N
N

N

HAL

open science

An Openflow-Based Approach to Failure Detection and
Protection for a Multicasting Tree

Vignesh Renganathan Raja, Abhishek Pandey, Chung-Horng Lung

» To cite this version:

Vignesh Renganathan Raja, Abhishek Pandey, Chung-Horng Lung.
proach to Failure Detection and Protection for a Multicasting Tree.
ence on Wired/Wireless Internet Communication (WWIC), May 2015, Malaga, Spain. pp.211-224,
10.1007/978-3-319-22572-2_ 15 . hal-01728813

HAL Id: hal-01728813
https://inria.hal.science/hal-01728813
Submitted on 12 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Openflow-Based Ap-
13th International Confer-

https://inria.hal.science/hal-01728813
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An Openflow-based Approach to Failure Detection and
Protection for a Multicasting Tree

Vignesh Renganathan Raja, Abhishek Pandey, ChumggHaing

Department of Systems and Computer Engineering
Carleton University, Ottawa, Ontario, Canada
{vigneshrenganathanra, abhishekpandey}@cmail.carlet, chlung@sce.carleton.ca

Abstract — Software Defined Networking (SDN) has receivedsiderable at-
tention for both experimental and real networkse Fnogrammability of the
centralized control plane utilizes the global viefathe network to provide bet-
ter solutions for complex problems in SDN. Thisulesin an increase in ro-
bustness and reliability of network functions rurgnin SDN. This paper is mo-
tivated by recent advancement in SDN and increapiogularity of multi-
casting applications by proposing a technique toeiase the resiliency of mul-
ticasting in SDN. Multicasting is a group communica technology, which us-
es the network infrastructure efficiently by sergdthe data only once from one
or multiple sources to a group of receivers. Makiting applications, e.g., live
video streaming and video conferencing, are popatar delay sensitive appli-
cations in the Internet. Failures in the ongoingltitast session can cause
packet losses and delay and hence affect qualggmice (QoS). In this paper,
we present a technique to protect a multicastieg tonstructed by Openflow
switches in SDN. The proposed algorithm can ddiektor node failures from
the multicasting tree and then determines which giathe multicasting tree re-
quires changes in the flow table to recover fromftiilure. We also implement
a prototype of the algorithm in the POX controbied measure its performance
by emulating failures in different tree topologievlininet.

Keywords: Software Defined Networks, Openflow, Multicastifigee Protec-
tion, POX controller, Mininet

1 Introduction

Multicasting is a group communication technologyish uses the network infra-
structure efficiently by transferring the same datdy once from a sender to a group
of receivers [5]. The routers involved in the nedsting session are capable of form-
ing multicasting trees dynamically according to thembers joining and leaving the
multicasting group [11]. In the most common mubksitag tree, the sender or source is
always connected to the root of the tree and theivers are connected to the leaf
nodes of the tree. The structure of the tree mangd dynamically when receivers
join or leave the multicasting session [11]. Mudsting applications like real time
video conferencing and live video streaming ardimgtmore popular and the perfor-

mance of such applications relies critically on thsiliency of the multicasting tree
architecture [13]. One key concern of real timetioast traffic is the delay and pack-
et losses due to failures. To decrease the delaytatailures, it is central to protect
the traffic involved from the link and node failsteThere are various mechanisms
proposed to protect multicasting sessions fromfiilkires in the traditional networks
[1-5]. In those methods, the failure notificaticen® sent via other nodes involved in
the session to initiate the protection processprhctice, routing protocols and mes-
sage flooding mechanism are used for topology symihation. During the conver-
gence period, packet losses and higher delay aviale and can be significant.

SDN separates the forwarding plane and the coptesle from the physical net-
working element and runs the control plane in dclalty centralized location [12].
This separation and centralization of control plainees SDN controller the global
view of the network, which can be efficiently utéid to monitor and control the net-
work due to dynamic changes in the network. Thethiction of the Openflow pro-
tocol enables the interaction between the contratel the forwarding elements or
switches [10]. Using Openflow, the controller carstall the flow entries to the
switches according to the control applications mgrin the controller. Upon a fail-
ure, notifications can be sent by a switch thaedstthe failure directly to the SDN
controller instead of flooding in the network totifpeach node or as many nodes as
possible. This means that the network can be adicalis configured according to
the way the control plane has been programmed,hat@iduces tremendous network
complexity used in the traditional networks. Spieaify, in a multicasting scenario,
when a failure happens, the failure notificationseage can be sent to the controller
rapidly and the multicast recovery process cartdmtesi immediately.

Further, in traditional networks, it is difficulof a network element to efficiently
distinguish between a link and a node failure usirggrouting protocols [15]. To find
out a node failure, routers have to identify ifladks of a particular node are down, in
which case the node is considered failed, which ne8ult in high delay and packet
losses and low QoS. With the combination of progratle control plane and the
global view of the network topology in SDN, we adatect, protect, and restaei¢her
link or node failures in the network efficiently. In the traditional medirks,

This paper is motivated to analyze how fast therobplane can react to protect a
multicasting tree from either link or node failui@sSDN. Analyzing and understand-
ing failure restoration for real time multicastirgcrucial, as multicasting becomes
popular in practice. Hence, the main objectivehi$ paper is to design the control
plane architecture which responds by installingaied flow tables to the correspond-
ing switches for link or node failures in a mulstiag tree. The main contribution of
this paper is to present a multicast failure prid@cand restoration scheme which
distinguishes &ink and a node failure in the multicasting session tree constructed by
Openflow switches. The proposed scheme also responithe failure by installing or
modifying flow entries to the Openflow switches fiast recovery. To demonstrate
the proposed scheme, we design a prototype in a E@woller and we measure
failure detection and controller response time impkating SDN using Mininet [9].

The rest of this paper is organized as follows.tiBecll describes the related
works. Section Il describes the controller desagid the proposed algorithm for mul-

ticasting tree protection and restoration. Sectdrdemonstrates the evaluation re-
sults for the failure localization and protectidgaithm proposed in this paper. Fi-
nally, Section V presents the conclusions and &uuork.

2 Related Work

In the literature, multicasting tree protection amedtoration schemes have been
advocated for the optical layer or the network tajfdis paper focuses on the network
layer. This section describes the key componend irse¢he current POX controller,
which plays a significant role in failure detecti¢tollowing that, an existing approach
for multicast protection using fast tree switchingsDN is briefly described.

In IP networks, multicast protection can be supbiby proactive and reactive
methods [2]. In general, the reactive methods ansidered to be inefficient due to the
increase in recovery time. The reason is that #ekdp paths or trees will be cal-
culated only after the event of failure. In the gmive method, the backup paths or
trees are preconfigured before the failure happ&rfew approaches of proactive tree
protection for multicasting sessions are discussdd-3]. In Dual tree algorithm [1],
the protection is performed by switching over thére primary tree to a preconfigured
backup tree whenever a link failure happens. Timgd the protection algorithm for a
single link failure in the multicasting tree. Tocacnmodate protection for a link or a
node failure, a dual forest algorithm is proposeBi. The node protection scheme is
performed by pre-configuring backup paths covedagh link involved in the primary
tree. This approach is efficient only when the mkatopology is capable of providing
alternate paths from each node to the leaf of thiéicasting tree.

To tackle the problem of switching the whole mutittree in case of multiple link
failures and to make the protection scheme proactéy subtree based protection
scheme for multicast session using MPLS was predeint [5]. According to this
approach, when a multicasting tree is built from slource to destinations, it has been
divided into several subtrees. A subtree is a gubfdahe tree that represents a
complete tree by itself [5]. There are advantagésguthe subtree based approach:

« It minimizes the failure detection time by avoidithge notification to be sent all

the way to the root of the tree.

« It makes the protection scheme efficient by provgdbackup paths from root of

each subtree to its leaf nodes.

* When a failure happens, the changes are mademtitg ttorresponding subtree

instead of the entire tree.

In summary, the failure detection and restorationet are critical, and the
protection scheme must support protection for hbthlink and node failure for a
single multicast session tree. However, the allgoriproposed in [5] does not address
protection of multicasting session from a nodeufail

2.1 SDN Topology Discovery

A topology discovery mechanism is used in the Olpgnfcontroller to make
switches aware of their neighboring nodes. It isnigaused to detect link or node

failures in our approach. Th&opology Discovery module included in the POX
controller [6] is used for the discovery of anywetk topologies under its control. The
Topology Discovery module uses the Link Layer Discovery Protocol (IR)J7] to
detect the connections between the Openflow swstchiee controller which executes
the discovery module triggers the Openflow switcttesend LLDP packets between
each other. When a switch receives the LLDP paftket its neighbor, it sends an
LLDP packet encapsulated in a Packet-In messagbetaontroller. The Packet-In
message has both the datapath id (DPID) and thenponber of the sending and
receiving switches. The controller then stores thfsrmation in the form of links.
This stored information will act as a link betwaam Openflow switches. In this way,
the controller learns the topology of the entirenmek under its domain. In the current
POX design, the LLDP sending operation is triggesie@ particular interval of time
which is known as thsend cycletime and is defined as follows:

send cycle time = link timeout / 2. (1)

By default thdink timeout is set to 10. Based on the current POX contrdisign,
when a failure happens, tA@pology Discovery module in the controller will not be
triggered until thesend cycle time interval expires. In other words, failure deteatimy
the controller may be delayed by an ergaed cycle time in the worst case scenario.

send cycle tim——————+

tQ tfl t1

o ' N

LDetection Dela—

Fig. 1. Detection delay in existing Topology Discovery

As shown in Fig. 1, assume thand cycle time is the difference between t1 and tO0.
If the failure happens at time tf1, then the swélthat detect the failure have to wait
until t1 to send the notification to the contrall@his may affect the failure detection
time by several seconds, which will have a sigaific negative impact on packet
losses, delay, and QoS. The exact value of the/ delides as the tfl can be anywhere
between theend cycle time. As a result, the failure detection can be muolwvst than
the requirement, e.g., 50 ms, used for the exist@mger grade networks.

2.2 Existing failure protection mechanisms in SDN

In [4], multicast protection is performed by faste switching. The redundant tree
is calculated as soon as the primary tree is aledland flows for both primary and
redundant tree are installed in the switches. Tadagtuplication of the flow tables for
the same destination, they are differentiated liygusnique ids. If a failure happens in
a link in the primary tree, the whole tree will saitched to the pre- calculated
redundant tree. This limits the approach from sujip more than one link failure. In
addition, a complete diverse redundant tree maywaitable for some topologies.

3 Multicasting tree protection and restoration for Sdtware
Defined Networks

This section discusses the proposed multicastieg fprotection and restoration
scheme. Fig. 2 shows the high level view of SDNwv@penflow POX controller for
multicasting tree protection and restoration ardRXTopology Discovery modules.
The existingTopology Discovery module in POX detects the failure and sends the
information to the propose#ailure Localization and Protection module, and the
Failure Localization and Protection module sends the flow tables to the Openflow
switches according to the scheme.

Openflow POX controller
Failure

Localization and
Protection Module

Topology
Discovery Module

Openflow Switches Involved in a
Multicasting Session

Fig. 2. Proposed Openflow Controller architecture for fadldetection and protection

3.1 Assumptions

A few assumptions have been made for our propsdeeime:

e The network has a single Openflow controller. Thason is to validate the
behavior and the performance of the protection r@stbration algorithm. A
single SDN controller is also common to many appiea in the literature.

e The failure detection time is from the time that thopology Discovery
module receives the notification. This is due te kimitations existing in the
current POXTopology Discovery module as explained in Section 2.

* A backup path is available in a subtree from tlo# to the leaf nodes.

e The nodes of all the tree diagrams shown in thiepare Openflow switches
and they are all directly connected to the corgrolDn this understanding we
have avoided representing the connection betweensthitches and the
controller in the figures.

3.2 Multicasting Tree Protection and Restoration Method for Openflow
Controller

This section describes the four major operationthefmulticasting tree protection
and restoration algorithm for the Openflow congnllThey are listed below:

e Subtree division

* Failure detection

e Failure localization

e Controller response

Subtree Division

This is the initial stage of the whole algorithm exbd the unstructured tree
information from the emulated topology is sortedd astored in a structured and
organized manner. The need for tree sorting indperation is due to the structure and
the order of information the controller receivesnir the POXTopology Discovery
module. This is performed by using hash tables,ravtkeys and values are used to
identify parents and children nodes of the tree.

When the switches are added to the network, Tihygology Discovery module
creates link information between the switches atiogrto the way they are connected
with each other. The link information is createddzhon the LLDP packets sent by the
Openflow switches to the controller. Each switcindse this information to the
controller using the Packet-In messages. The cisrtron receiving the Packet-In
message from the switches creates a table witlirtkénformation between the two
switches. The link information sent is as showrobel

Link [“DPID1","port1","DPID2","port2”]

The DPID1 and DPID2 are the data path ids of thiéches which share the link
and port 1 is the port for DPID1 and port 2 is that for switch DPID 2. This
information is again generated by the controlleaireversed manner when the switch
with DPID 2 sends the Packet-In message to thedtert These data are stored in a
two dimensional hash table with switch DPIDs askégs and the links as its values.
So the first step of the tree sorting process delete the duplicated link information
for a single link between two switches [8]. As aul of this step, we form a two
dimensional hash table which has single link infation for each pair of switches.

The next step is to reform the sorted link inforimatto parent and children
relationship. This step begins with the isolatidrtte sorted tree from th€opology
Discovery module. The isolation is necessary to sustairtréee information for later
stages when the link failure happens. After the tsa@solated, iteration through the tree
is initiated. By iterating through the tree, theqrds and children nodes are separated.
The parent nodes are saved in a list and the ehildodes are saved in a hash table
with its parent DPID as its key. The parent anddcéin information is then passed to
the subtree division module.

Pseudo Code: Subtree Division
Objective: To divide the existing multicasting tree into selets
Components:

Parent_nodes: A list of DPIDs of all the parent nodes in the trébe first element

in this list is the root of the whole multicastitrge.

Chlid_nodes: A hash table which has parent DPID as the keyG@hmitiren DPID

as its value.

Subtree: A hash table which has the subtree root DPID ask#édyeand DPID of

members of the subtree as its value.

Subtree key: A list of root nodes of divided subtrees.

Subtree search(): A recursive function which starts searching frora thot of the

tree and divides into subtrees. Firstly it is inedkvith the root node and later it
is recursively invoked with the current node aralrihot of the current subtree.

Root_node: Root node of the whole tree. The first elemerthefParent_nodes list.
Cur_node: Current node being iterated.
Input : Parent_nodes, Children_nodes.
Output: Subtree, Subtree key
Algorithm :
Root_node = Parent_nodes|[0]
Subtree_search (Root_node, Root_node)
Subtree_search(Cur_node,root):
While (Child of Cur_node is not None)
If (Child_nodes of Cur_node is > 1)
Subtree [Cur_node].add(Child_nodes uf Gode)
Subtree_search(Child_nodes of Cur_nGde, hode)
Else
Subtree [root].add (Child of Cur_node)
Subtree_search (Child of Cur_node, root)

The subtree algorithm starts searching the trem fts root. It stores the divided
subtree in a hash table where the root of the selats the key and its members are the
values. The root of a subtree is defined when a&r@$ more than one children. The
members of a subtree are added to the subtreaghamskarch algorithm reaches a node
which has more than one child. It then saves alrtiots of the subtree in a list. This is
to make the search process efficient when theféitlere happens. The operation of the
subtree algorithm is described in the pseudo coelgtioned earlier.

Failure Detection

The dynamic changes in SDN are monitored by thérgbapplications running in
the controller. Link and node failures are among tost important changes in the
network that have to be dealt with efficiently. Tdlebal view of the controller makes
the failure detection more efficient, as switchesndt have to flood the network with
messages for topology synchronization. The convexg@eriod could be long using
the flooding mechanism, which results in packeséssand long delay. Our approach is
for concept demonstration and we make use of agidtinctionalities in POX. Failure
detection is conducted using the POdpology Discovery module [7].

The Topology Discovery module raises hinkEvent whenever there is a change in
the status of the links associated with the Opanflwitches. The links here are Layer
2 Ethernet ports of the Openflow switches. Whenekhierswitch does not send the
LLDP packet associated with the port connectedgdmeighbor, the controller will
consider that the link is timed out and will fiteet_inkEvent for link removal.

Failure Localization.

The failure localization begins after the failuse detected. It is the process of
identifying where exactly the failure happened ardt kind of protection should be
provided for the failure. Our proposed tree loalan and protection module listens to
the Topology Discovery module by registering itself to the core of theXP€ntroller.
The localization module handles thénkEvent by capturing the events from the
Topology Discovery module. The link failure is captured by using t@wvent.removed

part of theLinkEvent. This is triggered when the link is timed out. Bgpturing the
event.removed, the controller gets the link information of theitehes which share the
link. The link information contains the DPID ancethort number of the two switches
which share the link. Using the DPIDs from the linKormation received, the
algorithm searches the failed switches in the édidubtree to find which subtree the
failure belongs to. The reason to do this is tanfifie the subtree for the changes. This
search process avoids unnecessary changes to lecorthe whole tree upon a failure.

The subtree search algorithm considers three dosrarexactly find the location
of the failure in a subtree. The three scenariesaplained below.

1. When either one of the DPIDs is the root of a sétr

2. When both of the DPIDs are a root of a subtree.

3. When both of the DPIDs are the children of a sebtre

These three scenarios are important to decide vdretevhat kind of protection to
be given for a failure event.

Scenario 1: Either one of the DPIDs is the root of a subtree

Consider the tree shown in Fig. 4. It has 3 subteseshown. If a failure happens
between S3 and S5, the controller receives the fliillire between them and will
extract the DPIDs of the two switches. With therasted DPIDs, the localization
module searches if either one of the DPDIs is & ribot list of the subtree. In this
case S3 is the root and S5 is not. Then it cheddke inode which is not the root of a
subtree is a member of the other node, which igdbe of a subtree. So it checks if
S5 belongs to S3. If it is, the localization modidewvards the information to the pro-
tection module with root node S3 as its startinoipdf the failure is between S2 and
S4, the localization module checks if S2 belongsulotree S4. But it does not, so the
localization module sends the root of the subtrbéeres S2 belongs (in this case it is
S1) to the protection module.

Scenario 2: Both of the nodes are a root of a subtree

In Fig. 3, if the failure happens between S1 and\8Ben the localization module
is satisfied that both of them are a root of a méhtthe localization module searches
which node belongs to whose subtree. Thus, it bearevhether S1 belongs to S3
subtree or S3 belongs to S1 subtree. Here, S3¢etonS1 and hence the localization
module initiates the protection module with S1hasgtarting point.

Subtree 1 /”/g“l N,
Subtree 3
s =
Alsa) S5 S6
(87 S8 i

——————— 7

Subtree 2

Fig. 3. A sub-divided tree of Openflow switches

Scenario 3: Both of the nodes are a child of the same subtree
If the localization module is not satisfied witletabove two scenarios, it considers
that the DPIDs of the switches are just membes @ifbtree. The localization module
just checks what subtree does one of the nodesidpétoand initiates the protection
module with the root of the subtree where the failhappened as the starting point
for the protection module. In Fig. 3, if the fakuhappens between S6 and S9, the
search process will result in sending S3, the ofdhe subtree, as the starting point
for the protection module.
Pseudo-Code: Failure Localization
Objective: To identify at which part of the subtree the faéluras happened and to
initialize the protection process according toghétches involved in the failure.
Components:
Failed switches: A list of DPIDs of the switches involved in alfaie event.
Failed_links: A list of the links involved in the failure. Ak has DPID and port
number of two switches involved in the failure.
Subtree root: A set of root nodes of the divided subtrees.
Sl and 2: Switches are directly connected to the failed.lin
Input: Failed_link(s)
Output: Invoking Protection function with the exact switashere the flow table has
to be installed.
Algorithm:
For all switches in Failed_switches
If (S1 or S2 is in Subtree_root)
If (S1 is in Subtree_root but not S2)
Execute Failure_protection (S1, S2)
Else if (S2 is in Subtree_root but not S1)
Execute Failure_protection(S2,), S
Else
If (S1 is the Subtree root of S2)
Execute the Failure_proteciia, S1, S2)
Else if (S2 is the Subtree root dj S
Execute the Failure_protec{i6@. S1, S2)

Else
Find the Subtree_root of S1 and S2 aretate Failure_protection (Sub-
tree_root, S1, S2).
All the steps to localize the failure explainedliearequire tree isolation. The rea-

son is that when a failure happens, the link infation gets deleted from tfi@polo-
gy Discovery module and hence will change all the informatiomash tables associ-
ated with it. Without isolation, the entry in thadh tables will also be removed and
the search process cannot identify the locatiath@failure in the subtree.

Failure Protection

Failure Protection is initiated after the failuselocalized. This module performs
two major functions. One is to determine whetherfdilure is a link or a node failure
and the other one is to send flow table modificadito the switches responsible for

protecting the switches from failure. For the ttadial networks, network nodes can-
not efficiently distinguish link or node (neighbdgilures with the routing protocols.
However, with SDN, the controller can distinguisiern as switches can send notifi-
cation directly connected to the controller. Thiéedence is described below:

Determination of Link and Node Failure

Whenever the failure is detected by th@kEvent handler, the ports associated
with each switches involved in the failure is addedfailed_ports. Thefailed_ports
is later used to count whether the number of gmetengs to the switches involved in
the failure is equal to the total number of pont$hat switch, i.e., all ports of a switch
have failed. When the result is true, we initidte hode failure function, if it is not we
consider it as a general link failure.

Node Failure

This function performs two quick searches. Oneoisdentify if the node which
undergone failure is a root node. If the node liea, then the controller initiates the
flow installation function with the root of the Higr level subtree where the failed
node belongs to. If the node is not a root, tharoder initiates the flow installation
function with the root of its own subtree. For exdenin Fig. 3 if the node S4 has a
node failure, then the controller will respond th 8ut if S6 failed, the controller will
still respond to node S3.

Link Failure

Link failure is initiated if the condition for theode failure is false. For link failure,
the controller just initiates the flow installatidonction with respect to the node
DPID it gets from the flow localization module. Fexample, in Fig. 3, when a link
failure happens between S3 and S5, then the LiillirEdunction will make changes
to S3, as it is the root node of the subtree wherdailure happened.

Flow Modification

The flow modification function installs new flows switches based on the DPIDs
it receives. Since we are emulating only the togmlogy in Mininet we install flow
tables to the responsible switch to show that trroller notifies it successfully.

When the flow modification function receives the IDRof the switch where the
new flow has to be installed, the Controller createe Openflow flow modification
message with a unique cookie id. According to Olpenfcookie is an identifier for a
flow table installed in an Openflow switch. Eacbwil table installed in an Openflow
switch will have a unique cookie id and the prdtatimodule sets the DPID of the
switch involved in the failure as the cookie idtloé flow table installed to recover the
failure. This is done to remove the flows when phienary link is up again. Then the
Openflow flow modification messages with the cooldeand action messages are
sent to the corresponding Openflow switches.

Pseudo Code: Failure Protection
Assumption: Backup paths are available from the root of eatitrsa to its leaf nodes

Objective: To determine if it is a link or node failure and rwodify or install flow
tables to the corresponding switches.
Components:
* Node failure(): A method which determines the switch where tlevftable
should be modified in case of node failure. Triggow installation.
e Link failure(): A method which determines the switch to which flbev table
should be modified in case of link failure. Triggdiow installation.
« Failure_protection(): A method which determines if it is a link or no@éure
and triggers the corresponding action for the failu
* Flow_ingtallation(): A method which installs or modifies the flow tabl It
takesroot node as an argument to install flows to recovanftbe failure.
« failed ports: Tracks the number of ports failed in each switch.
« fsl, fs2: DPIDs of the Switches involved in the failure.i§Brgument is passed
by theFailure_Localization module.
- failed root: Root node identified by thigailure localization module to which
flows are to be installed.
e max: Maximum number of ports in a switch
Algorithm :
Failure_protection (failed_root, fs1, fs2):
If (failed_ports of fs1 or fs2 == max)
If (failed_ports of fs1 == max)
Node_failure (failed_root, fs1)
Else
Node_failure (failed_root, fs2)
Else
Link_failure(failed_root)

Node_failure (failed_root, fs):
If (fs not in Subtree [root])
Flow_installation (failed_root)
Else
For (all root in Subtree)
If (failed_root in Subtree [rHot
Flow_installation (root)

Link_failure (failed_root):
Flow_installation (failed_root)

Flow_installation (root):
target = root
message = Openflow_mod()
message.command = Add flow table
connection = Openflow.getconnection(tgrge
connection.send(message)

4 Experimental Results

This section presents the experimental resultsaamadlysis of the proposed multi-
casting failure localization and protection algomit with respect to the failure locali-
zation time and the failure recovery time usingMiainet environment.

4.1 Experiment Setup

The focus of the experiments is failure localizatiand protection algorithms
which are implemented in the Openflow POX contmlkailure detection is realized
using theTopology Discovery module in POX which can be replaced with other
standards. The real instances of Openflow switchpsesenting a multicasting tree
session and the POX controller are emulated in M&in[9]. Mininet is a network
emulation framework, which emulates real instarafé@penVSwitches and an Open-
flow controller. We run Mininet on a virtual machkir(VirtualBox 4.2.16) which is
running on top of the Windows 7 64-bit operatingteyn and Intel i7-3770 CPU with
3.40GHz processing power and has 16 GB of RAM liesta

Fig. 3 shows the network topology, which has 9 GlparV/Switches connected to
the POX controller. Both switches and the controfiee running in the same virtual
machine. The controller is running tfiepology Discovery module, the multicasting
failure localization module and protection modulée performance of the controller
is evaluated by observing the failure localizattone and the failure recovery time
after the failure has been detected. We createrégilby randomly making the link
between two switches down by using Mininet's Comchaime Interface. We failed
each link between each pair of switches and regetie experiment 10 times per
pair. We calculated the average failure localizatione and failure recovery time.
The results of the experiments are discussed aildethe following section.

4.2 Experimental Results

Failure Localization Time

Failure Localization time is the time interval frommich the multicast localization
and protection module gets the link failure infotima from theTopology Discovery
module to the time it finds the exact failure laoat This shows the time taken by the
controller to search through the hash-tables wheresubtrees are stored.

Table 1 shows the average failure localization thmefailure between different
pairs of switches. As depicted in Table I, the agerfailure localization time is small,
mostly less than 4Qis. The results for the failure between nodes Sa#b6S2-S4 is
higher than others because of the Scenario 1 diedusarlier. The reason is that the
search process is performed on both the subtredisb@nd the hash-table to make
sure which node is the root and which is a memibehe root. The failure between
the non-root nodes takes more time when compartidothers due to the increase in
the number of searches to find the location of tlalure in a subtree.

Table 1. Average Failure Localization Time

Failure Average Failure Standard
between nodes Localization Time (us) Deviation
S1-S3 33.6 0.051
S1-S2 40.5 0.042
S3-S6 15.9 0.004
S3-S5 44.2 0.013
S2-S4 65.1 0.048
S6-S9 18.5 0.042
S4-S7 23.8 0.022
S4-S8 26.6 0.024

Failure Recovery Time

Failure Recovery time is the total time taken frefrich the controller receives the
failure notification from thél'opology Discovery module to the time at which the new
flow tables are installed in the Openflow switchEsis also includes the failure local-
ization time. Let T be the Failure Localization time (as discussedhim previous
subsectionand Tc be the time taken by the controller to respondhto failure after
the failure localization. Then the Failure Recovéiye Tyis,

Tr=TL+ Tc (2

Table 2. Average Failure Recovery Time

Failure Average Failure Standard
Between Nodes Recovery Time (ms) Deviation
S1-S3 0.14 0.057
S1-S2 0.20 0.154
S3-S6 0.14 0.058
S3-S5 0.48 0.254
S2-S4 0.44 0.245
S6-S9 0.31 0.230
S4-S7 0.32 0.222
S4-S8 0.15 0.037

Table 2 shows the results for the average failaoevery time for the failures be-
tween different pairs of switches. As explainediegrthe response time for the fail-
ure between S3-S5 and S2-S4 is higher becauseeafdlay in failure localization.
But as a whole the total response time falls bédwmilliseconds. This indicates that
the algorithm is efficient in reacting to failuresa multicasting session in SDN.

5 Conclusions and Future Work

Multicasting becomes more important in practicglagations. This paper present-
ed an approach to multicast tree protection antbnatson for SDN. The proposed
approach was designed based on subtree protecatitmestoration and mainly fo-

cused on protecting and restoring failure at thisvaek level of the ongoing multi-
casting session. The main benefit of the proposkdme is that it is more efficient to
identify subtrees as opposed to build an entiremddnt backup tree as used in other
approaches. A number of experiments have beenrpetb using the Mininet. The
results showed that the restoration time was dghamt the point of failure detection.

Some of the key areas in which this work can berede¢d are described as follows:

The existing standardiopology Discovery module [7] in the POX controller has
several limitations on detecting the failure qujckl'he reason is that the module is
not event triggered; instead it checks the conordiietween the Openflow switches
periodically. We are modifying the existing discovenodule event so that the event
can be triggered in a much shorter time to redaderé detection time. In traditional
networks, Bidirectional Forwarding Detection (BFprptocol [14] has been used for
fast failure detection. One direction is to intagrBFD into POX or SDN Openflow.

The algorithm assumes a central controller. Fardaretworks, multiple distribut-
ed controllers can be deployed. One direction isoleert the algorithm into a distrib-
uted algorithm for multiple controllers.

References
[1] A. Fei, J. Cui, M. Gerla and D. Cavendish, “A “Duake&” Scheme for Fault-Tolerant
Multicast” Proc. of ICC, pp. 690-694, Jun 2001.

[2] Y. Zhou and Y. Zhang, “An Aggregated Multicast Raliblerant Approach based on
Sibling Node Backup in MPLS®Rroc. of ICIECS, pp. 1-4, Dec. 2009.

[3] M.Y. Saidi, B. Cousin and M. Molnar, “Improved Dtkorest for Multicast Protection”,
Proc. of NGI, 2006.

[4] D. Kotani, K. Suzuki, H. Shimonishi, “A Design amaiplementation of Openflow Con-
troller Handling IP Muticast with Fast Tree Switabj” Proc. of SAINT, pp. 60-67, 2012.

[5] G. Wei, C.-H. Lung, A. Srinivasan, “Protecting a MPIMulticast Session Tree with
Bounded Switchover TimeProc. of SPECTS, pp. 236-243, July 2010.

[6] P. Congdonlink Layer Discovery Protocol, RFC 2922, July 2002.

[7] POX Topology Discovery, available online: “httpgithub.com/noxrepo/pox/
blob/carp/pox/openflow/discovery.py”, last accessedune 2014.

[8] POX Spanning Tree, available online: https://gitekoim/noxrepo/pox/blob/carp/pox/
openflow/spanning_tree.py, last accessed in Juhé.20

[9] B. Lantz, B. Heller, N. McKeown. “A Network in a Lagp: Rapid Prototyping for Soft-
ware-Defined NetworksProc. of Workshop on Hot Topics in Networks, pp. 20-21, 2010.

[10] N. McKewon, T. Anderson, G. Peterson, J. RexfordSI&enker, J. Tuner, “OpenFlow:
Enabling Innovation in Campus Network§ GCOMM Rev. 38(2), 69-74, 2008.

[11] B. Cain et al.]nternet Group Management Protocol, Version 3. RFC 3376, Oct.2002.

[12] Open Networking Foundation, “Software-Defined Netkiog: The New Norm for
Networks”, White Paper, April 13, 2012.

[13] X. R. Xu, A. C. Myres, H. Zhang and R. Yavatkar, “Resit Multicast Support for
Continuous-Media ApplicationsRBroc. of NOSSDAV, May 1997.

[14] D. Katz, D. WardBidirectional Forwarding Detection, IETF RFCs 5880, June 2010.
[15] E. Oshorne and A. Simh@raffic Engineering with MPLS, Cisco Press, 2002.

