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Abstract. Selecting commands is ubiquitous in current GUIs. While
a number of studies have focused on improving rapid command selec-
tion through novel interaction techniques, new interface design and
innovative devices, user performance in this context has received lit-
tle attention. Inspired by a recent study which formulated information-
theoretic hypotheses to support experimental results on command selec-
tion, we aim at explaining user performance from an information-
theoretic perspective. We design an ad-hoc command selection exper-
iment for information-theoretic analysis, and explain theoretically why
the transmitted information from the user to the computer levels off as
difficulty increases. Our reasoning is based on basic information-theoretic
concepts such as entropy, mutual information and Fano’s inequality. This
implies a bell-shaped behavior of the throughput and therefore an opti-
mal level of difficulty for a given input technique.

Keywords: Human performance -+ Command selection - Information
theory - Mutual information - Entropy - Throughput - Fano’s inequality

1 Introduction

Selecting commands remains one of the most common interactions in graphical
user interfaces. Many previous studies have strived to improve rapid command
selection, e.g., marking menus [10] and flower menus [1], to propose novel com-
mand selection techniques, e.g., FastTap on tablets [7], and to design command
selection on innovative devices, e.g., smartwatches [11]. When an application
has a large number of commands, designers often use a hierarchical navigation
structure to partition the components or come up with new designs such as fin-
ger identification [5], particularly when interaction is constrained by scarcity of
screen real estate.

However, apart from some menu models [2,3] that are mostly applicable to
linear menus, few researchers have systematically investigated user performance
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in command selection. We are inspired by a recent study where Roy et al. [17]
analyzed command selection data in information-theoretic terms such as trans-
mitted information and successfully transmitted information rate, also known as
throughput (TP), from the user to the computer. In the communication channel
considered in [17], a user serves as the source of information with her hand as
the information emitter, and transmits information to the system with the touch
screen as the receiver of the coded message. The code shared by the source (the
user) and the destination (the system) is the mapping of a set of touch events
to a set of commands. Roy et al. hypothesized that the transmitted informa-
tion levels off, as in absolute judgment tasks [13], and that TP as a function of
the command’s entropy is bell-shaped. As they were focused on comparing two
input techniques, the authors used these measurements to illustrate the differ-
ences between two techniques. In this paper, we provide instead a theoretical
analysis of these phenomena.

Information theory, first introduced by Shannon in 1948 [19], has been used
in various domains including psychology [12,14,15]. In HCI, there are two major
design principles that are derived from information theory: Fitts’ law [6] and
the Hick-Hyman law [8,9] starting from the early 1980s [16]. Fitts’ [6] work
was an empirical determination of the information capacity of the human motor
system. Likewise, Hick’s [8] and Hyman’s [9] experiments assessed the cognitive
information capacity in choice-reaction experiments. Fitts’ law and the Hick-
Hyman law are the only two surviving information-theoretic concepts used in
HCI [18], despite the fact that we humans constantly send information to and
receive information from computers, and vice versa.

Intrigued by the observations in [17], we aim to provide an information-
theoretic analysis of user performance in command selection tasks. We thus
replicated Roy et al.’s experiment [17], tailored for an information-theoretic
analysis. Using basic concepts including entropy, mutual information and Fano’s
inequality, we provide an information-theoretic explanation for why transmitted
information (mutual information between the user and the computer) should
level off as the command’s entropy increases, and why the rate of successfully
transmitted information is a bell-shaped curve. Grounded in the fundamental
principles of information theory, these formulations provide a general tool to
evaluate human performance in command selection tasks.

2 Data Collection

The goal was to achieve a better undertanding of human performance in a com-
mand selection task from the information-theoretic perspective and to provide
theoretical formulations for it. Similar to Roy et al.’s study [17], we consider
users as information sources, who emit information with an interaction instru-
ment, and transmit it to the system. In order to avoid the fat finger problem [20]
and to collect a wider range of data, we choose to use a mouse as interaction
instrument instead of the user’s hand. We also assume equally probable com-
mands, thus the input entropy (the task difficulty) is the log, of the number of
possible commands.
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2.1 Participants and Apparatus

Twelve volunteers (1 female), age 23 to 31 (mean = 26.6, c = 1.9), were recruited
from our institution. All of them were right-handed and interacted with WIMP
interfaces regularly.

The experiment was conducted on a Macbook Pro with a 2.7 GHz processor,
8 GB RAM and resolution at 227 pixels per inch. The software was implemented
in Java and the experiment window was 600 x 400 pixels. The targets represent-
ing the commands were displayed at the top of the window as a row of adjacent
rectangles. The total area covered by the targets was 256 pixels wide and 30
pixels high. The width of the targets depended on the experimental condition. A
circle positioned 150 pixels down below the target area was used to reset the cur-
sor position of each trial. A standard mouse was used with the same sensitivity
for all participants.

(a) (b)

Fig.1. (a) The cursor gets reset at the center of the circle when the trial starts in
condition 8; (b) correctly selected target command turns green in condition 64. (Color
figure online)

2.2 Task, Stimulus and Design

In response to a visual stimulus, participants were instructed to click on the
highlighted target command (Fig. 1(a)) as fast and accurately as they could. If
they correctly hit the target command, it turned green (Fig. 1(b)). Clicking on
a non-target command would turn it red. In both cases the trial was complete
after a single selection. The cursor was then reset automatically in the same
position at the start of each trial.

Based on a pilot study, we used 4, 8, 16, 32, 64, 128 and 256 commands in the
experiment, corresponding to 2 to 8 bits of information. Note that more than 7
bits of information is relatively high for normal users to process, but we wanted
to push the limits of the participants. The size of the target representing each
command was inversely proportional to the number of commands in the set, so
that the set of target commands always occupied the same overall space.
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We used a within-participant design and counter-balanced the order of the
number of commands across participants with a Latin square. There were 3
replications for each block. A block consisted of presenting all targets in random
order. Since we assumed a uniform distribution, each command should appear
the same number of times. However, this would result in a very long and tiring
selection in condition 128 and 256. In order to keep the duration of the exper-
iment manageable, each participant had to select only 64 targets in conditions
128 and 256, but the full range was covered across all participants.

The total duration of the experiment was around 20 min per participant. In
summary, the design was: 12 Participants x (4 + 8 4+ 16 + 32 4 64 + 64 4 64 Com-
mands) X 3 Replications =9,072 trials.

3 Information-Theoretic Concepts and Notations

Before presenting the experimental results and providing the information-
theoretic analysis, we define the following notations.

1. X is a random variable that takes values in {1,2,..., M}, representing the
user’s intended input. The number of targets is M = 4, 8,16, 32, 64, 128, 256
depending on the experimental condition.

2. We assume X is uniformly distributed so that the probability P(X = x) = ﬁ
for all x.

3. The entropy of X is given by H(X) = log, M and represents the command’s
entropy (the task difficulty).

4. Y is another random variable that takes values in {1,2,..., M}, representing
the command that is actually hit by the user, whether correct or not.

5. The error random variable is defined as:

0 ifX =Y;
= . (1)
1 if X#Y.

6. The probability of error P, = P(X # Y) representing the error rate, has
binary entropy:

H(E)=—P.logy P. — (1 — P,)log,(1 — P.). (2)

7. The transmitted information in bits conveyed from the user to the computer
is defined by Shannon’s mutual information:

I(X;Y) =) > P(X =2, =y)log, P](D)((X:x)x;(/Y:yL)

Shannon’s capacity is defined as the maximum possible transmitted informa-
tion.

8. Throughput (TP) or information rate, in bits per second, is defined as
the ratio of the transmitted information to movement time (MT), i.e., the
average time to select the command for a given number of commands:
TP = I(X;Y)/MT.
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4 Experimental Results

In this section, we present findings on reaction time (RT), movement time (MT),
error rate P,, transmitted information I(X;Y"), and throughput TP as a function
of the command’s entropy (task difficulty).
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Fig. 2. Experimental results with 95% confidence intervals.

Task Completion Time. Figure2(a) and (b) indicate that both reaction
time RT and the movement time MT required to select a command are lin-
ear functions of the command’s entropy. This is in line with the Hick-Hyman
Law and Fitts’ Law since time is proportional to task difficulty, which is log-
arithmic in the number of choices. We run linear regressions and find that
RT = 0.473 + 0.017 x logy, M with r? = 0.959 and MT = 0.540 4 0.104 x log, M
with r? = 0.968. Task completion time is dominated by movement time MT.

Error Rate. Figure2(c) demonstrates that when the command’s entropy is
small and the task is easy, users do not tend to make mistakes, hence P, is
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very small. When the command’s entropy increases, users make more and more
errors, up to 73.5% when entropy equals 8 bits. It is obvious that when the
command’s entropy gets very high, the error rate would level off at 100%, as
shown in Fig. 2(c). Fitting a logistic curve to the data, we obtain P, = 1/(1 4+
e~ Lax(logy M=T4)y with 72 = (0.992.

Mutual Information. Figure 2(d) shows that I(X;Y) increases gradually with
the command’s entropy. Similar to [17], transmitted information tends to reach
an upper bound, confirming the limited capacity. The reason why it levels off
given in [17] was that it is similar to absolute judgment tasks [13]. The next
section offers another explanation based on information theory.

Throughput. Similar to Roy et al’s study [17], throughput (TP) in our
experiment also shows a bell-shaped behavior and reaches a maximum as
shown in Fig.2(e). Fitting a quadratic function to the data, we find TP =
—0.341 x (logy M)? 4+ 1.710 x logy M — 0.146 with r? = 0.979.

5 Information-Theoretic Analysis

In this section, we provide an information-theoretic analysis for (a) why mutual
information should level off; and (b) why throughput should be a bell-shaped
function of the command’s entropy (task difficulty). Since the user makes errors,
the output Y received by the computer is not always equal to the input X
sent by the user, and therefore there is noise in the channel: Y is essentially X
perturbed by a “noise” Z, which can take M possible values: one corresponding
to the correct command plus M — 1 corresponding to the possible mistakes that
the user can make.

As is well known in information theory [4, Theorem 2.4.1], the mutual infor-
mation is the difference between the input entropy H(X) and the conditional
entropy H(X|Y) of the input given the output:

I(X;Y) = H(X) - H(X]Y) 3)

The conditional entropy is a measure of the uncertainty about X knowing Y/
but if we know Y, the uncertainty on the noise Z is the same as that on X, so
we can rewrite Eq. (3) as:

I(X;Y) = H(X) - H(Z]Y) (4)

Here H(X) = log, M represents the task difficulty. We now would like to bound
the penalty term—also known as equivocation—H (Z]Y') in the transmitted infor-
mation. Since the knowledge of the output Y reduces the uncertainty on the noise
Z (conditioning reduces entropy [4, Theorem 2.6.5]), we have:

H(Z]Y) < H(Z) (5)
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In words, the equivocation does not exceed the entropy of the noise. Thus it is
the noise’s entropy that penalizes the transmitted information.

In our experiment, users make errors as defined in Eq. (1), and we can use
the chain rule [4, Theorem 2.2.1]: H(Z) = H(Z,FE) = H(E)+ H(Z|E) where [4,
Theorem 2.2.1]

H(Z|E)=P.x H(Z|E=1)+ (1— P.) x H(Z|E =0) = P. x H(Z|E = 1) (6)

since there remains no uncertainty on the noise Z if there is no error (E = 0).
Combining the above, we have that the equivocation is bounded by:

H(X|Y)< H(E)+ P. x H(Z|E = 1) (7)

This is known in information theory as Fano’s inequality [4, Theorem 2.10.1].

Here H(E) is given by Eq. (2) and is at most one bit (when P. = 0.5).
Hence making errors penalizes the amount of transmitted information by at
most one bit. However, considering the second term of Eq. (7), the uncertainty
on “wrong selections” H(Z|E = 1) incurs an additional penalty on the amount
of transmitted information: How users make errors, not just the fact that they
make errors, affects the amount of transmitted information. In our case, errors
are clustered near the actual target, hence the entropy of the noise is lower than
if they were evenly distributed.

The relationship between error rate P, and H(X|Y") observed from empirical
data matches exactly the above illustration as shown in Fig. 2(f).

We can now reason as follows:

For small M: users do not tend to make errors, H(F) ~ 0 and P. = 0, there-
fore H(X|Y) is close to zero or remains very small when the error rate is low.
So I(X;Y) increases with H(X) = log, M;

For large M: we tend to have P, = 1, H(FE) = 0, users cannot make a cor-
rect selection, but the errors are clustered around the target as in pointing
tasks [22]. Doubling the number of commands from M to 2M adds 1 bit to
the command’s entropy, but since the error area around the correct target is
approximately the same physical size, the number of possible errors is also
doubled. Hence the equivocation is also increased by 1 bit. In our data, the
possible errors in condition 128 are 1-3 around the target while in condi-
tion 256 they are 1-5 around the target, which corresponds approximately
to the same physical area. As a result, the amount of transmitted informa-
tion I(X;Y) = H(X) — H(Z|Y) is not increasing any more and levels off as
illustrated in Fig. 2(d).

We can now turn to the theoretical analysis of the throughput TP. As seen
above, movement time MT is a linear function of log, M.

For small M: log, M is also small, and MT is dominated by the intercept,
hence can be considered as approximately constant. TP increases slowly with
difficulty logy M:;
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For large M: MT grows linearly with log, M, and transmitted information
I(X;Y) levels off. Hence TP gradually decreases as demonstrated in Fig. 2(e).

However, we should distinguish the ceiling effect of transmitted information
in our case from that in absolute judgment tasks [13]. Roy et al. claimed that
they have the same characteristics but in our case, the errors made by users are
around the target since they can see where it is, and therefore H(Z) is only a few
bits. In absolute judgment tasks, although the key message is that human short-
term memory has a limited capacity, we would expect that when the number of
randomly ordered stimuli increases, H(Z) gets close to log,(M — 1) as Y can
take any value in {1, 2, ..., M }. If this were the case, mutual information I(X;Y)
should go down, instead of leveling off as I(X;Y") = logy M —log, (M —1) at first
order when M is very large. Since the stimuli’s entropy never gets very large in
this type of tasks, the phenomenon is thus never observed. This would require
further investigation in the context of absolute judgment tasks.

In summary, in command selection tasks, the amount of transmitted informa-
tion gradually increases with the command’s entropy until it reaches its capacity,
and then levels off. Correspondingly, TP demonstrates a bell-shaped behavior,
increasing to reach a maximum and then decreasing. This maximum (corre-
sponding to an entropy of 6 bits, i.e. 64 commands in our experiment) provides
the optimal vocabulary size for the given selection technique.

6 Conclusion and Future Work

In this paper, we provide an information-theoretic analysis of user performance
in command selection tasks. The maximum in mutual information from the user
to the computer indicates the channel capacity while the maximum in through-
put illustrates that there is an optimal level of the command’s entropy, or task
difficulty, to maximize human performance for any given interaction technique.

Following Soukoreff and MacKenzie [21] who argue that people are imper-
fect information processors, we demonstrate that when the command’s entropy
increases, users tend to make more errors. Obviously, a very high command
entropy is not realistic nor desirable since no interface designer nor HCI
researcher would want users to make 100% errors: the design would be use-
less. But it is necessary and even vital to consider such cases to understand the
phenomenon correctly. Armed with a theoretically justified model, one can now
use it to evaluate any command selection task.

Interestingly, whether there is a time constraint also affects the amount of
transmitted information. In our experiment and most other HCI experiments,
participants are instructed to move as fast or as accurately as they can, some-
times both. We can imagine that if they could take their time to complete
the task, the error rate would be always low, therefore the mutual information
I(X;Y) would always increase with H(X). The theoretical formulations have
shown that how users make errors affects the transmitted information, which is
tightly related to both the experimental design and the instructions to the users.
We plan to investigate this more thoroughly in future work.
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