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Abstract. Flow based monitoring is currently a standard approach suit-
able for large networks of ISP size. The main advantage of flow processing
is a smaller amount of data due to aggregation. There are many reasons
(such as huge volume of transferred data, attacks represented by many
flow records) to develop scalable systems that can process flow data in
parallel. This paper deals with splitting a stream of flow data in order to
perform parallel anomaly detection on distributed computational nodes.
Flow data distribution is focused not only on uniformity but mainly on
successful detection. The results of an experimental analysis show that
the proposed approach does not break important semantic relations be-
tween individual flow records and therefore it preserves detection results.
All experiments were performed using real data traces from Czech Na-
tional Education and Research Network.

1 Introduction

Flow-based monitoring plays a key role in network management. Not only it
provides an overview of the traffic mix, it greatly helps with network security
issues such as malicious traffic detection.

There are many types of malicious traffic that should be detected in real
networks. As the speed and size of computer networks grow, it is necessary
for network operators to process more and more data to be informed about
the status of their network. However, with the increasing traffic volume, it is
difficult to run lots of detection algorithms at once using just a single machine.
The more data, the more computing resources are needed and the longer time
the processing takes.

In order to overcome resource limits of a single machine, parallelism plays
an important role. Various types of scalable architecture have been invented to
process data in parallel. Generally, to be able to process more data, analyzer
has to either run parts of its algorithms in parallel or split data for separate
processing units.

Since the parallelization of individual detection algorithms is very dependent
on the nature of the algorithm and, additionally, according to Amdahl’s law,
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there are parts of algorithms that can’t be run in parallel, we have decided to
focus on data distribution for independent processing units. Our aim is to split a
continuous stream of network data (more specifically flow records, i.e. aggregated
packet headers) into much smaller subsets that are being processed separately
in parallel. We also focus on evaluation of the impact of data splitting on the
security analysis results.

The contribution of this paper is to present our experiments with processing
data traces from the real backbone network. The aim is to use existing algorithms
from a single machine processing and deploy them in a distributed environment.
This paper shows, that data splitting for such purpose is complicated due to
semantic relations in data which should be preserved. Breaking the relations can
cause that the obtained detection results are significantly worse than using a
single processing machine. The paper also shows a feasible way how to split flow
data with respect to semantic relations. Proposed approach preserves detection
results and allows a scalable deployment.

This paper is organized as follows. Sec. 2 describes existing related work, i.e.
systems for anomaly detection, traffic sampling and network traffic processing
in parallel. Sec. 3 describes scattering methods that can be used to split flow
records into a separate groups for parallel processing by independent compu-
tational nodes. Sec. 4 describes our testing environment that was created for
our experiments. The section also presents results of measurement of described
scattering methods. Sec. 5 concludes the paper.

2 Related work

This section describes related approaches of parallel network traffic analysis
and anomaly detection usually done using Network Intrusion Detection System
(NIDS) or Network Intrusion Prevention System (NIPS).

There are many existing systems for network traffic analysis and anomaly
detection that are modular by design. For instance, TOPAS [1] and NEMEA [2]
are flow-based systems that consists of modules that process data. When there
is a big volume of flow data, running the systems on a single machine may reach
resource limits of the machine. The systems do not support data distribution
natively as it is available for various big data frameworks. However, NEMEA
modules can be easily run and connected in a distributed environment.

K. Xinidis et al. in [3] presented an architecture with Active Splitter for
distributed NIDS aiming for performance optimization of the detection sensors
running Snort [4] (packet-based system performing deep packet inspection). The
splitter uses hash functions for packet distribution and three techniques to op-
timize the performance of the sensors. Cumulative Acknowledgements reduce
redundant sending of packets between splitter and sensors, Early Filtering in
splitter applies Snort rule subset on packet headers (no payload inspection) and
finally Locality Buffering reorders packets in a way that improves the locality of
sensors memory accesses.



Scalable approach of detection 3

H. Sallay et al. in [5] made the network traffic analysis distributed using
switch/router. The architecture contains dedicated sensors for individual services
(e.g. FTP) and the incoming traffic is forwarded to them according to switching
table of the switch/router. Sensors are running Snort but only with needed rule
subset for their service. Since the volume of traffic of individual services can differ
significantly, the load of computational nodes wouldn’t be uniform. Therefore,
this approach is not suitable for us.

Nam-Uk Kim et al. in [6] compare static and dynamic hash-based load bal-
ancing schemes and propose dynamic (i.e. adaptive) load-balancing scheme for
NIDS. It uses a lookup table which is periodically reorganized according to his-
torical packet distribution and current load of individual nodes. If needed, flows
with the smallest volume are reorganized. Proposed method distributes packets
in a way that does not break the flow stream, however, they don’t take into
account relations between individual flow records and the impact of splitting on
detection results is not evaluated.

M. Valentin et al. in [7] presented a NIDS cluster for scalable intrusion detec-
tion. It consists of frontend nodes that distribute packets between backend nodes
running Bro [8] for intrusion detection. Moreover, there are proxy nodes prop-
agating state information of backend nodes and also one central manager node
for collecting and aggregating results. Each frontend node distributes data from
one monitored line and uses a hashing distribution scheme with a single hash
function. The architecture requires backend nodes and proxy nodes to exchange
data with detection subresults. In our approach, we are dealing with splitting
a stream of flow records instead of packets. Our hashing distribution scheme is
adjusted to provide all needed data to the detection methods for correct intru-
sion detection. Therefore, our computational nodes running intrusion detection
are independent and don’t communicate with each other. Finally, our proposed
hashing distribution scheme represents a general way, how to split flow data with
respect to detection results.

Big data frameworks such as Hadoop [9] or Spark [10] are distributed by
nature. They are based on storage of data onto some distributed file system. A
special designed parallel algorithm can be used to run on many distributed nodes
and process all data. A universal and the most popular approach of distributed
processing is MapReduce. However, the overall result of this kind of computation
usually depends on the Reduce phase that merges local results from all nodes.
Therefore, only low attention is paid to any relations or semantics during the
data distribution and storage. An improved data distribution in Hadoop was
presented as Hashdoop in [11]. Contrary, our approach is more general and it
is applicable even on stream-wise processing with multiple different algorithms.
Even though the main focus of ours is to make non-distributed system working
in parallel, the principle described in our paper can be used for improvement of
data distribution in big data frameworks as well.

Sampling has a common goal with parallel processing – capability to handle
more data at the same time. J. Mai in [12] shows impact of the packet sampling
on detection of portscanning and K. Bartos in [13] deals with flow sampling
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Fig. 1: A high level view of the infrastructure of scalable and distributed network
flows analysis using NIDS.

techniques for anomaly detection. However none of these approaches can be
applied on data splitting.

3 Flow distribution scheme

When designing a distribution scheme, several aspects have to be taken into
account: i) the data should be distributed uniformly between all computational
nodes, ii) the distribution algorithm should be as fast as possible in order to
process as much data as possible, iii) the impact of splitting the data on detection
results should be minimized.

In general, there are two ways how to distribute the data, statically or dy-
namically (also called static and dynamic load-balancing) and both have some
pros and cons when applied in parallel NIDS. Static distribution has immutable
rules for splitting the data e.g. a packet with source IP address 1.2.3.4 goes to
node 1 and a packet with source IP address 5.6.7.8 goes to node 2. This preserves
the data stream with possible security incident. However, it cannot affect the
load of individual computational nodes when the distribution is not uniform.
On the other hand dynamic distribution can perform some actions in order to
make the load uniform (e.g. redirect some packets to less loaded computational
nodes). Unfortunately, this behaviour can make the security incident invisible.
Therefore, we have decided to use static distribution and focus on uniformity.

Fig. 1 shows high level view of the infrastructure of scalable and distributed
network flows analysis using NIDS. The following subsections describe several
splitting mechanisms used in the flow scatter.

3.1 Random scattering

Lets assume the detection results are not dependent on any semantic relations
between flow data, i.e. scattering mechanism can distribute the data regardless
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Fig. 2: Topology of Czech national research and education network (NREN) CES-
NET2, network traffic on the perimeter is analyzed.

of the information from flow records. In that case, the flow scatter can distribute
the flow records between nodes using statistical uniform distribution, which is
optimal for load-balancing. Received records by flow scatter are forwarded to
computational nodes according to random number generator. It is clear that
every random distribution splits the flow records into different subsets. However,
as we discuss in Evaluation (Sec. 4), breaking semantic relations in flow data
using random distribution affects the detection results.

3.2 Scattering based on network topology

Scattering based on network topology is another logical way of distributing the
flow data. Since the computer networks are designed using hierarchical model
that usually respects geographical and logical division into subnets and network
lines.

Fig. 2 shows a high level topology of CESNET2 National Research and Ed-
ucation Network (NREN), which is a backbone academic network and it is also
used as a transit network. It is inter-connected with other networks via several
lines that are being monitored. The data taken from the monitoring probes con-
tain a line identification — the line number. Flow scatter can easily distribute
the data using these line numbers.

Standard monitoring infrastructure collects flow records from monitoring
probes onto one central collector. In case of scattering based on network topol-
ogy, this concept can be changed and it would be more efficient to send exported
flow records directly to computational nodes.
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3.3 Hash-based scattering

Hash functions are used to transform an input data into an output form with
a fixed length. Cryptography expects that the output of an ideal hash function
meets requirements such as uniform distribution and missing relation between
output and input. In our case, the hash function can be used in the flow scatter to
select an appropriate computational node number uniformly. Information from
the incoming flow records can be used as an input for the hash function.

The dependency of selected node number on the input data of the hash func-
tion leads to divison of flow records into subsets with the same characteristics.
The subsets with the same characteristics are then processed together on the
same computational node and this can be used to preserve the detection results.
For instance, if we use only the source IP address for hashing, all flow records
having the same source IP address ends up on the same node. Meanwhile, flow
records with different source IP addresses have a high probability to be processed
with different nodes.

Let some set of flow records contain a security incident that can be detected
using some detection method. Then, there exists a minimal subset of flow records
with semantic relations that must be processed by this detection method together
to get a correct result. In order to find the semantic relations in flow data, a set
of detection methods was studied. The aim is to find a suitable set of information
that is used as an input for hash function.

Studied detection methods

– Vertical SYN scanning can be detected using a threshold-based method pub-
lished in [14]. To successfully detect this type of scanning, the method needs
to receive all flow records of the same source IP address which is a possible
attacker (scanner). Similar method can be used to detect horizontal SYN
scanning. Source IP address is used for hashing.

– Brute-force password guessing against remote management services (SSH,
TELNET, RDP etc.) can be detected using a method which needs to inspect
all flow records between two IP addresses in both directions. An ordered pair
of source and destination IP addresses (i.e. bi-flow) is used for hashing.

– There are many public lists of malicious addresses (black-lists). These ad-
dresses were abused due to various reasons like sharing malware, controlling
botnets or acting in some anomalous evil way. Communication with a black-
listed IP address can indicate some malware infection and thus it should be
reported. The detection is quite easy — every time any blacklisted address
appears in a flow record, an alert can be sent. This type of detection is very
efficient with a scattered data, because just a single flow record is needed to
trigger an alert. Source IP address is used for hashing.

– More complex method based on statistics about IP addresses and matching
the rules describing malicious traffic is able to detect DoS, DNS amplifica-
tion, SSH brute-force password guessing and horizontal scanning. It needs to
receive all flow records with the same IP address regardless of whether it is a
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Fig. 3: Flow scatter contains three hash functions, each uses a specific informa-
tion from flow records. The result of a hash function determines the computa-
tional node that processes the flow record with corresponding group of detection
methods.

source or a destination IP. Therefore, hashing both source and destination IP
addresses separately is needed in this case, which can result in duplication.
The flow record can be forwarded to two different computational nodes. The
duplication effect will be discussed later in this section.

– One of the detection methods based on application layer can detect brute-
force attacks and scanning of user accounts on a Session Initiation Protocol
(SIP) device. The detection method analyzes SIP responses from the server
so all flows with the same source IP address must be delivered to the same
node. Source IP address is used for hashing.

In general, we have recognized three groups of detection algorithms, whereas
each group has to process all flow data with the same characteristic (e.g. same
source IP address) on a single computation node. Therefore, we have a group of
detection algorithms expecting all flow records with the same source address,
a group expecting flow records with the same destination address and a group
expecting flow records with the same ordered pair of source and destina-
tion addresses. Fig. 3 shows all three hash functions of the flow scatter where
each hash function has the same color as the corresponding group of detection
algorithms.

Since we want to run all detection algorithms in parallel, all three hash
functions must be computed for every flow record. Naturally, results of the three
hash functions can be different. Therefore, one flow record can be sent to at least
one and, in the worst case, up to three computational nodes. This duplication
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is caused by the number of different groups of algorithms and it is needed to
provide all flow records that should be processed together to the algorithms (to
preserve correct detection results).

In fact, the number of duplicates does not affect overall scaling of the paral-
lel processing i.e. higher number of computational nodes does not increase the
duplicates. Moreover, each hashing function determines a computational node,
which processes the flow record with corresponding group of detection meth-
ods. Therefore, each group processes the flow record only on one computational
node and every flow record is processed by all groups of detection methods.
For example, if the selected nodes are 2 (for the SRC IP red hash) and 5 (for
the DST IP yellow hash and for the IP pair green hash), it is processed by red
group on node 2, yellow and green group on node 5. It means, that flow record
may be duplicated, but only on a communication level between flow scatter and
computational nodes.

To compare our approach with a single hashing function e.g. NIDS cluster [7]
uses hash = md5(srcIP + dstIP), we can show, that it would not work for us.
Let’s take methods for detection of horizontal port scanning and brute-force
password guessing discussed in Sec. 3.3. The method for brute-force password
guessing needs to see all flow records between source and destination IP addresses
in both directions, so this hash function would work (md5(A + B) is equal md5(B
+ A)). On the other hand, horizontal scanning has the same source IP address
but different destination addresses, so it is possible that two flow records with
the same source IP but different destination IP could end up on a different
computational node.

Our approach with multiple hash functions can be applied on arbitrary de-
tection method. To do so, it is necessary to determine characteristics of needed
flow data for correct detection result, as it was done in Sec. 3.3.

4 Experiments and Evaluation

In order to evaluate all important aspects of the scattering methods (uniformity,
speed, impact on detection), the NEMEA system was chosen as a platform for
our experiments and evaluation. The system itself has already implemented de-
tection methods, which were studied and discussed in Sec. 3.3 and its efficient
libraries allow us to process traffic from high speed backbone network. Overall,
we have processed over 5 billions of flow records of real data traces in 10 dif-
ferent (pseudonymised) data sets captured in CESNET2 NREN during August
and September 2016 with on average of 60,000 flows/s.

4.1 Testing environment

For our experiments we used a virtual machine with 64b Scientific Linux 7 OS,
with the following hardware specification: 16 CPU cores, 24 GB RAM, 2 TB free
disk capacity.
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Fig. 4: Testing environment for experiments and evaluation of various methods
of flow data distribution between computational nodes running flow-based NIDS
NEMEA.

Fig. 4 shows the configuration of our testing environment. IPFIXsend and
IPFIXcol [15] were used for replaying the IPFIX data in real-time. The flow
data were received by the flow scatter and also directly by the node 0 which
was used as a reference single instance (it processes all flow data without any
splitting). The node 0 was a ground truth for us to evaluate an impact of data
splitting on detection results. The flow scatter distributes flow data between
nodes 1–8 as it was described earlier. All nodes contain exactly the same set
of detection methods. During the experiments, we have collected data from 8
exporting probes that monitor different lines.

4.2 Results

The detection results from all nodes were stored and the analysis is described in
this section.

Fig. 5 shows a comparison of an average distribution of flow records based on
various scattering methods. The optimal value (red dashed line) is 12.5 % for 8
nodes. Random scattering achieves optimal results because of the used statistical
uniform distribution. However, hash-based scattering is not significantly worse
than the random (i.e. optimal) one. On the other hand, link-wise scattering is
unbalanced because of different speeds of the monitored lines and the volume
of traffic3. Node 1 even processed no data because there were no data exported

3 We expect that such unbalanced distribution based on observation points can be
observed in every network with lines of different bandwidth.
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from the first line. For hash-based scattering, we have compared data distribu-
tion using two different hashing algorithms — CRC32 and Jenkins. On average,
CRC32 had better results and therefore it was chosen as a final solution.
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Fig. 5: Comparison of average flow records distributions using various scattering
methods.

To analyze the reported alerts, we needed to compare the set of unique events
from the reference node 0 with the set of unique events from all distributed
nodes. To achieve this, the reported events of each detection method and each
node were analyzed separately at first. Subsequently, the unique events were
merged together. For example, in the case of horizontal scanning, if an attacker
probes 50 or more computers in two different subnets, where 50 is a threshold
of the detection algorithm, 2 events should be reported. Hash-based scattering
delivers all flow records representing this traffic to the same node due to the
source IP address hashing. Using link-wise scattering, the flow records could end
up on different nodes because the traffic can go through different lines. Random
scattering will split the flow records randomly.

Fig. 6 shows a comparison of the detection results after applying various
scattering methods. Note, that Hoststatsnemea in the figure legend stands for
the method based on statistics about IP addresses, which was discussed in sec-
tion 3.3. The first column represents the reference instance with 100 % reported
events, whereas each type of events has a different color and it is normalized so
that the number of different event types are represented equally. Random distri-
bution (the second column) has a huge impact on the detection results because
of breaking the semantic relations between flow records. This was an expected
result, however, the random distribution is a reference of optimal flow data dis-
tribution. Scattering based on the network topology (the third column) caused
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Fig. 6: Comparison of the detection results after applying various scattering
methods. Each part of column with different color stands for normalized number
of unique events reported by different detection method.

that some of distributed attacks and, in general, N:1 or 1:N attacks (DDoS,
horizontal scanning etc.) were not detected. The last column shows that scat-
tering based on hashing specific information from flow data has the best results.
The reason of undetected events is probably a periodic clean-up of structures
containing information and timing of stream-wise detection algorithms.

After the evaluation of the uniformity and the impact on the detection, we
tested a maximal throughput of the hash-based flow scatter as the best method
for distribution. A simple NEMEA module was created to generate and send
100 million flow records at full speed to the flow scatter. Measured computation
time was focused on the main cycle receiving the flow record, hashing, making
decision about number of computational nodes the flow belongs to according to
the computed hashes and sending the flow record. The maximal throughput was
on average 1.8 million flow records per second.

5 Conclusion

This paper presented the results of practical experiments with different ap-
proaches of splitting a stream of network flow data for the purposes of parallel
anomaly detection. The aim of our work was to compare not only a uniformity
of distribution but also an impact of data splitting on the detection results.
Our experiments were performed using real traffic traces from Czech national
research and education network (NREN). For simulation of parallel processing,
we used an open source detection system NEMEA, however, the analysis results
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are general enough and we believe that the proposed distribution approach can
be used with any other detection system.

We have recognized three groups of detection algorithms with different re-
quirements on data. Therefore, we have designed a flow scatter that uses three
different hashing specific information from flow records (source address, desti-
nation address, ordered pair of source and destination address) to provide all
needed data to independent computational nodes. The results of our experiment
show that our approach preserves semantic relations in flow data that are im-
portant for different groups of detection algorithms and therefore the results of
parallel detection are similar to reference results without splitting the data.

With the proposed approach of flow data distribution, it is possible to use
detection methods that are deployed on a single machine and run them in parallel
without changes. As a future work, we want to make more experiments with
scaling beyond the measured throughput of the flow scatter by using multiple
flow scatters in parallel and distribute incoming flow records between the flow
scatters with e.g. round robin.
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