N

N
N

HAL

open science

Supporting the Collaboration between Programmers
and Designers Building Game Al

Ismael Sagredo-Olivenza, Marco Antonio Gémez-Martin, Pedro A.

Gonzalez-Calero

» To cite this version:

Ismael Sagredo-Olivenza, Marco Antonio Gémez-Martin, Pedro A. Gonzélez-Calero. Supporting the
Collaboration between Programmers and Designers Building Game Al. 14th International Conference
on Entertainment Computing (ICEC), Sep 2015, Trondheim, Norway. pp.496-501, 10.1007/978-3-
319-24589-8 46 . hal-01758411

HAL Id: hal-01758411
https://inria.hal.science/hal-01758411

Submitted on 4 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01758411
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Supporting the collaboration between
programmers and designers building Game AI *

Ismael Sagredo-Olivenza,
Marco Antonio Gémez-Martin and Pedro A. Gonzélez-Calero

Dep. Ingenieria del Software e Inteligencia Artificial
Universidad Complutense de Madrid, Spain
email: isagredo@ucm.es, {marcoa,pedro}@fdi.ucm.es

Abstract. The design of the behavior of non-player characters (NPCs)
in a game is a collaborative task between programmers and designers.
Nevertheless this collaboration is an open problem since the limits, re-
sponsibilities and competences are not well defined.

Behavior trees are the technology of choice nowadays for programming
the behavior of NPCs, and they are first and foremost a programmers
tool. In this paper we describe an experiment that shows that with the
right division of labor and a reduced background in Programming, de-
signers can also build behavior trees and thus find a principled way to
collaborate with programmers in that task.

1 Introduction

Game development is a multidisciplinary task that involves professionals from
different areas with different knowledge and sensibilities. The three main roles
involved in the development of the artificial intelligence (AI) of non-player char-
acters (NPCs) in a game are: artists (that are beyond the scope of the paper),
which make the models and animations; programmers that implement behaviors;
and designers, responsible for designing those behaviors.

Designers define how the characters must behave and programmers imple-
ment these behaviors, therefore, they should communicate between them and
try to reach an agreement. This relation produces an iterative cycle of changes,
because programmers can deliver an incomplete or inaccurate version of the be-
haviors to designers. Accordingly, designers need to validate these behaviors and
then require the appropriate changes to programmers. This process ends when
the behavior is accepted by designers.

To get a more fluid process, programmers usually develop authoring tools
for designers. The goal is to get designers to become as autonomous as possible
so they can modify certain parameters in order to configure behaviors to their
needs. Different solutions have been explored (state machine, scripting, behavior
trees...) but the most behaviors of the NPCs are stored in data files. These
data file formats are seldom easy to understand or edit, hence, designers and

* Supported by the Spanish Ministry of Science and Education (TIN2014-55006-R)

developers must have tools to edit or visualize them. If designers have a certain
degree of autonomy, then they can test, modify or create parts of behaviors
without the intervention of a programmer.

In this paper we present a methodology together with a tool (Behavior Bricks)
for designing behavior trees that distinguish high-level behavior from low-level
ones. We can think of these high-level behaviors as a simple description of the
general behavior of an NPC, similar to the ones used in the early stages of
design [1]. Our hypothesis is that, with the proper tool, designers can implement
high-level behaviors while programmers implement the low-level ones in parallel.

The rest of this paper is structured as follows. Next Section describes behavior
trees, Section 3 describes Behavior Bricks and our methodology for using it, and
Section 4 describes the experiment. Finally Section 5 presents some conclusions
and future work.

2 Behavior Trees

Behavior trees (BTs) are a modeling technique of behavior of an NPC. They
were popularized for their utilization in Halo 2 [2] and Halo 3 [3], and they
have similar representation capabilities of the traditional Finite State Machines
(FSMs) [4,5]. The main problem of the FSMs and the Hierarchical FSM (HFSM)
are the scalability of their transitions. When the problem grows, the number of
relationships between states grows much faster than states and they become
uncontrollable soon.

BTs improve scalability over FSMs thanks to remove these transitions, re-
placing them for internal nodes, which select the tasks that will run. By defini-
tion, BTs are hierarchical, therefore, it is very easy to have multiple abstraction-
layers which improve their re-usability. Behavior trees have become popular
thanks to the need to make increasingly complex behavior and the needs of
the developers that were not comfortable with the existing techniques. Design-
ers wish full control of the behavior but not all time. They need to delegate the
most complex tasks to programmers [6]. In addition, designers want that the be-
haviors are driven by goals, but also that they are reactive to unexpected events
and finally, they want that the chosen model is easy to use, easy to comprehend
and, if possible, easy to draw.

3 Behavior Bricks and its methodology of use

As we said before, designers must create behavior independently. For that reason
designers need tools to simplify this task. In the market, there are some tools
with this purpose like NodeCanvas', Behavior Designer? or Behave® among
others.

! http://nodecanvas.com/
2 http://www.opsive.com/assets/BehaviorDesigner/
3 http://angryant.com/behave/

After analysing these editors, we have concluded that neither of them is
adapted to our methodology because none of them has a correct abstraction
system that allows to encapsulate the behaviors and the primitive tasks for
reusing them. For those reasons, the authors have created a new BT framework
named Behavior Bricks, a tool designed to be used by designers that are able
to create, view and modify behavior trees and that, in addition, can be easily
extended by programmers.

Behavior Bricks has two different modules: Runtime module and visual edi-
tor. Both runtime and editor are distributed as a extension of the game engine
Unity3D?.

3.1 Methodology

BTs can run sub-behaviors easily. These sub-behaviors can be used by designers
within other behaviors like a simple primitive task. This mechanism may have
different abstraction layers in a BT. We can define two different levels of details
the high-level detail and the low-level detail. The low-level behavior can be
defined as the behavior that can be reused in other behaviors. This behavior
manages the concepts closer to scripting languages such as: target selection,
follow a route, find a coverage, etc. The high-level behaviors can be defined as
the behavior that describe the general behavior of the NPC. One of the purpose
to create Behavior Bricks is to introduce this new methodology to develop the
video games Al.

The responsibility of programmers in Behavior Bricks is two-fold. On the one
hand, they must create the low-level primitives using the scripting language of
the underlying engine and, on the other hand, we must implement with Behavior
Bricks editor the low-level behavior.

A primitive task is defined establishing his name (that must be unique in the
hierarchy) and optionally a collection of input and output parameters. The input
parameters read their values from a blackboard stored in the behavior executor
and the output parameters write its values in same blackboard.

The responsibility of designers in Behavior Bricks is make the high level
behaviors using the visual editor. The designers using a subset of the internal
nodes to simplify the BT complexity. This subset is formed by the following
nodes: Sequences, selector, priority selector and the repeat decorator.

4 Experimentation

The experiment that we describe below demonstrates that it is possible and
effective that non-technical designers implement high-level behavior with similar
result to programmers, if they have been trained enough and they have a visual
tool like Behavior Bricks. We have carried out this experiment with the students
from the master program on Game Development at Complutense University of

* http:/ /unity3d.com/

PrioritySelector

r‘;

| TargetinDistance |

ShootToGameObjsct

SetCurrentTarget

MoveTolfTargetNotChange

Fig. 1: The expected solution of the basic enemy behavior

Madrid, which includes two different itineraries: one for programmers and one
for designers. These students have a diverse background, including: Computer
Science, Mathematics, Journalism or Arts, and therefore is complex enough to
validate our hypothesis. Before the experiment, the students had a class about
BTs where they learned the concepts and how to use our tool.

4.1 The experiment environment

To carry out the experiment, we have used a prototype of a tower-defense video-
game. In this prototype, the player’s mission is to defend the base (or core) of
a space mine. In this version, the player only can move his avatar and shoot
against the enemies. Enemies appear in different spawning points and go to the
base to destroy it.

Designers have described in a design document two types of enemies in the
game: the basic enemy and the shield.

The basic enemy receives a target to its perception system, in this case only
are available the core and the player. The selection of this target is random with
different probabilities for each type of target. Perception is in charge of selecting
the target that the NPC must consider. This perception is already done in the
exercise and the students should not worry about it. To explain the behavior,
we can see the expected solution in the figure 1.

The second exercise is divided in two parts: In the first part, the students
must implement the low-level behavior AttackTheCore, when the initial target
of the enemy is the core. The enemy should move next to the core and shoot it.
This low-level behavior is very simple and it does not require the intervention of
a programmer. The expected solution of this behavior can be seen in Figure 2a.

In the second part, the students must implement the high level behavior of
the Shield. This NPC try to protect an enemy. While protecting the enemy, it
should maximize the number of enemies protected by its shield. If the target
dies, it try to find another enemy to protect. If not found an enemy to protect,

Sequence

FindEnemy PrioritySelector
| TargetNotFound |

| ——

M°"°T°§tame°bje ShootToBameObject

SetDefaultTarget

‘ AftackToCore ‘ ‘ ProtectEnemy ‘

(a) The expected solution of the Attack- (b) he expected solution of the Shield be-
TheCore behavior havior

Fig. 2: Second exercise formed by two parts

then it must attack the core. To explain the behavior, we can see the expected
solution in the figure 2b.

For both, the basic enemy and the shield, we provide the students a set of
primitive tasks and behaviors to be used. We can assume that this tasks would
be developed by programmer in a professional environment.

4.2 The experiment

With this experiment, we want to evaluate if a correlation exists between the
knowledge of programming and their results using Behavior Bricks. To do this,
we have compared the marks obtained in a programming test and the marks
obtained in the practical exercises with Behavior Bricks.

In our hypotheses, we expected that the programming knowledge will help
to better solve the exercises, although it is not a barrier for designers that can
also create high-level behaviors with little training.

The sample of this experiment is of 25 students. They had 2 hours and 10
minutes to resolve the two exercises. Once completed the experiment, we have
evaluated these exercises. The score of each exercise has been as follow: 4 points
for the first, 2 points for exercise 2.1 since it is similar to the first one, and 4
points to exercise 2.2.

The plot that we can see in Figure 3a shows an evident correlation between
the result of the programming exam and the result of the exercise using Behav-
ior Bricks. In addition, if we calculate the Pearson product-moment correlation
coefficient (PCC) we obtain a result of 0.525, which indicates that a correlation
exists (its value is greater than 0.5) but the correlation is not very pronounced.
Furthermore, the result agrees with the hypothesis that the technical knowl-
edge is important to comprehend correctly BTs, but simplifying the model and
applying it in high-level behaviors, the designers can use it too.

If we carefully analyze the plot we find that given a basic programming
knowledge, the differences between exercise results and exam do not follow any

Correlation between exercise and exam score. Correlation between students with greater than 5 exam score

¥=0,5866x+4,4328 « y=-0,1077x +9,7676

P 10
10 LI D o O S I
% Su0l e N N B S A S S

0 2 4 6 8 10 12 0 2 4 6 8 10 12
EBxam score

(a) Correlation between programming (b) Correlation with an exam score
knowledge and exercise result greater than 5

Fig. 3: Experiment results

kind of correlation. Figure 3b shows the distribution of the students who have
passed the exam. In this figure we can observe this fact since there are no obvious
correlation between both and the dispersion of the exercise result is very large.
Even those students without technical skills have been able to complete at least
the first exercise.

5 Conclusions and Future Work

Given the results from our experiments, we can conclude that, using a tool such
as Behavior Bricks a designer with little training in the tool and little previous
knowledge about Programming, can design high level behaviors of good quality
within a reasonable time. In addition, we can conclude that given a minimum
programming knowledge we have not found any differences in the results using
Behavior Bricks, therefore, is not necessary to have high programming skills to
create high-level behaviors using Behavior Bricks with our methodology.

In the future, we want to have more experiments with more subjects in
order to validate other aspects of our methodology. We plan to compare our
methodology with other in order to assess its comparative competitiveness, both
in terms of developing effort, collaboration support and quality.

References

1. Hudson’s, K.: The ai of bioshock 2: Methods for iteration and innovation. In: Game
Developers Conference. (2010)

2. Isla, D.: Handling complexity in the Halo 2 ai. In: Game Developers Conference.
2005

3. %sla, I% Halo 3 - building a better battle. In: Game Developers Conference. (2008)

4. Rabin, S.: 3.4. In: Implementing a State Machine Language. Volume 1 of AT Game

Programming Wisdom. Cengage Learning (2002) 314-320

Bourg, D.M., Seemann, G.: AI for Game Developers. O’Reilly Media, Inc. (2004)

6. Champandard, A.J.: Behavior trees for next-gen ai. In: Game Developers Confer-
ence. (2005)

o

