
HAL Id: hal-01678980
https://inria.hal.science/hal-01678980

Submitted on 9 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Fragility-Oriented Testing with Model Execution and
Reinforcement Learning

Tao Ma, Shaukat Ali, Tao Yue, Maged Elaasar

To cite this version:
Tao Ma, Shaukat Ali, Tao Yue, Maged Elaasar. Fragility-Oriented Testing with Model Execution
and Reinforcement Learning. 29th IFIP International Conference on Testing Software and Systems
(ICTSS), Oct 2017, St. Petersburg, Russia. pp.3-20, �10.1007/978-3-319-67549-7_1�. �hal-01678980�

https://inria.hal.science/hal-01678980
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Fragility-Oriented Testing with Model Execution and 
Reinforcement Learning∗ 

Tao Ma1, Shaukat Ali1,Tao Yue1,2, Maged Elaasar3 

1Simula Research Laboratory, P.O. Box 134, 1325 Lysaker, Norway 
2University of Oslo, P.O. Box 1072, 0316 Blindern, Norway 

{taoma, shaukat, tao}@simula.no 
3 Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S5B6, Canada 

melaasar@gmail.com 

Abstract. Self-healing is becoming an essential behavior of smart Cyber-
Physical Systems (CPSs), which enables them to recover from faults by 
themselves. Such behaviors make decisions autonomously at runtime and 
they often operate in an uncertain physical environment making testing 
even more challenging. To this end, we propose Fragility-Oriented Testing 
(FOT), which relies on model execution and reinforcement learning to cost-
effectively test self-healing behaviors of CPSs in the presence of 
environmental uncertainty. We evaluated FOT’s performance by comparing 
it with a Coverage-Oriented Testing (COT) algorithm. Evaluation results 
show that FOT significantly outperformed COT for testing nine self-healing 
behaviors implemented in three case studies. On average, FOT managed to 
find 80% more faults than COT and for cases when both FOT and COT 
found the same faults, FOT took on average 50% less time than COT.  

Keywords: Cyber-Physical Systems, Uncertainty, Self-Healing Behaviors, 
Model Execution, Reinforcement Learning 

1. Introduction 

Self-healing is becoming an important functionality of smart Cyber-Physical 
Systems (CPSs) [1]. With such functionality, a Self-Healing CPS (SH-CPS) has the 
ability to recover from faults and adapt its behavior accordingly. Given that 
uncertainty is inherent in CPSs since such systems operate in highly unpredictable 
physical environment [2], self-healing behaviors of an SH-CPS must deal with 
uncertainty gracefully. By uncertainty, we mean “the lack of knowledge of which 
value an uncertain factor will take at a given point of time during execution” [3]. 
In this paper, we limit our scope to uncertain factors related to sensing (e.g., noise) 
and actuation (e.g. deviation) of SH-CPSs as a starting point.  

To check the correctness of self-healing behaviors of SH-CPSs in the presence 
of uncertainty, a cost-effective testing method is required. In this paper, we propose 
                                                             
∗ This research was funded by the MBT4CPS project (grant no. 240013/O70). 



a Fragility-Oriented Testing (FOT) algorithm to ensure that self-healing behaviors 
properly handle environmental uncertainty. The core idea of FOT is using fragility 
(i.e., a measure indicating how near an SH-CPS is to fail in a given state) as a 
heuristic for revealing faults. Based on this heuristic, we use model execution and 
reinforcement learning to explore various execution paths of the SH-CPS and 
simulate uncertainty in its physical environment to cost-effectively find faults. 

A traditional model-based testing (MBT) approach generates test cases from test 
models with a test strategy and executes them on a system in separate steps. In 
contrast, FOT tests a system with a test strategy that dynamically incorporates 
information during execution to decide the next test execution step. From the 
execution information, FOT uses a reinforcement learning method to identify 
transitions that have high possibilities to reveal a fault, i.e., lead to a state with the 
highest fragility. Accordingly, FOT adapts its transition selection policy to favor 
these transitions for test execution with the aim to cost-effectively find faults. 

We evaluated FOT by testing nine self-healing behaviors in three case studies. 
We conducted one experiment per self-healing behavior and compared cost 
(measured as time to find a fault) and effectiveness (measured as the number of 
faults found) of FOT as opposed to Coverage-Oriented Testing (COT) [4]. Each 
self-healing behavior was tested under 10 environmental uncertainties. Evaluation 
results show that FOT significantly outperformed COT in five out of nine 
experiments in terms of finding faults. On average, FOT found 80% more faults 
and spent 50% less test execution time to find a fault than COT. Note that COT 
was used as a naive baseline to be compared with FOT and comparison with more 
sophisticated comparable algorithms is required in the future.  

Our key contributions: 1) proposing a reinforcement learning based testing 
algorithm to cost-effectively find faults in SH-CPSs under uncertainty, 2) defining 
fragility as the heuristic to guide the reinforcement learning algorithm, 3) 
evaluating FOT (by comparing with COT) in terms of cost-effectiveness for testing 
nine self-healing behaviors implemented in three real case studies. We organize the 
paper as follows. Section 2 presents the background, Section 3 presents the running 
example, and the FOT is presented in Section 4. Section 5 presents an evaluation, 
Section 6 summarizes related work, and Section 7 concludes the paper. 

2. Background 

This section discusses Executable Test Model (ETM) and Dynamic Flat State 
Machine (DFSM), the key models used in FOT, in Section 2.1 and Section 2.2. 
Section 2.3 briefly summarizes a test model execution framework – TM-Executor. 

2.1 Executable Test Model (ETM) 

A CPS can be seen as a set of networked physical units, working together to 
monitor and control physical processes. A physical unit can be further decomposed 
into sensors, actuators, and controllers. A controller monitors and controls physical 
processes via sensors and actuators, which are functional behaviors. As a specific 
type of CPSs, an SH-CPS monitors fault occurrences and adapts its behavior if a 
fault is detected with self-healing behaviors. As the objective of a self-healing 



behavior is to restore functional behaviors, both expected functional and self-
healing behaviors need to be captured for testing. Previously, we proposed a UML-
based modeling framework, called MoSH [3], which allows creating an Executable 
Test Model (ETM) for an SH-CPS Under Test (SUT). The ETM consists of a set of 
UML state machines annotated with dedicated stereotypes from the MoSH profiles.  

The set of state machines captures expected functional and self-healing 
behaviors of the SUT: 𝑆𝑀 =  {𝑠𝑚!, … , 𝑠𝑚!}, where each state machine smi has 
MoSH stereotype applied. A 𝑠𝑚! has a set of states 𝑆!"!  = {𝑠!"!!,… , 𝑠!"!!} and 
transitions 𝑇!"! =  {𝑡!"!!,… , 𝑡!"!!}. A state 𝑠!"!! (𝑠!"!! ∈ 𝑆!"!) is defined by a 
state invariant 𝑂!"!!, which is specified as a constraint in OCL1 constraining one 
or more state variables. When 𝑠!"!!  is active, its corresponding state invariant 
should be satisfied. A transition 𝑡!"!!  ( 𝑡!"!! ∈ 𝑇!"! ) is defined as a tuple 
𝑡 ≔  (𝑠!"# , 𝑠!"# , 𝑜𝑝,𝑔), where 𝑠!"# and 𝑠!"# are the source and target states of 𝑡. 𝑜𝑝 
denotes an operation call event that can trigger the transition2 and the operation 
represents a testing API used to control the SUT. 𝑔 signifies the transition’s guard, 
an OCL constraint. It restricts input parameter values that can be used to invoke the 
operation for firing the transition. By conforming to the fUML3 and Precise 
Semantics Of UML State Machines(PSSM)4 standards, the specified state machines 
are executable. Thus the test model is called an Executable Test Model.  

2.2 Dynamic Flat State Machine (DFSM) 

Test execution with concurrent and hierarchical state machines is computationally 
expensive and complex. Since statically flattening state machines may lead to state 
explosion, we implemented an algorithm to dynamically and incrementally flatten 
UML state machines into a DFSM during test execution. A DFSM has a set of 
states 𝕊 =  {𝕤!, 𝕤!,… , 𝕤!} and a set of transitions 𝕋 = {𝕥!, 𝕥!,… 𝕥!}. Each state 
𝕤! in  𝕊  is constituted by states 𝑠!"!!  from each 𝑠𝑚! , denoted as 
𝕤! = 𝑠!"!!⋀𝑠!"!!⋀  …⋀𝑠!"!! . Accordingly, the conjunction of all constituents’ 
state invariants [𝑜!"!!  ⋀ 𝑜!"!!  ⋀…⋀ 𝑜!"!!]  forms the state invariant of 𝕤! , 
denoted as 𝕠!. Meanwhile, the set of transitions connecting the DFSM states is 
captured by 𝕋. Each transition 𝕥! belonging to 𝕋 is uniquely mapped to a transition 
𝑡!"!! in a state machine 𝑠𝑚!, expressed as 𝕥! = 𝑡!"!!. While the ETM is being 
executed, the DFSM of the ETM is dynamically constructed. FOT uses the DFSM 
to learn the value of firing each transition and find the optimal transition selection 
policy to cost-effectively find faults. Thus, we mainly use DFSM to explain FOT.  

2.3 Test Model Execution Framework 

We developed a testing framework called TM-Executor [3] in our previous work, 

                                                             
1 http://www.omg.org/spec/OCL/2.4 
2 Though call, change and signal event occurrences can all be triggers to model expected behaviors, 
only transitions having call event occurrences as triggers can be activated from the outside. A change 
event or a signal event is only for the SUT’s internal behaviors, which cannot be controlled for testing.  
3 http://www.omg.org/spec/FUML/1.2.1 
4 http://www.omg.org/spec/PSSM/1.0/Beta1 



which executes the ETM and the SUT at the same time. Via testing APIs, state 
variable values are queried from the SUT and used by TM-Executor to evaluate 
state invariants of the active state. If an invariant is evaluated false, it means that 
the SUT fails to behave consistently with the ETM and a fault is detected.  

The execution of an ETM results in the execution of the SUT. During the 
execution, TM-Executor dynamically and incrementally derives a DFSM from the 
set of concurrent state machines in the ETM. As aforementioned, a transition’s 
trigger 𝑜𝑝  and guard 𝑔  specify which operation to invoke with which input 
parameter values to make the SUT and the ETM transit from one state to another. 
While an operation is being invoked, an operation call event is generated, which 
drives the execution of the ETM. Meanwhile, the operation is executed to call a 
corresponding testing API, which makes the SUT enter the next state.  

Two kinds of testing APIs for controlling the SUT can be specified as a 
transition’s trigger 𝑜𝑝. One is functional control operation, which instructs the SUT 
to execute a nominal functional operation. Second is fault injection operation, 
which introduces a fault in the SUT, based on which, TM-Executor controls when 
and which faults to be injected to the SUT to trigger its self-healing behaviors.  

3. Running Example  

We will use a running example of an Unmanned Aerial Vehicle control system 
(i.e., ArduCopter5) to illustrate FOT. It has two physical units, i.e., copter and 
Ground Control Station (GCS). With the GCS, users remotely control the copter 
using a number of flight modes. During the flight, the copter is constantly affected 
by environmental uncertainties such as wind speed and direction, measurements 
noise from the GPS, accelerometer, and compass. This poses an extra challenge to 
the self-healing behaviors of the copter. Collision avoidance is one of the self-
healing behaviors. Due to improper flight control (operational fault), the copter 
may approach another aircraft. In such case, the copter automatically adapts the 
velocity and orientation (i.e., the angles of rotations in roll, pitch, and yaw) of the 
flight to avoid a collision. We build an ETM to specify the expected collision 
avoidance behavior along with related functional behaviors. Fig. 1 presents a partial 
simplified DFSM corresponding to the ETM; while, the complete ETM is 
presented in [5]. We take one path (bold transitions in Fig. 1: 
𝕥1à 𝕥2à 𝕥3à 𝕥4à 𝕥11à 𝕥12à 𝕥16à 𝕥18) to explain test execution. 

Starting from the Initial state, the DFSM directly enters Stopped, as there is no 
trigger on 𝕥1. From Stopped, TM-Executor fires 𝕥2 by calling the functional control 
operation start to launch the SUT. As a result, Started becomes active. To make the 
copter enter state Lift, TM-Executor invokes operation throttle with a valid value of 
input parameter thr obtained by solving guard constraint [thr > 1600 and thr < 
2000] via constraint solver EsOCL [6]. Then, the copter takes off and reaches the 
Lift state. In the Lift state, TM-Executor needs to choose one of the two outgoing 
transitions to be triggered. Assuming 𝕥4 is chosen, it is triggered by invoking pitch 
with a valid value of pit satisfying [pit > 1000 and pit < 1400]. This invocation 
triggers the copter to move forward. In the Forward state, TM-Executor either 
                                                             
5 http://ardupilot.org/copter/ 



changes the copter’s movement (i.e., firing 𝕥5, 𝕥7, or 𝕥16) or invokes the fault 
injection operation setThreat, which simulates that an aircraft is approaching from 
the left behind of the copter to trigger the collision avoidance behavior. Here the 
second option is adopted. Triggered by this, the collision avoidance behavior 
controls the copter to fly away from the aircraft. When the distance between them 
(threatDis) is over 1000 meters (not shown in Fig. 1), the collision threat is avoided 
and the copter’s flight mode changes back to the previous one. Hence, 𝕥12 is 
traversed6. Then TM-Executor chooses to trigger 𝕥16, followed by firing 𝕥18, to 
stimulate that the copter passes through the Landing state and reaches the final 
state. 

In parallel to the execution, TM-Executor periodically obtains the values of the 
SUT’s state variables through testing APIs and repeatedly uses these values to 
evaluate the active state’s invariant, using a constraint evaluator DresdenOCL [7]. 
If an invariant is evaluated to be false, then a fault is detected.  

The decision to which transition to be triggered determines if a fault can be 
found by executing the ETM and the SUT. From specifications, we know that there 
is a fault in the collision avoidance behavior when an aircraft is approaching from -
45° and the copter is flying to the forward left, the collision avoidance behavior has 
to reverse the copter’s orientation to make the two aerial vehicles fly away. Since 
reversing the orientation takes more time than other orientation adjustments, the 
copter, in this case, flies closer to the approaching aircraft. Due to noisy sensor data 
and inaccurate actuations, a collision does have a chance to occur in this condition.  

To detect the fault leading to the collision, the fault injection operation setThreat 
needs to be invoked in state ForwardLeft, i.e., 𝕥9 must be activated. However, 
activating 𝕥9 once may not be sufficient to find the fault. One reason is that a large 
number of input parameter values could be used to invoke an operation for firing a 
transition, e.g., 𝕥4 (Fig. 1). Each input leads to a distinct flight orientation and only 
in particular situations, the collision is likely to happen. Another reason is the effect 
of uncertainties. Measurement uncertainties from sensors and actuation offset from 
actuators change from time to time. Different values of the uncertain factors7 lead 

                                                             
6 When a collision is avoided, the copter is back to the flight mode. Hence, no testing API needs to be 
invoked to trigger 𝕥12. When the flight mode is changed back, a corresponding change event is 
generated by TM-Executor to activate the transition. As this event is from inside, we do not capture it 
in DFSM.  
7 Uncertain factor is a feature (e.g., a parameter) whose value is uncertain due to lack of knowledge. 

 
Fig. 1 A Simplified DFSM for ArduCopter 

 



to diverse orientations, making it even harder to reveal the fault.  
Therefore, TM-Executor mainly identifies which transition in the DFSM will 

most likely reveal a fault and frequently triggers the transition to reveal the fault. 
Since the DFSM is normally large, containing hundreds or thousands of transitions, 
fulfilling this task is non-trivial. We therefore present a novel cost-effective testing 
algorithm, FOT. It uses a reinforcement learning method to learn values of firing 
each transition, which helps TM-Executor to cost-effectively find faults.  

4. Fragility-Oriented Testing under Uncertainty 

In this section, we present details of the testing algorithm FOT (Section 4.1) and 
three uncertainty generation strategies (Section 4.2), which together enable TM-
Executor to cost-effectively find faults in the SUT under uncertainty. Section 4.3 
describes the implementation of FOT and the uncertainty generation strategies.  

4.1 Testing Algorithm 

Definition 1. The fragility of the SUT in a given state expressed as 𝐹 𝕤 , is a real 
value between 0 and 1. It describes how close (distance wise) the state invariant of 
𝕤 is to be false, where 1 means that the state invariant is false and 0 means that it is 
far from being violated. We therefore define 𝐹(𝕤) as follows:  

𝐹 𝕤 =   1 − 𝑑𝑖𝑠(¬𝕠)  (1) 

where ¬𝕠  is the negation of state 𝕤 ’s invariant 𝕠  and 𝑑𝑖𝑠(¬𝕠)  is a distance 
function (adopted from [6]) that returns a value between 0 and 1 indicating how 
close the constraint ¬𝕠 is to be true. For instance, in the running example, if the 
SUT is currently in state Avoiding2 and the value of state variable threatDis is 15, 
then the distance of invariant “threatDis > 10” to be false can be calculated as 
𝑑𝑖𝑠 ¬ 𝑡ℎ𝑟𝑒𝑎𝑡𝐷𝑖𝑠 >  10 = !"!!" !!

!"!!" !!!!
= 0.868. The closer the distance is to 

zero, the higher the possibility the invariant is to be violated, i.e., the SUT failing in 
the state. Hence, 1 − 𝑑𝑖𝑠(¬𝕠) is used to define the fragility of the SUT in state 𝕤. 

Definition 2. The T-value of a transition expressed as 𝑇 𝕥 , is a real value 
between 0 and 1. It states the possibility that a fault can be revealed after firing the 
transition. With an assumption that the more fragile the SUT is, the higher the 
chance a fault can be revealed, we define the T-value of a transition as the 
discounted highest fragility of the SUT after firing the transition: 

𝑇 𝕥 = max
𝕤∈𝕊!"#$

{𝛾! ∙ 𝐹 𝕤 } (2) 

where 𝛾 (0 ≤ 𝛾 < 1) is a discount rate; 𝑛 is the number of transitions between 𝕤 
and 𝕥’s target state; and 𝕊!"#$ is a set of states that can be reached from 𝕥’s source 
state via a path in the DFSM. As for testing, revealing faults via a short path is 
preferable, we penalize the fragility of a state by multiplying 𝛾!, if traversing at 
least n transitions is required to reach the state from 𝕥’s target state. For example, in 

                                                             
8 The distance function of greater operator is: 𝑑𝑖𝑠 𝑥 > 𝑦 = (𝑦 − 𝑥 + 𝑘) (𝑦 − 𝑥 + 𝑘 + 1)  ,𝑤ℎ𝑒𝑛 𝑥 ≤
𝑦, where k is an arbitrary positive value. Here we set k=1. More details are in .  



Fig. 1, to obtain the T-value of 𝕥4, we calculate the discounted fragility of each 
state in 𝕊!"#$. For the fragility of Avoiding1, it needs to be discounted by 𝛾!, since 
at least two transitions 𝕥5 and 𝕥9 are required to connect the Avoiding1 state to 𝕥4’s 
target state Forward. Clearly, when 𝛾 equals 0, only the fragility of 𝕥’s target state 
is considered. While, 𝛾 approaching 1 makes a state to be reached more important.  

Overview. The objective of FOT is to find the optimal transition selection policy to 
cost-effectively find faults. To achieve this objective, FOT tries to learn transitions’ 
T-values during the execution of the SUT. Each transition’s T-value indicates the 
possibility that a fault will be revealed after firing the transition. When transitions’ 
T-values are learned, by simply firing the transition with the highest T-value, FOT 
can manage to cost-effectively find faults. The pseudocode of FOT is presented 
below with in total 17 lines (L1-L17).  

At the beginning, all transitions’ T-values are unknown. As every transition has 
a possibility to reveal a fault, we initialize an estimated T-value of each transition 
with the highest one (L1, L2). This encourages the algorithm to extensively explore 
uncovered transitions. After that, iterations of test execution and the learning 
process begin. At each iteration, the execution of the ETM as well as the SUT starts 
from the initial state (L4) and terminates at a final state (L5). During the execution, 
a DFSM is dynamically constructed (L6) to enable the continuous calculation of T-
values. Whenever, the SUT enters a state 𝕤, FOT selects one of the outgoing 
transitions of 𝕤 according to their estimated T-values (L7, L8) and makes TM-
Executor trigger the selected transition (L9). As the transition is fired, the system 
moves from 𝕤 to 𝕤′. If the state invariant of 𝕤′ is not satisfied, then a fault is 
detected (L12 - L15). Otherwise, FOT evaluates the fragility of the SUT in 𝕤′ 
(L16), i.e., 𝔽(𝕤′) , and uses 𝔽(𝕤′)  to update estimated T-values. Since it is 
possible to reach 𝕤′ via numerous transitions, finding all these transitions and 
Algorithm 1 FOT(TMExecutor executor, ETM etm, int maxIteration): 

Input executor is TM-Executor, the testing framework  
 etm is the Executable Test Model 

 maxIteration is the maximum iteration number  
Begin  

1 for each transition in etm 
2     transition.Tvalue ← 1              // initialize T-values of transitions 
3 for i=1 to maxIteration 
4     etm.Start( ) 
5     while etm.ReachFinalState( ) is false 
6        dfsm ← EnrichDFSM(etm)                   // dynamically construct the DFSM 
7        reachedTransitions ← dfsm.activeState.outgoingTransitions 
8        selectedTransition ← SoftmaxSelect(reachedTransitions) //select transition 
9        executor.Trigger(selectedTransition) 

11        stateInvariant ← selectedTransition.target.invariant 
12        if executor.Evaluate(stateInvariant) is false 
13            LogFaultDetected(selectedTransition) 
14            dfsm.Remove(selectedTransition) 
15            break 
16        fragility ← executor.DistanceToViolation(stateInvariant) 

17        executor.UpdateTvalue(selectedTransition, fragility) 
                                                            // revise the T-value of selectedTransition 

End   



updating their T-values are computationally impractical for an ETM with hundreds 
of transitions. Thus FOT only updates the estimated T-value of the last triggered 
transition (L17). Since 𝔽(𝕤′) is not a constant value, the upper bound of 𝔽(𝕤′) is 
used to update the T-value. As the iteration of the execution proceeds, the estimated 
T-values are continuously updated and getting close to their true values. In this 
way, the T-values are learned from the execution and the learned T-values direct 
FOT to cost-effectively find faults. Note that testing budget determines the 
maximum number of iterations. If it is too small, FOT may not able to find faults. 
The details of T-value learning and transition selection policy are explained next. 

T-value Learning. Before executing the SUT and the ETM, the T-value 𝑻 𝕥  of 
every transition is unknown. We adopt a reinforcement learning approach to learn 
𝑻 𝕥  from execution. A fundamental property of 𝑻 𝕥  is that it satisfies a recursive 
relation, which is called the Bellman Equation [8], as shown in the formula below:  
Recursive relation between 𝑇 𝕥  and 𝑇 𝕥!"# :  

𝑇 𝕥 = max {𝐹 𝕤!"# , 𝛾 ∙ max
𝕥!"#∈𝕋!"#

𝑇 𝕥!"# } (3) 

where 𝕤!"#  is the target state of transition 𝕥 ; 𝕋!"#  represents a set of direct 
successive transitions whose source state is 𝕤!"#. This equation reveals the relation 
between the T-values of a transition and its direct successive transitions. It states 
that the T-value of 𝕥 must equal to the greater of two values: the fragility of 𝕥’s 
target state (𝐹 𝕤!"# ) and the maximum discounted T-value of 𝕥’s direct successive 
transitions (𝛾 ∙max

𝕥′∈𝕋!"#
𝑇(𝕥′)). Given a DFSM, 𝑇 𝕥  is the unique solution to 

satisfy Equation (3). So, we try to update the estimate of each T-value to make it 
get increasingly closer to satisfy Equation (3). When Equation (3) is satisfied by the 
estimated T-values for all transitions, it implies that the true 𝑇 𝕥  is learned. 

Inspired by Q-learning [8], a reinforcement learning method, FOT uses the 
estimated T-value 𝐸𝑇 𝕥  to approximate 𝑇 𝕥 , i.e., the true T-value. 𝐸𝑇 𝕥  is 
updated in the following way to make it approach 𝑇 𝕥 . 

𝐸𝑇 𝕥 ′ = 𝑚𝑎𝑥{𝐹(𝕤!"#) , 𝛾 ∙ max
𝕥!"#∈𝕋!"#

𝐸𝑇 𝕥!"# } (4) 

where 𝐸𝑇 𝕥 ′ denotes the updated estimate of 𝕥’s T-value and 𝐸𝑇 𝕥!"#  represents 
the current estimated T-value of a successive transition.  

Equation (4) enables FOT to iteratively update 𝐸𝑇 𝕥 . Once a transition 𝕥 is 
triggered, the fragility of the SUT in 𝕥’s target state 𝐹(𝕤!"#) can be evaluated using 
Equation (1). Using Equation (4), 𝐸𝑇 𝕥  can be updated whenever a fragility is 
obtained. As proved in [8], as long as the estimated T-values are continuously 
updated, 𝐸𝑇 𝕥  will converge to the true T-value: 𝑇 𝕥 . 

However, the fragility of the SUT in a state dynamically changes, due to the 
variation of test inputs and environmental uncertainty. To deal with this, we use the 
bootstrapping technique [9] to predict the distribution of the fragility and select the 
upper bound of its 95% interval as the value for 𝐹(𝕤!"#), to update the estimated T-
value. Thus 𝐸𝑇 𝕥  is iteratively updated by the following equation: 

𝐸𝑇 𝕥 ′ = 𝑚𝑎𝑥{𝑈𝑝𝑝𝑒𝑟[𝐹(𝕤!"#)] , 𝛾 ∙ max
𝕥!"#∈𝕋!"#

𝐸𝑇 𝕥!"# } (5) 

where 𝑈𝑝𝑝𝑒𝑟[𝐹(𝕤!"#)] is the upper bound of 𝐹(𝕤!"#)’s 95% confidence interval.  



Softmax Transition Selection. To cost-effectively find faults, FOT should 
extensively explore different paths in a DFSM. Meanwhile, the covered high T-
value transitions should be exploited (triggered) more frequently to find faults, as a 
high T-value implies a high possibility to reveal faults. Hence, in FOT, we use a 
softmax transition selection policy to address the dilemma of exploration and 
exploitation by assigning a selection probability to a transition proportional to the 
transition’s T-value. The selection probability is given below (from [8]): 

𝑃𝑟𝑜𝑏 𝕥𝑜𝑢𝑡′ =  𝑒!"(𝕥𝑜𝑢𝑡′ ) !  𝑒!"(𝕥!"#)/!
𝕥!"#∈𝕋!"#

   (6) 

where 𝑃𝑟𝑜𝑏(𝕥!"#
′ ) denotes the selection probability of an outgoing transition 𝕥𝑜𝑢𝑡

′ ; 

𝐸𝑇(𝕥!"#
′ )  is the estimated T-value; 𝕋!"#  represents the set of all outgoing 

transitions under the current DFSM state, and 𝜏 is a parameter, called temperature 
[10]. 𝜏 is a positive real value from 0 to infinity. A large 𝜏 causes transitions to be 
equally selected, whereas, a small 𝜏 causes high T-value transitions to be selected 
much more frequently than transitions with lower T-values.  

At the beginning, all transitions’ estimated T-values (𝐸𝑇 𝕥 ) are initialized to 1, 
thus initially transitions have equal probability to be selected. As testing proceeds, 
𝐸𝑇 𝕥  is continuously updated using Equation (5). Directed by 𝐸𝑇 𝕥 , the softmax 
policy assigns a high selection probability to transitions that leads to states with 
high fragilities. As a result, more fragile states will be exercised more frequently. 
Note that this doesn’t preclude covering the less fragile states. In addition, loops in 
the ETM are also covered depending on fragilities of states involved in a loop.  

4.2 Uncertainty Generation Strategies 

Since SH-CPSs typically operate in an uncontrolled environment [2] and are 
constantly affected by various environmental uncertainties, e.g., measurement 
uncertainties from sensors and actuation deviation from actuators. Effects of these 
uncertainties on SH-CPSs’ behaviors should be explicitly considered and tested.  

In our previous work [3], we adopted three levels of uncertainty from [11] and 
provided modeling notions to explicitly capture uncertainties that affect the 
behaviors of SH-CPSs. Table 1 presents a summary of the three uncertainty levels, 
with their definitions, methods for specification, and generation mechanisms.  

For level 1 uncertainty, at a given point of time, the value of an uncertain factor 
is a single value with a margin of error, such as the precision of a digital compass. 
Based on its specification, its precision can be determined with a margin of error. 
The determined value and the margin of error are specified as an interval. By 
selecting a value from the interval, level 1 uncertainty can be simulated.  

Level 2 uncertainty signifies the situation that an uncertain factor has alternative 
values with known probabilities, like the measurement error of an accelerometer. 
By statistically analyzing samples of the measurement error, the probability 
distribution of the measurement error can be obtained. Based on the distribution, a 
value can be generated for the uncertain factor to simulate level 2 uncertainty.  

For level 3 uncertainty, an uncertain factor also has multiple possible values, 
while only ranked likelihoods rather than probabilities of the possible values are 



known. In this case, possibility distribution is used to capture the ranked 
likelihoods. For instance, wind speed and direction are level 3 uncertainties, since 
the probability of each possible value is unknown due to limited knowledge and we 
can only compare their likelihood. To simulate level 3 uncertainty, the possibility 
distribution is first transformed to an equivalent probability distribution [12], from 
which the value of the uncertain factor is generated.  

Based on testers’ domain knowledge, relevant environmental uncertainties can 
be explicitly modeled at the three levels (see [3] for further details). By simulating 
the uncertainties based on the specification, effects of uncertainties are reflected in 
the testing environment, which enables SH-CPSs to be tested under uncertainties.  

Table 1 Uncertainty Level, Definition, Specification and Generation 
Level Definition Specification Generation 

1 “A determined value with a 
margin of error” [13] Interval Derive an uncertainty value from the interval. 

2 
A set of possible values with 
known probability for each 
value [13] 

Probability 
distribution 

Generate an uncertainty value according to the 
probability distribution. 

3 
A set of possible values with 
known likelihood for each 
value [13] 

Possibility 
distribution 

Transform the possibility distribution to an 
equivalent probability distribution [12]. Based on 
it, generate an uncertainty value. 

4.3 Implementation  

We implemented the FOT algorithm and the three uncertainty generation strategies 
in TM-Executor. Fig. 2 presents its three packages: software in the loop testing 
(light gray), uncertainty generation (dark gray), and FOT (white).  
    TM-Executor tests the software of an SH-CPS in a simulated environment. 
During testing, sensor data is computed by simulation models in simulators. Based 
on the simulated data, the software generates actuation instructions to control the 
system. Uncertainties are added to simulators’ inputs and outputs to simulate the 
effects of uncertainties. Based on uncertainty specification, an uncertainty 
generator generates the values of uncertain factors whenever sensor data or 
actuation instructions are transferred between the software and simulators. By using 
the values to modify simulators’ inputs and outputs, the specified uncertainties are 
introduced into the testing environment.  

The SUT and its ETM are executed together by an execution engine, which is 
deployed in Moka [14], a UML model execution platform. During the execution, 
the engine dynamically derives a DFSM from the ETM and used it to guide the 
execution. Meanwhile, the active state’s state invariant is checked by a test 
inspector (using DresdenOCL [7]). The inspector evaluates the invariant with the 
actual values of the state variables, which are updated by the execution engine via 
testing APIs (Section 2.3). If the invariant is evaluated to be false, a fault is 
detected. Otherwise, the inspector calculates the fragility of the SUT in the current 
state, using Equation (1). Taking fragility as input, the FOT algorithm updates its 
estimate of T-value (Equation (5)) and uses the softmax policy to select the next 
transition. Next, the test driver generates a valid test input with EsOCL [6], a 
search-based test data generator, for firing the selected transition. The execution 
engine takes this input to invoke the corresponding operation, causing the ETM and 



the SUT to enter the next state. In this way, T-values are learned from iterations of 
execution and the learned T-values direct FOT to cost-effectively find faults.  

5. Evaluation  

We aim to evaluate the cost-effectiveness of FOT by comparing it with a Coverage 
Oriented Testing (COT) algorithm to test nine self-healing behaviors in three real 
SH-CPSs under 10 uncertainties, by answering two research questions: RQ1: Is 
FOT more effective than COT in terms of fault revelation? RQ2: Compared with 
COT, does FOT incur less cost to find a fault? 

5.1 Case Studies and Test Configuration 

We used three open source SH-CPSs for evaluation: 1) ArduCopter is a fully 
featured copter control system supporting 18 flight modes to control a copter and 
has five self-healing behaviors; 2) ArduRover9 is an autopilot system for ground 
vehicles having two self-healing behaviors to avoid obstacle and handle the 
disruption of control link; 3) ArduPlane10 is an autonomous plane control system 
having two self-healing behaviors to avoid collision and address network 
disruption. Test execution was performed with software in the loop simulators, 
including GPS, barometer, accelerometer, gyro meter, compass, and servo 
simulators. Nine fault injection operations were implemented in the simulators to 
trigger the nine self-healing behaviors to test them in the presence of uncertainty. 
More details can be found in [5]. The system specification includes 10 uncertainties 
related to the sensors and actuators and details are presented in Table 2.  

Table 2 Identified Uncertainties from the Three Case Studies 
Uncertainty Level Specification Uncertainty Level Specification 

Wind Direction 
3 

Possibility 
Categorical 
Distribution 

Servos Bias 

2 
Probability 

Normal 
Distribution 

Wind Velocity Barometer Altitude Noise 

GPS Location Noise 
2 

Probability 
Normal 

Distribution 

Barometer Climb Rate Noise 
GPS Velocity Noise Accelerometer Noise 
GPS Location drift Compass Noise 

                                                             
9 http://ardupilot.org/rover/ 
10 http://ardupilot.org/plane/ 

 
Fig. 2 SH-CPS Testing Framework 



5.2 Experimental Design and Execution 

Table 3 is the experiment design. We implemented COT [4] and used it as the 
comparison baseline. It selects a transition with a likelihood that is reverse 
proportional to the total number of times that the transition has been fired plus one, 
to explore uncovered transitions as many as possible. For FOT, we set discount rate 
𝛾 to 0.99 and temperature 𝜏 to 0.2.  

Table 3 Experiment Design 

RQ Comparison 
Case Study 

#Runs Metric Statistical Test Name #Self-Healing 
Behaviors 

1 
FOT vs. 

COT 

ArduCopter 5 
10 

NDF Fisher’s exact test, odds ratio 

2 ArduPlane 2 TFF Vargha and Delaney’s A!" 
Welch's t-test ArduRover 2 

The nine self-healing behaviors were tested independently (i.e., nine 
experiments). We specified expected functional and self-healing behaviors as 
ETMs, whose statistics are shown in Table 4. The last row of Table 4 presents 
twice the time taken by COT to cover all transitions of an ETM. We chose this time 
as the maximum test execution time for each ETM. To reduce randomness, we run 
each experiment 10 times for both algorithms.  

Table 4 Descriptive Statistics of ETMs 

Statistics ArduCopter ArduRover ArduPlane 
ETM1 ETM2 ETM3 ETM4 ETM5 ETM6 ETM7 ETM8 ETM9 

#States 64 60 70 64 36 58 54 79 40 
#Transitions 440 268 286 440 106 306 303 347 104 

Max. Exe. Time (mins) 744 472 562 740 276 960 756 914 290 
To answer RQ1, we used Number of Detected Faults (NDF) to evaluate the 

effectiveness of the algorithms in terms of finding faults and is calculated as 
𝑁𝐷𝐹 = 𝑛!!"

!!! , where 𝑛! is the number of detected faults in the ith run of an 
experiment. Note that it is the first time the three case studies are tested under 
uncertainties. Thus, the total number of real faults was unknown. For RQ2, we 
define Time to Find Fault (TFF, i.e., the time (in minutes) that FOT/COT spent to 
find a fault) to assess the cost of finding faults. TFFi represents the TFF for the ith 
run of an experiment and the average TFF of an experiment is 𝑇𝐹𝐹 = !""!

!
!!!
!

, 
where m is the number of runs out of ten, that a fault was detected.  

Following the guidelines in [15], we conducted the Fisher’s exact test to check 
the significance of results and used the odds ratio as the effect size measure for the 
results of RQ1, as they are dichotomous data, i.e., faults found or not. Since data to 
answer RQ2 are continuous, i.e., the time to find a fault, we applied the Vargha and 
Delaney’s A!" statistics to measure the effect size. To check the significance of the 
results, we first performed the Shapiro-Wilk test to test the normality of the two 
TFF samples. The calculated p-values corresponding to the two algorithms are 0.26 
and 0.48, which are greater than 0.05 suggesting that the samples do not strongly 
depart from normality. Based on this, we performed the Welch's t-test to check the 
significance of RQ2’s results, because the two TFF samples have unequal 
variances as results of the F-test revealed. 



5.3 Evaluation Results 

Table 5 shows results for RQ1. Within the fixed time, FOT and COT detected the 
same fault for SH1. FOT was able to find faults in five other self-healing behaviors, 
while COT failed for the rest. Note that both FOT and COT achieved 100% 
transition coverage and thus we do not compare them based on this measure.  

For SH1, the Fisher’s exact test calculated a p-value of 0.474 (greater than 0.05) 
suggesting no significant difference between COT and FOT. The obtained odds 
ratio was 3.67 indicating that FOT is likely to find more faults than COT. Both 
FOT and COT didn’t detect any fault in SH4, SH5, and SH6, which might be due 
to two reasons: 1) No faults in these behaviors, 2) Neither algorithm covered a 
particular path with specific test input and uncertainty values that could reveal 
faults. For the other five behaviors, COT failed to detect any faults, while FOT 
succeeded in all the cases suggesting that FOT is significantly better than COT.  

Since COT only detected a fault in SH1, only the TFFs for SH1 are used to 
answer RQ2. On average, FOT could find a fault within 142 minutes, while COT 
required 282 minutes to find a fault (Table 5). We conducted the Welch's t-test and 
the result (p-value = 0.043) showed that COT took significantly more time than 
FOT to find a fault. In addition, the result of A!" = 0.875 suggests that, in most 
cases, COT is expected to spend more time than FOT to find a fault.    

Table 5 Number of Detected Faults in 10 Runs 

Alg. Metrics ArduCopter ArduRover ArduPlane 
SH1 SH2 SH3 SH4 SH5 SH6 SH7 SH8 SH9 

COT 
NDF 8 0 0 0 0 0 0 0 0 

𝑻𝑭𝑭 (mins)  282 - - - - - - - - 

FOT 
NDF 10 7 6 0 0 0 8 10 5 

𝑻𝑭𝑭 (mins)  142 247 415 - - - 548 468 208 

5.4 Discussion 

We obtained three key observations. First, due to the effect of uncertainties, self-
healing behaviors might fail to timely detect faults or improperly adapt system 
behaviors. For instance, because of sensors’ measurement uncertainties, the copter 
could not accurately capture its location, orientation, and velocity. When the copter 
was about to collide with another vehicle, inaccurate measurements sometimes 
caused the copter incorrectly adjust its orientation, leading to a collision. Therefore, 
it is necessary to test self-healing behaviors in the presence of environmental 
uncertainties. To build such a testing environment, we generate uncertainties 
according to interval, probability or possibility distributions. Though this may not 
be the optimal strategy, it provides a preliminary solution for this problem. Second, 
a typical objective of a coverage-based testing approach is to achieve full coverage, 
e.g., 100% transition coverage. However, this is not sufficient to reveal a fault in 
self-healing behaviors under uncertainty, as demonstrated by the experiment result. 
Since transitions have different possibilities to reveal a fault, the ones with high 
possibility should be tested more frequently to cost-effectively find faults. Third, 
for testing SH-CPSs under uncertainty, FOT is more cost-effective than COT in 
terms of a number of detected faults and time spent to reveal a fault. On average, 



FOT found 80% more faults and when both algorithms managed to find a fault, 
FOT took 50% less time than COT. This is because FOT used execution 
information to dynamically learn transitions’ T-values, which indicates the 
possibility of revealing a fault when firing transitions; COT only used coverage 
information to direct test execution.  

5.5 Threats to Validity 

Conclusion validity is concerned with factors that affect the conclusion drawn 
from the outcome of experiments. Because of random transition selection used by 
FOT and COT, randomness in the results is the most probable conclusion validity 
threat. To reduce this threat, all the experiments were repeated 10 times. We 
applied two statistical tests and two effect size measures to evaluate statistical 
differences and magnitude of improvement. In addition, the variation in simulated 
uncertainties may be another conclusion validity threat. However, we simulated the 
same sequence of uncertainties for both algorithms. We fixed the maximum test 
execution time for both of the algorithms. This measure was taken to remove the 
internal validity threat that different settings might favor one algorithm over the 
other. However, more experiments with other settings in terms of test execution 
time are required to further strengthen the current conclusion. External validity 
threats concern the generalization of the experiment results. We tested nine self-
healing behaviors of three real case studies. However, additional case studies are 
needed to further generalize the results. With respect to construct validity threats, 
we used the number of detected faults and the time required to detect a fault as the 
evaluation metrics, which are comparable across both of the algorithms.  

6. Related Work 

Model-Based Testing (MBT) has shown good results of producing effective test 
suites to reveal faults [16]. For a typical MBT approach, abstract test cases are 
generated from models first, e.g., using structural coverage criteria (e.g., all state 
coverage) [17, 18]. Generated abstract test cases are then transformed into 
executable ones, which are executed on the SUT. To reduce the overhead caused 
by test cases generation, researchers proposed to combine test generation, selection, 
and execution into one process [19, 20]. De Vries et al. [19] created a testing 
framework, with which the SUT is modeled as a labeled transition system. By 
parsing this model, test inputs are generated on the fly to perform conformance 
testing. This approach aims to test all paths belonging to this model. However, if 
loops exist or the specified model is large, additional mechanisms are required to 
reduce the state space. Larsen et al. [20] proposed a similar testing tool for 
embedded real-time systems. It uses the timed I/O transition system as the test 
model, and test inputs are randomly generated from the model on the fly for testing.  

Different from the existing works, FOT relies on the model execution of ETMs 
to facilitate the testing of SH-CPSs under uncertainty. During the execution, FOT 
applies a reinforcement learning technique to learn transitions’ T-values, which 
direct FOT to cost-effectively find faults. Besides, FOT focuses on testing self-
healing behaviors in the presence of environmental uncertainty, which is not 



covered by existing works. The first reinforcement learning based testing algorithm 
was proposed in [4]. It uses frequencies of transitions’ coverage as the heuristics of 
reinforcement learning. By learning frequencies, the algorithm tries to equally 
explore all transitions. However, a long-term reward is not realized in this 
approach. Groce et al. [21] created a framework to simplify the application of 
reinforcement learning for testing, which uses coverage as the heuristic and relies 
on SARSA(λ) [8] for calculating long term rewards. Similarly, Araiza-Illan et al 
[22] used coverage as the reward function to test human-robot interactions with 
reinforcement learning. Due to uncertainty, achieving the full transition coverage is 
insufficient to find faults in self-healing behaviors. Thus, we propose to use 
fragility instead of coverage as the heuristic. 

7. Conclusion 
This paper presents a new testing algorithm, Fragility Oriented Testing (FOT), for 
testing self-healing behaviors of SH-CPSs under uncertainty. It applies model 
execution and a reinforcement learning method to learn each transition’s T-value, 
which indicates the possibility to reveal a fault after firing the transition. 
Accordingly, FOT focuses on exercising transitions with high T-values to cost-
effectively find faults. To evaluate FOT, we tested nine self-healing behaviors in 
three case studies. The results showed that FOT significantly outperformed COT 
for five out of nine self-healing behaviors in terms of faults finding. On average, 
FOT discovered 80% more faults than COT. When both algorithms succeeded to 
find a fault, FOT on average took 50% less time than COT. In the future, we plan 
to conduct more experiments and integrate more advanced reinforcement learning 
algorithms to further enhance the algorithm’s fault detection capability. 

References 
1. T. Bures, D. Weyns, C. Berger et al.: Software Engineering for Smart Cyber-Physical 

Systems--Towards a Research Agenda: Report on the First International Workshop on 
Software Engineering for Smart CPS. In: ACM SIGSOFT Software Engineering 
Notes, vol. 40, no. 6, pp. 28-32. ACM (2015) 

2. E. A. Lee: Cyber physical systems: Design challenges. In: 11th IEEE International 
Symposium on Object and Component-Oriented Real-Time Distributed Computing 
(ISORC) pp. 363-369. IEEE (2008) 

3. T. Ma, S. Ali, and T. Yue: Modeling Healing Behaviors of Cyber-Physical Systems 
with Uncertainty to Support Automated Testing. In: Simula Research Lab Technical 
Report 2016-08 (2016). https://www.simula.no/publications/modeling-healing-
behaviors-cyber-physical-systems-uncertainty-support-automated-testing 

4. M. Veanes, P. Roy, and C. Campbell: Online testing with reinforcement learning. In: 
Formal Approaches to Software Testing and Runtime Verification, pp. 240-253. 
Springer (2006) 

5. T. Ma, S. Ali, and T. Yue: Fragility-Oriented Testing with Model Execution and 
Reinforcement Learning. In: Simula Research Lab Technical Report 2017-05 (2017). 
https://www.simula.no/publications/fragility-oriented-testing-model-execution-and-
reinforcement-learning 



6. S. Ali, M. Z. Iqbal, A. Arcuri et al.: Generating test data from OCL constraints with 
search techniques. In: IEEE Transactions on Software Engineering, vol. 39, no. 10, pp. 
1376-1402. IEEE (2013) 

7. B. Demuth, and C. Wilke: Model and object verification by using Dresden OCL. In: 
Proceedings of the Russian-German Workshop Innovation Information Technologies: 
Theory and Practice, Ufa, Russia pp. 687-690. Citeseer (2009) 

8. R. S. Sutton, and A. G. Barto:  Reinforcement learning: An introduction. MIT press 
Cambridge (1998) 

9. C. Z. Mooney, R. D. Duval, and R. Duval:  Bootstrapping: A nonparametric approach 
to statistical inference. Sage (1993) 

10. Y. Anzai:  Pattern recognition and machine learning. Elsevier (2012) 
11. W. E. Walker, R. J. Lempert, and J. H. Kwakkel, Deep uncertainty, Encyclopedia of 

operations research and management science, pp. 395-402. Springer (2013) 
12. D. Dubois, H. Prade, and S. Sandri, On possibility/probability transformations, Fuzzy 

logic, pp. 103-112. Springer (1993) 
13. T. Ma, S. Ali, and T. Yue: Conceptually Understanding Uncertainty in Self-Healing 

Cyber-Physical Systems. In: Simula Research Lab Technical Report 2016-07 (2016). 
https://www.simula.no/publications/conceptually-understanding-uncertainty-self-
healing-cyber-physical-systems 

14. J. Tatibouet: Moka – A simulation platform for Papyrus based on OMG specifications 
for executable UML. In: EclipseCon. OSGI (2016) 

15. A. Arcuri, and L. Briand: A practical guide for using statistical tests to assess 
randomized algorithms in software engineering. In: 33rd International Conference on 
Software Engineering (ICSE), pp. 1-10. IEEE (2011) 

16. E. P. Enoiu, A. Cauevic, D. Sundmark et al.: A Controlled Experiment in Testing of 
Safety-Critical Embedded Software. In: IEEE International Conference on Software 
Testing, Verification and Validation (ICST) pp. 1-11. IEEE (2016) 

17. M. Utting, A. Pretschner, and B. Legeard: A taxonomy of model-based testing 
approaches. In: Software Testing, Verification and Reliability, vol. 22, no. 5, pp. 297-
312. Wiley (2012) 

18. W. Grieskamp, R. M. Hierons, and A. Pretschner: Model-Based Testing in Practice. 
In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik 
(2011) 

19. R. G. de Vries, and J. Tretmans: On-the-fly conformance testing using SPIN. In: 
International Journal on Software Tools for Technology Transfer (STTT), vol. 2, no. 4, 
pp. 382-393. Springer (2000) 

20. K. G. Larsen, M. Mikucionis, and B. Nielsen: Online testing of real-time systems 
using uppaal. In: International Workshop on Formal Approaches to Software Testing 
pp. 79-94. Springer (2004) 

21. A. Groce, A. Fern, J. Pinto et al.: Lightweight automated testing with adaptation-based 
programming. In: IEEE 23rd International Symposium on Software Reliability 
Engineering (ISSRE) pp. 161-170. IEEE (2012) 

22. D. Araiza-Illan, A. G. Pipe, and K. Eder: Intelligent agent-based stimulation for testing 
robotic software in human-robot interactions. In: Proceedings of the 3rd Workshop on 
Model-Driven Robot Software Engineering. ACM (2016) 

 


