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Abstract. Industrial Control Systems (ICSs) are computers managing
many critical infrastructures like power plants, aeroplanes, production
lines, etc. While ICS were specialised hardware circuits without inter-
net connection in former times, they are nowadays commodity comput-
ers with network connection, TCP/IP stack, and a full operating system,
making them vulnerable to common attacks. The defensive mechanisms,
however, are still lacking behind due to the strong requirement for avail-
ability of ICSs which prohibits to deploy typical countermeasures like
e.g. an anti-virus. New techniques are needed to defend these systems
under their distinct prerequisites.
We introduce the concept of a malware-tolerant ICS network architecture
which can still operate securely even when some components are entirely
compromised by an attacker. This was done by replacing all single point-
of-failures with multiple components verifying each other. We provide
ProVerif proofs to show the correctness of the network protocol one-by-
one assuming each device compromised.
Furthermore, we added a self-healing mechanism based on invariants to
the architecture on network as well as system level which will reset failed
or compromised systems. To demonstrate system level self-healing, we
implemented it on top of FreeRTOS and ARM TrustZone. The network
level self-healing was incorporated into the ProVerif proofs by formally
verifying the absence of type 1 (falsely identified attacks) and type 2
errors (missed attacks).

Keywords: Malware Tolerance, Self-Healing, Industrial Control System
(ICS), Security

1 Introduction

Industrial Control Systems (ICSs) received a lot of media attention with the
Stuxnet attack [18]. But there are also more examples like Duqu, Flame, Red Oc-
tober, MiniDuke [31], Gauss, Energetic Bear, Epic Turla [15], and the attack on
a German steel mill [4].

ICSs are sensor-actuator networks that control physical systems. The core
components are so-called Programmable Logic Controllers (PLCs), which nowa-
days are essentially commodity computers with specialised software to satisfy the
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requirement for high availability and real-time operation. Due to these require-
ments, they cannot run common defensive measures like an anti-virus. Defensive
mechanisms have, thus, to be deployed (less effective) elsewhere in the network.
Moreover, PLCs have a long lifetime (10-20 years) and are not usually patched
to avoid downtime and bricking the devices. [26] A corrupted patch can render
a PLC unusable possibly leading to a shutdown of part of the network which is
potentially life-threatening. In combination with historic protocols which do not
even offer basic authentication (like the Modbus protocol [10]) these systems fall
in the hands of attackers as soon as the attacker has network access.

Governmental organisations [13, 26] recommend a strategy called “defence in
depth” which tries to deploy defences at every layer of the network. We want to
go one step further and, instead of only defending problematic devices, we aim to
distribute trust over several independent components in a way that an individual
component infected with malware cannot break the security policy. We call this
approach malware-tolerance. Simply put, we want to remove every single point-
of-failure at critical intersections throughout the entire ICS architecture. Our
secondary goal is to enable the architecture to automatically repair ordinary and
malicious faults, so-called self-healing. With this approach, it is also possible to
recover from corrupted or incomplete patches.

Contributions:

– We design the architecture of a malware-tolerant ICS that has no single
point-of-failure at critical intersection points and can self-heal failed or (ma-
liciously) misbehaving PLCs.

– We also formally prove the network architecture with state-of-the-art proto-
col verifier ProVerif1. The proofs can be found online2.

– To achieve our architecture, we also develop a self-healing mechanism which
detects incorrect behaviour by verifying invariants, and recovers to a good
state. We adjusted FreeRTOS3 to include our mechanism and released our
implementation as open-source4.

2 Overview

2.1 Traditional Industrial Control System Architecture

Traditional ICSs separate the network into zones which are isolated from each
other by firewalls resulting in a layered network with Intrusion Detection System
(IDS) at intersection points (defence in depth). The innermost part of an ICS is
called control loop and consists of a PLC as well as sensors and actuators. This
part of the system is the actual cyber-physical system and has hardly any (often
no) defensive measures apart from the firewall in front of it due to availability
1 http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
2 https://github.com/mdenzel/malware-tolerant_ICS_proofs
3 www.freertos.org
4 https://github.com/mdenzel/self-healing_FreeRTOS
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and real-time constraints. The control loop can be at a different location (field
site) than the control centre. An example for such a control loop would be a
temperature control system with e.g. some water tanks which should neither
freeze nor boil. The PLC would read the temperature from a sensor and adjust
the heating/cooling of the water to maintain a temperature between 0 to 100◦C.

2.2 Assumptions

1. We assume a Dolev-Yao attacker [8] on the network who interacts with
software-side technologies. The attacker has no physical access to the facil-
ities and cannot change cabling or remotely introduce electrical signals di-
rectly into wires (apart from assumption 2).

2. Additionally, the attacker can choose one5 device (except the actuator) of
which he gains full control − i.e. also access to corresponding cryptographic
keys and “software” access to the physical wires connected to the chosen de-
vice. If the attacker chooses e.g. a PLC, he has access to the connected sen-
sors, can read their values, but cannot change wiring or sensors. The at-
tacker can manipulate the hardware of a chosen device once (during produc-
tion) but has no physical access afterwards any more. If the chosen device
has network access, the attacker can update software and firmware.

3. We are initially not aware which device the attacker chose.
4. We assume the 2-out-of-3 circuit is hardware-only and in scope of verification.
5. Attacks on cryptography and phishing attacks are out of scope.
6. PLCs and sensors work synchronously or are buffered.

2.3 Proposed Architecture

Our approach is an extension to already existent firewalls, network zones, IDSs
etc. and changes the control loop at the field site. Figure 1 displays our infra-
structure with the changes being highlighted in red. Our concept adds hardware
in form of reset-circuits; data by images and policies; and software in form of a
self-healing Real-Time Operating System (RTOS) and the netboot firmware of
the reset-chip. Additionally, we leverage existent redundancy of PLCs and a 2-
out-of-3 (2oo3) circuit which are already in place in some ICS facilities.

Basis of the malware-tolerant architecture are three diverse PLCs combined
with trusted computing. The 2-out-of-3 hardware circuit combines the results of
the PLCs and forward them to the actuator. That means none of the PLCs has
to be invulnerable to attacks or failures, it is enough if two of the three work.
The PLCs must differ in their soft- as well as hardware which we achieve with a
special kind of N-variant system and diverse hardware (details in section 4.2).

We also added self-healing functionality that can recover failed and compro-
mised PLCs with (1) a RTOS based on ARM TrustZone that can reset user level
tasks and (2) a network protocol and reset-circuits to defend against attacks on
system level and on the Trusted Execution Environment (TEE).
5 We only show the basic case of an attacker compromising one system. Tolerating
attacks on multiple systems is more challenging but similarly possible.
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Fig. 1: Proposed Industrial Control System Architecture

Self-Healing RTOS: To demonstrate the RTOS, we created a proof-of-concept
implementation based on ARM TrustZone and the FreeRTOS operating system
which we ported to ARM TrustZone to protect critical functionality like schedul-
ing and interrupts. ARM TrustZone, is a TEE which consists of two separated
environments: the secure world and the normal world. While the secure world
has full access to the system, the normal world is restricted in its capabilities.
The switch between the two worlds is handled by the so-called monitor. Trust-
Zone chips usually come with the TrustZone Interrupt Controller (TZIC) and
functionality to manage memory, i.e. a TrustZone-aware Memory Management
Unit, routines to forbid Direct Memory Access, and so on. We refer to the ARM
documentation [2] for more details.

Figure 2 shows the control flow of our TrustZone-aware RTOS. Periodically,
the TZIC will generate a timer interrupt (1.) which is setup as an Fast Inter-
rupt (FIQ) trapping into monitor mode (2.). The monitor will save the context
and jump to the interrupt handler (3.) which will, for timer interrupts, call the
FreeRTOS scheduler (4.). After scheduler (5.) and interrupt handler (6.) return,
the next task is determined. At this point, the monitor will invoke a detection
routine (7.). To reveal faults or malicious behaviour of certain tasks, the detec-
tion routine checks various system variables and external values (e.g. sensor val-
ues) against invariants which are stored in form of a policy, cryptographically
signed, on at least two servers. These invariants are implicitly given by the set-
points the operator of the system placed. For our water tank example, the oper-
ator could e.g. set the temperature t to 0 to 100◦C, forbid heating for t > 50◦C,
and forbid cooling for t < 50◦C. If the temperature is below or above this range
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Fig. 2: TrustZone-aware Real-Time Operating System

and the task does not enable the actuator, our task is faulty. The result of the
detection routine is returned to the monitor (8.) which then (9.) either runs the
task or dispatches a restoration routine if the task was misbehaving. The restora-
tion routine only runs during the time-slice of the misbehaving task which en-
sures availability of the rest of the system including other tasks and operating
system functionality. The restoration terminates the task and loads an image of
the original task from a protected memory region inside the secure world. Lastly,
the task is added to the scheduler again. The critical steps are run inside the
TrustZone secure world to protect them from manipulation.

To avoid unnecessary resets due to false positives, we created a specification-
based detection technique. These have a lower rate of false alarms than non-
specification-based techniques but might miss some attacks. [24] If the presented
online self-healing mechanism fails, the network level self-healing approach (see
following paragraph) will restore the particular PLC but at the cost of a restart.

Reset-Circuits and Network Protocol: Our reset-circuits consist of a net-
work boot chip (e.g. iPXE6) and a logical circuit to control resets (Fig. 3). A
low frequency clock signal restricts resets to a certain interval. Optionally, the
inputs to the circuit (label 1. in Fig. 3) can be replaced with flipflops to enable
synchronising the PLCs. Circuits for PLC2 and PLC3 can be similarly derived.

Since network-based detection indicates that system level self-healing (taking
place beforehand) failed, we intentionally clear the state to recover from the
attack. We re-initialise state either by discovery or by requesting it from the other
PLCs. In our temperature maintenance example, discovering the temperature
and adjusting the actuator is straight forward. For more complex scenarios, the
reset PLC would request the state from the other two PLCs and compare it.

6 www.ipxe.org
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Fig. 3: Reset-circuit for PLC1
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Fig. 4: Malware-tolerant, self-healing protocol

The full message sequence chart of our malware-tolerant, self-healing net-
work protocol is presented in Fig. 4: Every PLC reads the current sensor value
s (for simplicity we drew only one sensor but multiple sensors are possible) and
computes the adjustment ai of the actuator. This is sent to the 2-out-of-3 cir-
cuit which forwards the end result a to the actuator. Parallel, each reset-circuit
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receives the three response values of the PLCs, each checks if a reset for its cor-
responding PLC should happen (r ?

= 1), and resets it if this is the case. Reboot-
ing PLCs load the netboot image from the network. The figure displays a reset
of PLC1 as an example.

3 Security Analysis and Results

3.1 ProVerif Proofs

To give evidence of the security features of our architecture, we utilised ProVerif
– a state-of-the-art protocol verifier – to test our network protocol. We modelled
the protocol as shown in Fig. 4 for various configurations (see Table 1) where
we grant the attacker control over different sets of devices.

In order to reason about malware-tolerant systems, we analysed the system
based on multiple Trusted Computing Bases (TCBs). A TCB is the minimum
set of honest components needed to secure the system; multiple such sets can
exist. A system is malware-tolerant if there are at least two disjoint TCBs that
provide the same property. Each independent component of the system – i.e.
mostly entire devices as e.g. the CPU depends on the computer and is not an
independent component – can be part of multiple TCBs.

With this notation, we can reason about a system based on TCBs. The
system is secure if any TCBi is secure. E.g. if device d1 and d2 are part of
TCB1 and device d2 and d3 are part of TCB2, then the system is secure if
(d1 ∧ d2) ∨ (d2 ∧ d3) is secure. As we can see here, d2 is part of all TCBs and
is, thus, the single point-of-failure. The system is not malware-tolerant because
there are no disjoint TCBs (TCB1 and TCB2 overlap).

The TCB model of our proposed ICS is shown in expression 1. Ri stands for
the reset-circuit of PLC number i. Since Ri controls PLCi, we have to consider
(Ri, PLCi) pairs as they are the smallest subset of independent components.
Our system is malware tolerant, because no (Ri, PLCi) pair is part of all TCBs.

TCB1 = {(R1, PLC1), (R2, PLC2)} .
TCB2 = {(R1, PLC1), (R3, PLC3)} .
TCB3 = {(R2, PLC2), (R3, PLC3)} .

(1)

We formally verified our architecture by testing five properties of our proto-
col (Fig. 4) with ProVerif (results shown in Table 1):

1./2. 1st/2nd iteration: As ProVerif cannot verify loops, we modelled two iterations
of the protocol. These two iterations are sufficient, since computations are
independent from each other and resets only affect the next loop iteration.
For each iteration, we tested if the actuator received the correct value.

3./4. Self-Healing: The self-healing column in Table 1 consists of two proofs; the
absence of type I errors and the absence of type II errors.
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– Type I error (false positive): Regarding our protocol, a false positive
is the case where we reset an honest PLC. In ProVerif this has to be
expressed as: For all reset events of PLCi, PLCi misbehaved.
At first, this seems to not prove that if PLCi misbehaved, a reset happens
but in combination with the type II error and knowing that reset is a
binary event (it can either happen or not happen), we prove the property.

– Type II error (false negative): False negative refers to the case where
a misbehaving PLC is not reset (missed attack). In ProVerif: For all
not_reset events of PLCi, PLCi behaved correctly.
Again, it seems that if PLCi is honest, no reset happens is not proven.
This is applicable, similar to before, by the absence of type I errors.

5. End reached: We tested if the protocol runs through. This is done in ProVerif
by detecting the deliberate leak of a secret value at the end of the protocol.

№ Compromised Devices 1st Iteration 2nd Iteration Self-Healing End reached
(1.) (2.) (3.) (4.) (5.)

1 None 3 3 3 3 3
2 PLC1 3 3 3 3 3
3 PLC2 3 3 3 3 3
4 PLC3 3 3 3 3 3
5 2oo3 3
6 R1 3 3 3
7 R2 3 3 3
8 R3 3 3 3
9 PLC1, R1 3 3 3
10 PLC2, R2 3 3 3
11 PLC3, R3 3 3 3
12 PLC1, R2 3 3
13 PLC1, PLC2 3
14 PLC1, 2oo3 3
15 2oo3, R1 3
16 R1, R2 3 3
17 PLC1−3 3
18 PLC1−2, 2oo3 3
19 PLC1, 2oo3, R1 3
20 2oo3, R1−2 3
21 PLC1, R1−2 3 3
22 PLC1, R2−3 3 3
23 R1−3 3 3
24 All 3

Table 1: ProVerif Results

The proofs (Table 1) show that the physical system, i.e. the actuator, is sup-
plied with correct values for the cases where the adversary controls one device
(cases 2–4 and 6–8) or one (PLCi, Reseti)-pair (cases 9–11). Self-healing works
for one compromised PLC but functional reset-circuits (cases 2–4). Also, every-
thing works if there is no attack (case 1). We tested more hypothetical cases as
sanity checks, e.g. the case where the attacker can physically change the 2-out-
of-3 circuit (case 5) which is a validation of our assumption. The expected result
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is that the protocol fails since we hand the asset to the attacker from the very
beginning. Case 24 is a special sanity check where we give the adversary control
over literally everything. Both cases (case 5 and 24) fail as predicted.

3.2 Evaluation of Self-Healing FreeRTOS

Since we are not aware of any Common Vulnerabilities and Exposures (CVE)
for FreeRTOS, we could not test any real-world attacks against our extended
FreeRTOS operating system (a broader analysis of attacks follows in section 4.1).

To test the system level self-healing capability of our proof-of-concept im-
plementation, we introduced a buffer overflow in our Input/Output (I/O) driver
using the vulnerable C-function strcpy. We exploited this vulnerability by over-
flowing the buffer and overwriting the settings in the PLC. We chose this attack
as it is the most common vulnerability in C and is similar to a range of attacks,
e.g. format string attacks and return-oriented-programming.

Our simplified detection routine checks that the settings are within an ac-
cepted range and otherwise triggers restoration. The results show that the task
and the temperature driver are reset to their original if the maximum tempera-
ture is changed to values outside the range (for more details see code of adjusted
FreeRTOS implementation).

3.3 Performance Analysis of TrustZone

We conducted a performance analysis of the TrustZone world switch on a Free-
Scale i.MX53 Quick Start Board with 1 GB DDR3 SDRAM running a 1 GHz
ARM Cortex-A8. For this, we measured the time of 1531 task switches on a sys-
tem running four tasks and FreeRTOS. The measurements start from the timer
interrupt until restoring the context of the next task. This experiment was exe-
cuted twice, once with and once without TrustZone. To measure the time accu-
rately, we read the CCNT-register which stores the cycle count. The overhead

Fig. 5: Box-and-whisker diagram of
time for task switches

Value Without
TrustZone

With
TrustZone

Maximum (97± 1)µs (126± 1) µs

75%-Quantile (54± 1)µs (84± 1)µs

Mean (16± 1)µs (45± 1)µs

25%-Quantile (14± 1)µs (42± 1)µs

Minimum (11± 1)µs (39± 1) µs

Table 2: Data values of the Box-and-
whisker diagram in Fig. 5
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of our timing function calls was 0.9 µs, allowing us an accuracy of microseconds.
The average overhead of a TrustZone task switch was 29 µs. Figure 5 presents
the overhead as box-and-whisker diagram and the values are listed in Table 2.

A TrustZone task switch in comparison to a non-TrustZone one is equal to
3.6 malloc system calls (average time for malloc on our system: 8 µs) overhead;
in other words memory management overhead is comparable to TrustZone.

4 Discussion

4.1 Attacks

We examine how our architecture behaves in different attack classes.

– Attacks that change invariants: Let us assume an adversary compromises a
PLC but changes some invariants – e.g. he overflows a buffer and inserts a
new task but the policy states that there are only N tasks. The system level
self-healing will immediately reset the tasks, removing the malicious task.
This type of defence was demonstrated in a simple fashion by the buffer
overflow above (section 3.2).

– Stealthy attacks (Advanced Persistent Threats (APTs), backdoors, rootkits,
trojans etc.): Suppose an attacker manages to deploy a stealthy rootkit on
a PLC without being detected. He can now manipulate the PLC as he likes,
but the other two PLCs continue to function correctly. If the rogue PLC
affects outputs, its reset-circuit will notice this and reinstall the PLC, thus
removing the rootkit. If the rootkit resides in the normal world, it will be
removed even earlier by the system level self-healing.

– Firmware/hardware attacks: Suppose the attacker deploys a firmware or
hardware rootkit in a PLC or in a reset-circuit, then software-based self-
healing becomes impossible. However, if the other two PLCs remain oper-
ational, then manipulations of outputs are still detected and outvoted by
those other two PLCs (through the 2-out-of-3 circuit).

– Attacks on network protocol flaws (e.g. Modbus): Since all PLCs presum-
ably have to support the same protocols, exploits targeting the protocol itself
(in contrast to its implementation) are not prevented. To defend against these
attacks, one has to modify the protocol standard which is beyond our scope.

– Attacks on the policy/administrator account: We rely on the information in
the (cryptographically signed) policy. If the account in charge of it is com-
promised, the adversary can change the policy freely. To prevent this, trusted
input techniques as in [33] should be utilised.

– Denial of Service (DoS): Since we deliberately grant the attacker full control
over some devices (see assumption 2 section 2.2), he already has the ability
to turn these devices off, but we aim at not enabling further DoS attacks.

4.2 Diversity of PLCs

It is crucial for our architecture that PLCs are diverse in their software as well
as hardware. To achieve this, we suggest to use different reset-chips and differ-
ent CPU architectures, e.g. ARM TrustZone, Intel Software Guard Extensions
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(SGX), and a PowerPC with a TPM chip. Since the architectures are different,
an adversary has to craft different exploits, however, he can still use the same
exploit idea to attack the software of all PLCs.

N-version programming was shown to be ineffective against malicious at-
tacks [5, 23] as people make correlated mistakes. Hence, we suggest to use a form
of artificial N-variant systems where N systems are crafted such that they are
distinct by design. [32] Cox et al. [7] used address space partitioning and instruc-
tion set tagging to create different programs that cannot be compromised with
the same exploit. Salamat et al. [22] proposed to invert the stack and demon-
strated this by a special compiler. There is also a compiler which splits stack
into data and control structures. [17]

By utilising N-variant system techniques, we can artificially create distinct
software, that cannot be compromised with the same exploit idea – e.g. a RTOS
with the stack growing downwards, one with the stack growing upwards, and
one with separate data and control stack cannot all be exploited with the same
stack-based attack. If we additionally require each netboot image to be diverse
from the last one, similar to [25], an attacker would need to learn the properties
of the new image to compromise it. That means, it is considerably harder for an
attacker to compromise two PLCs at the same time.

4.3 Implications

The practical implications of our architecture for the real world are that an
attacker would have to find twice the amount of vulnerabilities for an ICS since
he has to compromise two different devices (e.g. an ARM TrustZone and an Intel
SGX PLC). Hence, our system would double the cost for the attacker.

The cost for the defender will not double. Considering that a lot of companies
already have redundant PLCs, the hardware cost for the company would roughly
stay the same. Diverse software versions can be created similar to the artificial N-
variant systems. As the special compilers used to generate these variants [7, 22]
demonstrate, software can be automatically diversified except for architecture
dependent code. In our proof-of-concept implementation based on FreeRTOS
7.8% is platform specific code (780 lines Assembly; 9956 lines C-code)7.

Another advantage is that network-based self-healing prevents bricking PLCs.
If a PLC is partially flashed with an image and crashes, it would automatically
reboot triggering the netboot chip to reinstall the image. Thus, patching of the
PLCs can now be done conveniently by central image servers with signed images.

5 Related Work and Comparison

Industrial Control Systems: The ICS architecture was already analysed in
general: Virvilis et al. [31] studied a variety of APT attacks in depth and their
countermeasures. They suggest proper patch management, network segregation,

7 measured with the CLOC Linux tool
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white-listing of outgoing connections, filtering dynamic content execution, and
employing trusted computing. Fitzek et al. combined ARM TrustZone with an
ICS but relied on a single TCB. [9] Another new TEE is Intel SGX [12] but we
are not aware of any studies considering APTs or ICSs.

On the defence side, there is the term secure control, i.e. controlling a cyber-
physical system while preventing attacks. [6] Also governmental organisations al-
ready approached the topic [13, 26] focusing on thoroughly enhancing every layer
of the architecture, so-called Defence in Depth. Coexisting, there is also a Defence
in Breadth which is not clearly defined but is described as the use of multiple
instances of a security technology within a security layer. [20] Commonly, intru-
sion detection and tolerance systems [16] and firewalls are deployed to prevent or
limit damage through attackers. Intrusion tolerance draws its ideas from the field
of fault-tolerance [30, 1] which focuses on safe operation of a system by using re-
dundancy. Totel et al. [27] proposed to use multiple diverse off-the-shelf devices
in combination with an IDS proxy to detect attacks. They demonstrated this on
the example of a webserver. However, their proxy is a single point-of-failure.

Self-Healing Systems: The field of self-healing is not well established, espe-
cially considering security. Ghosh et al. [11] gave a detailed overview of existing
techniques. The closest ones to our technique are Finite State Automaton (FSA)
approaches [28, 14] which model the systems as an FSA and rejuvenate it when
invalid states are reached. Our self-healing technique based on invariants is more
efficient than FSA as we do not actively keep track of the state. Since invariants
can be declared as regular expressions and every FSA can be translated into a
regular expression [19], our technique is as representative as FSA.

Bessani et al. [3] use proactive-reactive rejuvenation to restore intrusion-
tolerant Crutial Information Switches (a firewall device) throughout the network.
It is an example of a hybrid distributed system [29]. While their system targets
the firewall in front of critical devices like PLCs, our approach is aimed at PLCs
directly. Platania et al. [21] proposed a rejuvenation architecture similar to ours.
Instead of self-healing upon detected misbehaviour, they proactively rejuvenate
PLCs periodically; each on its own to ensure availability of the whole system.

Periodic system resets can defend against attacks before visible effects occur
– independently of any detection algorithm – however, they impose an overhead
on the system even though the system is mostly in a valid state. In contrast to
Bessani et al. and Platania et al., we removed single point-of-failures8 and kept
the system running as long as possible through system level reactive measure-
ments making it more applicable to scenarios were availability is a major concern.

6 Conclusion

We presented a malware-tolerant Industrial Control System architecture without
single point-of-failures at critical intersection points. We achieve this by relying
8 The wormhole devices of Bessani et al. storing the cryptographic key and the reju-
venation device of Platania et al. are single point-of-failures.
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on diverse, redundant PLCs and a 2-out-of-3 circuit. The infrastructure can push
an attacker out of any single PLC using its offline self-healing abilities on the
network level. By also employing online self-healing at system level, we maintain
high availability during basic failures or simple attacks. To prove our claims,
we utilised ProVerif, a state-of-the-art protocol verifier, and implemented proof-
of-concept self-healing capabilities on top of FreeRTOS and ARM TrustZone.
Proofs as well as RTOS implementation are open-source.
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