
HAL Id: hal-01658416
https://inria.hal.science/hal-01658416

Submitted on 7 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Modularising Opacity Verification for Hybrid
Transactional Memory

Alasdair Armstrong, Brijesh Dongol

To cite this version:
Alasdair Armstrong, Brijesh Dongol. Modularising Opacity Verification for Hybrid Transactional
Memory. 37th International Conference on Formal Techniques for Distributed Objects, Components,
and Systems (FORTE), Jun 2017, Neuchâtel, Switzerland. pp.33-49, �10.1007/978-3-319-60225-7_3�.
�hal-01658416�

https://inria.hal.science/hal-01658416
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Modularising Opacity Verification for
Hybrid Transactional Memory

Alasdair Armstrong and Brijesh Dongol

Brunel University London
firstname.lastname@brunel.ac.uk

Abstract. Transactional memory (TM) manages thread synchronisation to pro-
vide an illusion of atomicity for arbitrary blocks of code. There are various imple-
mentations of TM, including hardware (HTM) and software (STM). HTMs pro-
vide high performance, but are inherently limited by hardware restrictions; STMs
avoid these limitations but suffer from unpredictable performance. To solve these
problems, hybrid TM (HyTM) algorithms have been introduced which provide
reliable software fallback mechanisms for hardware transactions. The key safety
property for TM is opacity, however a naive combination of an opaque STM
and an opaque HTM does not necessarily result in an opaque HyTM. Therefore,
HyTM algorithms must be specially designed to satisfy opacity. In this paper we
introduce a modular method for verifying opacity of HyTM implementations.
Our method provides conditions under which opacity proofs of HTM and STM
components can be combined into a single proof of an overall hybrid algorithm.
The proof method has been fully mechanised in Isabelle, and used to verify a
novel hybrid version of a transactional mutex lock.

1 Introduction

By allowing programmers to mark blocks of arbitrary code as transactions, Transac-
tional Memory (TM) aims to provide an easy-to-use synchronisation mechanism for
concurrent access to shared data. Unlike coarse-grained locking, TM implementations
are fine-grained, which improves performance. In recent years, TM has appeared as
software libraries in languages such as Java, Clojure, Haskell and C++11, and received
hardware support in processors (e.g., Intel’s TSX).

Software Transactional Memory (STM), as provided by the aforementioned soft-
ware libraries, offers a programmer-friendly mechanism for shared-variable concur-
rency. However, it suffers from unpredictable performance which makes it unsuitable
for some applications. On the other hand, Hardware Transactional Memory (HTM), as
implemented in modern Intel processors, offers high performance but comes with many
limitations imposed by the constraints of the hardware itself. For example, HTM im-
plementations do not guarantee progress for a transaction even in the absence of other
concurrent transactions [11]. Hybrid TM (HyTM) implementations address these issues
by integrating STM and HTM [10]. Recent work [3,2,18] has focused on providing soft-
ware fallbacks for HTM, combining the performance benefits of HTM with the strong
semantics and progress guarantees of STM.

Opacity [8,9] is the primary safety property for TM, which ensures that implemen-
tations have the familiar properties of database transactions: atomicity, consistency, and
isolation. Opacity requires that all transactions (including aborting ones) can be seri-
alised into some meaningful sequential order, so that no transaction witnesses an in-
consistent state caused by the partial execution of any other transaction. Overall, this
ensures that TM implementations execute with an illusion of atomicity.

HyTM algorithms, which are the focus of this paper, consist of STM (slow-path)
transactions executing in parallel with HTM (fast-path) transactions. Since an execu-
tion may consist of only STM or only HTM transactions, one must ensure that slow-
path and fast-path transactions are by themselves opaque. In addition, synchronisation
between slow- and fast-path transactions must be introduced to ensure that executions
consisting of arbitrary combinations of these transactions is opaque. It is already known
that naively combining STM and HTM results in a non-opaque HyTM algorithm [2].
In this paper, we develop a modular verification method for proving opacity of HyTM
algorithms—our method provides a means for independently proving opacity of both
the STM slow path and the HTM fast path, and then combining them into a proof of
opacity of the overall system.

To demonstrate our proof method, in Section 2, we develop a novel hybrid version
of Dalessandro et al.’s Transactional Mutex Lock [4], extending it with a subscription
mechanism described in [3]. Our algorithm, HyTML, combines an eager STM, where
writes to the shared store are immediately committed to memory, with a lazy fast path
HTM, where writes to the shared store are cached until the HTM executes a commit op-
eration. Moreover, it improves concurrency in the original TML algorithm by allowing
multiple concurrent writing HTM transactions; in the original algorithm, all transac-
tions abort in the presence of any concurrent writing transaction.

Our proof method is an extension of previous work [14,6] that uses trace refine-
ment of I/O automata (IOA) [17] to verify opacity via a TM specification known as
TMS2 [7]. Unlike existing work, our methods enable one to verify HyTML in a modu-
lar manner (i.e., by combining individual opacity proofs of the fast-path and slow-path
components) despite the monolithic structure of the algorithm. Our proof methods are
influenced by compositional techniques [20] such as rely/guarantee [12]. However, un-
like rely-guarantee, which focusses on composing processes, we focus on composition
at the level of components, which themselves consist of multiple parallel processes.

We start by developing the notion of an interference automaton (Section 4), which
specialises IOA by including transitions that take into account any potential interference
from the environment. Parallel composition for interference automata is developed in
Section 5, and the notion of weak simulation for parallel interference automata is given
in Section 6. There we provide our main decomposition theorem, which describes how
weak simulations can be combined to ensure trace refinement of the composed system.
We apply our proof methods to verify HyTML in Section 7; we show how individ-
ual opacity proofs for the STM and HTM components can be combined, to avoid the
complexity inherent in a monolithic proof. All the proofs in this paper, including our
meta-theory, have been mechanised1 in the Isabelle theorem prover [19].

1 The Isabelle files may be downloaded from [1].

Listing 1 A Hybrid Transactional Mutex Lock (HyTML) algorithm
1: procedure INIT

2: glb, ctr ← 0, 0

3: procedure FPBegint

4: XBegin()
5: loct← glb
6: writer t← false
7: if odd(loct) then
8: XAbort()

9: procedure FPReadt(a)
10: return ∗a
11: procedure FPWritet(a, v)
12: writer t← true
13: ∗a← v
14: procedure FPCommitt

15: if writer t then
16: ctr++
17: XEnd()

18: procedure SPBegint

19: repeat
20: loct← glb
21: lctr t← ctr
22: until even(loct)

23: procedure SPReadt(a)
24: vt← ∗a
25: if glb = loct then
26: if ctr = lctr t then
27: return vt
28: abort
29: procedure SPWritet(a, v)
30: if even(loct) then
31: if ¬dcss(&glb, loct,&ctr , lctr t, loct+1)
32: then abort
33: else loct++
34: ∗a← v

35: procedure SPCommitt

36: if odd(loct) then
37: glb ← loct + 1

2 Hybrid TML

Our running example is the Hybrid Transaction Mutex Lock (HyTML) algorithm given
in Listing 1, which extends Dalessandro et al.’s TML algorithm [4] with a 2-counter
subscription mechanism [3]. HyTML synchronises the software slow path with a hard-
ware fast path using glb (which is published by software and subscribed by hardware)
and ctr (which is published by hardware and subscribed by software).

The parity of glb indicates whether a writing software transaction is currently exe-
cuting. Namely, a writing software transaction increments glb once at Line 31, where
it effectively acquires the write lock, and again at Line 37, where it effectively releases
the write lock. Thus, bglb/2c gives the total number of committed software transactions.
TML, and by extension HyTML, has the property that only a single software transaction
can be writing at a time. The presence of a software writer causes all concurrently ex-
ecuting transactions, including fast-path transactions, to abort.2. Unlike TML, HyTML
allows more than one concurrent writing transaction via the fast path. Variable ctr is
used to signal a completed hardware transaction and is incremented whenever a writing
hardware transaction commits (Line 16). The total number of committed writing trans-
actions is therefore given by bglb/2c + ctr . Note that read-only transactions modify
neither glb nor ctr .
Software Slow Path. The software slow path implementation is a conservative exten-
sion to the original TML algorithm [4] — we refer the interested reader to [4,5] for

2 There are some exceptions, e.g., a read-only software transaction can successfully commit
even in the presence of another writer if no more reads are performed [5].

further details of the behaviour of TML. The implementation consists of operations
SPBegin and SPCommit that start and end software transactions, respectively, as
well as SPRead and SPWrite that perform (software) transactional reads and writes,
respectively. Each operation and transaction-local variable is indexed by a transaction
identifier t.

Procedure SPBegint repeatedly polls both glb and ctr , storing their values in local
variables loct and lctr t, respectively, until loct is even. This ensures that a software
transaction cannot begin until there are no software writers. Procedure SPReadt(a)
first reads the value in address a from memory and then checks (non-atomically) if
glb and ctr are consistent with loct and lctr t, respectively. The value of the address is
returned if both checks succeed, otherwise it is likely that the transaction t has witnessed
an inconsistent snapshot of the store, and hence it aborts.

Procedure SPWritet first checks the parity of loct. If loct is odd, then t must itself
be the (unique) software writer, i.e., t had acquired the mutex lock from a previous
call to SPWritet. Therefore, t can immediately proceed and eagerly update the value
of ∗a in the store to v. If loct is even, it contends with other writers to acquire the
lock using a double compare single swap operation: dccs, which atomically checks
both lctr t and loct against their global values and updates glb to loct + 1 if both are
unmodified (which effectively acquires the mutex lock). The dccs operation returns
true iff it is successful. If either glb or ctr have changed since t first read their values
within SPBegint, then t may go on to construct an inconsistent memory state, and
hence, it must abort. Otherwise (i.e., if dccs succeeds), loct is incremented (Line 33) to
match the new value of glb. This makes the value of loct odd, allowing the expensive
dccs operation to be elided in future calls to SPWritet, as explained above, and allows
future calls to SPReadt to succeed.

Procedure SPCommitt always succeeds. It checks to see if t is a writing transaction
(i.e., loct is odd). If so, loct must be equal to glb, and hence, the update to glb at Line 37
is equivalent to an increment of glb that makes glb’s value even. This second increment
effectively releases the mutex lock.

Hardware Fast Path. Our implementation uses HTM primitives provided by an Intel
x86 processor with TSX extensions. However, we keep the specifics of the hardware
generic and assume as little as possible about the behaviour of the primitives, allowing
our work to more easily be adapted to work with other HTMs. We use three basic prim-
itives: XBegin, which starts a hardware transaction, XEnd, which ends (and attempts
to commit) the hardware transaction, and XAbort, which explicitly aborts the hard-
ware transaction. We assume that, once started, a hardware transaction may be forced
abort at any time for any reason, which is consistent with Intel’s specifications [11]. In
addition, when interference on any variable that has been read is detected, a fast-path
transaction must abort (details are provided below).

Procedure FPBegint starts a fast-path transaction by calling XBegin, then sub-
scribes to the software global version number, glb, by reading and recording its value
in a local variable loct. A local flag writer t (initially false) is used to indicate whether
a fast-path transaction is a writer. Transaction t only begins if loct is even—if loct is
odd, a slow-path writer is executing, and hence, the fast-path transaction aborts.

Note that because the read of glb occurs after XBegin, the underlying HTM will
track the value of glb in memory, ensuring that the fast-path transaction aborts if glb
changes. Such checks to glb are performed automatically by the HTM outside the con-
trol of the fast-path implementation, and hence, is not explicit in the code (Listing 1).
This behaviour is captured in our model of the fast-path transactions by validating that
the value of glb is equal to loct for every step of fast-path transaction t, and aborting
whenever this validation fails.

The fast-path read and write operations, FPReadt and FPWritet consist of stan-
dard memory operations, but the underlying HTM will ensures these writes are not vis-
ible outside t until t commits. In FPWritet, the flag writer t is set to true to indicate
that t is now a writer. Procedure FPCommitt updates ctr if t is a writer, which indicates
to software transactions that a fast-path transaction is committing. Note that this incre-
ment to ctr will not cause other fast-path transactions to abort. Finally, FPCommitt
calls XEnd, which, for a writer transaction, commits all the pending writes to the store
and publishes the increment to ctr.

3 The TMS2 specification

The basic principle behind the definition of opacity (and other similar definitions) com-
pares a given concurrent history of transactional operations against a sequential one.
Opacity requires it be possible for transactions to be serialised so that the real-time order
of transactions is preserved. Within this serialisation order, read operations for all trans-
actions, including aborted transactions, must be consistent with the state of the memory
store, which is obtained from the initial store by applying the previously committed
transactions in their serialised order [8,9]. We elide the formal definition of opacity here,
focusing instead on an automata-based TM specification, TMS2 [7]. Lesani et al [15]
have mechanically verified that TMS2 is opaque, thus it is sufficient to show trace re-
finement against TMS2 to verify opacity of an implementation (cf [6,14]). TMS2 and
the implementations we verify are modelled using input/output automata [16,17].

Definition 1. An I/O automaton (IOA) is a labelled transition system A with a set of
states states(A), a set of actions acts(A) (partitioned into internal and external ac-
tions), a set of start states start(A) ⊆ states(A) and a transition relation trans(A) ⊆
states(A)× acts(A)× states(A) (so that the actions label the transitions).

TMS2 contains external transitions modelling operation invocations and responses,
e.g., the invoke and respond actions for a write action are given below, where statust is
a transaction-local variable that models control flow. The transition is enabled if all its
preconditions, given after the keyword Pre, hold in the current state. State modifications
(effects) of a transition are given as assignments after the keyword Eff.

invt(TMWrite(a, v))
Pre: statust = ready
Eff: statust := doWrite(a, v)

respt(TMWrite)
Pre: statust = writeResp
Eff: statust := ready

TMS2 contains a pair of invocations and responses for begin, read, write and commit
operations. In addition, a response is provided for aborting operations:

DoReadt(a, n)
Pre: statust = doRead(a)

a ∈ dom(wrSett) ∨ validIdx t(n)
Eff: if a ∈ dom(wrSett) then

statust := readResp(wrSett(a))
else v := memSeq(n)(a)

statust := readResp(v)
rdSett := rdSett ⊕ {a 7→ v}

DoWritet(a, v)
Pre: statust = doWrite(a, v)
Eff: statust := writeResp

wrSett := wrSett ⊕ {a 7→ v}

DoCommitROt(n)
Pre: statust = doCommit

dom(wrSett) = ∅
validIdx t(n)

Eff: statust := commitResp

DoCommitWt

Pre: statust = doCommit
rdSett ⊆ latestMem

Eff: statust := commitResp
memSeq := memSeq ⊕ newMemt

where maxIdx =̂ max(dom(memSeq))

latestMem =̂ memSeq(maxIdx)

newMemt =̂ {maxIdx + 1 7→ (latestMem ⊕ wrSett)}
validIdx t(n) =̂ beginIdx t ≤ n ≤ maxIdx ∧ rdSett ⊆ memSeq(n)

Fig. 1. Internal actions of TMS2

respt(TMAbort)
Pre: statust /∈ {notStarted, ready, commitResp, committed, aborted}
Eff: statust := aborted

After invoking a write, read, or commit operation, a transaction may execute one of
the ‘do’ actions in Figure 1, which performs the corresponding abstract operation.

TMS2 guarantees that transactions satisfy two critical requirements: (R1) all reads
and writes of a transaction work with a single consistent memory snapshot that is the
result of all previously committed transactions, and (R2) the real-time order of trans-
actions is preserved. Full details of TMS2 may be found in [7]. Here, we give a brief
overview of the requirements that our implementation must satisfy.

To ensure (R1), the state of TMS2 includes 〈memSeq(0), . . . memSeq(maxIdx)〉,
which is a sequence of all possible memory snapshots (the stores sequence). Initially the
sequence consists of one element, the initial memory memSeq(0). Committing writer
transactions append a new memory newMem to this sequence (cf. DoCommitWt), by
applying the writes of the transaction to the last element memSeq(maxIdx). To ensure
that the writes of a transaction are not visible to other transactions before committing,
TMS2 uses a deferred update semantics: writes are stored locally in the transaction t’s
write set wrSet t and only published to the shared state when the transaction commits.
Note that this does not preclude TM implementations with eager writes, such as TML.
However eager implementations must guarantee that writes are not observable until
after the writing transaction has committed.

Each transaction t keeps track of all its reads from memory in a read set rdSet t. A
read of address a by transaction t checks that either a was previously written by t itself
(then branch of DoReadt(a)), or that all values read so far, including a, are from the
same memory snapshot n, where beginIdx t ≤ n ≤ maxIdx (predicate validIdx t(n)

from the precondition, which must hold in the else branch). In the former case the
value of a from wrSet t is returned, and in the latter, the value from memSeq(n) is
returned and the read set is updated. The read set of t is also validated when a transaction
commits (cf. DoCommitROt and DoCommitWt). Note that when committing, a read-
only transaction may read from a memory snapshot older than memSeq(maxIdx), but
a writing transaction must ensure that all reads in its read set are from most recent
memory (i.e. latestMem memSeq(maxIdx)), since its writes will update the memory
sequence with a new snapshot.

To ensure (R2), if a transaction t′ commits before transaction t starts, then the mem-
ory that t reads from must include the writes of t′. Thus, when starting a transaction,
t saves the current last index of the memory sequence, maxIdx , into a local variable
beginIdx t. When t performs a read, the predicate validIdx t(n) ensures that that the
snapshot memSeq(n) used has beginIdx t ≤ n, implying that writes of t′ are included.

Our proof of opacity is based on trace refinement [16] between HyTML and TMS2,
which ensures that every externally visible execution of HyTML is a possible externally
visible execution of TMS2. Since every execution of TMS2 is known to be opaque [15],
one can conclude that HyTML is itself opaque. We develop a proof method for trace re-
finement that exploits the fact that HyTML consists of two distinct sets of transactions:
slow- and fast-path. Namely, our method proves opacity of each set of transactions in-
dependently, taking into account any possible interference from the other set.

4 Interference automata

In this section, we formalise the concept of interference automata and the notions of
trace refinement and forward simulation that we use. Interference automata specialise
IOA by explicitly including transitions for environment steps, representing the potential
interference from other components within the same system. In the context of the HyTM
implementations we verify, an interference automaton will model the fast-path (slow-
path) transactions with interference stemming from the slow-path (fast-path).

Definition 2 (Interference automata). An interference automaton A consists of:
– PA is an (infinite) set of process identifiers,
– sets local(A) and global(A) of local and global states,
– sets external(A) and internal(A) of external and internal actions, and
– an environment action ε /∈ external(A) ∪ internal(A).

We assume external(A) ∩ internal(A) = ∅, and use actions(A) = external(A) ∪
internal(A) ∪ {ε} to denote the actions of A. Furthermore:

– initialisation of A is described by
• lstart(A) ⊆ PA → local(A), a set of local start states, and
• gstart(A) ∈ global(A), a global start state

– transitions of A are described by
• ltrans(A) ⊆ (local(A)× global(A))×actions(A)× (local(A)× global(A)),

which describes local transitions, and
• env(A) ⊆ global(A) × global(A), which is a reflexive relation that describes

environment transitions.

The overall state space of A is given by states(A) = (PA → local(A)) × global(A).
That is, a state is a pair consisting of a local state for every possible process in PA and
a global state. For any state s, the local part of the state is denoted by sl, and the global
part by sg , and hence, s = (sl, sg).

An interference automaton A may perform an environment transition in env(A),
which may only modify the global state, or a local transition for a specific process
p ∈ PA, which may only modify the local state of p and the global state. For states
s and s′, action a, and process p, we denote an internal or external transition of A by
s

a,p−−→A s′, where the action is paired with the process identifier executing the action.
By construction, we have that the local state of process p′ is unchanged after a transition
of process p whenever p 6= p′. For global state sg, s′g , we use sg

ε−→A s′g to denote an
environment transition, which is lifted to the level of states in the obvious way. Namely,
if sl is a local state, we let (sl, sg)

ε−→A (sl, s
′
g) denote an environment transition.

A run of an interference automatonA is an alternating sequence of states and actions
starting from an initial state. The traces of A, denoted traces(A), are the runs of A
restricted to external actions, and the reachable states of A, denoted reach(A), are
states that can be reached by some run of A. For interference automata A and C, we
say C is a trace refinement of A iff traces(C) ⊆ traces(A).

Interference automata may be regarded as a special case of IOA, where the state
is specialised and actions are split into internal and environment actions. Therefore,
all theorems of IOA, including notions of simulation [16] are also applicable in this
setting. Note that an interference automaton A represents the actions of an arbitrary
amount of processes, which is why PA must be infinite. As such, interference automata
represent systems of processes and not specific sets of processes. A forward simulation
is a standard way of verifying trace refinement between a concrete implementation and
an abstract specification. For interference automata, this involves proving simulation
between the external, internal, and environment steps.

Definition 3 (Forward simulation). If A and C are interference automata such that
external(C) ⊆ external(A), we say R ⊆ states(C) × states(A) is a forward simu-
lation between A and C iff each of the following hold:
Initialisation. ∀cs ∈ start(C) • ∃as ∈ start(A) • (cs, as) ∈ R
External step correspondence

∀cs ∈ reach(C), as ∈ reach(A), a ∈ external(C), p ∈ PC , cs′ ∈ states(C) •
(cs, as) ∈ R ∧ cs a,p−−→C cs′ =⇒
∃as′ ∈ states(A) • (cs′, as′) ∈ R ∧ as a,p−−→A as

′,

Internal step correspondence
∀cs ∈ reach(C), as ∈ reach(A), a ∈ internal(C), p ∈ PC , cs′ ∈ states(C) •
(cs, as) ∈ R ∧ cs a,p−−→C cs′ =⇒ (cs′, as) ∈ R ∨
∃as′ ∈ states(A), a′ ∈ internal(A) • (cs′, as′) ∈ R ∧ as a′,p−−→A as

′,

Environment step correspondence
∀cs ∈ reach(C), as ∈ reach(A), cs′g ∈ global(C) •
(cs, as) ∈ R ∧ csg

ε−→C cs′g =⇒
∃as′g ∈ global(A) • ((csl, cs′g), (asl, as′g)) ∈ R ∧ asg

ε−→A as
′
g.

Soundness of the forward simulation rule with respect to trace refinement has been
checked in Isabelle [1].

Theorem 1 (Soundness). If R is a forward simulation between interference automata
A and C, then C is a trace refinement of A, i.e., traces(C) ⊆ traces(A).

In Section 5, we introduce the concept of parallel interference automata and in Sec-
tion 6, we develop a theorem for decomposing parallel interference automata into proofs
of individual sub-components. It turns out that our decomposition theorem only needs
assume the existence of weak forward simulation of the components, in which environ-
ment step correspondence may not hold. The notion of a weak simulation is important
here, as weak simulations correspond to our existing proofs of opacity for e.g. TML,
since these proofs do not involve environment steps. As such, this facilitates the re-use
of existing proofs of STM components in the parallel case with only minor modifica-
tions. Note that weak simulation between A and C ensures trace refinement for any
automaton C in which env(C) is the identity relation since the environment step corre-
spondence proof is trivial.

5 Parallel interference automata

In this section, we define a notion of parallel composition for interference automata. The
idea is that any possible interference from one component of the parallel composition is
reflected as an environment transition in the other. Thus, the parallel composition B‖C
comprises an interleaving of the local (internal and external) actions of both B and C.

Two interference automataB andC can be composed iff they are compatible, which
only requires that they share the same start state, i.e., gstart(B) = gstart(C). We let
] denote disjoint union with injections (or inclusion maps) ι1 and ι2.

Definition 4 (Parallel composition). The parallel composition of two compatible in-
terference automata B and C is constructed as follows:

– local(B‖C) = local(B)] local(C),
– global(B‖C) = global(B) ∪ global(C),
– PB‖C = PB] PC ,
– lstart(B‖C) = {f ∪ g • f ∈ lstart(B) ∧ g ∈ lstart(C)},
– gstart(B‖C) = gstart(B) = gstart(C) as B and C are compatible,
– internal(B‖C) = internal(B)] internal(C),
– ((ιn(s), g), ιn(a), (ιn(s

′), g′)) ∈ ltrans(B‖C) iff ((s, g), a, (s′, g′)) ∈ ltrans(B)
when n = 1 and ((s, g), a, (s′, g′)) ∈ ltrans(C) when n = 2, and

– env(A) = Id , where Id is the identity relation.

Essentially this construction splits both the processes and the internal state space of
the automaton into left and right processes and states, respectively. An invariant of any
composed automaton is that left processes always act on left internal states, and vice
versa. For the parallel composition B‖C, we typically refer to the automaton B as the
left automaton andC as the right automaton. We use L to denote the projection function

that takes a combined state of B‖C and projects just to the part from the left automata
B, and similarly forR and C.

Henceforth, we make the environment transitions of interference automata explicit.
We introduce the notation IBA for an interference automatonAwhere the environment
is the relation I , i.e. env(I BA) = I . We write A when env(A) = Id and refer to such
A as an interference-free automaton. Note that we therefore have Id BA = A.

In Definition 4, the environment of the composed interference automaton (IC B
B)‖(IBBC) is set to be the identity relation Id , which is possible under the assumption
that the local transitions of IC B B imply the environment transitions of C (namely
IB), and vice versa. To use this assumption in our proofs, we introduce the notion
of a guarantee condition (inspired by rely/guarantee reasoning [12]). We say that an
automaton I BB guarantees a relation J when

∀s ∈ reach(I BB), a ∈ actions(I BB), p ∈ PB • s
a,p−−→IBB s′ =⇒ (sg, s

′
g) ∈ J.

This states that every reachable transition in I B B modifies the global state only as
permitted by J . In other words, if ICBB guarantees IB and IBBC guarantees IC , then
this ensures that every local transition of IC B B can be matched with a environment
step of IB B C, and vice versa.

As mentioned an (interference-free) interference automatonA represents the actions
of zero or more transactions of type A. Similarly the parallel composition A‖A also
represents zero or more transactions of type A, with some labelled as from the left
A and others from the right. In other words, parallel composition is idempotent for
interference free interference automata. This can be shown via a re-labelling of process
identifiers, and has been verified in Isabelle (see [1]).

Theorem 2. traces(A‖A) = traces(A)

We will use this theorem in the proof of HyTML to split the interference-free IOA
specification TMS2 into the parallel composition of two TMS2 components. Thus, to
show that HyTML is a trace refinement of TMS2, it will be sufficient to show that the
software and hardware components individually are refinements of TMS2.

6 Simulation proofs for parallel interference automata

For modular verification of a parallel interference automaton, we provide a way to build
a simulation of a parallel composition from individual weak simulations of the sub-
components. For example, in HyTML we consider the two concrete fast/slow paths, and
prove both of them TMS2 independently. By Theorem 2, we have that traces(TMS2) =
traces(TMS2‖TMS2), and hence, for modular proofs of opacity, it is sufficient to con-
sider abstract specifications of the form A‖A.

Consider interference automata IC B B and IB B C, and an abstract interference
automaton IA BA. Assume we have weak simulations R and S where

IA BA weakly simulates IC BB and, IA BA weakly simulates IB B C.

We aim to develop conditions such that R‖S is a full (non-weak) simulation be-
tween A‖A and B‖C, where

R‖S = {(s, s′) • (L(s),L(s′)) ∈ R ∧ (R(s),R(s′)) ∈ S}.

We now describe the weak simulationsR and S, including the state projection func-
tions L andR, and their interaction with the non-weak simulation of the whole system.
Graphically, we can visualise weak simulations R and S as

π1 ε π2

π2
and

ε γ1 ε

γ1

where the local states of the left (right) automaton ICBB (symmetrically IBBC) com-
bined with the global state is represented by (). Thus, the left (right) simulation
R (S) is over (). Each state of the parallel automatonB‖C, denoted , contains
both left and right processes, their local states, as well as the shared global state.

For the weak simulationsR and S, we must construct a simulationR‖S of the form:

π1 γ1 π2

γ1 π2

where the environment step ε of R must correspond to the appropriate program step
of S, namely γ1. However, we cannot prove this without some additional properties,
because we do not know how actions of IB BC affect R, and similarly for IC BB and
S. Note that establishing environment step correspondence (which would turn R and S
into non-weak forward simulations) would not help. For example, consider R′:

π1 ε π2

εA π2

Because we have no way of guaranteeing that the abstract state after εA in R′ is the
same as the abstract state after γ1 in S, we cannot naively construct a parallel forward
simulation. Instead we use non-interference conditions which guarantee that C and B
do not affect R and S, respectively. In essence, this enables us to ‘stitch’ together the
two simulations R and S into a simulation of the parallel composition. In other words,
the simulation relations used in both component proofs are preserved by the effects of
both components’ actions on the global state.

Definition 5. The condition nonInterferenceLeft(R,S,B,C,A) holds iff

∀cl, cg, al, ag, πC , πA, p •
L(cl, cg) ∈ reach(B) ∧ L(al, ag) ∈ reach(A) ∧R(cl, cg) ∈ reach(C)

∧ (R(cl, cg),R(al, ag)) ∈ R ∧ (L(cl, cg),L(al, ag)) ∈ S

∧ L(cl, cg)
πB ,p−−−→B L(c′l, c′g) ∧ L(al, ag)

πA,p−−−→A L(a′l, a′g)
=⇒ (R(cl, c′g),R(al, a′g)) ∈ R.

where πA and πC are corresponding actions. Symmetrically, we define a condition
nonInterferenceRight(R,S,B,C,A).

The reason these conditions are needed is that our guarantee conditions talk purely
about the state changes caused by the automaton itself, but not about the simulation
relations between automata. While these non-interference conditions at first look com-
plicated due to the amount of notation involved, notice that the local state cl and al does
not change between the pre- and post-condition for the simulation relationR. What this
means is that we are really showing only that effects contained within the guarantee
conditions do not affect the simulation relation, which means that these conditions turn
out to be quite straightforward to prove in practice, as will be seen in Section 7.

Attempting to remove these non-interference conditions to make the method fully
compositional might not be worthwhile in practice, as doing so would require full
(rather than weak) simulations for each of the components. This proves to be diffi-
cult, as it requires induction on the amount of interference within the simulation proof
of each component, and it would preclude easy re-use of existing opacity proofs for the
fast and slow paths.

We can now state our simulation theorem for parallel interference automata. The
theorem states thatR‖S can be strengthened to a forward simulation betweenB‖C and
A‖A provided R (S) is a weak simulation between B (C) and A, and certain guarantee
and non-interference conditions hold. This theorem has been verified in Isabelle [1].

Theorem 3 (Decomposition). For two compatible interference automata B and C, if
R is a weak forward simulation between IA BA and IC BB, and S is a weak forward
simulation between IA BA and IB B C, where

– IB B C guarantees Ic , and IC BB guarantees IB ,
– nonInterferenceRight(R,S, IC BB, IB B C, IA BA),
– nonInterferenceLeft(R,S, IC BB, IB B C, IA BA).

Then R‖S is a (non-weak) forward simulation between B‖C and A‖A, and hence
traces(B‖C) ⊆ traces(A‖A).

7 HyTML Proof and Mechanisation

In this section we discuss the proof of the HyTML algorithm, and its mechanisa-
tion in Isabelle. HyTML is equal to SP‖FP where SP and FP are the software slow-
path and hardware fast-path components, respectively. Recall that we wish to prove
traces(HyTML) ⊆ traces(TMS2). We prove that TMS2‖TMS2 weakly simulates
HyTML via Theorem 3, and thus traces(HyTML) ⊆ traces(TMS2‖TMS2). By Theo-
rem 2, traces(TMS2) = traces(TMS2‖TMS2), and hence the result follows by transi-
tivity of ⊆.

We start by defining environment relations for all the automata involved. The rela-
tion for the interference SP receives from FP, IFP is

Id ∪ {(g, g′) • (odd(glb) −→ g = g′) ∧ ctr ′ ≥ ctr ∧ glb′ = glb

∧ (even(glb) ∧ store 6= store ′ −→ ctr ′ > ctr)}.

In words, the fast-path guarantees that: (1) If glb is odd, then it will not affect the global
state at all. (2) If glb is even, then any change to the store implies ctr increased. (3)
Even if the store remained the same, ctr may still increase, and, (4) The fast path never
modifies glb (it only subscribes to it).

SP makes a much weaker guarantee to the FP; ISP guarantees that

{(g, g′) • ctr ′ = ctr ∧ glb′ ≥ glb}.
In words, this means that the software only guarantees that it will not change the ctr
variable, and that it only ever increments glb.

The interference from other TMS2 components on TMS2 is given by ITMS2, which
simply allows new stores to be added to the stores sequence (see (R1) in Section 3).

The proof that TMS2‖TMS2 weakly simulates HyTML is split into several sub-
parts: First, we show weak simulation of both IFP B SP and ISP B FP against ITMS2 B
TMS2. The fast-path proof is much simpler than the slow-path, as the hardware transac-
tional memory abstraction performs most of the fine-grained steps of atomically, which
greatly simplifies the verification process. Third, we verify the guarantee conditions
from Section 4. Fourth, we verify the non-interference properties in Section 4.

Mechanisation. For HyTM implementations we further specialise interference automata
to model the components of a hybrid TM implementation. The set of process identifiers
become transaction identifiers, and assuming L and V represent the set of all addresses
and values, the set of external actions of a transactional automaton A are fixed, and
given by:

externalT = {BeginI,BeginR,CommitI,CommitR,Abort,WriteR}
∪ {ReadI(a) | a ∈ L} ∪ {ReadR(v) | v ∈ V }
∪ {WriteI(a, v) | (a, v) ∈ L× V }

As mentioned in Section 2, we base our implementation of the underlying hardware
transactional memory on Intel’s TSX extensions. Therefore, we implement transitions
for the XBegin, XEnd and XAbort actions within the hardware automaton. We as-
sume that each hardware transaction is equipped with read and write sets represent-
ing the values held in the local processors cache. A simple validation predicate which
checks if the values in the read and write set match those in main memory models
the cache line invalidation used in the actual hardware. While this validation is more
fine-grained than what the actual hardware can do (as it works on the level of cache
lines), because the fast path automaton can abort non-deterministically at anytime, all
the possible behaviour of the hardware is captured and shown to be opaque. Overly
coarse-grained validation might force us to abort when the hardware could succeed,
so we err on the side of caution. This behaviour should be generic enough to capture
the behaviour of any reasonable hardware TM implementation, not just Intel’s TSX. In
particular, we do not assume that non-transactional reads and writes can occur within
hardware transactions.

Proof in Isabelle. For full-details of our proofs, we refer the interested reader to our
Isabelle theories. Here, we briefly comment on the complexity of our mechanisation. In
Isabelle, formalising and proving the correctness of the TML slow-path required about
2900 lines, while formalising and proving the correctness of the hardware fast-path re-

quired around 600 lines. Proving the non-interference and guarantee conditions required
only 450 lines; with the non-interference conditions taking 300 lines and the guarantee
conditions requiring only around 70 lines. The formalisation of the transactional au-
tomata and requisite theorems took around 2000 lines of Isabelle. Although these are
not perfect metrics, they show that the majority of the work was in proving that both
HyTM paths satisfy TMS2. Once these individual proofs were completed, bringing the
proofs together was fairly comparatively straightforward once the necessary theorems
had been set up.

Proving that both HyTM paths are TMS2 is fairly mechanical, and involves de-
tailed line-by-line simulations—showing that every possible step preserves the simu-
lation relation even under interference from every other possible step. Our method en-
abled adapting our existing work verifying software TML and adapting it to the HyTM
case. For simulation proofs of this nature, the number of sub-goals grows geometrically
with the number of lines in the algorithm, whereas the non-interference conditions only
grow linearly in the modular case. However, we believe that both the conceptual bene-
fits of splitting the proof into its logical sub-components, as well as the ability to re-use
existing proofs are the main benefits to modularisation.

Our experience with Isabelle for these proofs was very positive. The powerful tools
and tactics within Isabelle were very useful for automating many of the cases produced
by the simulation rules.

8 Conclusion

In this paper we have developed a fully mechanised modular proof method for verifying
opacity of HyTM algorithms. Verification of opacity has received considerable interest
in recent years (see e.g., [13,5]). We leverage a simulation-based approach against the
TMS2 specification [7] as well as the known result that TMS2 is itself opaque [15]. Our
method supports adapting existing proofs of opacity (via TMS2) for both the fast- and
slow-path into a HyTM system with only minor modifications to such existing proofs.

We develop the novel notion of interference automata, as well as notions of parallel
composition and weak simulation for them. These concepts give us a proof method for
combining weak simulations on individual interference automata into a single proof of
trace refinement for their parallel composition. All of our meta theory has been checked
using the Isabelle theorem prover. To show applicability of our methodology in the con-
text of HyTM algorithms, we develop a novel hybrid extension to Dalessandro et al.’s
TML [4], where we apply a 2-counter subscription mechanism [3]. Our new algorithm
allows more concurrency than the original TML as it allows parallel hardware writers.

We conjecture the possibility of further optimisations to the algorithm by removing
redundant checks on glb and ctr in the slow-path read operation if loct is odd. It may
also be possible to replace the dccs operation by first acquiring a local value of ctr
before acquiring the mutex lock glb using a compare and swap and then checking if
the local value of ctr is still valid. However, we have chosen to present a conceptually
simpler algorithm that nevertheless demonstrates our proof method. There are more
complex HyTMs [3,2,18], some with more than two types of transactions; we leave
verification of these for future work.

Acknowledgements. We thank Simon Doherty for his helpful comments on this work.
Funding is provided by EPSRC grant EP/N016661/1.

References

1. Armstrong, A., Dongol, B.: Isabelle files for modularising opacity verification for
hybrid transactional memory (2016), http://www.brunel.ac.uk/˜csstbmd/
Isabelle/HybridTML.html

2. Calciu, I., Gottschlich, J., Shpeisman, T., Pokam, G., Herlihy, M.: Invyswell: A hybrid trans-
actional memory for haswell’s restricted transactional memory. In: PACT. pp. 187–200.
ACM, New York, NY, USA (2014)

3. Dalessandro, L., Carouge, F., White, S., Lev, Y., Moir, M., Scott, M.L., Spear, M.F.: Hy-
brid NOrec: A case study in the effectiveness of best effort hardware transactional memory.
SIGPLAN Not. 46(3), 39–52 (Mar 2011)

4. Dalessandro, L., Dice, D., Scott, M.L., Shavit, N., Spear, M.F.: Transactional mutex locks.
In: D’Ambra, P., Guarracino, M.R., Talia, D. (eds.) Euro-Par (2). LNCS, vol. 6272, pp. 2–13.
Springer (2010)

5. Derrick, J., Dongol, B., Schellhorn, G., Travkin, O., Wehrheim, H.: Verifying opacity of a
transactional mutex lock. In: FM. LNCS, vol. 9109, pp. 161–177. Springer (2015)

6. Doherty, S., Dongol, B., Derrick, J., Schellhorn, G., Wehrheim, H.: Proving opacity of a
pessimistic STM. In: Jiménez, E. (ed.) OPODIS (2016), to appear

7. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and verifying
transactional memory. Formal Asp. Comput. 25(5), 769–799 (2013)

8. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Chatterjee, S.,
Scott, M.L. (eds.) PPOPP. pp. 175–184. ACM (2008)

9. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory. Synthesis Lectures on Dis-
tributed Computing Theory, Morgan & Claypool Publishers (2010)

10. Harris, T., Larus, J.R., Rajwar, R.: Transactional Memory, 2nd edition. Synthesis Lectures
on Computer Architecture, Morgan & Claypool Publishers (2010)

11. Intel: Intel 64 and IA-32 Architectures Software Developers Manual (2016)
12. Jones, C.B.: Tentative steps toward a development method for interfering programs. ACM

Trans. Program. Lang. Syst. 5(4), 596–619 (1983)
13. Lesani, M.: On the Correctness of Transactional Memory Algorithms. Ph.D. thesis, UCLA

(2014)
14. Lesani, M., Luchangco, V., Moir, M.: A framework for formally verifying software transac-

tional memory algorithms. In: CONCUR. LNCS, vol. 7454, pp. 516–530. Springer (2012)
15. Lesani, M., Luchangco, V., Moir, M.: Putting opacity in its place. In: Workshop on the The-

ory of Transactional Memory (2012)
16. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
17. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algorithms. In:

PODC. pp. 137–151. ACM (1987)
18. Matveev, A., Shavit, N.: Reduced hardware norec: A safe and scalable hybrid transactional

memory. SIGPLAN Not. 50(4), 59–71 (Mar 2015)
19. Paulson, L.C.: Isabelle - A Generic Theorem Prover (with a contribution by T. Nipkow),

LNCS, vol. 828. Springer (1994)
20. de Roever, W.P., de Boer, F.S., Hannemann, U., Hooman, J., Lakhnech, Y., Poel, M., Zwiers,

J.: Concurrency Verification: Introduction to Compositional and Noncompositional Methods,
Cambridge Tracts in Theo. Comp. Sci., vol. 54. Cambridge University Press (2001)

http://www.brunel.ac.uk/~csstbmd/Isabelle/HybridTML.html
http://www.brunel.ac.uk/~csstbmd/Isabelle/HybridTML.html

	Modularising Opacity Verification for Hybrid Transactional Memory

