
HAL Id: hal-01635012
https://inria.hal.science/hal-01635012

Submitted on 14 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Generic UIs for Requesting Complex Products Within
Distributed Market Spaces in the Internet of Everything

Michael Hitz, Mirjana Radonjic-Simic, Julian Reichwald, Dennis Pfisterer

To cite this version:
Michael Hitz, Mirjana Radonjic-Simic, Julian Reichwald, Dennis Pfisterer. Generic UIs for Requesting
Complex Products Within Distributed Market Spaces in the Internet of Everything. International
Conference on Availability, Reliability, and Security (CD-ARES), Aug 2016, Salzburg, Austria. pp.29-
44, �10.1007/978-3-319-45507-5_3�. �hal-01635012�

https://inria.hal.science/hal-01635012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Generic UIs for requesting complex products
within Distributed Market Spaces in the Internet

of Everything

Michael Hitz1, Mirjana Radonjic-Simic2, Julian Reichwald2, and
Dennis Pfisterer3

1 Baden-Wuerttemberg Cooperative State University Stuttgart, Germany
michael.hitz@dhbw-stuttgart.de,

2 Baden-Wuerttemberg Cooperative State University Mannheim, Germany
{mirjana.radonjic-simic, julian.reichwald}@dhbw-mannheim.de,

3 Institute of Telematics, University of Lübeck, Germany
pfisterer@itm.uni-luebeck.de

Abstract Distributed Market Spaces (DMS), refer to an exchange envi-
ronment in emerging Internet of Everything, that supports users in mak-
ing transactions of complex products; a novel type of products made up of
different products and/or services that can be customized to better fit the
individual context of the user. In order to express their demand for a par-
ticular complex product in a way that is interpretable by the DMS, users
need flexible User Interfaces (UIs) that allow context-focused data collec-
tion related to the complexity of the user’s demand. This paper proposes
a concept for generic UIs that enables users to compose their own UIs
for requesting complex products, by combining existing UI descriptions
for different parts of the particular complex product, as well as to share
and improve UI descriptions among other users within the markets.

Keywords: Automatic User Interface Generation, Semantic Web, In-
ternet of Everything, User Interface Ontologies, Commercial Exchange,
Distributed Market Spaces, Complex Products

1 Introduction

Emerging Internet of Everything (IoE) is opening up new opportunities for com-
mercial exchange, giving the rise to novel types of products and services. Due to
the increased interconnectivity of its participants (companies, institutions, indi-
viduals) on one hand and processes, data and things on the other [3], the IoE
is enabling exchange environments, where products and services are customized
and compound, as they are made up of many components provided by different
suppliers [6]. Furthermore, these products and services can be orchestrated in
complex products (i.e., an arbitrary combinations of individual products and/or
services) and customized in a way to consider the unique conditions determined
by the user’s context. As such, complex products can better fit the individual

2 M. Hitz et al.

needs of the users, thus, create richer consumer experiences that have not been
possible before.

Contemporary solutions for commercial exchange are mostly focused on avail-
ability of individual products and services within their domain boundaries, or
certain pre-defined combination of them traditionally bought together, however,
are limited in their ability to support complex products, which need to fulfill
particular user-defined criteria, going beyond the existing product/service de-
scriptions. Consider the simple use case of booking a flight, hotel, rental car and
guided tour. While already feasible today, it is a complex task to solve in order to
fulfill different constraints (e.g., place, time, price, personal preferences). It can
get exceptionally complex if many auxiliary conditions or products are involved.
To make informed decisions, users need to know where and how to find viable
product and/or service offers i.e., to engage search engines, visit diverse online
platforms, shops, etc. while confronting with plenty of different user interfaces,
search/selection criteria and representations of product/service description. Af-
ter finding viable offers, users must compare, aggregate and infer all relevant
information, considering the particular user context. The complexity of above
mentioned activities and related user involvement lead to the adverse selection [2]
i.e., choosing good enough, instead of optimal products/services, and increases
the transaction costs (i.e., the buyers’ costs to acquire information about seller
prices and product offerings).

Distributed Market Spaces (DMS) proposed by [18], refers to a IoE exchange
environment that supports market participants (i.e., consumers and producers)
in making (distributed) transactions for complex products. But, to build a com-
plex product requests on their own, the users need an alternative to express their
demand for a particular complex product, in a way, that is interpretable by the
DMS. Therefore, flexible user interfaces are needed to allow data collection of
an arbitrary combination of the products and/or services, fulfilling user-defined
criteria and spanning over different product/service domains related to the com-
plexity of the user’s demand.

In this paper, we propose a concept for generic user interfaces (UIs) for re-
questing complex products within Distributed Market Spaces in the Internet of
Everything – a concept that alleviates the effects of adverse selection by support-
ing the users crafting complex product requests in a seamless manner; a manner
of enabling users to:

– compose a new, customized UI for requesting a complex product in a partic-
ular user-defined context, by combining existing UI descriptions for different
parts of the complex product, which can be rendered for different platforms
/ technical contexts (e.g., mobile or webbased apps)

– create a request for complex products interpretable by the DMS and
– share and improve UIs for complex products within markets.

This paper is organized as follows: First, Section 2 describes the setting in which
our proposed concept is applied and defines the main requirements. Next, Sec-
tion 3 presents the architecture and functional structure of the proposed solution,
followed by a demonstrator implementation in Section 4. Thereafter, Section 5

Generic UIs for distributed markets in the IoE 3

discusses on related work and Section 6 concludes the paper with a summary
and outlook.

2 Motivation and Background

In the following, we briefly describe the setting, i.e., the context in which the
proposed concept of generic UIs is applied. Afterwards, we define the overall
objectives and consider these as the requirements for the demonstrator imple-
mentation, as shown later in Section 4.

2.1 The Application Context

Distributed Market Spaces (DMS) [18], refers to a model of commercial exchange
that supports market participants in making distributed transactions of complex
products. Figure 1 illustrates the conceptual structure of the DMS, showing
the involved parties, their roles and relationships on the left, and on the right,
the DMS functional structure with its components and high-level interfaces,
represented through the sets of exchanging messages, required to support the
interactions along involved parties.

Market Space1 Market Spacen Market Space2
...

P1 P2 S1 S2 Pn Sn ...

CP1 CPn

Peer1

Peers
(Market Participants:
Buyer and/or Seller)

Peer2

Peern

... Demand
(Requests for

Complex Products)

Distributed
Market Spaces

(DMS)

Supply
(Product and

Service Offerings)

...

CP2

(a) Market-level architecture

Market Space1 Market Spacen Market Space2
...

Distributed
Market Spaces

(DMS)

User
Application

(Buyer Side)

Coordinator
(De-)

Composer
Ranking

User
Application

(Seller Side)

Coordinator Offer Engine

Complex Product Requests /
Transaction Start Complex Product Proposals

Decomposed Product/Service Requests
Registration /
Product/Service Offers /
Transaction Confirmation

Registration

CPR Builder

(b) Functional structure

Figure 1: Conceptual structure of the DMS.

As shown in Figure 1a, the DMS is used by peers, i.e., potential transaction
partners defined by their intention; buyers are peers intending to buy complex
products while sellers are peers intending to sell products and/or services. Peers
connect to one or more independent market spaces (MS) and multiple of these
market spaces form the Distributed Market Spaces (DMS). A peer may offer
products and services on one or more market spaces (e.g., Peer2 offers product
P1 and service S2) as well as, request a complex product by sending the request
to one or more market spaces (e.g., Peer2 also requests the complex product
CP1).

The peer interface component (user application), as shown in Figure 1b, is
split into two parts: a seller and a buyer side. In this paper, we focus on the user

4 M. Hitz et al.

application buyer side, which is responsible to: transform a user’s intention into
a complex product request, distribute these requests to multiple market spaces,
receive (partial) complex product offers and re-combine them into multiple com-
plete complex product proposals, rank them according to the buyer’s context
and requirements, as well as to coordinate the distributed buying transaction.
The user application is therefore comprised of the CPR Builder, Coordinator,
the (De-) Composer and Ranking component.

The proposed concept of generic UIs is applied in the context of Complex
Product Request Builder, CPR Builder component highlighted blue (Figure 1b).

2.2 Overall Objectives

The main task of the CPR Builder as a component of the user application, is
to transform a user’s intention into a complex product request, which can be
distributed to one/multiple market spaces within the DMS.

For the generic UIs concept to be implemented in context of the CPR Builder,
following two basic prerequisites need to be assumed. First, in order to be able
to match the incoming requests with the available offerings, the market space
needs to understand the semantics of the product/service offerings (i.e., ’sup-
ply semantics’). Second, it needs to understand the semantics of the different
requests, provided by the user as a complex product request (i.e., ’demand se-
mantics’).

As to [18], the DMS supports the ’supply semantics’ using a domain-agnostic
database, containing the information about registered sellers, as well as the de-
scription of available products and services they can potentially offer, encoded
in RDF [24].

The challenge at this point, is the possible gap between the product/service
descriptions provided by the supply-side and the demand descriptions requested
by the demand-side.That is, because the data to describe a complex request is
usually different from the data contained in the product/service descriptions.
For example, a product description usually contains a price tag for one unit – a
demand usually contains a price range. A more complex example is the gener-
alisation of the demand: a product description could be a specific offering for a
Ticket for the musical ’Chicago’ – a general demand for a concert could be ’all
musicals and rock concerts’ that somehow are related to ’Chicago’. Given that, it
is not always possible to use the product/service description data as a blueprint
for the demand requests. Therefore, the DMS uses dedicated demand descrip-
tions, defining the demand in a way, that can be mapped to the descriptions of
the offerings.

As the main purpose of the CPR Builder is to enable users to craft complex
product requests in a seamless manner, the potential buyers should be able to
combine different product/service requests into a single complex product request,
hence to compose a specific UI variant that:

– is tailored to their demand for a particular complex product – i.e., an arbi-
trary combination of products and/or services, e.g., a flight, hotel, rental car
and tickets for the events at the destination,

Generic UIs for distributed markets in the IoE 5

– supports the context-information defined by the user, i.e., user’s preferences
and criteria e.g., a ticket for a certain musical vs. more general proposal for
events like theater, concert or ship cruise, and

– produces output in the form of a request for complex product interpretable
by the DMS.

Composing a specific UI variant includes finding, selecting and combining
existing UI descriptions for the different parts of the complex products, while
considering the user’s preferences in terms of the generalisation (e.g., concert vs.
general event planning) or granularity (e.g., less questions vs. detailed specifica-
tion depending on the user’s context). Hence, we can detail this overall objective
into following functional requirements:

R1: Different UI descriptions for the same demand request supplying different
questions based on the user’s preference for more/less specific questions.

R2: Different UI descriptions containing demands for multiple products to allow
context-focussed interfaces.

R3: Composition of different UI descriptions into a single UI description for the
particular complex product request

Having outlined the main prerequisites and requirements, in following, we
use them as the rationale for the conceptualisation of the overall solution.

3 Proposed Solution

As an explanation of the proposed solution, in this section, we first introduce
the foundations and core elements, followed by the functional aspects and more
detailed description of the inner workings.

3.1 Overview - Generic UIs for complex product requests

The proposed solution extends the DMS concept, outlined in Section 2.1, by
enabling users to craft complex product requests. It uses the Complex Product
Builder to combine individual UIs and generate complex product requests from
the collected data. For the automatic generation of the involved UIs, the solution
builds on the results of the mimesis project [10] and extensions that map the
approach to ontological descriptions [11].

In the proposed solution of generic UIs, we use Semantic Web technologies
as they provide the necessary mechanisms to get a rich description of the data
involved and incorporate techniques for reasoning on that data. The foundation
of the proposed solution is built on ontologies describing different views of the
participants (demand-, DMS- and supply-side) and ontological descriptions for
the UIs to meet the requirements R1,R2 and R3 (cf. Section 2.2).

Figure 2 shows the core elements of the proposed solution. The central com-
ponent is the Complex Product Builder, that orchestrates the generation of
the UI. It allows the selection of UI descriptions, the generation of their concrete

6 M. Hitz et al.

Supply
Ontology

(SO)

Product
Description

Product
Description

Product/
Service

Description

Demand
Ontology

(DO)

UI Builder

+
Ontology
Mapper

UserInterface
Ontology UserInterface

Ontology
User Interface

Description
Ontology

(UIO)

matching

Complex Product
Request Builder

(CPR Builder)

2. Get UI for CP parts

6. Build complex product request

UI Descriptions
for product/service

requests

1. Select & combine
3. Generate UI based on

DMS
Distributed Market

Spaces

Demand
User Application

(Buyer side)

Supply
User Application

(Seller Side)

Marketspace (MS) Marketspace (MS) Market Space
(MS)

4. Get DO instance
 for CP parts

register to

5. Generate DO instance

relates to relates to

Figure 2: Core elements of the solution architecture.

UIs, aggregation into a single UI (similar to ’mesh-up’ approaches [16], though
using generated content) and building of a complex product request based on
the data entered by the user.

A Supply Ontology (SO) is used by the peers (seller side) to describe
product instances on which market spaces within the DMS can operate. To
describe the demand for a product/service, a Demand Ontology (DO) is
used; it defines the possible request data to be specified by the peers (buyer
side) and thus, can be interpreted by the market spaces. Finally,User Interface
Description Ontologies (UIO) describe the UI variants based on the data to
be collected. These are used to build the concrete UI and to generate output,
that corresponds to the related demand ontologies.

The following Section 3.2, outlines the functional structure of the solution
needed to fulfil defined requirements (R1, R2, R3), followed by Section 3.3, that
provides a detailed description of the ontologies, used in this solution – especially
focussing the UIO and its mapping to the DO.

3.2 Functional View - Processing complex product demands

The workflow for building a complex product request starts with the buyer
aggregating the UI for a specific complex product need. As shown in Figure 2
(Step 1), the buyer selects suitable, task related UI descriptions provided by a
UI Description Repository – e.g., a search engine collecting UI descriptions
for demands on the Internet, or a repository of community-rated UI descriptions
(which usually were manually or semi-automatically crafted based on the related
DOs). The result of this step, is a collection of user-selected, context-related UI
descriptions to be presented to the user by the CPR Builder.

Generic UIs for distributed markets in the IoE 7

The collection of UI descriptions is sent to the generic UI Builder com-
ponent, that generates the final UIs based on that descriptions and returns the
results. The components are aggregated by the CPR Builder into a single UI and
are presented to the user (Steps 2 and 3). When the user finished entering data,
the data for each UI component is mapped to instances of the corresponding
DO (Steps 4 and 5). The information on how the data elements relate to DO
elements is part of the UIO (cf. Section 3.3). The resulting DO instances are
aggregated into one complex product request, that is enriched with context data
and thus, as shown in Step 6, ready for further processing.

3.3 Information View - Ontologies in detail

Supply Ontology (SO): The Supply Ontology is the common vocabulary to
describe products/services provided by a seller. As in [18], this enables a mar-
ket space to process product/service data and clearly determines the data and
semantics that can be used for a certain product/service instance description.
A simple product instance is shown in Listing 1.1 as an example. It describes
a ticket offer for the musical ’Chicago’ at the ’Alte Oper Frankfurt’ [18] using
existing ontologies GoodRelations4 and Ticket ontology5.

Listing 1.1: Exemplary description of a offering.
1PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
4PREFIX gr: <http://purl.org/goodrelations/v1#>
5PREFIX tio: <http://purl.org/tio/ns#>
6PREFIX dms: <http://www.itm.uni-luebeck.de/dms/#>
7
8dms:ticket1 a tio:TicketPlaceholder ;
9rdfs:label "Ticket for Chicago Musical at Alte Oper Frankfurt"@en ;
10tio:accessTo <http://data.linkedevents.org/event/chicagomusical> .
11dms:TRIO Tickets ltd. gr:offers dms:PSO1 .
12dms:PSO1 a gr:Offering ;
13gr:name "Ticket for Chicago Musical"@en ;
14gr:description "The #1 American Musical in Broadway History:Chicago at Alte Oper

Frankfurt"@en ;
15gr:includes dms:ticket1 ;
16gr:hasBusinessFunction gr:Sell ;
17gr:hasPriceSpecification
18[a gr:UnitPriceSpecification ;
19gr:hasCurrency "USD"@en ;
20gr:hasCurrencyValue "49.50"^^xsd:float ;
21gr:validThrough "2016-09-26T23:59:59"^^xsd:dateTime] .

Demand Ontology (DO): The Demand Ontology is closely related to the
Supply Ontology and defines the data that can be used to describe the demand
for a certain product (e.g., concert ticket) or product category (e.g., ticketing
in general). The DO describes the maximum of requestable information, thus,
what the market space is able to understand and handle regarding the questions
4 http://www.heppnetz.de/projects/goodrelations/
5 http://www.heppnetz.de/ontologies/tio/ns

8 M. Hitz et al.

Listing 1.2: Example of a request for a ticket.
1@prefix : <http://mimesis.solutions/products/concert/individuals#> .
2@prefix ... owl: rdf: xml: xsd: rdfs:
3@prefix gr: <http://purl.org/goodrelations/v1#>
4@prefix tio: <http://purl.org/tio/ns#>
5@prefix tido: <http://demandontologies.org/ticketdemands#>
6@base <http://mimesis.solutions/products/concert/individuals> .
7
8### http://mimesis.solutions/products/concert/individuals#_i1462530726859
9:_i1462530726859 rdf:type owl:NamedIndividual ;
10:concertdata :ticketrequest_i1462530726859 .
11
12### http://mimesis.solutions/products/concert/individuals#ticketrequest_i1462530726859
13:ticketrequest_i1462530726859 rdf:type <tido:TicketRequest> ,
14owl:NamedIndividual ;
15gr:name "Chicago" ;
16tido:eventcategory "musical|rockconcert"^^<tido:eventcategorylist> ;
17gr:hasPriceSpecification :hasPriceSpecification_i1462530726859 .
18
19### http://mimesis.solutions/products/concert/individuals#

hasPriceSpecification_i1462530726859
20:hasPriceSpecification_i1462530726859 rdf:type <gr:UnitPriceSpecification> ,
21owl:NamedIndividual ;
22gr:hasMaxCurrencyValue "35"^^<xsd:float> .

related to the corresponding Supply Ontology. Listing 1.2 shows an example of a
request following a DO for event tickets. It describes a demand for a ticket for a
musical or rock concert with a name containing ’Chicago’ (could be the musical
or the band).

Although, the DO is related to a corresponding SO (here the Ticket Ontol-
ogy), it extends the elements with request-related extensions (e.g., tiod:eventcategory ;
for a more general demand for event categories, or the use of gr:hasMaxCurrency-
Value for specifying a maximum price for a ticket.

User Interface Description Ontologies (UIO): A set of User Interface
Description Ontologies is used to describe the possible UIs for the buyer side. A
UIO describes the UI for a specific dialog variant by describing the data to
be collected in sufficient detail. It contains all necessary information needed
to (1) derive a User Interface and (2) to relate the collected data to a demand
instance specified by Demand Ontologies.

For the description of UIs we apply the approach of the mimesis project
introduced in [10] and its application onto ontologies [11]. The basic idea of the
approach is to define a model of the data processed/collected by the application
and derive UIs for different platforms and user contexts from this model. For this
purpose, the basic data model is enriched with information needed to derive UIs:
this includes structural information (e.g., type restrictions, grouping, sequence
of elements) and behavioural information (e.g., visibility rules, reactions to the
changes, validations to perform). The resulting model is data centric, technology
agnostic and can be used to derive UIs for different kinds of platforms and
contexts of use (e.g., mobile apps, web based-, rich client- or speech based UIs).
Further details of the approach can be found in [10].

The idea of the mimesis approach – to describe the semantics of the data
in more detail – additionally allows to add information for each element on

Generic UIs for distributed markets in the IoE 9

how it is to be mapped to elements defined within a DO. Using that
information an instance (individual) of the UIO containing the user input can
be used to generate a corresponding instance of the DO as resulting output.

The approach is suitable to meet the requirements R1, R2 and R3 listed
in Section 2.2. To achieve that, ontological descriptions of the UI for different
product demands are used. These contain:

– a description of the data with UI specific enhancements, as defined in
mimesis for the derivation of UIs (as proposed in [11]) and

– the information for the mapping of that data onto DO instances,
needed to produce the demand requests.

Hereby, different UI variants for a demand can be defined, that might contain
different questions depending on the user’s context (cf. R1). Since the mapping
information contained in the UI description can reference arbitrary ontologies,
it is also possible to provide UIs containing questions spanning different DOs
(cf. R3). The approach is also capable to address requirement R3: the CPR
Builder is able to choose a set of different UIOs as building blocks from which
an aggregated UI can be presented to the user.

(a) UI Variant for a concert demand. (b) Graph of the UIO.

Figure 3: UI and its structure.

Figure 3a shows a possible variant for a UI relating to the above example
DO instance, in Listing 1.2. The UI for a concert demand contains two groups
of questions (Details for title or genre and Price range). It illustrates, that the
relation to the DO is not one-to-one. For example, the data are grouped dif-
ferently and there is no currency selectable (which is already set by the CPR
Builder from the user’s context data). Additionally, there is a value restriction
for concert category, which might be a subset of the possible values defined in
the DO.

Figure 3b shows a structural graph of the UIO for the displayed UI. The UI
consists of two groups (Pricerange and Concertdetails). These encompass the

10 M. Hitz et al.

Listing 1.3: Basic User Interface Ontology for a concert demand (excerpt).
1@prefix : <http://mimesis.solutions/products/concert#> .
2@prefix owl: rdf: xsd: rdfs:
3@prefix mdt: <http://mimesis.solutions/datatypes#>.
4@prefix man: <http://mimesis.solutions/annotations#>
5@base <http://mimesis.solutions/products/concert> .
6<http://mimesis.solutions/products/concert> rdf:type owl:Ontology .
7
8########### Classes ##########
9:Concertdata rdf:type owl:Class .
10:Concertdetails rdf:type owl:Class .
11:Pricerange rdf:type owl:Class .
12...
13########### Object Properties ##########
14:Concertdata.concertdetails rdf:type owl:FunctionalProperty , owl:ObjectProperty ;
15rdfs:domain :Concertdata ; rdfs:range :Concertdetails .
16:Concertdata.pricerange rdf:type owl:FunctionalProperty ,owl:ObjectProperty ;
17rdfs:domain :Concertdata ; rdfs:range :Pricerange .
18...
19########### Data properties ##########
20:Concertdetails.concertcategory rdf:type owl:DatatypeProperty , ... ;
21rdfs:range mdt:manyOfMany ; rdfs:domain :Concertdetails .
22:Concertdetails.name rdf:type owl:DatatypeProperty , owl:FunctionalProperty ;
23rdfs:range xsd:text ; rdfs:domain :Concertdetails .
24:Pricerange.maxprice rdf:type owl:DatatypeProperty , owl:FunctionalProperty ;
25rdfs:domain :Pricerange ; rdfs:range xsd:integer .
26...

data fields and their types (e.g., name and concertcategory) to be presented to
the user. Listing 1.3 shows an excerpt of the UIO in OWL/Turtle notation [23].

The additional information needed for the derivation of a concrete UI and
for the mapping to the Demand Ontology is shown in Listing 1.4. As this is
meta information, describing the element in more detail, mimesis uses the anno-
tation concept of OWL to specify these details. For each element (data element
or group) there exist mimesis-specific entries (e.g., the sequence of the questions
in line 3, or specific type information and restrictions in line 4 and 5). The
mapping onto instances for DO elements is provided using annotations starting
with the prefix ’sw:’. It contains information to which class an entity belongs
to (e.g., line 19 maps Concert.concertdata to a tiod:TicketRequest). It is defined
to which property a data element maps, which type it has and to which indi-
vidual it belongs to (e.g., line 6 - 8 map Concertdetails.concertcategory to the
type tiod:eventcategorylist and assigns it to the ticketrequest instance using the
property name tiod:eventcategory). Given that information a demand instance,
following the DO as shown in Listing 1.2, can be generated in combination with
the instance data gathered by the UI.

4 Demonstrator

As a proof of the concept, we built a demonstrator that implements the proposed
approach for aggregating the UIs for a complex product request and matching
the collected data to a Demand Ontology. As a use case, we chose ’organising
a city trip’ which includes the planning of events, transportation and overnight
stays. The buyer should be able to select the desired components for his trip,
and enter the required demand information for each component. As the final

Generic UIs for distributed markets in the IoE 11

Listing 1.4: Additional UI and DO related Data for a concert demand.
1
2########### Annotations ###########
3:Concertdetails.concertcategory man:sequence "2" ;
4man:type "manyOfMany" ;
5man:restrictedTo>"musical|classical|rock|jazz|all" ;
6man:swForIndividual "ticketrequest" ;
7man:swProperty "tiod:eventcategory" ;
8man:swType "tiod:eventcategorylist" .
9:Concertdetails.name man:sequence "1" ;
10man:swProperty "gr:name" ;
11man:swType "gr:name" ;
12man:swForIndividual "ticketrequest" .
13:Concertdata.pricerange man:sequence "2" ;
14man:swClass "gr:UnitPriceSpecification" ;
15man:swProperty "gr:hasPriceSpecification" ;
16man:swIndividual "hasPriceSpecification" ;
17man:swForIndividual "ticketrequest" .
18:Concert.concertdata man:sequence "0" ;
19man:swClass "TicketRequest" ;
20man:swIndividual "ticketrequest" .
21:Pricerange.maxprice man:sequence "1" ;
22man:initialValue "30" ;
23man:unit "EUR" ;
24man:swProperty "gr:hasMaxCurrencyValue" ;
25man:swForIndividual "gr:hasPriceSpecification" ;
26man:type "number" ;
27man:swType "xmls:float" .
28:Concertdata.concertdetails man:sequence "1" .
29...

step of the demonstrator, the collected data for each component is shown as an
instance of the related Demand Ontologies.

The demonstrator implements the solution architecture outlined in Section
3.2 and shown in Figure 2. Its central component, the CPR Builder, is imple-
mented as a web application using HTML/JavaScript as a platform technology,
and uses a local repository for the management of available UI descriptions. Ad-
ditionally, the UI Builder and Ontology Mapper components are implemented
as separate Web Services, based on the work in [11].

The UI Builder Service is responsible for generating the UIs based on the UI
Description Ontologies; it accepts UIOs as input and is able to generate a final
UI for different technology plattforms (here HTML/Javascript). The Ontology
Mapper Service, on the other hand, is responsible for generating a DO instance,
based on a certain UIO and corresponding user input submitted in the form of
a JSON object.

The demonstrator follows the workflow outlined in section 3.2. First, the
buyer searches for product components using a google-like search facility, and
selects/collects the components according to his preferences and requirements as
shown in Figure 2, Step 1. An example of such a search is shown in Figure 4a,
where the user enters ’travel’ into the search field, and gets available components
matching the search critera (e.g., ’visit a concert’ of ’rent a car’). The user selects
viable components, which are collected like products in a shopping cart (Figure
4a). When the user finished the selection, the corresponding UIOs of the selected
components are sent to theUI Builder Service that generates final UIs (Figure
2, Steps 2 and 3). These are aggregated by the client application into one UI and

12 M. Hitz et al.

presented to the user for input. The aggregation of the UI based on the selected
components is shown in Figure 4b.

(a) Searching for suitable UIs. (b) Entering data in meshed-up
UI.

(c) Gathered data as Demand Ontology instance.

Figure 4: Aggregating UI and entering data

After having entered the demand data for each component, the CPR Builder
sends the collected data along with the corresponding UIO to the Ontology
Mapper Service, which is responsible for mapping the collected data to the
DO according to the information contained in the UIO, and returns an instance
of the DO (Figure 2, Steps 4 and 5). The results of this step are finally displayed
by the demonstrator for each component as shown in Figure 4c. In a further step
(not part of the demonstrator) these DO instances can be aggregated into one
complex demand and processed by the CPR Builder, as described in Section 2.1.

Summarizing, the demonstrator shows that it is basically possible to dynam-
ically generate UIs for complex products, satisfying the requirements defined in

Generic UIs for distributed markets in the IoE 13

Section 2.2. Users can be enabled to choose the UIs they want/need and com-
bine them to build requests for desired complex products. These UIs may span
different domains and can be combined to build a unified interface for the users.
Moreover, the demonstrator also underlines the advantage of using UIOs as sep-
arate descriptions; since a UIO contains all information to generate a UI, as
well as the information about how to produce instance data (understandable by
the market spaces), the UIOs are actually independent from the target system.
Therefore, they can be independently distributed and modified – as long as the
output conforms to the specified demand ontologies.

Yet, our demonstrator does not cover all functionality needed to combine
different demands in a seamless manner; currently it combines UIs for product
components as separate, self relying units – ignoring possible relations between
them. For example, it does not implement a context, which components and
their UIs may share and react to (e.g., recognizing and omitting questions, that
were already asked in other components, or pre-fill values from a global context).

5 Related Work

In this section, we provide an overview of the operational solutions, concepts
and approaches relevant to the presented work, and briefly discuss why these
are not suitable to meet the defined requirements.

Electronic marketplaces (e-marketplaces), as well-established solutions
for commercial exchange, enable only compositions of individual products/ser-
vices within their domain boundaries, or they offer pre-defined combinations of
them, which are traditionally bought together and determined by recommender
systems. Even though there exist some advanced solutions, such as, e.g., [8]
enabling the composition of individual services considering a wider set of user-
defined criteria, these are domain-specific solutions, and as such, are limited in
their capabilities to support users requesting complex products spanning over
different product/service domains related to the complexity of the user’s de-
mand.

The Intention Economy (IE) [22], also called Project Vendor Relation-
ship Management (VRM), refers to an exchange environment that focuses on a
buyers’ intention to conduct a transaction with potential sellers (i.e., vendors).
By using VRM tools, buyers are supported to describe their needs by creating
a personal request for proposal (pRFP) and make them visible for the vendors.
Even though, the VRM tools support pRFP there is no obvious evidence that
they support composing context-focussed UIs.

Web of Needs (WoN) [14], refers to a framework for a distributed and
decentralized e-marketplace on top of the Web. WoN aims to standardize the
creation of owner proxies, which describe supply or demand, represent the inten-
tion to enter a transaction, as well as contain information of the owner needed for
conducting the transaction [13]. Generally, WoN supports describing the user’s
need for complex products, but, if the user wants the system to process the com-
plex product, he can publish a ’complex need’, waiting for a matching service

14 M. Hitz et al.

capable of interpreting his ’complex need’. Given that, the effects of adverse
selection are still retained, and native support for requesting complex products
remains insufficient.

Concluding, contemporary solutions of commercial exchange are limited in
supporting users requesting complex products; approaches such as IE or WoN,
address some of the requirements, but do not represent a comprehensive solution.
Either they provide tools that need to be integrated with other solutions to be
fully usable, or they address our requirements only partly.

Next, we elaborate on the approaches focusing on automatic generation of
UIs and the different aspects of the UI generation that can be applied to our
presented work.

User Interface Description Languages (UIDL) focus mainly on the de-
scription of concrete UIs in a technology independent way. Examples are JavaFX
[7], UIML [1], and XForms [5]. The essential idea is to model dialogs and forms
by declarative descriptions of in-/output controls and relations between elements
and behavior (e.g., visibility) within a concrete UI.

Task-/conversation based approaches describe applications by dialog
flows which are derived from task models - e.g., MARIA [17] or model conver-
sations, like in [19], [20]. They focus on a model of the dialog flows and their
variants. To generate an application frontend, the steps in a dialog flow are
associated with technology independent UI descriptions displayed to the user.

Existing ontology based approaches generally rely on the concepts of
the mentioned approaches and use ontologies to represent the information. For
instance, in analogy of UIDL approaches, Liu et al. [15] propose an ontology
driven framework to describe UIs based on concepts stored in a knowledge base.
Khushraj et al. [12] use web service descriptions to derive UI descriptions based
on a UI ontology, adding UI related information to the concept descriptions. In
analogy with task based approaches, Gaulke et al. [9] use a profiled domain model
enriched with UI related data to describe a UI and associate it with an ontology
driven task model which models the interaction. ActiveRaUL [21] combines an
UIDL with a data-centric approach and thus contributes to the generation of UIs
for arbitrary ontologies. They derive a hierarchical presentation of an ontology
and map it to an – yet simple – ontology based on the UI description.

In view of our requirements (cf. Section 2.2) it can be stated that the afore-
mentioned approaches are restricted mainly to the definition of UIs and dialog
flows. They do not contain concepts to associate (map) the collected data to
results of arbitrary ontology instances that might have a different structure as
in the UI. Additionally, they are restricted to the environments where a reasoner
is available at runtime to infer the dynamic behavior of UIs based on already
entered data (e.g., showing/hiding UI parts, as in [15]). This is a drawback for
environments like web-based, single-page applications, where a reasoner is not
available at runtime. Finally, UIs and task models are mostly modeled using
a large amount of artifacts, thus, they can hardly be used to generate target-
system independent variants that differ in content, depending on the context of
use [4].

Generic UIs for distributed markets in the IoE 15

6 Conclusion and Future Work

In this paper, we proposed a concept for generic UIs that enables users requesting
complex products within DMS in the IoE. In order to express their demand
for a particular complex product, in a way, that is interpretable by the DMS,
users need flexible UIs that allow context-focused data collection related to the
complexity of the user’s demand.

In order to identify the overall objectives, which need to be supported by the
generic UIs concept, we first looked at the prerequisites and objectives derived
from the DMS as the application context. Afterwards, we operationalized these
objectives into the requirements and used them as the rationale to conceptualize
the overall solution as well as to elaborate on existing approaches and initiatives
related to the presented work. Thereafter, and in the view of these requirements,
we implemented an initial demonstration of the proposed generic UIs concept,
using an exemplary use case.

As the demonstrator shows, it is basically possible to dynamically generate
UIs for complex products where UIs may span different domains, and can be
combined to build a unified interface for the users. It also underlines the ad-
vantage of using User Interface Ontologies as separate descriptions, so that they
can be independently shared and modified. However, the presented demonstrator
does not cover all functionality needed to combine different demands; currently
it composes UIs for product/service components as separate, self-relying parts
ignoring possible relations between them. Furthermore, it does not consider a
wider user-related context that components and their UIs may share and react
to.

In our future work, we will concentrate on these two areas of improvements, as
well as, on the extensive prototypical implementation to conduct a sophisticated
analysis of the strengths and weaknesses of the proposed concept.

References

1. Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M., Shuster, J.E.:
UIML: An appliance-independent XML user interface language. In: WWW ’99
Proceedings of the eighth international conference on World Wide Web. pp. 1695–
1708 (1999)

2. Akerlof, G.A.: The market for lemons: Quality uncertainty and the market mech-
anism. The quarterly journal of economics pp. 488–500 (1970)

3. Cisco: The internet of everything for cities. http://www.cisco.com/web/about/
ac79/docs/ps/motm/IoE-Smart-City_PoV.pdf (2013)

4. Coutaz, J.: User interface plasticity: model driven engineering to the limit! In: EICS
’10 Proceedings of the 2nd ACM SIGCHI symposium on Engineering interactive
computing systems. pp. 1–8. No. Eics (2010)

5. Dubinko, M., Klotz, L., Merrik, R., Raman, T.: XForms 1.0 W3C Recommendation
- http://www.w3.org/TR/xforms (2003)

6. El Sawy, O.A., Pereira, F.: Business modelling in the dynamic digital space: An
ecosystem approach. Springer (2013)

16 M. Hitz et al.

7. Fedortsova, I., Brown, G.: JavaFX Mastering FXML, Release 8 (2014), http:
//docs.oracle.com/javase/8/javafx/fxml-tutorial/preface.htm

8. García-Gómez, S., Jimenez-Ganan, M., Taher, Y., Momm, C., Junker, F., Biro, J.,
Menychtas, A., Andrikopoulos, V., Strauch, S.: Challenges for the comprehensive
management of cloud services in a paas framework. Scalable Computing: Practice
and Experience 13(3) (2012)

9. Gaulke, W., Ziegler, J.: Using profiled ontologies to leverage model driven user
interface generation. Proceedings of the 7th ACM SIGCHI Symposium on Engi-
neering Interactive Computing Systems - EICS ’15 pp. 254–259 (2015)

10. Hitz, M.: mimesis : Ein datenzentrierter Ansatz zur Modellierung von Varianten
für Interview-Anwendungen. In: Nissen, V., Stelzer, D., Straßburger, S., Fischer, D.
(eds.) Proceedings - Multikonferenz Wirtschaftsinformatik (MKWI) 2016. vol. 4,
pp. 1155–1165 (2016)

11. Hitz, M., Kessel, T.: mimesis : A Data-Centric Approach for Generating User Inter-
faces for Interview Applications Using Ontologies. unpublished – in consideration
(2016)

12. Khushraj, D., Lassila, O.: Ontological approach to generating personalized user
interfaces for web services. The Semantic Web@ISWC 2005 pp. 916–927 (2005)

13. Kleedorfer, F., Busch, C.M.: Beyond data: Building a web of needs. In: Proceedings
of the WWW2013 Workshop on Linked Data on the Web (2013)

14. Kleedorfer, F., Busch, C.M., Pichler, C., Huemer, C.: The case for the web of needs.
In: Business Informatics (CBI), 2014 IEEE 16th Conference on. vol. 1, pp. 94–101.
IEEE (2014)

15. Liu, B., Chen, H., He, W.: Deriving user interface from ontologies: A model-based
approach. Proceedings - International Conference on Tools with Artificial Intelli-
gence, ICTAI 2005, 254–259 (2005)

16. Pascalau, E.: Mashups : Behavior in Context (s). In: Proceedings of 7th Workshop
on Knowledge Engineering and Software Engineering (KESE7) (2011)

17. Paterno, F., Santoro, C., Spano, L.D.: Maria: A Universal, Declarative, Multiple
Abstraction-Level Language for Service-Oriented Applications in Ubiquitous En-
vironment. ACM Transactions on Computer-Human Interaction 16(4) (nov 2009)

18. Pfisterer, D., Radonjic-Simic, M., Reichwald, J.: Business model design and archi-
tecture for the internet of everything. Journal of Sensor and Actuator Networks
5(2), 7 (2016)

19. Popp, R., Falb, J., Arnautovic, E., Kaindl, H., Kavaldjian, S., Ertl, D., Horacek, H.,
Bogdan, C.: Automatic generation of the behavior of a user interface from a high-
level discourse model. In: Proceedings of the 42nd Annual Hawaii International
Conference on System Sciences, HICSS (2009)

20. Raneburger, D., Kaindl, H., Popp, R., Šajatovi, V., Armbruster, A.: A Process
for Facilitating Interaction Design through Automated GUI Generation. In: SAC
’14 Proceedings of the 29th Annual ACM Symposium on Applied Computing. pp.
1324–1330. ACM Press, New York (2014)

21. Sahar, A., Armin, B., Shepherd, H., Lexing, L.: ActiveRaUL : Automatically gen-
erated Web Interfaces for creating RDF data 0, 100 (2013)

22. Searls, D.: The intention economy: when customers take charge. Harvard Business
Press (2013)

23. W3C: Rdf 1.1 turtle. http://www.w3.org/TR/turtle/ (2014)
24. W3C: Resource description framework (rdf). http://www.w3.org/RDF/ (2015)

