
HAL Id: hal-01615298
https://inria.hal.science/hal-01615298

Submitted on 12 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Epistemic Opacity, Confirmation Holism and Technical
Debt: Computer Simulation in the Light of Empirical

Software Engineering
Julian Newman

To cite this version:
Julian Newman. Epistemic Opacity, Confirmation Holism and Technical Debt: Computer Simulation
in the Light of Empirical Software Engineering. 3rd International Conference on History and Phi-
losophy of Computing (HaPoC), Oct 2015, Pisa, Italy. pp.256-272, �10.1007/978-3-319-47286-7_18�.
�hal-01615298�

https://inria.hal.science/hal-01615298
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Epistemic Opacity, Confirmation Holism and

Technical Debt: Computer Simulation in the Light of
Empirical Software Engineering

Julian Newman

Birkbeck College, University of London, UK

juliannewman@ymail.com
Abstract. Software-intensive Science, and in particular the method of
modelling large and complex systems by means of computer simulation,
presents acute dilemmas of epistemic trust. Some authors have contended
that simulations are essentially epistemically opaque vis and vis a human
agent, others that complex simulation models suffer from an inescapable
confirmation holism. We argue that the shortcomings lie in the failure of
modellers to adopt sound Software Engineering practices, and that the
elevation of computational models into superior epistemic authorities runs
counter to principles that are common to both Science and Software
Engineering.

Keywords. Simulation Models ∙ Surveyability ∙ Holism ∙ Epistemic Trust

1 Introduction

Software-intensive Science, and in particular the method of modelling large and complex
systems by means of computer simulation, presents dilemmas of epistemic trust in acute
form. In general, epistemic trust may be placed in colleagues, informants, methods,
practices and instruments. Such trust may appear inconsistent both with the organised
selective scepticism which is at the core of the scientific attitude and with the provisional
nature of corroboration – yet the necessary levels of specialisation in modern sciences,
and the consequent division of labour in laboratory teams and research programs,
conspire to make some level of trust inevitable.

Instances of serious scientific malpractice or error do sometimes spark a moral panic,
leading journal editors to adjust publication requirements – for example regarding data
deposition or description of authors’ contributions and acceptance of responsibility
regarding the paper as a whole – but the need to trust fellow scientists, both within the
team and externally, seems impossible to eradicate. Conversely, the acceptance of
particular experimental results as sound tends to enhance trust not only in the researchers
who produce them, but in the methods, practices and instruments employed: the
“Matthew effect” [46] leads to a “credibility cycle” in the accumulation of idiosyncrasy

credits, professional authority and funding [14,15], [36,37]. It is within this context that
we should critically assess claims that scientific practices are self-vindicating (e.g. [23],
[63]).

A number of authors have recently explored the relationships between
experimentation, simulation and human cognitive limits. This has led some, we shall
argue, into a misapplication of epistemic trust. For example, Symons & Horner [56] have
argued that the defining characteristic of Software-intensive Science is that it is
impossible within any realistic timescale to test the correctness of all possible paths
through the software on which such a science depends, so that the error distribution in
Software-intensive Science is unknown – nevertheless Symons remains wedded to the
view that “people should trust” models [5], [55]. Similarly, Humphreys [25,26] has
argued from the (allegedly essential) epistemic opacity of much or most Computational
Science, including computer simulations, to the need for a “post-anthropocentric
epistemology”. Winsberg [63] suggests that the techniques used to construct simulation
models are self-vindicating in the manner predicated by Hacking [23] of experiments
and instruments, and – writing with Lenhard [38] – that complex system models have to
be accepted or rejected as a whole, in a novel form of confirmation holism. Frisch [18,
p 177], extends the concept of epistemic opacity to cover not merely the inability of the
cognitive agent to know all the epistemically relevant elements of a process at a given
time, but also this impossibility of identifying the contribution of a model’s different
components to its overall performance. We shall therefore refer to the general position
espoused by Humphreys, Lenhard, Winsberg and Frisch as “The Epistemic Opacity
Doctrine”.

1.1 Structure of the Paper
Our argument proceeds as follows: First, we give a brief account of the positions that
we intend to question; next, we advance two arguments critical of these positions: we
shall call these the argument from the theory of the instrument and the argument from
scientific norms. Taken together these arguments lead to the conclusion that the
acceptance of computer simulations as superior epistemic authorities is neither desirable
nor necessary.

The first argument starts from the position that Empirical Software Engineering,
rather than Computer Science, is the essential “theory of the instrument” upon which to
ground the ability of computer simulations to warrant scientific knowledge claims; we
sketch the concepts and practices of “Engineering”, “Engineering Sciences”, “Software
Engineering” and “Empirical Software Engineering”; examples from Empirical
Software Engineering are then used to explore the Ontology and Epistemology of
software, and we suggest that findings from empirical studies of other large software
systems evolved over a long time period are particularly pertinent to understanding the
epistemic issues that arise with respect to complex simulation models. Of particular
interest are findings concerning the relation between software architecture and the
incidence and persistence of defects, and concerning the phenomenon of “technical
debt”.

The second argument, from scientific norms, builds on studies of the practices
whereby scientific communities manage the issues surrounding epistemic trust. Trust
amongst scientific colleagues is not indiscriminate: epistemic dependency is socially
managed by means of specific strategies of indirect assessment, leading to considered
judgements of the degree of trust to be placed in another scientist, and the areas in which
that colleague can be regarded as reliable. These social practices, which allow trust
relations to be managed without abandoning local scepticism, cannot be extended to an
instrument regardless of its computational power.

Both arguments lead to rejection of the claim that opacity in computer simulations
justifies regarding them as superior epistemic authorities.

2 Software

2.1 Opaque Models as Superior Epistemic Authorities
The output of a simulation model does not, prima facie, appear to have an objective
status comparable with data captured by observation or experiment using defined
reproducible procedures. Counter to this Winsberg, Humphreys and others emphasise
parallels between experiment and simulation in practices which are said to “carry with
them their own credentials” [25,26], [63]. By essential epistemic opacity, relative to a
cognitive agent, Humphreys means that it is impossible for that cognitive agent, given
his or her characteristics, to know all of the epistemically relevant elements of a
computational process. Humphreys views essential epistemic opacity as reflecting the
limitations not of the simulation method itself but of the human agent, and thus as
evidence for a “non-anthropocentric epistemology” recognising computational tools as
a superior epistemic authority.

The possibility of testing a highly parameterised simulation model via the
hypothetico-deductive method can indeed be open to doubt; moreover empirical
measurements are often not available on the scale needed to evaluate model outputs.
Even were appropriate data available, Lenhard & Winsberg [38] argue that climate
simulation models face epistemological challenges associated with a novel kind of
“confirmation holism”: it is impossible to locate the sources of the failure of any complex
simulation to match known data, so that it must stand or fall as a whole. This is because
of three interrelated characteristics which they regard as intrinsic to the practice of
complex systems modelling – “fuzzy modularity”, “kludging” and “generative
entrenchment”.

In “fuzzy modularity”, different modules simulating different parts of the complex
system are in continual interaction, thus it is difficult to define clean interfaces between
the components of the model. A “kludge” is an inelegant, ‘botched together’ piece of
program, very complex, unprincipled in its design, ill-understood, hard to prove
complete or sound and therefore having unknown limitations, and hard to maintain or
extend. “Generative entrenchment” refers to the historical inheritance of hard-to-alter
features from predecessor models. The critic of the Epistemic Opacity Doctrine must

confront three possibilities. Confirmation holism may be essential to and unavoidable
in complex systems modelling, or embedded in specific disciplinary practices of Climate
Science, or may exemplify a failure to observe, recognise and apply available and well-
established sound Software Engineering practices in simulation software projects. 1

Belief in the essential epistemic opacity of Computational Science points to the frst
alternative but we shall argue that the third better characterises this phenomenon. It
should be noted that attempts to develop large complex software systems beyond the
technical and project-management capabilities of those concerned is a recurrent problem
well known to software engineering consultants and academics, and that it is thought to
be particularly prevalent in publicly-funded organisations. Several writers have
identified factors that work against the use of good Software Engineering practices in
scientific computing, including the tendency to manage projects according to scientific
goals rather than software quality goals, the variety of specific contexts in which
scientific software is developed and deployed (which is a potential obstacle to learning
from other Computational Science projects), the long lifetime of much scientific
software leading to the accumulation of legacy code and the obsolescence of
computational techniques used, and various communicational, organisational and
resource factors that predispose scientists to write their own code rather than to employ
a professional software engineer to do so [12], [29],[50].

2.2 Theory of Software-based Instruments
A computer simulation model is an instrument whose functionality is delivered through
software. Since our knowledge of computers is, to an overwhelming extent, knowledge
of the behaviour, affordances2 and malfunctions of software, getting the epistemology
of software right is an essential precondition for any correct and informed philosophical
approach to other epistemological issues in which computers are implicated. Thus the
“theory of the instrument” in computer simulation studies is the theory of software.

The ‘internal’ perspective on software adopted by its designers and programmers is
not our principal or most reliable source of knowledge concerning its actual nature and
probable behaviour, although empirical investigation can show us, amongst other things,

1 The use of rigorous Software Engineering methods in Computational Science has been
promoted by a number of recent initiatives, for example the Software Sustainability
Institute http://software.ac.uk/ and the Karlskrona Manifesto [3].
2 An affordance is a perceptual feature of an artefact with which a user can interact in
order to evoke a behaviour: a familiar example of an affordance is an “icon” on which
the user can click in order to open a file or start an application. The concept derives from
Gibson’s psychology of perception [19,20],[48].

how to maximise the ‘surveyability’3 of a software artefact thus increasing the chances
that an internal view will correctly anticipate the artefact’s behaviour.4

Software as an Immaterial Artefact. We now present an account of software as an
immaterial artefact, produced and maintained through the practice of Software
Engineering. The perspectives from which we treat the matter are those of Software
Engineering practice and Empirical Software Engineering evidence, and thus
consciously distinct from the Computer Science approach that informs Turner’s analysis
of computing artefacts [60,61]. The conceptual analyses of miscomputation and
malfunction, related to Levels of Abstraction, presented by Fresco, Primiero and Floridi
[10,16,17] come closer to a Software Engineering approach, but do not address
Empirical Software Engineering as our main source of scientific knowledge of the
factors determining the reliability of software.

An Engineering practice involves the systematic, knowledge-based solution of
engineering problems, where an engineering problem is understood to be one whose full
solution is the creation, validation and maintenance of a functional artefact. Whereas the
goals of science must be characterised in cognitive terms, and the goals of engineering
are characterised in terms of the delivery of functionality subject to constraints.
Scientific knowledge may assist the engineer in achieving these goals, but is not for the
engineer an objective in its own right.

Let us now consider three important points about software: it is an immaterial
artefact, but not on that account incomplete; like all functional artefacts software is
ontologically dual, having an objective structure designed to realize an intentional
function; full knowledge of its objective structure cannot be obtained a priori.

Some have characterised computer programs as a new kind of mathematical object5
– yet the complete software product is much more than the algorithm(s) that it
implements. An ontology of artefacts should be aligned upon the schemes of
individuation6 familiar to the creators and users of those artefacts. An artefact is often
assumed to be a physical object whose structure is designed to serve a function [33, p
xxv]. Software is then described as an “incomplete artefact” needing a suitable machine

3 Turkle [58] draws attention to the oddity of the established usage, in computing fields,
whereby “transparency” refers to the hiding of details rather than making them apparent.
She goes so far as to say that in what she refers to as “a culture of simulation” …
“transparency means epistemic opacity”. To avoid confusion on this point, we prefer to
use ‘surveyability’ rather than ‘transparency’ as the contrast-term for ‘opacity’.
4 The “internal” and “external” perspectives mentioned here should not be confused with
the theories of the “inner” and “external” environment of an artefact discussed below.
5 According to Lamport [35] “Floyd and Hoare … taught us that a program is a
mathematical object and we could think about it using logic.” Mathur [43, p. 36] treats
this as a widely accepted orthodoxy (“It is often stated that programs are mathematical
objects”), but points out that the complexity of such an object and of its environment
form obstacles to effective proofs of correctness of large-scale software products. See
also Turner [59].
6 The concept of “scheme of individuation” is drawn from Situation Theory (e.g. [9]).

on which to run [45, p 90]). But computing hardware serves only the most generic
function.

The specific functionality in which users are interested lies in the application
software that is running above a platform constituted by hardware and layers of system
software. Thus for the software engineer, as for the user, applications software stands
itself as a complete artefact, while a suitable platform of machine and systems software
is an important element of its intended operating environment. The fact that an artefact
depends upon a particular operating environment does not make it incomplete.
Recognition that an artefact may be immaterial brings the ontology closer to the schemes
of individuation prevalent in a society where such artefacts are pervasive.

Notwithstanding the above, software participates in the ontological duality
characteristic of all artefacts: an artefact has an objective structure and an intentional
function [33]. Yet the objective structure of software is not a physical mechanism.
Developing this type of immaterial artefact is an engineering practice. Discovering the
characteristics that determine or limit the capacity of software’s objective structure to
deliver intentional functionality goes beyond engineering practice and requires the
notion of “Engineering Science”.

Empirical Software Engineering. Following Boon [4], we distinguish between
Engineering on the one hand and, on the other, “Engineering Sciences” which are
scientific investigations motivated by the need to support Engineering practice. Given
the immaterial nature of software artefacts, we relax Boon’s stipulation that Engineering
Sciences use the same methods as the Natural Sciences. An engineering science
appropriate to supporting Software Engineering has to borrow methods from a range of
sciences better adapted to deal with immaterial artefacts: these are, broadly, the
behavioural, organisational and statistical sciences.

But why should Software Engineering not be accepted as a science in its own right?
After all, the software engineer employs various theories and models in constructing
solutions to problems, and subjects his or her solutions to rigorous tests which, it can be
said, are closely analogous to experimental tests of theory in the Natural Sciences. This
is, for example, the position advanced by Northover et al. [49] who state that “the
susceptibility of software to testing demonstrates its falsifiability and thus the scientific
nature of software development.” They further argue that software developers “are
responsible for establishing, by careful a priori reasoning, an overall ‘theory’ that guides
the development of working software programs.”

There is an unfortunate ambiguity here, which we may clarify by reference to
Simon’s distinction between the Inner and External environments7 of an artefact, and to
the idea of Claims Analysis developed within Human-Computer Interaction studies
[7],[54]. In Simon’s analysis, the “Inner environment” of an artefact is the technology
which the designer uses to produce the behaviour at the interface which delivers the
function of the artefact, while the “External environment” is the intended operating

7 The apparently paradoxical idea of an “Inner Environment” derives ultimately from
Cannon’s “Wisdom of the Body” [6].

environment from which the functional requirements derive [54]. According to Claims
Analysis, the design of an artefact, in particular its interface, involves implicit claims
about the External environment in which the artefact is to be deployed (often including
claims about the capacities of its intended users [7]). Reinterpreting Simon into the
language of Kroes & Meijers, these claims about the External environment are a theory
which provides a context for identifying the intentional functions of a proposed artefact.
On the other hand, a theory of how the artefact can be made to produce certain
behaviours – a theory of its Inner environment – describes the structure that delivers the
intentional function (in the case of software, as noted above, this structure is not material:
it may, arguably, be considered as a logical structure, although its actual manifest
behaviour may not conform to expectations arrived at through logical analysis).

Northover et al’s “overall theory that guides the development of working software
programs” may therefore refer to a theory of the Inner environment – what structures
will produce the desired behaviour at the interface? – or it may be a theory of the External
environment – into what human activities or distributed information environment must
the artefact fit? A test scheme in the context of developing a specific software artefact
is not an attempt to disconfirm or corroborate either type of “overall theory”: the theory
of the External environment stands rather as a quality control standard. The
requirements from which a test case derives are a model of the External Environment
which is not invalidated if the software fails the test [2, p 429]. 8

The parallel between testing software and testing a theory will not, therefore, bear
the weight of the Northover argument that “each test case … is like a ‘scientific
experiment’ which attempts to falsify part of the developer’s overall theory”. The
software under test is an artefact in the making: it is not an experimental, quasi-
experimental or controlled observational setup designed for the purpose of testing either
the theory of the Internal or that of the External environment. Putting either type of
theory on a sounder basis requires a differently designed activity with different goals.
Hence we conclude that just as materially-based Engineering practice has need of
Engineering Sciences, so does Software Engineering need its own engineering science;
it is the need for such a science, oriented to but distinct from Software Engineering
practice, that has given rise to “Empirical Software Engineering”. Two important
caveats must however be entered regarding our rejection of the Northover thesis. First,
the authors correctly locate systematic testing as a feature common to Science and
Software Engineering. Second, “reflective practice” is characteristic of Engineering as
a whole and can be an important source of theoretical ideas. Our critique of the limits
of the “internal view” of software does not deny that useful theories of Software
Engineering can arise out of practitioners’ experiences in software development and
testing; rather it emphasises that such theories need to be tested by “Empirical Software
Engineering”.9

8 A system failure may also occur because the requirements specification fails to capture
correctly a critical feature of the External environment [16,17].
9 Cf Popper on hypotheses and theories [51].

Actual practices of Software Engineering are amongst the objects that can be studied
and evaluated by Empirical Software Engineering. So also are the characteristics, both
designed and emergent, of tools used in Software Engineering practice (e.g.
programming languages, modelling tools, process models and standards, test plans,
configuration management tools [13], etc.), and the ways that Software Engineers,
individually and in teams, actually interact with those tools and with one another.
Whereas Software Engineering as a specialism within Computer Science originated in
the late 1960s [21,22], Empirical Software Engineering arose in the 1990s. Two
landmark events in 1996 were the commencement of the EASE10 conferences and the
creation of a new journal, Empirical Software Engineering. Its founding editors defined
its scope as “the study of software related artifacts for the purpose of characterization,
understanding, evaluation, prediction, control, management or improvement through
qualitative or quantitative analysis. The quantitative studies may range from controlled
experimentation to case studies” [24]. They stated that current ‘mainline’ Software
Engineering journals did not “adequately emphasize the empirical aspects of Software
Engineering,” and described Software Engineering as “not currently … a ‘fact-based
discipline’ ” and as one of the few technical fields where practitioners seldom required
(nor even particularly desired) “proof in the form of well-developed, repeatable trials
before accepting and acting on claims.”

Regarding the relationship between Computer Science and Software Engineering,
Harrison & Basili discern a general lack of appreciation for empirical work within
Computer Science. The favoured research paradigm in Computer Science, they write,
“tends not to follow the scientific method where one establishes a hypothesis, conducts
an experiment or otherwise collects data and then does a statistical analysis to
substantiate or reject the hypothesis. Rather, Computer Scientists tend to get rewarded
for building systems and doing some sort of generalized analysis of the performance,
benefits, etc. … We can see that this bias … propagates itself into the way most software
engineers are trained …”. [24, emphasis added]. By 1999 the long-established IEEE
Transactions on Software Engineering had responded to the new trend with a Special
Section on Empirical Software Engineering [28]. Writing in another IEEE journal,
Zelkowitz & Wallace [66] criticised the misuse of the term “Experimentation” in the
Computer Science community to describe a weak implementation example or ‘proof of
concept’ and lacking rigorous evidence: they refer to such experiments as ‘Assertions’.

From the foregoing, certain characteristics of Software Engineering and Empirical
Software Engineering may be discerned:
1. The so-called “Mertonian norm” of organised local scepticism is a value

commitment that is common to Software Engineering practice and to Science
(including Empirical Software Engineering as a branch of Science). This is not
contradicted by our preceding arguments against the view that Software
Engineering is in itself a science. The norm of (local) scepticism is explicitly
invoked in the critique of “Assertions” [66].

10Variously interpreted as “Empirical Assessment in Software Engineering” or as
“Evaluation and Assessment in Software Engineering”.

2. Our knowledge of the actual characteristics of software is empirical, not a priori,
despite the role of mathematical knowledge (such as “computational templates”
[21]) in motivating and guiding the creation of software artefacts.

3. In Software Engineering practice, a theory serves as a standard of correctness
against which the artefact is judged; but in “Empirical Software Engineering”, as it
is a branch of Engineering Science, theories do stand to be judged by the results of
empirical tests.

4. The statement that software developers “are responsible for establishing, by careful
a priori reasoning, an overall ‘theory’ that guides the development of working
software programs” [49] is true of computational templates, but not of the complete
software artefact, of which the behaviour cannot be known a priori, hence the
practice of systematic testing of software, and the growth of Empirical Software
Engineering as an attempt to bring empirical evidence to bear upon knowledge
claims and practices in the Software Engineering field.

5. As a corollary, while Mathematics can show us in some cases what software cannot
in principle do, Mathematics cannot give us certainty about what software actually
will do.

 Methods. The range of methods used in Empirical Software Engineering includes
controlled experimentation, project monitoring, studies of legacy data, case studies, field
studies and systematic reviews which incorporate any or all of the foregoing in an
attempt to support evidence-based Software Engineering Practice
[12],[27],[32],[34],[39,40],[42],[64].

Controlled experiments in Empirical Software Engineering [57] generally involve
work with human subjects under varying conditions in which independent variables
reflect factors of interest to Software Engineering practice. Subjects for such
experiments are often students of computing subjects but may on occasion be
professional software engineers. Large scale software projects require teamwork,
therefore experiments in which factors are manipulated at the level of the individual
subject may lack ecological validity. This has motivated some studies, oriented to the
effectiveness of team processes, which are effectively quasi-experiments and not true
controlled experiments, independent variables such as personality attributes or team
climate being measured but not strictly manipulated. Appropriate and realistic
experimental materials are required for such experiments, and these are often derived
from published code, most commonly found on Open Source development sites.
Concerns have been expressed about whether those materials are truly representative of
Software Engineering in general [64]. One solution is to develop suitable infrastructure
for hosting a repository of code from real-world projects, with capabilities to support
experimenters in creating and replicating experimental studies. Do et al [11] describe
such an infrastructure dedicated to supporting controlled experimentation upon different
software testing techniques.

 In other methods (Project Monitoring, Legacy Data Studies, Case Studies and Field
Studies) data generated from real-world activities are used not as experimental materials
but as actual observations. Whereas Case Studies in social sciences typically involve
collecting qualitative data from human participants, in Empirical Software Engineering

a Case Study can involve the extraction of quantitative data from project records created
over a lengthy period, potentially giving insights into the nature of the software artefact
as it develops and changes, and into the characteristics of software that create the most
difficult cognitive problems for the practising software engineer. Such records include
fault reports, change requests, versioning and defect tracking [11],[52]. Comparative
studies using such data (e.g. multi-case studies) may however face validity threats from
organisational or team variations in reporting and recording practices.
Empirical Characteristics of Software Defects. A useful example of empirically-based
theory development through statistical analysis of a long term case study of project
records is the work of Li et al. [41], which can serve as an example of the way in which
characteristics of software that could not be known a priori are revealed by empirical
investigation. A software architecture captures basic design decisions which address
such issues as performance, reliability, security, maintainability and interoperation. This
study concerned the relationship between software architecture, location of defects, and
the difficulty of detecting and correcting those defects.

Architectural decisions made early in the development process address qualities
central to system success. As many as 20% of the defects in a large system can be
attributed to architectural decisions, and these defects can involve twice as much effort
to correct as defects arising from mistakes in requirements specification or in the
implementation of software components [39],[65]. Thus at least for a large-scale
software system the theory of the Internal Environment may assume considerably greater
importance than that of the External Environment: the developers may have greater
difficulty in ensuring that the artefact delivers its functionality, than in determining what
that functionality should comprise.

Li et al [41] point out that architectural decisions typically affect multiple interacting
software components, and as a result architectural defects typically span more than one
component: they therefore concentrated on the problems of finding and correcting
“multiple-component defects” (MCDs). To this end, they conducted a case study based
on the defect records of a large commercial software system which had gone through six
releases over a period of 17 years. Compared to single component defects they found
that MCDs required more than 20 times as many changes to correct, and that an MCD
was 6 to 8 times more likely to persist from one release to another. They identified
“architectural hotspots” consisting of 20% of software components in which 80% of
MCDs were concentrated, and these architectural hotspots tended to persist over multiple
system releases. This study provides an excellent example of the part played by the
“Engineering Science” of Empirical Software Engineering in developing a relevant body
of theory upon which practice in Software Engineering can build.

Returning to the “Epistemic Opacity” theme, the lessons of Li’s and similar research
on the aetiology and persistence of software defects are highly relevant to interpreting
Lenhard & Winsberg’s account of the factors that make it impossible to trace the reasons
why particular outputs from a complex systems model fail to match observed data [38].
As summarised in section 2.1 above, they argue that complex simulation models in
general, and climate models in particular, are—due to fuzzy modularity, kludging, and
generative entrenchment—the products of their contingent respective histories and that

climate models are as a consequence analytically impenetrable in the sense that it has
been found impossible to attribute the various sources of their successes and failures to
their internal modelling assumptions. They suggest that complex models in general
exhibit a form of confirmation holism, but nevertheless claim that the failure of climate
models to converge is a good sign: “It would even be reason to be suspicious if science
would announce a coherent and unanimous result about this topic.” We would argue,
rather, that disagreement because one has built instruments whose function one does not
understand scarcely constitutes a healthy scientific pluralism, that fuzzy modularity
implies a failure to define a clear architecture for the simulation software, and that a
kludge is a software defect waiting to manifest itself.

Alexander & Easterbrook [1] comment that there are very few representations of the
high-level design of global climate models on which to base discussion, planning and
evaluation; while they were able to create top level architectural diagrams of eight
climate models by means of code mining, we argue that the fact need for such
representations of the architecture to be discovered, rather than being created and
maintained by the developers, confirms a failure of the latter to engage with crucial
factors that would determine the quality and surveyability of their simulation software.
Nevertheless, when Pipitone & Easterbrook [50] compared defect density in three
climate models with that in three open-source projects they found that on this measure
of quality the climate models scored well. They discuss a large range of validity threats
that may undermine this apparently favourable result for the climate modellers [50, pp
1017-1020], including possible differences in defect recording practices and in what they
describe as “successful disregard” of certain types of defect.
 Technical Debt. A further line of research in Empirical Software Engineering concerns
the consequences of making early programming decisions on a purely pragmatic basis
(e.g. in order to get the system working) – in other words, the consequences of kludging.
It has been shown that such short cuts create “Technical Debt” [8],[52] on which interest
will accrue in the form of error and maintenance costs throughout the lifecycle of the
software product. Technical Debt, first noted in 1992 [8], [53], became a major research
focus in Empirical Software Engineering around 2010. Kruchten et al [34] summarise
current views of Technical Debt in terms of visibility/invisibility and in terms of
maintainability and evolvability. Visible elements include new functionalities that need
to be added and known defects that need to be fixed, but in their view “what is really a
debt” is the invisible result of past decisions that negatively affect the future value of the
software artefact. Ways in which this invisible debt can burden the developers and
stakeholders include architectural problems giving rise to the hard-to-correct type of
multi-component defect discussed above [41], associated shortcomings in
documentation, and factors making existing program code difficult to understand and
modify, such as code complexity and violations of coding style. Studies reviewed in
[34] present evidence that visible negative features depend to an important degree on
less visible architectural aspects (see also [30, 31]). The version of epistemic opacity
described by Lenhard & Winsberg and by Frisch manifests many of the characteristics
of Technical Debt [18],[38]. Pipitone & Easterbrook [50], in their discussion of the
apparently low defect density of the climate models they studied, write that climate

modellers may have learned to live with a lower standard of code and development
processes, and that a “net result may be that [they] incur higher levels of Technical
Debt”. Note that this assumes that Technical Debt is defined in terms of “problems in
the code that do not affect correctness, but which make the code harder to work with
over time,” whereas the central point of Lenhard & Winsberg concerns the loss of the
ability to “tease apart the various sources of success and failure of a simulation and to
attribute them to particular model assumptions of different models” [38, p 253].

Moreover, the treatment of Technical Debt by Kruchten et al shows that the concept
should not be restricted to maintainability issues, and studies such as that by Li et al [41]
demonstrate the impact of software architecture upon the incidence and persistence of
defects. As software is an immaterial human artefact, the objective structure which
delivers its functionality depends upon surveyability, which implies an adaptation to
human cognitive capacities. Technical Debt is, then, ultimately a phenomenon of
relative opacity (i.e. lack of surveyability) in an artefact. Since the effectiveness of
techniques for enhancing surveyability can be warranted by Empirical Software
Engineering research, this opacity is contingent, not essential.
2.3 Implications of Empirical Software Engineering for the Epistemic Opacity
Doctrine
Firstly, where a large software system is epistemically opaque with respect to a human
agent, this opacity is not an essential characteristic arising from its size but is contingent
upon development practices and in particular upon architectural design. Decomposition
into manageable, surveyable components is an essential architectural strategy for
managing complexity. Failure to perform such decomposition adequately at the design
stage will certainly make the software itself epistemically opaque, but it would be
perverse to regard this as endowing the resultant artefact with superior authority or the
capacity to carry its own credentials. In Software Engineering practice, defects are
expected: human activity is error-prone. Yet well architected software is not
epistemically opaque: its modular structure will facilitate reduction of initial errors,
recognition and correction of those errors that are perpetrated, and later systematic
integration of new software components. Nothing intrinsic to complex simulation
modelling prevents the application of these principles, but kludging in the early stages
of model building will create “Technical Debt” which will be charged in the form of
contingent epistemic opacity and its consequences. Simulation software is epistemically
opaque (when it is) not because of the inability of a human agent to check through every
possible execution path from beginning to end, but because of a failure of model builders
to adopt the practices which are known to promote surveyability and effective error
management. The “generative entrenchment” identified by Lenhard & Winsberg can
act as a barrier to a clear, clean architecture for a model built out of previous models.
For example, the failure of many global climate models to respect conservation of energy
is thought to result from previous ocean and atmospheric models having different grid
scales and different coastal representations. Ad-hoc fitting together of pre-existing
models that have not been designed to be components of a global model creates problems

that have to be fixed at the stage of model tuning, and the model tuning itself introduces
further opacity into the behaviour of the overall model [18],[44]. We have also seen
that institutionalised local scepticism is characteristic of Software Engineering practice,
as well as of Science. Credulity towards simulation software as a superior epistemic
authority, which must be accepted as a whole, runs entirely counter to this norm. This
theme is further developed in section 3 below.

3 Managing the Limits of Epistemic Trust

A simulation model must be understood as a tool which can play a part, along with other
resources, in a scientific argument; such an argument depends upon human judgement
which, fallible though it may be, cannot legitimately be replaced by an allegedly superior
epistemic authority. The argument from the essential epistemic opacity of
Computational Science to a non-anthropocentric epistemology runs counter to best
practice in Software Engineering and to empirical results of Software Engineering
Science. In this respect it is self-defeating.

Humphreys’ argument for ‘non-anthropocentric’ epistemology amounts to
considering the result of a computation to be a warranted knowledge claim, even though
a human user cannot readily trace the dynamic relationship between the initial and final
states of “the core simulation”. Humphreys provides a valuable and painstaking analysis
of the process of building and justifying computational models. In particular his
discussions of computational templates and correction sets in [25] deserve closer
attention by practitioners. The weakness of his treatment, however, is that it ignores the
Software Engineering process that creates the actual simulation model, effectively
inviting us to abdicate human critical judgment in the face of superior computational
capacities.

Wagenknecht [62] has argued that the ubiquity of trust, in research as in daily life,
does not imply that trust is indiscriminate and blind: rather epistemic trust amongst
scientific colleagues has inherent limitations. On the basis of an ethnographic study, she
shows that this epistemic dependency is managed by means of specific strategies of
indirect assessment, including dialogue practices and the probing of explanatory
responsiveness. From the foregoing, one could conclude that post-anthropocentric
epistemology is impossible, since it would require us to manage trust in a cognitive agent
that is not itself a social actor. Although Wagenknecht also describes scientists as
resorting to “impersonal trust”, she uses this term to describe trust in the epistemic
quality of scientific communities and institutions, gatekeeping and peer review
mechanisms, not in inanimate instruments and artefacts.

 4 Conclusions

We have not resolved the dilemmas of epistemic trust, nor have we aimed to do so. What
we have established, however, is that the surveyability of a computer model does not
depend on the ability of a human agent to perform its calculations in real time. The

practice turn in Philosophy of Science should not degenerate into a form of credulity
towards the instruments of Computational Science, particularly since the traditional
scientific norm of local (moderate) scepticism is also a core commitment of Software
Engineering, a discipline which, we have argued, provides the “theory of the instrument”
for Computational Science. “Generative entrenchment” of features from predecessor
models exemplifies a widespread problem of legacy code that manifests itself in a wide
range of long-lived software systems in many fields other than Science; the narrative of
“Technical Debt” provides a rationale within which the Software Engineering
community is developing strategies and techniques for addressing these problems, and
which we argue may be fruitful for understanding the resistance of climate models to
analytic understanding.

The slide from the firm ground of practice into credulity towards opaque
computations has undoubtedly been exacerbated by failure of journal editors to require
authors to publish or deposit their code [47]. Of greater importance, though, is a
philosophical re-evaluation of the nature of software as a human artefact and of the
contribution of the different and distinct computing disciplines. The present article has
concentrated upon critique, but the required philosophical work should not neglect the
positive aspects of the research programme within which Lenhard & Winsberg’s
“Holism” paper [38] is embedded, a programme which emphasises the interactive nature
of much Computational Science, summarised as “a pragmatic mode of scientific
understanding” or “methodology for a virtual world” [63], which is “Gibsonian” in the
sense of placing emphasis on active exploration as the basis of perception [20]. A future
task will be to explore how that perspective can exploit the Gibsonian merits of Human-
Computer Interaction [7],[9],[48] without losing the grasp of detail and surveyability
that characterises the research programme of Empirical Software Engineering.
Acknowledgements: The author is indebted to Giuseppe Primiero and to an anonymous
reviewer, for comments on previous drafts of this paper.
References
1. Alexander, K., Easterbrook, S.M.: The software architecture of climate models.

Geosci. Model Dev., 8, 1221-1232 (2015)
2. Angius, N.: The Problem of Justification of Empirical Hypotheses in Software

Testing. Philos. Technol. 27, 423–439 (2014)
3. Becker C., Chitchyan R., Duboc L., Easterbrook S., Penzenstadler B., Seyff N.,

Venters C.C.: Sustainability design and software: The Karlskrona manifesto. Proc.
37th Int. Conf. Software Engineering, Volume 2 pp. 467-476. IEEE Press (2015)

4. Boon, M.: In Defense of Engineering Sciences: On the Epistemological Relations
Between Science and Technology. Techné 15:1, 49-70. (2011)

5. Boschetti F., Fulton E.A., Bradbury, R.H., Symons, J.: What is a model, why people
don’t trust them, and why they should. In Negotiating our future: Living scenarios
for Australia to 2050 107-119. (2012)

6. Cannon, W.B.: The Wisdom of the Body. Norton, New York, NY (1932)
7. Carroll J.M. (ed.): HCI models, theories, and frameworks. Morgan Kaufman (2003)

8. Cunningham, W.: The WyCash portfolio management system. Addendum to the
Proceedings on Object-oriented Programming Systems, Languages, and
Applications, Vancouver, British Columbia, Canada, *A19, ACM (1992).

9. Devlin, K.: Logic and Information. Cambridge University Press (1991)
10. Dewhurst, J.: Mechanistic Miscomputation: A Reply to Fresco and Primiero. Philos.

Technol. 27: 495-498 (2014)
11. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with

Testing Techniques: An Infrastructure and its Potential Impact. Empirical Software
Engineering, 10, 405-435 (2005)

12. Easterbrook S.M., Johns, T.C.: Engineering the software for understanding climate
change. Computing in Science & Engineering. 11(6) 64-74 (2009)

13. Estublier, J., Leblang, D., Hoek, A.V.D., Conradi, R., Clemm, G., Tichy, W.,
Wiborg-Weber, D.: Impact of software engineering research on the practice of
software configuration management. ACM Transactions on Software Engineering
and Methodology (TOSEM), 14(4), 383-430 (2005)

14. Fleck, J.: Informal information flow and the nature of expertise in financial
services. Int. J. Technology Management, 11(1-2), 104-128 (1996)

15. Fleck, J.: Contingent knowledge and technology development. Technology
Analysis & Strategic Management, 9(4), 383-398 (1997)

16. Floridi, L., Fresco, N., Primiero, G.: On malfunctioning software. Synthèse 192,
1199-1220 (2015)

17. Fresco, N., Primiero, G.: Miscomputation. Philos. Technol. 26, 253-272 (2013)
18. Frisch, M.: Predictivism and old evidence: a critical look at climate model tuning.

Euro. Jnl. Phil. Sci. 5, 171-190 (2015)
19. Gibson, J.J.: The Theory of Affordances. In R Shaw & J Bransford (eds) Perceiving,

Acting, and Knowing. Erlbaum (1977)
20. Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin

(1979; Republished 2014 Psychology Press and Routledge Classic Editions)
21. Grier, D.A.: Software Engineering: History. In Encyclopedia of Software

Engineering, pp. 1119 – 1126. Taylor & Francis (2011)
22. Grier, D.A.: Walter Shewhart and the Philosophical Foundations of Software

Engineering. Third International Conference on the History and Philosophy of
Computing (HaPoC 2015) Pisa, Italy, 8-11 Oct 2015. (2015)

23. Hacking, I.: Representing and Intervening. Cambridge University Press (1983)
24. Harrison, W., Basili, V.: Editorial. Empirical Software Eng. 1(1), 5-10 (1996)
25. Humphreys, P.: Extending Ourselves: Computational Science, Empiricism and

Scientific Method. Cambridge University Press. (2004)
26. Humphreys, P.: The Philosophical Novelty of Computer Simulation Methods.

Synthèse, 169, 615-626 (2009)
27. Jedlitschka, A., & Pfahl, D.: Reporting guidelines for controlled experiments in

software engineering. In International Symposium on Empirical Software
Engineering, 2005. IEEE, pp. 95-104. (2005)

28. Jeffery, D.R., Votta, L G. (eds): Special Section on Empirical Software Engineering,
IEEE Trans. Software Eng..25(4) (1999)

29. Kanewala, U., Bieman, J.M.: Testing scientific software: a systematic literature
review. Information and Software Technology 56, 1219-1232 (2014)

30. Kazman R., Cai Y., Mo R., Feng Q., Xiao L., Haziyev S., Fedak V., Shapochka A.:
A case study in locating the architectural roots of technical debt. Proc. 37th Int.
Conf. Software Engineering, Volume 2 pp. 179-188. IEEE Press (2015)

31. Kitchenham, B., Pfleeger, S.L.: Software quality: the elusive target. IEEE Software,
13, 12-21 (1996)

32. Kitchenham, B., Pfleeger, S.L., Pickard, L. M., Jones, P.W., Hoaglin, D.C., El
Emam, K., Rosenberg, J.: Preliminary guidelines for empirical research in software
engineering. IEEE Transactions on Software Engineering, 28(8), 721-734 (2002)

33. Kroes, P. & Meijers, A. (eds.): The Empirical Turn in the Philosophy of
Technology. Emerald (2000 [republished 2009])

34. Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: from metaphor to theory and
practice. IEEE Software, 29(6), 18-21 (2012).

35. Lamport, L.: The Future of Computing: Logic or Biology. Talk, Christian Albrechts
Univ. Kiel, 11th June 2003. Downloadable from http://research.microsoft.com/en-
us/um/people/lamport/pubs/future-of-computing.pdf (2003)

36. Latour, B.: Insiders out. Ch 4 in Latour, B, Science in Action: How to Follow
Scientists and Engineers through Society. Open University Press, pp. 145-176
(1987)

37. Latour, B. & Woolgar, S.: The cycle of credibility. In: Barnes, B. & Edge, D. (Eds),
Science in Context: Readings in the Sociology of Science. Open University Press,
35-43 (1982)

38. Lenhard, J., Winsberg, E.: Holism, entrenchment, and the future of climate model
pluralism. Studies in History and Philosophy of Modern Physics 41 253–262 (2010)

39. Leszak, M., Perry, D.E., Stoll, D.: A Case Study in Root Cause Defect Analysis.
Proc ICSE’00 22nd International Conference on Software Engineering. Limerick,
Ireland pp. 428-437. IEEE (2000)

40. Lethbridge, T., Sim, S., Singer, J.: Studying Software Engineers: Data Collection
Techniques for Software Field Studies. Empirical Software Engineering, 10, 31-
341 (2005)

41. Li, Z., Madhavji, N.H., Murtaza, S.S., Gittens, M., Miranskyy, A.V., Godwin, D.,
Cialini, E.: Characteristics of Multiple-component Defects and Architectural
Hotspots: A large system case study Empirical Software Engineering 16: 667-702.
(2011)

42. MacDonell, S., Shepperd, M., Kitchenham, B., Mendes, E.: How reliable are
systematic reviews in empirical software engineering? IEEE Transactions on
Software Engineering, 36(5), 676-687 (2010).

43. Mathur, A.P.: Foundations of Software Testing. Pearson (2008)
44. Mauritsen, T., Stevens, B., Roeckner, E., Crueger, T., Esch, M., Giorgetta, M.,

Haak, H., Jungclaus, J., Klocke, D., Matei, D., Mikolajewicz, U., Notz, D., Pincus,
R., Schmidt, H., Tomassini, L.: Tuning the climate of a global model. J. Adv.
Model. Earth Syst., 4, M00A01, doi:10.1029/2012MS000154.

45. Meijers, A.: The Relational Ontology of Technical Artifacts. In Kroes, P., Meijers,
A. (eds.) The Empirical Turn in the Philosophy of Technology. Emerald, pp. 81-96
(2000 [republished 2009])

46. Merton, R.: The Matthew effect in Science. Science, 159(3810) 56-63 (1968)
47. Morin, A., Urban, J., Adams, P.D., Foster, I., Sali, A., Baker, D., Sliz, P.: Shining

Light into Black Boxes. Science, 336, 159 – 160 (2012)
48. Norman, D.: The Design of Everyday Things. Basic Books, New York. (1988;

Original hardback title: The Psychology of Everyday Things; 2nd ed. 2002)
49. Northover, M., Kourie, D.G., Boake, A., Gruner, S., Northover, A.: Towards a

Philosophy of Software Development. J. General Philosophy of Science. (2008)
50. Pipitone, J., Easterbrook, S.: Assessing climate model software quality: a defect

density analysis of three models. Geosci. Model Dev., 5(4) 1009-1022 (2012)
51. Popper, K: Conjectures and Refutations: The Growth of Scientific Knowledge. 2nd

ed. (revised). Routledge, London (1965)
52. Runeson, P,, Host, M.: Guidelines for conducting and reporting case study research

in software engineering. Empirical Software Engineering, 14(2) 131-164 (2008)
53. Schmid, K.: Technical Debt – From Metaphor to Engineering Guidance. IEEE

Transactions on Software Engineering 25(4) 573-583 (1999)
54. Simon, H.A.: The Sciences of the Artificial 3rd ed. MIT Press (1996)
55. Symons, J., Boschetti, F.: How computational models predict the behavior of

complex systems. Foundations of Science, 18(4), 809-821 (2013)
56. Symons, J., Horner, J.: Software intensive science. Philos. & Tech., 27(3), 461-477

(2014)
57. Tichy, W.F.: Should computer scientists experiment more? IEEE Computer, (5), 32-

40 (1998)
58. Turkle, S.: The Fellowship of the Microchip: Global Technologies as evocative

objects. In Suarez-Orozco, M.M., Qui-Hilliard, B.D. (eds.) Globalised Culture and
Education in the New Millenium. U. California Press, Berkeley, CA, 97-113 (2004)

59. Turner, R.: The Philosophy of Computer Science. Stanford Encyclopedia of
Philosophy http://plato.stanford.edu/entries/computer-science/

60. Turner, R.: Computational Artefacts. IACAP Conference 2013 (2013)
61. Turner, R.: Programming Languages as Technical Artifacts. Philosophy &

Technology 27:377–397 (2014)
62. Wagenknecht, S.: Facing the incompleteness of epistemic trust: Managing

dependence in scientific practice. Social Epistemology, 29(2), 160-184 (2015).
63. Winsberg, E: Science in the Age of Computer Simulation. U. Chicago Press (2010)
64. Wright, H.K., Kim, M., Perry, D.E.: Validity concerns in software engineering

research. In Proceedings of the FSE/SDP workshop on Future of Software
Engineering Research. ACM pp. 411-414 (2010)

65. Yu, W.D.: A software fault prevention approach in coding and root cause analysis.
Bell Labs Technical Journal 3(2), 3-21 (1998)

66. Zelkowitz, M., Wallace, D.: Experimental Models for Validating Computer
Technology. IEEE Computer 31(5), 23-31 (1998)

