
HAL Id: hal-01728820
https://inria.hal.science/hal-01728820

Submitted on 12 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Tiny Network Caches with Large Performance Gains for
Popular Downloads

Piotr Srebrny, Dag Sørbø, Thomas Plagemann

To cite this version:
Piotr Srebrny, Dag Sørbø, Thomas Plagemann. Tiny Network Caches with Large Performance Gains
for Popular Downloads. 13th International Conference on Wired/Wireless Internet Communication
(WWIC), May 2015, Malaga, Spain. pp.197-210, �10.1007/978-3-319-22572-2_14�. �hal-01728820�

https://inria.hal.science/hal-01728820
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Tiny Network Caches with Large Performance
Gains for Popular Downloads

Piotr Srebrny1, Dag Henning Liodden Sørbø2, and Thomas Plagemann3

1 Nevion, Oslo, Norway piotrs@ifi.uio.no
2 Bekk Consulting AS, Oslo, Norway daghso@student.matnat.uio.no

3 University of Oslo, Oslo, Norway plageman@ifi.uio.no

Abstract. File transfers are and will in the future be responsible for a
substantial part of the Internet traffic. However, with present solutions
transfers of popular files lead to a lot of redundant data transfers in the
network. In this paper, we investigate how a link level caching scheme can
reduce the number of redundant data transfers. We serve requests from
clients that download a file concurrently, but arrived at different times
in such a way that they get at a given point in time the same data chunk
of the file. This enables link caches to efficiently remove the redundancy.
The data chunks are rearranged at the client to compose the original
file. Through implementation and experimental studies we show that
this approach clearly outperforms traditional file servers in terms of file
server capacity and bandwidth consumption; especially when encoding
the original file with fountain codes.

Keywords: link level caching, file server, fountain codes

1 Introduction

File transfer via protocols like FTP and HTTP is besides streaming of enter-
tainment content one of the applications that dominate the Internet and causes
a substantial part of the overall traffic. Increasing popularity of files leads to in-
creasing file server load and increasing redundancy of data transfers from the file
server to the clients. In order to distribute popular files and especially to handle
flash crowds, P2P solutions have proven to be very useful. The core mechanism
in these P2P solutions is to leverage networking and computing resources from
the origin server, e.g., a torrent, and from the peers. Thus, the more concurrent
downloads of a file, the more peer resources are available. This self-scaling prop-
erty enables to handle flash crowds, but it leads to increasing overall resource
consumption and increasing redundancy of data transfers.

In order to reduce the overall resource consumption and increase the file
server performance, we investigate in this paper the feasibility of eliminating re-
spectively reducing the number of redundant data transfers through tiny caches
at the link layer. This link level caching approach, called CacheCast, has been
originally designed for single-source multiple-destination applications like live
streaming [8]. Due to the missing support of Internet-wide IP-multicast, many



streaming servers use unicast connections to the clients. If n clients receive a live
stream, the file server sends n packets which all have the same payload. This
redundancy is eliminated in CacheCast through link level caching. The stream-
ing server sends a data element of the stream to n clients in form of a so-called
packet train, which consists of one link level packet containing link, network, and
transport layer headers and the data element as payload; and n−1 packets with-
out the redundant payload. Furthermore, all packets are marked as CacheCast
packets and contain some meta-data for cache management. At the link exit,
the payload of the first packet is stored and can be used to reconstruct all fol-
lowing packets from the packet train. This procedure is performed individually
at each link (see Section 2). The streaming server support simplifies the cache
management and allows the use of very small caches that can operate at link
speed. This enables a performance that is very close to IP multicast.

Creating a packet train in a streaming server is relatively easy; because the
nature of single-source multiple-destination applications imposes that the same
data needs to be send to all clients at “the same time”. In other words, the trans-
mission of data chunks is timely synchronized. This is different in file servers,
because clients might request the same data, but not at the same time. Many
clients might download at the same time a popular file, but all of those that
arrived at different times at the server will receive different data chunks from
the file at a given point in time. One approach to cope with the larger distance
in time between redundant transfers is to increase the cache size. However, this
comes at the cost of more expensive caches in monetary terms and implementa-
tion complexity, which makes it hard or impossible to operate the caches at link
speed.

Therefore, we examine the use of the original CacheCast implementation to
improve the performance of popular downloads. The key idea to solve this prob-
lem is based on the insight that there is no need to sequentially send data chunks
of a file to clients. In contrast to streaming applications, clients downloading files
consume the data only after the entire file has been received. Out of order pack-
ets can be re-ordered at the client before the file is provided to the application.
This property can be used at the server to send at a given point in time the
same data chunk to clients that arrived at different times. Thus, a packet train
can be send over the link and very small caches are sufficient. We show in this
paper that fountain codes can be used to alleviate the CacheCast file server im-
plementation. A file is a priori encoded and chunks of the encoded file are sent
to the clients. Clients just need to receive data chunks until they have sufficient
information to decode the file. With an implementation in ns-3 and extensive
simulation studies we show that this solution clearly outperforms traditional file
servers, both in terms of file server capacity and of bandwidth consumption. The
more concurrent downloads, the more redundancy we can remove. As such this
solution is self-scaling like P2P, but not at the cost of peer resources.

The remaining of the paper is structured as follow: the idea and basic func-
tionality of CacheCast is presented in Section 2 and 3. The results of our exten-
sive evaluation are presented in Section 4 and Section 5 concludes this work.



2 CacheCast Basics

The server architecture relies on the CacheCast mechanism to deliver the same
data chunk to multiple destinations. Therefore, it is essential to understand how
applications benefit from CacheCast, and how CacheCast transports data.

CacheCast is a system of packet caches operating on network links. A single
cache consists of two processing elements that are installed at the link end-points.
The element installed at the link entry is called Cache Management Unit (CMU)
and the element installed at the link exit is called Cache Store Unit (CSU). The
CMU keeps a short record of payloads that have been recently transmitted over
the link. Similarly, the CSU keeps a record of recently received payloads and
maintains the consistency of these records4. The CMU inspects packet payloads
immediately before transmission. If the CMU finds the packet payload in the
record of the recently transmitted packets, it substitutes the payload with a short
unique identifier. Thus, only the packet header with the identifier is transmitted
over the link. Upon receiving the packet on the link exit, the CSU uses the
identifier to find the payload in the local record and to reconstruct the packet.
The reconstructed packet is processed further in the standard way on the router.

The operation of link caches is transparent to the traffic above the link layer,
i.e., the standard IP network and an IP network with link caches provide the
same functionality. The IP network with link caches can transport much more
efficiently the same data from a single source to multiple destinations. This is
achieved by suppressing redundant payload transmissions over the network links.
Since the link caches are transparent to the IP layer and above, network hosts
can communicate using the standard IP based transport protocols such as UDP,
TCP, or DCCP.

Link caches are designed to operate in the Internet infrastructure which is
based on fast links transporting large amounts of data. To achieve high efficiency
at low implementation costs, the link caches process only packets that are part
of single source multiple destination data transfers. This type of transfer creates
at the link layer a burst of IP packets that have different headers, but carry
the same payload which can be processed very efficiently by link caches. When
traversing a link with a link cache the burst of packets resembles a packet train
where the first packet in the train carries payload while the remaining packets
are truncated by the CMU to the header size. In order to guarantee the minimum
time span of the packet burst and consequently to minimise link cache resource
requirements, CacheCast introduces a new system call msend to the OS. The
application uses the system call to send data to multiple destinations. The msend
API resembles the standard POSIX send system call with the difference that
msend takes a set of file descriptors as the input instead of only one file descriptor
taken by the send system call. The msend system call operates only on the file
descriptors, which are referring to network connections.

4 The records can be temporally inconsistent due to link transmission errors. For
further information please refer to [9].



The choice of transport protocol invoked by msend is important, because
for CacheCast we require that message boundaries are preserved when passing
messages through the protocol layers. Furthermore, one of the approaches we
investigate is based on the idea to not send blocks from a file in their given
order, but instead adjust this order to the needs of clients. As such TCP cannot
be used and we prefer DCCP over UDP since DCCP includes rate control.

3 CacheCast Server Architecture

A file server has to perform two basic tasks: File Selection and File Transmis-
sion. The file selection is initiated by a client, which selects one file from the
server repository using a command set provided by the file transport protocol
(FTP). The File Transmission is the underlying functionality which transfers
the file from the server to the client. We assume that the CacheCast file server
implements the File Selection functionality of the standard FTP server. Thus,
the FTP server and the CacheCast file server differ only in how the File Trans-
mission is handled. In the standard FTP, the client selects the file to download
and tells the server to initiate the file transmission. The server starts forward-
ing the contents of the file to the client over a TCP connection. The default
transfer mode in FTP is Stream mode [7]. When it is enabled FTP sends the
data as a sequential stream. TCP ensures that the file is transferred correctly by
dividing the data into segments, assigning sequence numbers to these segments,
and issuing retransmissions when segments are lost in the network. By using the
sequence numbers, TCP assures that all received segments are correctly ordered.
TCP also adjusts the transmission rate to the client’s available bandwidth.

The CacheCast server is designed to distribute efficiently popular files. There-
fore, before we discuss how it solves the problem of reliable file transfer and
transmission rate control, first we present how it achieves high efficiency when
delivering the same file to multiple clients.

3.1 Synchronous Transmission

An FTP server is a multi user system, i.e. it has support for multiple clients
downloading files concurrently. A client can connect to the server at any time
and request any file. FTP is designed for single source, single destination transfer.
Thus, for each client connected to the server there is one TCP connection. Each
client is served separately on each unicast connection. When multiple clients are
downloading the same file at approximately the same time, there are overlapping
time periods between the download procedures. During these periods the same
file is transferred to multiple clients at the same time. When the request rate to
a file server is high as in the event of a flash crowd many clients connect to the
server within a small time interval, creating multiple overlapping download time
periods as shown in Figure 1. Within these time periods clients are downloading
the same file concurrently; however, they are receiving different parts of the file,
since TCP transmits data sequentially.



Fig. 1. Multiple clients with different arrival times downloading the same file

In order to optimize the file transmission within the overlapping time periods
using CacheCast, it is necessary that individual file blocks are transmitted syn-
chronously to all clients. However, synchronous transmission of blocks to many
clients is difficult to achieve due to different arrival times of clients and even if
sufficiently enough clients arrive close enough to each other in time they typically
will drift apart from each other. The reason is that the available bandwidth on
the paths to the clients can differ substantially.

The core idea of our approach is based on the insight that clients use the
content first after it has been entirely received. The order in which the blocks
of the file are sent and whether the blocks are encoded before transmission or
not, is not of relevance for the client. The only important aspect for the client
is that the entire file is recreated before it is passed to the client. Therefore, the
server can send those blocks that are needed by several concurrent clients to
achieve synchronous transmission. In particular, we have investigated two block
selection schemes to achieve synchronous transmission, namely, block-by-block
transmission and fountain code transmission. In addition to the block selection,
rate control and end-to-end reliability has to be supported.

3.2 Rate Control

The rate control works identically for both block selection approaches. For a
group of clients downloading the same file, the rate control aligns the trans-
mission rate to the fastest client in the group. Hence, this client can take full
advantage of its downlink speed which is not limited by slower clients. Since
slower clients are not able to receive all blocks at the selected rate, the conges-
tion control algorithm in DCCP will drop some packets to these clients at the
sender side (i.e., it will not be passed to the network layer). With this approach
all clients download the file with their individual maximum available speed.

In order to determine the fastest client in the group, the rate control uses
status information returned by DCCP after block transmission attempt. The
status tells whether the packet has been dropped or sent. By keeping a record
of the last N transmission attempts for each client it is easy to identify the
fastest client, which is the client with most packets sent. The parameter N
can be used to control how fast rate control should adapt to changes. For the
results presented in this paper we use N = 100. We use the Additive Increase



Multiplicative Decrease algorithm to (1) adapt the sending rate to the available
bandwidth to the fastest client, and (2) achieve fair share for multiple flows over
contented links.

r =

{
r + I if last packet was set
r/D if last packet was dropped

(1)

The transmission rate r is increased with factor I > 0 or decreased by factor
D (0 < D < 1). We start with an initial transmission rate of r = 64 kb/s. The
transmission of subsequent blocks is scheduled to match the current rate r.

3.3 Block Selection and Reliability

The block-by-block transmission approach requires from the server to keep track
of the blocks each client is missing at any point in time. Thus, the initial state
for all blocks for a newly arrived client is MISSING. This information is used to
decide to which clients each block should be sent. There are several policies to
determine which block should be sent, including most wanted block and round
robin. Due to its simplicity we have chosen to implement round robin in our
current prototype. With this policy the block selection algorithm selects the
blocks from a file in sequential order from the beginning to the end of the file
and starts again at the beginning as long as there are clients downloading the
file. The selected block is only sent to those clients that are missing it, i.e., the
blocks state is MISSING. To achieve reliability retransmission is used. When
sending a packet to a group of clients, the server starts a transmission timer
for this packet and sets for each client the status of the bock to SENT. The
client sends for each received packet an acknowledgement including the sequence
number of the packet. If the server receives the acknowledgement before the
timer expires it sets the status of the block to RECEIVED and otherwise to
MISSING. Retransmission of missing blocks will then naturally happen in the
next round when the block is selected again. Negative acknowledgments cannot
be used, because the client cannot know which packets have been lost in the
network and which ones are dropped by DCCP. One artifact of all block-by-
block transmissions is that the last remaining clients can miss disjoint sets of
blocks. Thus, it is no longer possible to achieve synchronous transmission.

Block selection and reliability is substantially simpler with the fountain codes
[5]. With fountain codes files are encoded in such a way that any block can be
used to reconstruct the original file. As such, this scheme provides Forward Er-
ror Correction. Thus, adding reliability to DCCP comes for free and all blocks
are useful for all clients. No book keeping of packet states, timers, and acknowl-
edgements are needed, a client just receives encoded packets until it is able to
reconstruct the entire file. The overall architecture of our prototype with the two
approaches is illustrated in Figure 2. The feedback from each DCCP instance is
used to determine the sending rate and to call at the proper point in time the
msend() system call with a pointer to the selected block and the file descriptors
for those clients that should receive the block.



Fig. 2. Architecture of prototype implementation

4 Evaluation

We have implemented the above described architecture of the CacheCast file
server in ns-3 and performed extensive simulation studies to evaluate it. Since
this work aims at the scalability of file servers we focus our study on the outgoing
link from the file server, later on called server uplink. The performance advan-
tages of batching several client requests and sending them from a server in form
of a packet train are documented in our earlier work through simulation and real
world implementation. Furthermore, we have shown in [9] that CacheCast can
achieve network-wide close to IP multicast performance and that it can be with
great benefits incrementally deployed in the Internet.

Considering the fact that in modern networks congestion occurs at the net-
work edges, i.e., on links attached to the server and the clients, we model those
links and ignore the intermediate links. This leads us to a simple topology in
which a file server is connected to a router, which in turn has n links to n clients.
The bandwidth between the router and the clients is based on measurement re-
sults from [4] and ranges between 64 kb/s and 5000 kb/s. It is distributed in this
range in six groups as described in Table 1.

To study the scalability of the CacheCast file server, we set the bandwidth of
the link between file server and the router to 10 Mb/s such that congestion oc-
curs. The end-to-end propagation delay between the file server and the clients is
uniformly distributed between 30 ms and 50 ms, which correspond to a medium
sized ISP network. The workload in the experiments consists of a file with the
size of 18 MB that is downloaded by clients arriving at the server at a rate
of eight clients per second (these numbers are based on download statistics of
the VLC media player). We use a constant arrival rate to simplify the analysis
of the results. The insights gained with these settings are also valid for more
advanced arrival rate distributions, such as Poisson and Zipf distribution. The



client number is set to 100 in all experiments besides when measuring system
fairness where the client number is specified separately. All experiments are per-
formed multiple times with different seeds to the random generator. We present
the average over these runs and when appropriate the standard deviation.

In the following sections, we describe experiments and results of the rate
control mechanism, download time, bandwidth consumption, fairness, effect of
small file size, and effect of bandwidth overprovisioning on the first link.

4.1 Rate Control

The goal of the CacheCast server is to provide to all clients the shortest possible
download time. Therefore, we evaluate how well the rate controller is able to
adapt the transmission rate to the available bandwidth to the fastest client.

Fig. 3. Transmission rate and currently fastest client

Figure 3 relates the transmission rate determined by the rate controller with
the actual download speed of the fastest client over time, i.e., the ground truth.
The transmission rate is, as expected, reduced over time since the fastest clients
finish first and the slowest last. Furthermore, the transmission rate aligns very
well with the currently fastest client. This is further supported through the data
in Table 1 in the row labelled “Last client finish time” which presents the time
at which the last client in each downlink speed group finishes.

Looking at the length of the time interval for the different transmission speeds
we can distinguish three phases. The first one is defined by the time it takes until
the last client with 5 Mb/s downlink speed finishes. In the second phase, the
client groups with 3 Mb/s and 1.5 Mb/s downlink speed finish very briefly after
the 5 Mb/s group. This can be attributed to the fact that those clients could
substantially benefit from the data send during the first phase. In the third



Downlink speed [kb/s] 64 256 768 1500 3000 5000

Client share 2.8% 4.3% 14.3% 23.3% 18% 37.5%

Last client finish time [s] 2339.4 622.7 269.3 198.6 161.9 157.8

Single TCP download time [s] 2491 623.5 208.7 106.7 53.7 32.6
Table 1. Client downlink speed distribution and download performances

phase, the slower clients require more and more time to download the entire file
and as such the transmission rate is reduced in increasing larger steps.

4.2 Download Time

We use the same settings as in the previous experiment and compare the distri-
bution of download time for all clients served with (1) a traditional FTP server,
(2) CacheCast server with original block transmission, and (3) CacheCast server
with a fountain encoded file. To achieve comparability, we related the measured
download times to the time it would take a single client to download the file
with a TCP connection when accessing all server resources exclusively, i.e., no
other clients are present. The download times for this exclusive download (called
“single TCP connection”) are given in Table 1 in the row labelled “Single TCP
download time”.

Fig. 4. Download times for FTP server and CacheCast file servers

Figure 4 shows the CDF of the download times for clients grouped by down-
link speed. The relative download time increases for all servers with the downlink
speed, because fast clients are more affected by congestion than slow clients. Both
CacheCast implementations clearly outperform the FTP server due to the re-
duction of redundant transfers over the first link. There is also a clear difference



in performance for the faster clients in the two CacheCast implementations, i.e.,
transmitting encoded blocks leads to much shorter download times.

In the following studies, we focus only on the comparison of the fountain
code based CacheCast server and FTP server.

4.3 Bandwidth Consumption

One important metric for the content provider is the bandwidth consumption,
especially for the server uplink. The less bandwidth is consumed per client, the
more scalable the server is and less costs incur. Figure 5 illustrates the bandwidth
consumption on the server uplink over time for the CacheCast and FTP servers.
Both consume in the beginning of the experiment the entire bandwidth.

This seems to be contradicting to the results of the rate adaptation eval-
uation in Section 4.1, which show that the maximum transmission rate in the
beginning is very close to 5 Mb/s. However, the transmission rate shows only
application layer throughput to a single client while the uplink bandwidth con-
sumption shows the resulting network traffic that carries also packet headers to
all receivers. The period in which the bandwidth of the link is fully consumed
is substantially shorter for the CacheCast server, since the total amount of data
sent over the link is much smaller due to the redundancy reduction.

Fig. 5. Bandwidth consumption on the first link

4.4 Fairness

The previous experiments focused on transmission of a single file to multiple
clients. In this experiment, we analyse how the CacheCast server distributes the
uplink bandwidth capacity between two groups of clients that download different



files. The CacheCast server uses DCCP, which ensures fair bandwidth sharing
among concurrent data streams in the network. Since the rate controller is build
on the feedback from DCCP, the core issue investigated in this experiment is
the question whether it preserves the fairness achieved by DCCP.

To simplify the presentation and analysis of results, we study in this section
two groups of clients that download each one file. We study how the number of
clients impact fairness in experiments with 10 and 200 clients, and with different
group sizes. For the 10 clients the two groups comprise of 5/5, 6/4, 7/3, 8/2,
and 9/1 members; and for 200 clients the groups comprise of 100/100, 80/120,
60/140, 40/160, and 20/180 members. The download speed of all clients is set to
10 Mb/s to (1) enable each individual group to consume the entire bandwidth on
the first link, and (2) to easily compare the bandwidth share. We measure the
end-to-end throughput for each client of the groups and show the aggregated
throughput per group. The measurements are performed when no clients are
arriving or leaving the CacheCast server.

Fig. 6. Bandwidth share on first link and end-to-end throughput

The average bandwidth share on the server uplink and the average client
throughput group is shown for the two client populations in Figure 6. A small
client population leads to increasing unfairness in the uplink utilization and end-
to-end throughput as the group sizes differ more. However, the results from the
experiment with 200 clients show that with larger groups the system achieves
more even resource utilization per client. The nature of CacheCast that the ratio
between the number of packets sent and the number of bytes sent is unequal leads
to the small diversion from the perfect fair share.



4.5 Effect of Small Files

The performance gains with CacheCast are achieved by removing redundant
payload in packets that are sent during a short time window. Either block re-
ordering or fountain codes is used to send to all concurrent clients the same
data block. The more clients concurrently download the same file the higher the
performance gains through redundancy removal. This number of clients depends
on the arrival rate and the time they spend to download the file. Given an arbi-
trary arrival distribution, the less time the clients need for the download the less
clients download the file at the same time. The download time is determined by
the file size and the available bandwidth between client and server.

Fig. 7. Download time and bandwidth consumption for 500 kB file

To illustrate this effect, we show in Figure 7 an example of the download
time and bandwidth consumption for a small file (500 kB). The decreased file
size results in less overlapping, so there is less redundancy to remove. The per-
formance gain of the CacheCast file server has decreased compared to the 18
MB file. The average packet train length has decreased from 14 to 6.6, thus the
CacheCast file server is not able to benefit as much from CacheCast as in the
original experiment.

4.6 Effects of Bandwidth Overprovisioning

So far all experiments have studied cases in which congestion occurs on the first
link. To study also the effects of overprovisioning of bandwidth on the first link
we set the bandwidth of this link to 300 Mb/s. The results presented in Figure
8 show that the clients of the FTP and CacheCast file server experience similar



download times. This is obvious, since there is no need to remove redundant
network traffic if the network is overprovisioned. However, it shows also that
CacheCast leads to a much lower bandwidth consumption on the first link.

Fig. 8. Download time and bandwidth consumption for 300 Mb/s first link

5 Conclusions

This paper presents an approach to increase the scalability of file servers through
link level caching with CacheCast. The main difference between the original
application domain of CacheCast and file servers is that clients do not all arrive
at the same time. This means that they will in a traditional file server be served
with different data blocks at any given point in time, which in turn does not allow
to create packet trains with the msend() system call. The core idea of our solution
to this is to re-arrange the data blocks such that the individual data blocks
are send with msend() to several clients. We implemented and evaluated one
version based on round-robin distribution and one on fountain encoded files. The
main conclusions from the evaluation are: (1) both approaches can substantially
reduce the download time for clients and the bandwidth consumption of the first
link, (2) the version with fountain encoded files clearly outperforms the round-
robin version, mainly due to problems related to rate control, and it simplifies
management tasks of the server; (3) clients of a CacheCast server get a fair
bandwidth share; and (4) small files and bandwidth overprovisioning reduces
the performance gain of CacheCast over FTP, but still provides benefits in terms
of shorter download times (for small files) and lower bandwidth consumption.
Thus, if there is more than one client downloading the same file, CacheCast



increases the scalability of file servers, both on the server itself through the
msend() call and the first link; and it reduces traffic related costs. The more
concurrent clients the higher the gain without relying on other resources than
the host and CacheCast enabled routers.

This paper presents the first study to use CacheCast for asynchronous file
transfers. The use of fountain codes has been inspired by previous work com-
bining fountain codes with IP multicast [6]. Many early works in this area as-
sume that all clients have the same amount of bandwidth available. Byers et
al. address this unrealistic assumption through layered multicast with several
multicast groups [2]. The clients are responsible to subscribe to an appropriate
subset of these layers. However, the leave latency of the Internet group manage-
ment protocol makes it very hard to efficiently adapt to changing bandwidth.
The strategy of dynamic layering is introduced in [1] to avoid this bottleneck.
However, this results in unfair bandwidth sharing with TCP, especially when
the drop tail queue size increases. Gill et al. [3] introduce a client work ahead
policy to determine how reception bandwidth is allocated among the layers to
protect again short-term bandwidth fluctuations. The major difference between
our approach and previous works is the strength of CacheCast to achieve near
IP multicast performance and maintain at the same time the end-to-end relation
between client and server. In this way DCCP can adjust quickly transmission
rate for each individual client to achieve full TCP friendliness.

References

1. Byers, J., Horn, G., Luby, M., Mitzenmacher, M., Shaver, W.: Flid-dl: congestion
control for layered multicast. Selected Areas in Communications, IEEE Journal on
20(8), 1558–1570 (Oct 2002)

2. Byers, J., Luby, M., Mitzenmacher, M.: A digital fountain approach to asynchronous
reliable multicast. Selected Areas in Communications, IEEE Journal on 20(8), 1528–
1540 (Oct 2002)

3. Gill, P., Shi, L., Mahanti, A., Li, Z., Eager, D.L.: Scalable on-demand media stream-
ing for heterogeneous clients. ACM Trans. Multimedia Comput. Commun. Appl.
5(1), 8:1–8:24 (Oct 2008), http://doi.acm.org/10.1145/1404880.1404888

4. Huang, C., Li, J., Ross, K.W.: Can internet video-on-demand be profitable? SIG-
COMM Comput. Commun. Rev. 37(4), 133–144 (Aug 2007)

5. MacKay, D.: Fountain codes. Communications, IEE Proceedings- 152(6), 1062–1068
(Dec 2005)

6. Mitzenmacher, M.: Digital fountains: a survey and look forward. In: Information
Theory Workshop, 2004. IEEE. pp. 271–276 (Oct 2004)

7. Postel, J., Reynolds, J.: File Transfer Protocol. RFC 959 (Standard) (Oct 1985),
http://www.ietf.org/rfc/rfc959.txt, updated by RFCs 2228, 2640, 2773, 3659, 5797

8. Srebrny, P., Plagemann, T., Goebel, V., Mauthe, A.: CacheCast: Eliminating Redun-
dant Link Traffic for Single Source Multiple Destination Transfer. In: Proceedings
of the 2010 30th IEEE International Conference on Distributed Computing Systems
(ICDCS). IEEE Computer Society (June 2010)

9. Srebrny, P., Plagemann, T., Goebel, V., Mauthe, A.: No more déjà vu - elimi-
nating redundancy with cachecast: Feasibility and performance gains. Networking,
IEEE/ACM Transactions on 21(6), 1736–1749 (Dec 2013)


