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Abstract. This paper deals with automatic reconfiguration of discrete event con-
trol systems. We propose to enrich the formalism of recursive Petri nets by the
concept of feature from which runtime reconfigurations are facilitated. This
new formalism is applied in the context of automated production system. Fur-
thermore, the enhanced recursive Petri net is translated into rewriting logic, and
by using Maude LTL model-checker one can verify several behavioural proper-
ties related to reconfiguration.
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1 Introduction

The new generation of discrete event control models is adressing new creteria as flexi-
bility and agility. The need of flexibility and adaptability leads to integrate reconfigura-
bility features in these models, but it makes the system more complex and its develop-
ment a hard task. Therefore, an approach for the design safe and reconfigurable systems
is a crucial need. The Petri net formalism is one of the most used tools to model and
analyse discrete event systems [2].

Recently, recursive Petri nets (RPNs) [3] are proposed to specify flexible concurrent
systems where functionalities of discrete event systems such as abstraction, dynamicity,
preemption, recursion are preponderant. In fact, RPNs have ability to model dynamic
creation of threads which behave concurrently.

In this paper, we introduce the concept of feature proposed in [13] to deal with
reconfiguration at runtime. More precisely, the reconfiguration is modelled by combin-
ing the interruption and the activation/deactivation of transitions which is ensured by :
application condition and update expression.

The remainder of this paper is organized as follows. Section 2 gives a brief overview
of related work. Section 3 recalls the syntax and semantic of the formalism RPNs. The
formalism which enrich RPN by the concept of feature, named reconfigurable RPN



and denoted by R2PN, is presented in Section 4. Section 5 presents a case study of a
reconfigurable automated production system, and we present in Section 6 its modelling
in terms of R2PN. The verification of the obtained model is done by using the LTL
model-checker of Maude [6] [11] and is described in Section 7. Section 8 concludes
this paper and depicts further research work.

2 Related Work

Many researchers have tried to deal with formal modeling of control systems with po-
tential reconfigurations. The author of [1] proposed self-modifying nets that can modify
their own firing rules at runtime, however, most of the net basic properties such as reach-
ability, boundedness and liveness become indecidable on these nets. In [4], the authors
developped a Reconfigurable Petri Nets (RPN) for modeling adaptable multimedia and
protocols that can self-modify during execution. They modelled the reconfiguration by
introducing the concept of modifier places. The authors of [5] presented net rewriting
systems (NRS) where a reconfiguration of the net is obtained by a rewriting rules ex-
ecution. The rewriting rules are similar to production of graph grammars. However,
the formalism of NRS is Turing powerful and, thus, automatic verification is no longer
possible in that case. Recently, in [7], the authors proposed Reconfigurable timed net
condition/event systems (R-TNCES) for modeling reconfigurable discrete event control
systems. In this formalism, the system is represented by a set of control componnents
and a reconfiguration is modelled by enabling/disabling some control components mod-
ules by changing condition/event signals among them.

In this paper, we present a new formalism named Reconfigurable RPN (R2PN)
enriches RPN by the concept of feature selection introduced in [13]. Indeed, in R2PN,
the reconfiguration is modelled by combining the interruption and refinement with the
activation/deactivation of transitions which is ensured by : application condition and
update expression. Moreover R2PN captures the behaviour of entire reconfigurable
discrete event control system in a concise modular model, opening the way for efficient
analysis and verification.

3 Recursive Petri nets

The formalism of RPN [3] consider two types of transitions : elementary and abstract.
Moreover a starting marking is associated to each abstract transition and a semi-linear
set of final markings is defined.

Definition 1. (Recursive Petri Nets). A Recursive Petri Net [3] is defined by a tuple
N = 〈P, T, Pre, Post,Ω, I, Υ,K〉 where:

– P is a finite set of places.
– T is a finite set of transitions where T = Tel ] Tabs named respectively, the set of

elementary and abstract transitions,
– I is a finite set of indices called termination indices,
– Pre is a mapping defined as : Pre : T → P⊕, where P⊕ is the set of finite

multi-sets over the set P ,



– Post is a mapping defined as : Post : Tel ∪ (Tabs × I)→ P⊕,
– Ω is a mapping Tabs → P⊕ associating to each abstract transition an ordinary

marking,
– Υ is a family indexed by I of termination sets, where each set represents a set of

final markings (i.e. un element of P⊕),
– K : Tel → Tabs × I , maps a set of interrupted abstract trasitions, and their asso-

ciated termination indexes, for every elementary transition.

Example 1. Let’s use the net presented in Fig.1(a) to highlight RPN’s graphical sym-
bols and associated notations. (i) An elementary transition is represented by a filled
rectangle; its name is possibly followed by a set of terms (t′, i) ∈ Tabs × I . Each term
specifies an abstract transition t′, which is under the control of t, associated with a ter-
mination index to be used when aborting t′ consequently to a firing of t. For instance,
t0 is an elementary transition where its firing preempts threads started by the firing of
t1 and the associate index is 1. (ii) An abstract transition t is represented by a double
border rectangle; its name is followed by the starting marking Ω(t). For instance, t1
is an abstract transition and Ω(t1) = p5 means that any thread, named refinement net,
created by firing of t1 starts with one token in place p5. (iii) Any termination set can
be defined concisely based on place marking. For instance, Υ0 specifies the final mark-
ing of threads such that the place p6 is marked at least by one token. (iv) The set I of
termination indices is deduced from the indices used to subscript the termination sets
and from the indices bound to elementary transitions i.e. interruption. In this example,
I = {0, 1}.
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(b) Two firing sequences of N

Fig. 1. A recursive Petri net and Two possible firing sequences

Informally, a RPN generates during its execution a dynamical tree of marked threads
called an extended marking, which reflects the global state of a such net. This latter
denotes the fatherhood relation between the generated threads (describing the inter-
threads calls). Each of these threads has its own execution context.

Definition 2. (Extended Marking). An extended marking [3] of a recursive Petri net is
a labelled tree
EM = 〈V,M,E,A〉 where:

– V is the (possibly empty) finite set of nodes. When it is non empty, v0 denotes the
root of the tree,



– M is a mapping V → P⊕ associating an ordinary marking for each node,
– E ∈ V × V is the set of edges,
– A is a mapping E → Tabs associating an abstract transition for each edge.

Any ordinary marking can be seen as an extended marking composed by a unique node.
The empty tree is denoted by ⊥. Note contrary to ordinary nets, RPNs are often dis-
connected since each connected component may be activated by the firing of abstract
transitions. In a RPN, we have two kinds of markings: extended markings and ordinary
markings. An extended marking represents the state of the RPN. An ordinary marking
represents an execution context of the thread as in Petri nets.

Definition 3. (Enabled transition or cut step [3]).

– A transition is enabled in a node v of an extended marking EM 6= ⊥ denoted by
EM

v,t−−→ if ∀p ∈ P :M(v)(p) ≥ Pre(p, t),
– A cut step τi is enabled in a node v if M(v) ∈ Υi.

The firing of an elementary transition updates the current marking using ordinary firing
rule like in Petri nets. The firing of an abstract transition refines it by a new sub-net
(i.e. creation of new thread, named its child) which starts its own token game, from a
starting marking whose value is attached to the abstract transition. Once a final marking
is reached, a cut step closes the corresponding sub net, kills its children and produces
tokens, indicated by the Post function, in the appropriate output places of the abstract
transition. Formal definitions of firing rules are defined in [3]. Due to lack of space, we
explain their principls through our illustrated example of Fig.1(a).

Example 2. Fig.1(b) highlights a firing sequences of RPN represented in Fig.1(a). The
graphical representation of any extended marking EM is a tree where an arc
vi(mi)

tabs−−→ vj(mj) means that vj is a child of vi created by firing the abstract transi-
tion tabs and mi (reps. mj) is the marking of vi (reps. vj). Note that the initial extended
marking EM0 is reduced to a single node v0 whose marking is p0 + p1. From the intial
extended marking EM0, the abstract transition t1 is enabled; its firing leads to the ex-
tended marking EM1 which contains a fresh node v1 marked by the starting marking
Ω(t1). Then, the firing of the elementary transition t3 from node v1 of EM1 leads to
an extended marking EM2, having the same structure as EM1 but only the marking of
node v1 is changed. From node v1 in EM2, the cut step τ0 is enabled; its firing leads
to an extended marking EM3 by removing the node v1 and change the marking on its
node predecessor i.e. v0 by adding Post(p3, t1, 0). Also, another way to remove nodes
in extended marking is using the concept of preemption associated to the elementary
transitions. For instance, from node v0 in EM2, the elementary transition t0 with as-
sociated preemption (t1, 1) is enabled; its firing leads to an extended marking EM4 by
removing the node v1.

4 Reconfigurable Recursive Petri nets

Reconfigurable Recursive Petri nets (R2PNs) enriches RPN by the concept of feature
selection introduced in [13]. In fact, R2PNs extend RPN by associating transitions and



cut steps with application conditions and update expressions. An application condition
is a logical formula over a set of features, describing the feature combinations to which
the transition applies. It consitutes a necessary (although not sufficient) condition for the
transition to fire. In fact, if the application condition is false, means that the transition is
desactivated. An update expression, describes the feature selection evolves after firing
a transition.

A feature is defined as a prominent or distinctive user-visible aspect, quality or
characteristic of a system. A feature is defined in [13] as follows :

Definition 4. (Feature [13]). A feature is an end-user visible characteristic of a system.

The concept of feature has been introduced by the software design community to spec-
ify and distinguish products in product lines [9][13]. Now, let’s define the set of appli-
cation conditions over a set of features.

Definition 5. (Application condition). An application condition ϕ [9] is a logical
(boolean) contraint over a set of features F , defined by the following grammar: ϕ ::=
true | a | ϕ∧ϕ | ¬ϕ, where a ∈ F . The remaining logical connectives can be encoded
as usual. We write ΦF to denote the set of all application conditions over F .

Definition 6. (Satisfaction of application conditions [9]). Given an application condi-
tion ϕ and a sub set of features FS, called a feature selection, we say that FS satisfies
ϕ, written as FS |= ϕ, iff: (1) FS |= true always; (2) FS |= a iff a ∈ FS; (3)
FS |= ¬ϕ iff FS 2 ϕ; (4) FS |= ϕ1 ∧ ϕ2 iff FS |= ϕ1 and FS |= ϕ2

Definition 7. (Update). An update[9] is defined by the following grammar: u ::=
noop | a on | a off | u;u, where a ∈ F and F is a set of features. We write UF
to denote the set of all updates over F . Given a feature selection FS ⊆ F , an update
expression modifies FS according to the following rules: r1: FS

noop−−−→ FS;

r2: FS a on−−−→ FS ∪ {a}; r3: FS
a off−−−→ FS \ {a}; r4: FS

u0−→FS′ FS′ u1−→FS′′

FS
u0;u1−−−→FS′′

.

We are now in position to introduce R2PNs.

Definition 8. (Reconfigurable Recursive Petri nets). A R2PNs is a tuple
EN = 〈N,F, f, u〉, where :

– N = 〈P, T, Pre, Post,Ω, I, Υ,K〉 is RPN,
– F is a set of features,
– f : T ∪ {τi} → ΦF is a function associating to each transition and cut step with

an application condition from ΦF where i ∈ I ,
– u : T ∪ {τi} → UF is a function associating to each transition and cut step with

an update from UF where i ∈ I .
We write ut resp. uτi to denote the update expression u(t) resp. u(τi) associated to
a transition t resp. a cut step τi.

we write FS |= f(t) if the feature selection FS satisfies the application condition
associated with transition t. In the following, graphically, each transition of R2PN is
annotated by an application condition and an update expression in the following way:

application condition

update expression



Definition 9. (A state of Reconfigurable RPN). A state of a Reconfigurable RPN
EN = 〈N,F, f, u〉 is a tuple S = (EM,FS) where EM = 〈V,M,E,A〉 is an
extended marking and FS ⊆ F is a feature selection.

Definition 10. (Enabled transition or cut step). Let S = (〈V,M,E,A〉, FS) be a state
of R2PN EN = 〈N,F, f, u〉 where N = 〈P, T, Pre, Post,Ω, I, Υ,K〉. Let a node
v ∈ V .

– A transition t is enabled in a node v, if ∀p ∈ P : M(v)(p) ≥ Pre(p, t) and
FS |= f(t),

– A cut step τi is enabled in a node v, if M(v) ∈ Υi and FS |= f(τi).

Definition 11. (Firing rules of Reconfigurable RPN). Let S = (EM,FS) be a state
of R2PN EN = 〈N,F, f, u〉 where N = 〈P, T, Pre, Post,Ω, I, Υ,K〉. Let a node
v ∈ V .

– The firing of an elementary transition t from a node v leads to a state S′ =

(EM ′, FS′) where EM
v,t−−→ EM ′ as Definition12. in [3]. and FS

u(t)−−→ FS′,
– The firing of an abstract transition t from a node v leads to a state

S′ = (EM ′, FS′) where EM
v,t−−→ EM ′ as Definition13. in [3]. and FS

u(t)−−→
FS′,

– The firing of a cut step τi from a node v leads to a state S′ = (EM ′, FS′) where

EM
v,τi−−→ EM ′ as Definition14. in [3]. and FS

u(τi)−−−→ FS′.

Therefore, the analysis of R2PN is based on constructing its extended reachability
graph, which is used for checking properties such as reachability, deadlock and liveness.

5 Case Study : Automated Production Systems

In this research work, we use a reconfigurable production devices called, FESTO[7] as a
running example. We assume that the device may perform some particular reconfigura-
tion scenarios according to well-defined conditions. FESTO is composed of three units:
distribution, test and processing units. The distribution unit is composed of a pneumatic
feeder and a converter to forward cylindrical work pieces from a stack to the testing unit
which is composed of the detector, the tester and the elevator. The testing unit checks
of work pieces for height, material type and color. Work pieces that successfully pass
this check are forwarded to the rotating disk of the processing unit, where the drilling
of the work piece is performed. We assume in this work two drilling machines Dr1 and
Dr2 to drill pieces. The result of the drilling operation is next checked by a checking
machine and the work piece is forwarded to another mechanical unit. Three production
modes (called local configurations) can be performed by FESTO.

– Light1: For this production mode, only the drilling machine Dr1 is used;
– Light2 : To drill work pieces for this production mode, only the drilling machine
Dr2 is used;

– High: For this production mode, where Dr1 and Dr2 are used at the same time in
order to accelerate the production.



Ligth1 is the default production mode of FESTO and the system completely stops in
the worst case if the two drilling machines are broken. We assume that FESTO may
perform four reconfiguration scenarios as shown in Fig.2.
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Fig. 2. Reconfiguration scenarios of FESTO

6 Modeling FESTO using Reconfigurable RPN

The automated production system FESTO is modelled as follows: ENFESTO =
〈ENBeh, ENAdapt〉 where ENBeh represents the behaviour module of FESTO and
ENAdapt is the adaptor which represents possible reconfiguration scenarios may be
applied by the reconfigurable control system FESTO.

The adaptor ENAdapt of FESTO is shown in Fig.3. It is represented by ERPN
where each place specifies one beahviour. As shown in Fig.3, we have three places pL1,
pL2 and pHi which specify the three production modes Light1, Light2 and High.
Each one of these places may contain at most one token and the marking of such place
means that its associated production mode is currently applied by the production sys-
tem FESTO. For instance, the place pL1 is marked, which means the current produc-
tion mode applied by FESTO is Light1 i.e.the initial production mode. The set of
elemenatry transitions represent the set of reconfiguration scenarios of FESTO. For
instance, the elementary transition tL1ToL2 models the reconfiguration scenario that
allows the production system FESTO to transform from the first production mode
Light1 to the second production mode Light2 when drilling machine Dr1 is broken.
In fact, the firing of this transition will interrupt the abstract transition DrillL1, which
models the first production mode Light1, and update the current feature selection FS
by applying its associated update expression Dr1 off ;Dr2 on as shown in Fig.3.

The behaviour ENBeh of FESTO which is a union of multiple R2PNs is for-
malised as follows:ENBeh =

⋃
i∈1..3ENBehi , withENBehi = 〈Pi, Ti, P rei, Posti,

Ωi, Ii, Υi,Ki, Fi, fi, ui〉 is a R2PN models one possible behaviour of reconfigurable
control system of FESTO. Fig.4 models the behaviour of FESTO using ERPN.
All the transitions shown in Fig.4, where their application condition and update
expression are omitted, are annotated by the term : true

noop . This means that this set
of transitions are common to all behaviours of FESTO. The set of features F con-
tains the set of drilling machines which may be used to select the proper behaviour of
FESTO i.e. F = {Dr1, Dr2}. As noted in Fig.4, the abstract transitions Distribute,
Test and Process models the distribution, tester and processing unit. The firing of one
of these transitions will create a thread representing the behaviour of associating unit.
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For instance, the firing of the abstract transition Process creates a thread, models the
behaviour of processing unit, which starts by one token i.e. workpiece in place p12. The
workpiece is then forwarded to the drilling machines by firing the elementary transition
Rotate. After, three abstract transitionsDrillL1,DrillL2 andDrillHi may be enabled;
they model the drilling’s step according to the three production modes Light1, Light2
and High. But each one of these abstract transitions is associated an application con-
dition which restricts its activation (firing) to the set of bound features F . As described
above, the default production mode of FESTO is Light1, where only the drilling ma-
chine Dr1 is used, so the initial feature selection FS0 = {Dr1}. In this case, only the
abstract transition DrillL1 is enabled. The firing of this abstract transition will create
a thread, models the drilling’s step, which starts by one token in place p17. Note that
the created thread can use only the drilling machine Dr1 represented by the elementary
transition Dr1-L1. Moreover, this thread presents two types of termination :

– Properly termination : it means that the workpiece is well drilled and the place
p18 is marked. So, a final marking belongs to termination’s set Υ4 is reached, then
the cut step τ4 may be enabled. The firing of τ4 terminates the current thread and
puts a workpiece in the place p14 in order to perform the remains operations such
as Checker and Evacuate.

– Termination by interruption: this termination occured when the production sys-
tem FESTO applies a reconfiguration as described above for adaptor module.
For instance,from Fig.3, firing the elementary transition tL1ToL2 will interrupt the
thread created by the absract transition DrillL1 with termination index 5 and up-
date the feature selection FS0. The new obtained feature selection FS1 = {Dr2}.
In fact, the workpiece is put it in the place p13 and only the abstract transition
DrillL2 may be enabled, which specify the drilling’s step according to the second
production mode Light2.

7 Verification of Reconfigurable control systems

In this section, we outline the conversion from R2PNs to a Maude specification [6] and
the use of its Linear Temporal Logic (LTL) model checker [11].
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7.1 Maude and its Model-Checker

Maude is a high-performance reflective language and system supporting rewriting logic
specification [12]. It has been developed at SRI (URL: http://maude.cs.uiuc.edu/) Inter-
national for over two decades. A system, under Maude, is represented using member-
ship equational logic describing its set of states and a set of rewrite rules representing
its state transitions. Maude is stricly typed, where the types are called sorts and can be
built hierarchically using subsorts. Maude’s basic programming statements are equa-
tions and rules, and have in both cases a simple rewriting semantics in which instances
of the left-hand side pattern are replaced by corresponding instances of the right-hand
side. One aim using Maude is its LTL model-checker which can be used to verify prop-
erties as reachability, deadlock or liveness for a specified model. Model checking can
be used to prove properties, specified in LTL when the set of states reachable from an
initial state in a system module is finite. In [11], the author presents more details about
syntax and semantic of LTL.

7.2 Conversion of R2PN to a Maude specification

Like in [8], the state of aR2PN is described by a term State(EM, fs) of sort STATE
where:



– EM is an extended marking represented, in a recursive way, as a dynamical tree by
the term [MTh, tabs, ThreadChilds] of sort Thread where M , of sort Marking,
represents the internal marking of Th. The term tabs represents the name of the
abstract transition whose firing (in its thread father) gave birth to the thread Th.
Note that the root thread is not generated by any abstract transition, so the abstract
transition which gave birth to it, is represented by the constant nullTrans. The
term ThreadChilds represents a finite multiset of threads generated by the firing
of abstract transitions in the thread Th. We denote by the constant nullThread,
the empty thread.

– fs is a feature selection, of sort FS, represented by a list of terms of sort Term.
We denote by the constant empty, the empty list of feature selection.

We have also impleneted two functions in the module FeatureSel needed by our
formalism R2PN. The first function is SATAC(ac : AC, fs : FS) : Bool which
checks the truth value of an application condition ac, of sort AC, for a given feature
selection fs. The second function is UPDATE(u : UE, fs : FS) : FS which returns
the new feature selection after applying the update expression u, of sort UE, for a given
feature selection fs.

Moreover, each transition firing and cut step execution is formally specified in
Maude by a labelled rewrite rule as follows :

– Rule associated to an elemetary transition t with K(t) = φ , application condition
ac(t) and update expression ue(t)

crl[t]: State(<p; N+Pre(p,t)> (*) <p’; M> , fs) =>State(<p; N
)> (*) <p’; M + Post(p’,t)> , UPDATE(ue(t), fs) if SATAC(
ac(t), fs).

– Rule associated to an elemetary transition twithK(t) = {(tabsi, k), (tabsj ,m), ..},
application condition ac(t) and update expression ue(t)

crl[t]: State([<p;N+Pre(p,t)>(*)<p’;M>(*)<p
′
i;A>(*)<p

′
j;B>,

absTrans,Thread],fs) => State([<p; N>(*)<p’; M+Post(p’,t)
>(*)<p

′
i; A+Post(p′i, tabsi,k)>(*)<p

′
j; B+Post(p′j,tabsj,m)>,

absTrans, DeleteThread(tabsi,tabsj,...,Thread)], UPDATE(ue(t
), fs) if SATAC(ac(t), fs).

– Rule associated to an abstract transition t with starting marking Ω(t), application
condition ac(t) and update expression ue(t)

crl[t]: State([<p;N+Pre(p,t)>, absTrans, Thread] , fs) =>
State([<p; N)>, absTrans, Thread[<p’; Ω(t)>, t, nullThread
]] , UPDATE(ue(t), fs) if SATAC(ac(t), fs).

– Rule associated to a cut step τi with application condition ac(τi) and update ex-
pression ue(τi)

crl[τi]: State([<p;N>, absTrans, Thread[<p’;N’> , tabs,
Thread1]] , fs) => State([<p; N+Post(p, tabs, i)>,
absTrans, Thread, UPDATE(ue(τi), fs) if (Υi and SATAC(ac(τi
), fs)).



7.3 Implementation using the Maude Tool

Since we give a Maude specification for the formalism R2PN, we can benefit from the
use of the LTL model-checker of the Maude system for verification purpose where the
generated state space must be finite. For instance, one can check the liveness prop-
erty over ENFESTO for its initial behaviour Ligth1. We suppose that the system
starts by100 tokens i.e. workpieces, this is specified in Maude by : eqinitialState =
State(< p0; 100 > (∗) < pL1; 1 >,Dr1). A liveness condition is : each work-
piece must reach (from all reachable markings) the final state where the place p4 is
marked.This can be phrased as ”For all paths and from all states, State(< p4; 100 >
(∗) < pL1; 1 >,Dr1) can finally be reached”. In Maude, this is stated by [] <>
State([< p4; 100 > (∗) < pL1; 1 >,nullT rans, nullThread], Dr1)., and proven to
be valid by its model checker in Fig.5(a). We suppose in this case that there is no fail
during the workpieces’s test process.

Let take another example and we focus on the case, when an error occurs, whether
the control module can respond and select a proper behaviour. We define the following
LTL formula : α : [](Behaviour(Light1)/ Drill −Down(Dr1) =>
<> Behaviour(Light2))), where, the predicate Behaviour allows to know the cur-
rent behaviour applied by the production system FESTO. The predicate Drill-Down
indicates which among drilling machines Dr1 ord Dr2 is break-down.

This LTL formula means that, always, if the current production mode of FESTO is
Light1, drill machine Dr1 is broken, the production system FESTO will eventually
select the production mode Light2. This LTL formula is proved to be valid in Fig.5(b).

Now, let’s define a LTL proprty β by replacing in the formula α the production
mode Light2 by High. In Fig.5(c), this formula is proved to be not valid and the
model-checker returns the expected counterexample.

 

 

 

 

 

 

 

 

 

 

 

 

 

Maude> in R2PN/MAIN.maude . 
========================================== 
reduce in R2PN-CHECK : modelCheck(initialState, []<> State([< pL1 ; 1 >(*)< 
p4 ; 100 >,nullTrans,nullThread],Dr1)) . 
rewrites: 16284 in 13344662529ms cpu (160ms real) (0 rewrites/second) 
result Bool: true 
Maude> 

(a) 

Maude> in R2PN/MAIN.maude . 
========================================== 
reduce in R2PN-CHECK : modelCheck(initialState, []( Behaviour(Light1) /\ 
Drill-Down(Dr1) => <> Behaviour(Light2))) . 
rewrites: 50184 in 13601982251ms cpu (341ms real) (0 rewrites/second) 
result Bool: true 
Maude> 

(b) 

Maude> in R2PN/MAIN.maude . 
========================================== 
reduce in R2PN-CHECK : modelCheck(initialState, []( Behaviour(Light1) /\ 
    Drill-Down(Dr1) => <> Behaviour(High))) . 
rewrites: 19774 in 6091294694ms cpu (124ms real) (0 rewrites/second) 
result ModelCheckResult: counterexample(... 
{State([< pL1 ; 0 >(*)< pL2 ; 1 >(*)< dr1-error ; 0 >(*)< pone ; 0 >(*)< p0 ; 0 
>(*)< p4 ; 99 >,nullTrans,[< p12 ; 0 >(*)< p13 ; 0 >(*)< p14 ;                                   
1 >,Process,nullThread]],Dr2),'Checker} {State([< pL1 ; 0 >(*)< pL2 ; 1 >(*)< 
dr1-error ; 0 >(*)< pone ; 0 >(*)< p0 ; 0 >(*)< p4 ; 99 >,nullTrans,[< p12 ; 0 
>(*)< p13 ; 0 >(*)< p14 ; 0 >(*)< p15 ; 1 >,Process,nullThread]],     
Dr2),'Evacuate} {State([< pL1 ; 0 >(*)< pL2 ; 1 >(*)< dr1-error ; 0 >(*)< pone ; 0 
>(*)< p0 ; 0 >(*)< p4 ; 99 >,nullTrans,[< p12 ; 0 >(*)< p13 ; 0 >(*)< p14 ; 0 >(*)< 
p15 ; 0 >(*)< p16 ; 1 >,Process,nullThread]],Dr2), 'cut-3}, {State([< pL1 ; 0 
>(*)< pL2 ; 1 >(*)< dr1-error ; 0 >(*)< pone ; 1 >(*)< p0 ; 0 >(*)< p4 ; 100 
>,nullTrans,nullThread],Dr2),deadlock}) 
Maude> 

(c) 

Fig. 5. (a) Model checking of the liveness condition for first production mode of FESTO, (b)
Model checking of the LTL property α and (c) Counterexample generated by model checking
of the LTL property β



8 Conclusion and Future Work

This research work copes with the reconfiguration issue of discrete control systems. We
have proposed Renconfigurable RPN (R2PN) which enriches RPN by the concept of
feature to deal with reconfigurations at runtime. R2PN allows instance of threads in
RPN to be renconfigurable. We have shown the efficiency ofR2PN through a case study
represented by a reconfigurable production system. A verification method forR2PN has
also been presented by using the LTL model-cheker of Maude.

In the future, we will plan to extend our formalism in order to model time constraints
which are of great importance in real-time systems. Therefore, one can verify some
properties with respect to time constraints using Real-Time Maude model-checker [10].
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