of them exploit vulnerabilities inherent in the protocol or errors
in vendor implementations. An analysis of seventeen Bluetooth Low Energy
locks reveals that thirteen devices were vulnerable to eight exploits [23]. Table 1
lists the exploited Bluetooth Low Energy devices by type. Note that A denotes
plaintext passwords, B password obfuscation, C brute forcing passwords and
hashes, D command fuzzing, F hard-coded passwords and F' man-in-the-middle
attacks. This section discusses the vulnerabilities present in the tested Blue-
tooth Low Energy devices and how an adversary may exploit them.

The hardware required for Bluetooth Low Energy eavesdropping is afford-
able. Higher-end devices such as the HackRF One and Ubertooth One are
more expensive alternatives that have high power amplifiers and detachable
antennas. Replacing an antenna increases the operational range of a device.
Increased sniffer range eliminates the need to be near a target to obtain its
credentials. Pairing a long-range sniffer with a high power Bluetooth adapter
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Figure 2. Reverse engineered Safetech command structure.

(e.g., Sena UD-100) enables commands to be transmitted at distances up to
half a mile.

The National Institute of Standards and Technology (NIST) [19] has re-
ported that flawed Bluetooth security implementations are highly susceptible
to wireless attacks (e.g., denial-of-service (DoS), eavesdropping, man-in-the-
middle attacks, message modification and resource misappropriation). These
attacks on Bluetooth systems can be leveraged by adversaries to obtain unau-
thorized access to sensitive information.

4.1 Plaintext Passwords

A plaintext password is stored or transmitted in a readable format and offers
no protection to the user or device. This vulnerability is very common [1, 22]
and it enables an adversary to eavesdrop on a conversation through specialized
hardware or to embed software that monitors the host controller interface (HCT)
traffic. Stolen plaintext passwords can be used to gain access to secure facilities,
change administrative privileges or obtain system logs.

Figure 2 illustrates the ease with which a plaintext password can be used in
an attack. The Safetech command structure has not been published and was
discovered by reverse engineering. The command structure is used in several
Safetech Bluetooth Low Energy devices (e.g., door locks, padlocks and safes).
The first byte is an opcode that specifies if a device should read the password
(00) or change the user password (01). A user password can be modified merely
by changing the first byte and placing the current user password into the next
four bytes. The final four bytes are then used to set the new user password.
Note that the password for this type of device is limited to numbers.

4.2 Password Obfuscation

Obfuscated passwords provide more protection than plaintext passwords,
but they still constitute a major security risk. An obfuscated password uses
hashing or encryption to reduce the risk of exposure [4].

The problem with using an obfuscated password is that it can be recorded
and replayed to a Bluetooth Low Energy lock. Replaying a password enables an
adversary to gain access to the lock without knowing the password. Moreover,
if the device uses the same hashing algorithm for the password every time, an
adversary can gain access at any time using the sniffed obfuscated password.
However, depending on the security implementation, some high-level functions
may not be accessible. This could deter an attack that requires a password to
gain access to high-level functions.



324 CRITICAL INFRASTRUCTURE PROTECTION XI

Table 2. Time expected to brute force passwords.

Available Password Password Expected
Characters Length Possibilities Completion Time
(millions) (years)

10 8 102 0.03

10 16 1010 3.17

128 8 7.2 x 1010 22.83

128 16 5.1 x 10%7 1.61 x 10*®

256 8 1.8 x 10'3 5,475

256 16 3.4 x 10*? 1.06 x 10%

Password obfuscation is implemented in the Ceomate door lock. Reverse
engineering techniques applied to this product were unable to determine the
proprietary hashing process. However, an attacker can still gain access to the
device — without knowing the original password and hashing algorithm — merely
by replaying the recorded hashed password.

4.3 Brute Forcing

Brute forcing involves submitting repeated guesses of a password or hash
with the goal of gaining access [7]. This attack requires a guess of the plaintext
password or obfuscated password. Obviously, if the number of password or
hash possibilities are massive, a brute force attack is impractical. For example,
a device that uses a six-digit PIN could be brute forced in hours, while an
eight-character password would require nearly a month.

Table 2 shows the expected amount of time for brute forcing passwords
based on the number of available characters and password length. Password
length is more important than the number of available characters. Doubling the
password length exponentially increases the number of password combinations,
while doubling the available characters has a much smaller effect on the number
of combinations. Timeouts between successive password attempts significantly
reduce the speed of the overall attack.

It is important to use long PINs to protect devices. Assuming a speed of
6,000 attempts/min, a PIN that uses only numbers and has a maximum length
of eight could be brute forced within twelve days. Factors that limit an attack
include the rate at which the transmitting device sends packets and the speed
at which the receiver translates the data. However, the speed of a brute force
attack can be greatly increased if a web server is used to store the credentials.

4.4 Command Fuzzing

Command fuzzing occurs when an application accepts an invalid command
that has been modified to mimic a valid command, potentially causing the
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Figure 3. Reverse engineered Okidokeys command structure.

device to enter a new state [17]. This technique involves changing the individual
bytes of a packet until the targeted application accepts the invalid command.
The goal of fuzzing is to force a device to move into an unstable state in which
it behaves in a manner different from what was designed. For example, a lock
may go into an error state as a result of a fuzzed command and open without
proper authentication. Opening in an error state is usually a design decision
made for reasons of fire safety. A device may default to a locked state when
entering an error state, but these designs are typically implemented in prison
lock systems where locking by default is required. Fuzzing can be problematic
when designers implement proprietary encryption. Well-established encryption
methods (e.g., Advanced Encryption Standard (AES)) have been proven to
offer secure communications channels [14].

Figure 3 shows the reverse engineered Okidokeys command structure (in
bytes) at the host controller interface level and the fuzzed packet. Okidokeys
describes the implementation as using a highly-secure patented cryptographic
solution that offers the same protection as 256-bit AES. However, experiments
have revealed that the generated keys are not unique. Specifically, the keys have
patterns that are not encountered in AES and other encryption algorithms.
This prompted the fuzzing of a previously-valid command that forced the lock
to move to an error state in which it opened.

4.5 Hard-Coded Passwords

Hard-coded passwords, where designers leave passwords in applications, are
the result of poor programming practices. Such passwords are encountered in
more than 40% of Android applications [8]. However, hard-coded passwords are
difficult to find because they require applications to be decompiled into readable
code. Another method for capturing an administrative password is to implant
malware with a keystroke logger on a target device. Hard-coded passwords
offer an attacker the ability to gain access to developer options inside of an
application and to bypass the built-in security controls.

The easiest method for finding the hard-coded passwords to a Bluetooth Low
Energy device is to decompile an Android application package (APK). In gen-
eral, an attacker would decompile an application after the Android application
package has been removed from the device. Programs such as Bytecode Viewer
offer a user-friendly environment to reverse engineer Android application pack-
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public String getPassword(){
Cursor localCursor = getReadableDatabase (). query ("USER_TABLE" ),
DatabaseContract . UserTableColums, null, null, null, null, null, null);
if (localCursor = null) {
return "";

if (localCursor.moveToFirst())
{
byte[] arrayOfByte = xor(new String(Base64.decode (
localCursor.getString (local . getColumnIindex ("password"))
)

.getBytes(),1).getBytes (. ["thisisthesecret"| 2etBytes());
localCursor . close ();
return new String (arkdyOfByte);
}

return "";

) ’ thisisthesecret

Figure 4. Hard-coded password found in a Danalock.

ages into readable Java code. This readable code is parsed for keywords to
reveal hard-coded passwords, developer comments and other valuable informa-
tion.

Figure 4 shows a hard-coded password found by decompiling the Danalock
application. The plaintext password is stored in a table with the passphrase
thisisthesecret. Having discovered the password, the adversary can gain
access to the lock. Decompilation may also reveal the method of encryption
and other information that is hidden. This provides additional opportunities
to compromise the system.

4.6 Man-in-the-Middle Attack

A man-in-the-middle attack occurs when two devices are unknowingly con-
nected to a third device that relays information between the two communi-
cating devices [2]. This attack is effective when devices use unauthenticated
connections, enabling an attacker to intercept as well as modify and inject fake
information or commands. Several tools have been developed for implement-
ing man-in-the-middle attacks (e.g., GATTacker and BTLEjuice). Two attacks
that leverage the man-in-the-middle concept are: (i) rogue device attack; and
(ii) relay attack.

Rogue Device Attack. In a rogue device attack, an attacker imperson-
ates a target device with the intention of convincing the other communicating
device that the rogue device is, in fact, the target device. The majority of ap-
plications do not properly authenticate with devices before sending commands,
enabling an attacker to clone the target device and send advertisements. The
user application initiates a connection after it receives the cloned device ad-
vertisement. The user application then sends commands to the cloned device
assuming it to be the target device. These commands include passwords and
nonces that could be used by an attacker to gain access to the target device.
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Figure 5. Sequence diagram of a rogue device attack on a Mesh Motion Bitlock.

A nonce is a random number that is used only once and protects a communi-
cations connection from a replay attack.

A rogue device attack can be used to exploit a web server that stores user
credentials. A user application would be unable to distinguish between the true
device and the cloned device, enabling an attacker to steal credentials from the
web server. All that the attack requires is for the cloned device to interact with
the user application.

Figure 5 shows a rogue device attack on a Mesh Motion Bitlock. This prod-
uct does not use a plaintext password; however, it has a predictable nonce that
enables an adversary to collect credentials and use them to control the lock.
The user in this case must have an Internet connection in order to receive cre-
dentials from the web server. An attacker connects to the lock and sends invalid
credentials with the intention of receiving the current nonce value. The value
is sent with the initial connection and is incremented by one when receiving
invalid credentials. The user is unaware that his/her device is connected to a
spoofed lock when the next nonce is received. During the connection, the user
forwards the nonce to the web server and receives the credentials in return.
Finally, the credentials are sent from the user to the spoofed lock.

Because the web server trusts the user application, the attacker is not limited
to receiving just one set of credentials. In fact, the attacker can flood the user
application with nonces with the goal of creating a table to gain permanent
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Figure 6. Sequence diagram of a relay attack on a Mesh Motion Bitlock.

access to the device. The attacker can use the table of credentials to open the
lock at any time.

Relay Attack. A relay attack is similar to a rogue device attack, but it
is designed specifically for scenarios where the nonces are truly random and a
rogue device attack is not possible. In this attack, an attacker impersonates a
target device and forces the user to communicate via a bridge to the attacker’s
device. This enables the attacker’s device to impersonate the target device and
trick the user into communicating with the attacker.

Figure 6 shows how two rogue devices can create a relay attack. Rogue
Device 1 connects to the user while Rogue Device 2 connects to the target
device. The target device generates a nonce and sends it to the cloned user
(Rogue Device 1). Rogue Device 2 connects to the user and impersonates the
target device.

After the two rogue devices are in place, a bridge is established using Wi-Fi,
cellular or some other means. The bridge supports communications between
the rogue devices and facilitates the hand-off of the nonce during the attack.
Rogue Device 2 sends the nonce to the user, who then forwards the nonce to
the web server to generate the credentials. This phase of the attack mirrors the
rogue device attack discussed above. Finally, the credentials that the user un-
expectedly generated are passed from Rogue Device 2 back to Rogue Device 1.
These credentials are used by the attacker to gain access to the target device.
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The danger of a relay attack is that a user can be anywhere as long as a rogue
device is nearby to impersonate the target device. This type of attack can be
used to target a variety of devices because large organizations require many
access points and rely on a central server to handle user credentials.

5. Attack Scenario

Numerous devices store system logs of user activity with information such as
user names, permissions and timestamps. An attacker can extract the system
logs from locks and analyze the information to construct a profile of activity in
a facility. The attacker can use the behavior patterns to gain insight into the
organization’s inner workings.

This section presents an attack scenario involving a manufacturing facility
that uses several Bluetooth Low Energy locks for access control. The Bluetooth
Low Energy system has a central server that manages credentials, requiring
employees to authenticate via an application installed on their mobile devices.
The simulated data in the scenario mimics real data found in employee devices.
A proven method for extracting real data is presented, but simulated data is
still required to meet the goals of the scenario.

The scenario involves the following steps:

m  The attacker connects to a security door lock and scans for all services,
characteristics and descriptors.

m  The attacker uses the scanned information to construct an identical Blue-
tooth Low Energy device. The cloned device is used to impersonate the
lock and convince the user application to transmit its credentials.

m  Concurrently, the attacker uses a second device near the lock to imper-
sonate the user. This setup mirrors the relay attack discussed above.

m The attacker relays information (e.g., nonces and credentials) from the
user to the lock via the relay attack. The relay attack provides access to
the Bluetooth Low Energy lock for exploitation.

m The attacker accesses developer and administrator privileges to create
additional accounts and download system logs.

m  The attacker applies user behavior analytics on the system logs to reveal
behavior patterns (Figures 7-9). Analysis of the logs provides detailed
information about facility operations by highlighting user activity based
on the time and/or day of the week.

m The attacker determines the best time to infiltrate the facility based on
the analysis.

The analyzed data can provide important information when cross referenced
against employee public records. Specifically, user activity may be analyzed
in three formats: (i) all user activity by day of week and time of day; (ii)
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Figure 7. Heat map of historic weekday activity compared with time of day activity.

individual user activity by time of day; and (iii) individual user activity by day
of the week.

The heat map in Figure 7 demonstrates that the overall user activity can
be determined by comparing user activity to the time of day that users are
active. User activities corresponding to entering and leaving the facility are
indicated in the heat map, where the darker shades represent higher levels of
user activity.

The heat map in Figure 8 highlights the user activity during historical days
worked. Finally, the heat map in Figure 9 breaks down user activity on any
given day by the time of day. Analyzing this information enables an attacker to
determine the ideal day and time to access the facility. Additional information
can also be inferred, such as odd activity at specific times of the day for specific
users; this may indicate specific tasks (e.g., maintenance).

6. Mitigation Techniques

Many mitigation techniques have been proposed for combating Bluetooth at-
tacks. Table 3 lists several mitigation techniques and the vulnerabilities against
which they protect. Note that A denotes plaintext passwords, B password ob-
fuscation, C' brute forcing passwords and hashes, D command fuzzing, F hard-
coded passwords and F' man-in-the-middle attacks. The last two columns of
Table 3 rank the implementation and maintenance difficulty of each proposed
solution.
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6.1 Pairing and Bonding

Pairing and bonding protect against malicious eavesdroppers. Two processes
occur during the initial connection. The first step is pairing, which involves an
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Table 3. Mitigation techniques and their difficulty.

Mitigation A B C D E F Difficulty Difficulty
Techniques of Use of Maintenance
Pairing and Bonding v v v Y Low Low

App Layer Encryption v v v Y Medium Medium
Two-Way Authentication v v v vV Medium Low
Geofencing V' Medium High

BLE Guardian v High High

exchange of security features and capabilities. This step begins with the client
and establishes the types of input and output mechanisms that exist in the
device and dictates the type of bonding. Bonding occurs after pairing and the
keys have been generated and exchanged. Bonding is a more permanent en-
cryption method that saves the key for use in future connections [25]. When
devices are bonded, they can encrypt their connections without having to ex-
change keys. Bluetooth Low Energy uses AES-CCM encryption after the key
exchange process has been completed.

Bluetooth Low Energy uses a secure simple pairing model where devices use
one of the following pairing modes:

Just Works: This mode offers little protection. The mode sets the tem-
porary key to all zeroes, enabling any eavesdropper to immediately guess
the temporary key. The Bluetooth Special Interest Group documenta-
tion [2] notes that Just Works provides no protection against eavesdrop-
ping and man-in-the-middle attacks.

Passkey Entry: This mode requires the user and device to use the same
six-digit PIN as the temporary key, while the rest of the 128-bit AES key is
padded with zeroes. Passkey entry provides only slightly more protection
against eavesdropping and man-in-the-middle attacks than Just Works.
In fact, previous research has shown that it can be brute forced [24].

Numeric Comparison: This mode is similar to passkey entry, except
that both devices input a six-digit PIN independently. This greatly re-
duces the probability of brute forcing both the PINs.

Out-of-Band Communications: This mode employs the full 128-bit
temporary key that is communicated over a non Bluetooth Low Energy
channel, typically using near field communications (NFC) technology.
Another method is to send the temporary key over Bluetooth Classic be-
cause most devices are already equipped to handle both Bluetooth Low
Energy and Bluetooth Classic. However, this method is not typical and
was only implemented in one of the seventeen devices tested in this re-
search. The use of an out-of-band channel is extremely important and is
the best option when using secure simple pairing [10].
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The numeric comparison technique is a simple solution for manufacturer
implementation because the Bluetooth protocol already supports this type of
authentication. However, the technique is only practical if developers use the
key exchange improvements specified in Bluetooth Version 4.2. Unfortunately,
all the developers whose products were investigated have not used these im-
provements. Therefore, a new key generation process is incorporated in Blue-
tooth Version 4.2. This process uses Elliptic Curve Diffie-Hellman (ECDH) key
generation and implements new procedures for key generation.

Bluetooth Version 4.1 Link Layer Encryption. Pairing and bond-
ing protect against compromises of plaintext and obfuscated passwords as well
as brute forcing and fuzzing attacks. An added feature when using pairing
and bonding is the ability to establish link layer encryption. The encryption
method used in versions 4.0 and 4.1 is derived from the devices being paired
initially and uses the long-term key as shown in Figure 10.

The process for generating the long-term key begins with the temporary
key determined through the pairing modes mentioned above (i.e., Just Works,
passkey entry, numeric comparison and out-of-band communications). The
temporary key is used to encrypt the short-term key, which is generated using
the temporary key and two random numbers from the master and slave. Finally,
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Master Slave

Pairing Reques t—————m———p

<4————Pairing Response

Public Key Exchange
| | | |

Compute DHKey Compute DHKey
- Confirmation
Rnum 1 >
- Rnum 2

Generate LTK (DHKey, Rnum 1, Rnum 2, BD_ADDR 1, BD_ADDR 2)

Figure 11. Bluetooth Low Energy Version 4.2 long-term key generation.

the short-term key is used to encrypt the long-term key, which is saved and
used for all other communications.

Bluetooth Version 4.2 Link Layer Encryption. Bluetooth Low En-
ergy Version 4.2 no longer uses a short-term key; instead, it uses a key derived
from an ECDH key. Figure 11 shows the new key generation method. First, a
pairing request occurs, which establishes the key generation method. A public
key is exchanged to initiate the long-term key generation process. After the
public key is exchanged, each device independently computes an ECDH key
using the public key of the other device. Next, the slave computes a confirma-
tion message that the master uses to check against its own key. If the check
succeeds, the master sends a random number to the slave. The slave responds
with a random number, which initiates the long-term key generation process.
The long-term key requires five parameters: (i) ECDH key; (ii) random num-
ber 1 from the master; (iii) random number 2 from the slave; (iv) Bluetooth
device address of the master; and (v) Bluetooth device address of the slave. The
major change in the protocol is that the ECDH key is never transmitted and is
computed independently to protect against eavesdropping. Passive eavesdrop-
ping is no longer possible in version 4.2 because of the difficulty of guessing
the private key [9]. The other information needed to generate the long-term
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key in version 4.2 comprises the random numbers sent by each device and their
Bluetooth device addresses (BD_ADDR). The connection is encrypted and au-
thenticated after the long-term key is established and this key is used for all
future connections.

6.2 Application Layer Encryption

Application layer encryption is one of the most popular methods for securing
Bluetooth Low Energy devices. The rationale for application layer encryption
is that it does not require new devices to be paired; instead, it relies on the
user and device to establish keys to encrypt and decrypt credentials. Ap-
plication layer encryption can be more complicated than using the standard
pairing offered by Bluetooth Low Energy due to the difficulty of managing
keys [11]. However, the additional complexity of application layer encryption
adds an extra layer of security when it is combined with link layer encryption.
Good cryptographic practices (e.g., true random number generation and non-
proprietary encryption algorithms) are encouraged for vendor implementations.
Application layer encryption protects against attacks on plaintext passwords
and obfuscated passwords, as well as brute forcing and fuzzing.

6.3 Two-Way Authentication

Two-way authentication protects against a rogue device attack by forcing
the user and device to not (immediately) trust the connection. This method
does not use link layer encryption. Instead, public/private keys are used for
authentication by devices. For example, the public key of the user is used by
the lock to encrypt the nonce N1, which is sent to the user. At the same time,
the lock sends a plaintext nonce N2 to the user. The user decrypts N1 with
his/her private key and encrypts N2 with the public key of the lock. Next, the
user replies to the lock with the decrypted N1 and encrypted N2. Using an
asynchronous encryption method ensures that the user and lock have public
and private keys, and prevents a rogue device from impersonating a legitimate
device. A rogue device would not be able to attack a connection without the
private key of one of the devices and the public key of the other device. Thus,
two-way authentication protects against attacks on plaintext passwords and
obfuscated passwords, as well as brute forcing, fuzzing and man-in-the-middle
attacks.

6.4 Geofencing

Geofencing protects against unauthorized access by requiring a user to be
within a specific distance of designated GPS coordinates in order to request
credentials from a web server. Essentially, a virtual fence is created around a
device, where a user must be within a set distance (usually a few feet) to gain
access. Geofencing prevents cloned devices from tricking users into providing
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their credentials. Thus, geofencing protects against rogue device and relay
attacks.

The August Lock, a Bluetooth Low Energy lock, implements geofencing.
However, geofencing is best combined with other mitigation techniques because
it offers no protection against eavesdropping when a user is within the geofence
perimeter. Other attacks are also possible in the case of the August Lock.
These include replacing the firmware with malicious code or gaining access to
developer-only features that should have been removed before the application
was released [13].

6.5 Bluetooth Low Energy Guardian

Bluetooth Low Energy Guardian protects user privacy using an adminis-
trative program to control which entities can discover, scan and connect to
a device [6]. Bluetooth Low Energy Guardian also defends against advertise-
ments. Most man-in-the-middle attacks leverage advertisement packets that do
not provide privacy and security protection. However, Bluetooth Low Energy
Guardian controls advertisement packets via reactive jamming and by manag-
ing the connection request approval process. These protections are required
because true advertisement packets are shielded from passive eavesdropping.

The implementation of Bluetooth Low Energy Guardian requires an Uber-
tooth One in addition to the device being protected. An advantage of this
approach is that it actively prevents attacks on a device compared with a stan-
dard encryption approach. No additional implementation is required on the
part of the device manufacturer and the approach can be used in conjunction
with other techniques to enhance security. The downside of the approach is
that it requires additional hardware, which may not be practical. Bluetooth
Low Energy Guardian protects against man-in-the-middle, rogue device and
relay attacks.

7. Conclusions

This research has sought to enhance the security of Bluetooth Low Energy
devices. Thirteen of the seventeen devices subjected to testing have vulner-
abilities that can be mitigated using the security solutions presented in this
chapter. Countermeasures to Bluetooth Low Energy attacks require minimal
development and implementation efforts on the part of device manufacturers.
The existing pairing and bonding feature of Bluetooth Low Energy provides
adequate security to defeat basic attacks. Sophisticated mitigation techniques
are expensive to implement, but they offer additional protection against ad-
vanced attacks. An alternative protection method is to shield device activity
as in the case of Bluetooth Low Energy Guardian, but this requires significant
implementation and maintenance efforts.

Note that the views expressed in this chapter are those of the authors and
do not reflect the official policy or position of the U.S. Air Force, U.S. Army,
U.S. Department of Defense or U.S. Government.
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