N

N
N

HAL

open science

Combining Third Party Components Securely in
Automotive Systems

Madeline Cheah, Siraj A. Shaikh, Jeremy Bryans, Hoang Nga Nguyen

» To cite this version:

Madeline Cheah, Siraj A. Shaikh, Jeremy Bryans, Hoang Nga Nguyen.
Components Securely in Automotive Systems. 10th IFIP International Conference on Information
Security Theory and Practice (WISTP), Sep 2016, Heraklion, Greece. pp.262-269, 10.1007/978-3-

319-45931-8 18 . hal-01639623

HAL Id: hal-01639623
https://inria.hal.science/hal-01639623
Submitted on 20 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Combining Third Party

https://inria.hal.science/hal-01639623
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Combining Third Party Components Securely in
Automotive Systems

Madeline Cheah!, Siraj A. Shaikh'!, Jeremy Bryans', and Hoang Nga Nguyen'

Centre for Mobility and Transport Research, Coventry University, Coventry, UK
cheahh2@uni.coventry.ac.uk
{siraj.shaikh, jeremy.bryans,hoang.nguyen}@coventry.ac.uk

Abstract. Vehicle manufacturers routinely integrate third-party com-
ponents and combining them securely into a larger system is a chal-
lenge, particularly when accurate specifications are not available. In this
paper, we propose a methodology for users to introduce or strengthen
security of these composed systems without requiring full knowledge of
commercially sensitive sub-components. This methodology is supported
by attack trees, which allow for systematic enumeration of black box
components, the results of which are then incorporated into further de-
sign processes. We apply the methodology to a Bluetooth-enabled auto-
motive infotainment unit, and find a legitimate Bluetooth feature that
contributes to the insecurity of a system. Furthermore, we recommend
a variety of follow-on processes to further strengthen the security of the
system through the next iteration of design.

Keywords: automotive security - attack trees - secure design - security
testing - Bluetooth

1 Introduction

Automotive security has become an issue with the advent of smarter vehicles,
which incorporate a large variety of external facing interfaces that could be used
to maliciously affect vehicles. The context of our work is the way in which vari-
ous components are combined to achieve the final vehicle product. Components
are often generic with many general purpose features. This promotes their reuse,
which drives overall costs within the supply chain down. Larger components are
often provided as whole “off-the-shelf” subsystems (for example an infotainment
unit), with each component originating with a different manufacturer. Within
the automotive supply chain, system integrators often do not have the final de-
tailed designs of the components, especially where these components represent
intellectual property such as source code. Components for which no privileged
information is available are often referred to as "black boxes” [11], with ”white
boxes” being those for which all information is available. This distinction be-
comes important when testing the integrated system [13].

The contribution of this paper is a methodology for the secure combination
of third party components. The methodology includes a systematic and semi-
automated penetration testing process supported by attack trees. This leads to

the identification of additional security requirements over and above the func-
tional and integration requirements that already exist for the system, which can
then be used to improve the design of the system with respect to security. The
motive for beginning the process with testing is to acquire confidence with regard
to the overall implementation. The testing process moves knowledge of the com-
ponent along the black-white spectrum, where we can then extract requirements
for secure behaviour in the given context to help mitigate security flaws. This is
particularly valuable where a system contains many third party components of
which even the original equipment manufacturer (OEM) may not have complete
sight because of commercial sensitivities.

The remainder of this paper is structured as follows: we review related work
in Section 2, followed by an outline of our proposed methodology in Section 3.
We then apply this methodology to a case study in Section 4. We discuss the
implications thereof and our conclusions in Section 5.

2 Related Work

There are comparative approaches to each of the stages of our methodology,
and as such our survey has been divided into categories of gathering security
requirements, threat assessment and attack trees, along with a brief discussion
on the automotive specific cybersecurity standard J3061.

Security requirements Similar methods for gathering security requirements
have been proposed by [6], in that security requirements are linked to possible
attacks. A key difference to our methodology however is that a functional model
of the system is required, which is more information than is usually available in
a black box system. Attack trees in a requirements gathering and actioning pro-
cess are also used in the System Quality Requirements Engineering (SQUARE)
methodology [7]. However, use cases in this methodology concentrated on appli-
cation to a company’s procedures rather than embedded systems.

Threat assessment This process determines threats (defined as potential neg-
ative events that could compromise an asset) to the surface of the target system,
typically by looking at the potential malicious actions. In the automotive domain,
empirical studies have already shown that attacks on vehicular components are
possible [3]. However, despite impressive experimental analyses, actions taken to
compromise the vehicle and their results were not systematised. This, in addi-
tion to the “grey box” nature of automotive components led us to penetration
testing for threat assessment, supported by attack trees, in order to determine
the initial security state of the system relative to the target attack goal.

Attack trees Attack trees are diagrams modelling the potential actions of an
attacker to reach an attack goal [19]. They have been discussed as a possible
threat modelling technique in the automotive specific SAE cybersecurity stan-
dard J3061 [18], which draws from the ”E-safety vehicle intrusion protected ap-
plications” (EVITA) project. It is for this reason that we have chosen to use this
method. Furthermore, attack trees can help inform threat assessment even in an

informal capacity [16]. Formal methods such as attack graphs are not feasible as
there is not enough up-front information about the target system.

These trees can be represented diagrammatically or textually. Logic gates
(AND and OR) are also commonly used within these trees. Where AND is
used, an attack (parent node) is considered complete only if all steps have been
completed. Where OR is used, the parent node is complete if at least one of the
steps is completed. These gates are also sometimes referred to as conjunctive
and disjunctive refinements respectively [12]. For application purposes, where
temporal order may be a concern, sequential AND (SAND) could also be used.

A related approach is the formation of “anti-models” [10], depicting how
model elements may be threatened (analogous to attack trees). However, these
anti-models are derived from the model of the system-to-be (with attendant
high informational needs), which makes it less suitable for a black-box system.
Even where there are methods that allow for only partial specifications (such
as the framework based on Model Driven Engineering) [9], perfectly legitimate
behaviour in those specifications could actually be a weakness in terms of the
larger system boundary.

EVITA and J3061 EVITA elaborates on some of the possible usages of at-
tack trees. Deliverable 2.3 also includes an outline in which security requirements
could be traced back to the attack tree [5]. This is, broadly, along similar lines
to our work (although we begin with less knowledge of functionality and other
requirements). Additionally, the “dark-side scenario analysis”, closest to our se-
curity testing process, places particular emphasis on risk assessment, whereas the
purposes of our own methodology would be to identify specific insecurities relat-
ing to an attack goal without looking at the motivations behind it. J3061 [18] also
outlines the use of attack trees (in reference to EVITA). The standard also notes
that it may only be possible to consider high-level concepts early in the product
development cycle. Security analysts or designers could use our methodology as
a way of gathering low level requirements for the next design iteration.

In summary, many of the comparative methodologies reviewed above require
in-depth knowledge of the system. Our proposed methodology addresses specifi-
cally the problem of a black box with many layers of obscurity, all of which may
be individually secure, but may exhibit system-wide insecurities.

3 Proposed Methodology

The methodology adopted in this paper is as follows:

Step 1 - Security testing: Since full specifications are generally unavailable,
we begin with security testing (more specifically penetration testing) to probe
the black box. This is systematised using attack tree methodology. Initial attack
trees are first defined relative to an attack goal. These goals can be as low level
(flood an open port with data) or high level (denial of service) as needed and
tailored to the target interface.

Step 2 - Inferring requirements: Requirements can be extracted from
whichever attack proved successful through a process of inference, and is es-
sentially a negation of observed undesirable behaviours found from testing. The
determination of security requirements at this stage can be cross-referenced back
to the attack tree. This allows for specific insecurities to be addressed as well as
separation of security requirements from other types of requirements (known to
be useful for interaction analysis [10]).

Step 3 - Suggesting specifications: Once the requirements gathering phase
is considered complete, possible specifications could be suggested using a pro-
cess such as design space exploration. There may be a number of different design
choices (and therefore specifications) that could be made to mitigate the threat.
These derived specifications could be cross-referenced with other subsets of spec-
ifications (such as safety), and where there are contradictions, could help clarify
design choices. Where there are no conflicts, the derived security specifications
from our process could be added to the overall set of specifications.

Step 4 - Incorporation of specifications into existing processes: Agreed
specifications can be sent down the supply chain. Alternatively, the end user
could follow up with in-house model-based design and testing processes. We
discuss the latter within the context of our case study (see Section 4). The
reason for keeping such flexibility is to enable incorporation of this methodology
into the wider processes that might be carried out by the end user.

4 Case Study: Automotive Infotainment Unit

For this paper we concentrate on the infotainment unit, where diverse technolo-
gies are integrated to deliver functionality such as hands-free communication.
We demonstrate the proposed methodology using a case study below. Although
this case study came from a single vehicle, it can be reasonably assumed that
vehicles of the same make, model and age would share the same weaknesses as
production lines are standardised.

Step 1 - security testing: The security testing process was focused on the
Bluetooth interface because it is a viable attack vector [15], and because of
its ubiquity in cars (an estimated nine million vehicles have implemented this
technology [8]). As a vector, it can be used to mount many attacks [4] ranging
from denial of service to man-in-the-middle attacks. Implementations can also
differ greatly, with various “profiles” available to customise the technology.

The building of the initial attack tree was manually guided, using known
vulnerabilities in other Bluetooth applications and surveyed from literature and
the National Vulnerability Database [14]. We then evaluated the Bluetooth in-
terface of an automotive infotainment unit using this attack tree. A number of
undesirable behaviours were found, including the ability to mount the filesystem
of the infotainment unit and read its contents. This was possible because of the
presence of the Object Exchange File Transfer Profile (OBEXFTP) service [1].
We highlight this as an example for the remainder of the paper.

GOAL: Data extraction
SAND: Reconnaissance
AND:Determine interface characteristics

AND:Determine operating system
SAND: Connect to Bluetooth interface

OR: Use legitimate device
SAND: Extract data

SAND: Locate files of interest
OR: Directory traversal
OR: Use well known filenames
SAND: Request files or data
E OR: Request files using OBEX GET commands

OR: Request files or data using AT commands
OR: Mount filesystem and extract files wvia OBEX channels

Fig. 1. Attack tree focusing on extracting data via mounting the filesystem

Step 2 - inferring requirements: After having connected to the interface
using a legitimate pairing and device (the connection, vehicle or device had
not been tampered with in any way), we mounted the file system. Being able
to mount the filesystem through Bluetooth could lead to injection of malware,
directory traversal and data extraction, manipulation or destruction. As such
it is undesirable behaviour, so our inferred requirement from this would be ”no
unauthorised external agency should be able to see or influence the vehicular
operating system’s filesystem”.

Step 3 - suggesting specifications: Based on the case study attack tree,
we could fulfil the requirement above by creating specifications that either (a)
remove the ability to request files or data (could conflict with functional require-
ments); (b) remove the ability to mount the filesystem (may have functional
or cost implications) or (c) allow the above, but remove support for extract-
ing, deleting or creating (injecting) files (which would conflict with the required
functionality of the FTP server role as specified by Bluetooth SIG [1]).

Step 4 - model-based design and formal verification: Formal analyses
of the Bluetooth protocol and its authentication and secrecy properties exist
[2]. However, we are not attacking the protocol, but rather probing the larger
system in which it resides. This is an example of two components in themselves
being secure, but exhibiting insecure behaviour when combined into a larger
system. Additionally, all users of the Bluetooth system in this test vehicle are
able to use all services offered regardless of who they are. Authentication thus
becomes irrelevant. Therefore a more appropriate analysis would be reachability,
to demonstrate that such an insecure system state could not be reached through
the pathways dictated by the attack tree.

We use the process algebra CSP (Communicating Sequential Processes) to
describe a specification of the inferred requirements. We choose CSP because it
is able to represent and combine the message passing choreography expected by
individual components. A complete introduction may be found in [17].

The specification for the Bluetooth FTP is available [1] and so we developed
a small illustrative CSP model (figure 2). We then developed a suggested spec-
ification from our inferred requirement, such as never displaying the filesystem

channel pair, connect, advertise_service, service_discovery
channel servicel, service2, display fs
channel obex ftp : OBEXFTP_CMD
datatype OBEXFTP_CMD =
Selectserver|NavigateFolder| M ount F'S|Push|Pull|
CreateFolder|Copy|Move| Rename|Delete|Set Permission
BT = pair — connect — advertise_service - OFFER_SERVICE
OFFER_SERVICE =
servicel - OFFER_SERVICE
O service2 - OFFER_SERVICE
Oo..
O obex ftp?emd
ifemd == MountF S then
displayfs - OFFER_SERVICE
else OFFER_SERVICE
USER = pair — connect — service_discovery - USE_SERVICE
USE_SERVICE =
servicel - USE_SERVICE
M service2 - USE_SERVICE

..
M obex ftp!MountF S — displayfs - USE_SERVICE
IMPL =BT | USER

apTNAUSER

Fig. 2. Small illustrative model of the OBEXFTP service

Suggested (property-oriented) specification:
SPEC = CHAOS@IMPL\{diSPlany}
Refinement assertion:

assert SPEC Cyrgces IMPL

Result: FAIL

Fig. 3. Example specification and verification

(see figure 3) which fails during the verification process with trace (pair, connect,
service_discovery, advertise_service, obex ftp. MountF S, display f s). If, however,
we removed OBEXFTP, and assuming none of the other services offered the abil-
ity to mount a filesystem, it would verify correctly.

We use this exercise to show that the inferred requirement is not met by
the standard FTP specification (that a server must respond to a request from
a client for “Folder Listing Objects”) and is, in fact, contradictory. Thus, any
attempt to remove support whilst still maintaining the profile would be breaking
Bluetooth’s specification.

Here, the model and example specification is simplistic enough to make it self-
evident that the removal of OBEXFTP would allow for successful verification.
This exercise would add value provided: (a) the systems are sufficiently complex;
(b) we can create a more accurate model of the system under investigation, or
(c) there is more than one path to mount the filesystem (or, more generally, to
achieve any other undesirable behaviour).

5 Discussion and Conclusion

Our methodology is suited for tiered supply chains, as there is no need to have
complete specifications of the integrated item for security testing. It also re-
flects real world security issues that have arisen through the testing process. The
attack tree methodology allows for systematisation and traceability, especially
where design choices are concerned. These choices could also be cross-referenced
against scenarios that were posited in attack trees but were not tested. Any se-
curity requirements gathered can be kept separate for interaction analysis and
allows for reasoning about alternatives. The formal exercise could allow for clar-
ification of ambiguities, and using a verifier leads to a higher level of confidence
in the resulting design (albeit dependent on the model constructed). Limitations
include the fact that the initial creation of the attack tree is manually guided
although domain expert input in reviewing the tree and repeated testing over
more vehicles would mitigate this. There is also a one-off cost of building these
trees, although reuse is possible in future testing processes. As testing scope ex-
pands, trees could also become crowded, and so tree navigation will be essential.
Problems with scalability could also be mitigated using mechanical tools such as
design space exploration. Furthermore, the data available to construct the model
at the end of the process directly impacts the quality of the model created.

In this paper, we have presented a methodology for securely combining third
party components into a wider system and applied it in the context of an au-
tomotive head unit using the Bluetooth interface. We have found weaknesses
through structured security testing, and using the case study of being able to
mount the filesystem through Bluetooth, we demonstrated how to infer security
requirements and suggest specifications. We have also recommended follow-on
processes that we envisage end users would find constructive in strengthening
the security of their systems. Future work would include refining the process by
applying the methodology to a more significant case study, with different attack
goals. Through both of these, we also aim to acquire enough information as to be
more concrete with regards to formal processes. Ultimately, we wish to position
this methodology in a larger design process such as that espoused by standards
such as J3061.

Acknowledgements. The authors would like to thank Olivier Haas (Coventry
University) and Alastair Ruddle (HORIBA MIRA) for valuable comments.

References

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

Bluetooth SIG Inc.: Bluetooth Specification: File Transfer Profile (FTP) (2012)
Chang, R., Shmatikov, V.: Formal analysis of authentication in bluetooth device
pairing. In: Foundations of Computer Security and Automated Reasoning for Se-
curity Protocol Analysis. p. 45. Wroclaw, Poland (2007)

Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive Experimental
Analyses of Automotive Attack Surfaces. In: Proc. of 20th USENIX Security Symp.
pp. 77-92. USENIX Assoc., San Francisco, CA (Aug 2011)

Dunning, J.P.: Taming the blue beast: A survey of bluetooth based threats. IEEE
Security and Privacy 8(2), 20-27 (2010)

EVITA Project: Deliverable D2.3 - Security requirements for automotive on-board
networks based on dark-side scenarios. Tech. rep. (2009)

Fuchs, A., Rieke, R.: Identification of Security Requirements in Systems of Systems
by Functional Security Analysis. Architect. Dep. Sys. VII 6420, 74-96 (2010)
Gordon, D., Stehney, T., Wattas, N.,; Yu, E.: System Quality Requirements En-
gineering (SQUARE) Methodology: Case Study on Asset Management System.
Tech. Rep. May, Carnegie Mellon University, Pittsburgh (2005)

GSMA: Connected Car Forecast: Global Connected Car Market to Grow
Threefold within Five Years. Tech. rep., GSMA (2013), http://www.gsma.com/
connectedliving/wp-content/uploads/2013/06/cl_ma_forecast_06_13.pdf
Idrees, M.S., Roudier, Y., Apvrille, L.: A framework towards the efficient identifica-
tion and modeling of security requirements. In: Proc. of the 5th Conf. on Network
Architecture and Information Systems. pp. 1-15. Menton, France (May 2010)
van Lamsweerde, A.: Elaborating Security Requirements by Construction of In-
tentional Anti-Models. In: Proc. of 26th Int. Conf. on Software Engineering. p. 10.
IEEE Computer Society, Edinburgh (May 2004)

Liu, B., Shi, L., Cai, Z., M.Li: Software Vulnerability Discovery Techniques: A
Survey. In: Proc. of the 4th Int. Conf. on Multimedia Information Networking and
Security. IEEE, Nanjing, China (2012)

Mauw, S., Oostdijk, M.: Foundations of Attack Trees. In: Proc. of the 8th Int.
Conf. on Information Security and Cryptology. pp. 186-198. Springer (2005)
Midian, P.: Perspectives on penetration testing - Black box vs. white box. Network
Security 2002(11), 10-12 (2002)

National Institute of Standards and Technology: National Vulnerability Database
Oka, D.K., Furue, T., Langenhop, L., Nishimura, T.: Survey of Vehicle IoT Blue-
tooth Devices. In: Proc. of the IEEE 7th Int. Conf. on Service-Oriented Computing
and Applications. pp. 260-264. IEEE, Matsue, Japan (Nov 2014)

Opdahl, A.L., Sindre, G.: Experimental comparison of attack trees and misuse
cases for security threat identification. Inf Softw Technol 51(5), 916-932 (2009)
Roscoe, A.: Understanding Concurrent Systems. Springer, London, 1 edn. (2010)
SAE International: J3061 : Cybersecurity Guidebook for Cyber-Physical Vehicle
Systems (2016), http://standards.sae.org/j3061_201601/

Schneier, B.: Attack Trees: Modeling Security Threats (1999), http://www.
schneier.com/paper-attacktrees-ddj-ft.html

