N

N
N

HAL

open science

Practical Application Layer Emulation in Industrial
Control System Honeypots

Kyle Girtz, Barry Mullins, Mason Rice, Juan Lopez

» To cite this version:

Kyle Girtz, Barry Mullins, Mason Rice, Juan Lopez. Practical Application Layer Emulation in Indus-
trial Control System Honeypots. 10th International Conference on Critical Infrastructure Protection

(ICCIP), Mar 2016, Arlington, VA, United States. pp.83-98, 10.1007/978-3-319-48737-3 5.

01614865

HAL Id: hal-01614865
https://inria.hal.science/hal-01614865
Submitted on 11 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01614865
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 5

PRACTICAL APPLICATION LAYER
EMULATION IN INDUSTRIAL CONTROL
SYSTEM HONEYPOTS

Kyle Girtz, Barry Mullins, Mason Rice and Juan Lopez

Abstract Attacks on industrial control systems and critical infrastructure assets
are on the rise. These systems are at risk due to outdated technology
and ad hoc security measures. As a result, honeypots are often de-
ployed to collect information about malicious intrusions and exploita-
tion techniques. While virtual honeypots mitigate the excessive cost of
hardware-replicated honeypots, they often suffer from a lack of authen-
ticity. In addition, honeypots utilizing a proxy to a live programmable
logic controller suffer from performance bottlenecks and limited scalabil-
ity. This chapter describes an enhanced, application layer emulator that
addresses both limitations. The emulator combines protocol-agnostic
replay with dynamic updating via a proxy to produce a device that is
easily integrated into existing honeypot frameworks.

Keywords: Industrial control systems, honeypot, emulator, proxy

1. Introduction

Technological advancements on a societal scale require a stable underly-
ing critical infrastructure that generates and distributes electricity, gas, water,
communications, commercial goods and other necessities. In the United States
and other nations, critical infrastructure assets are monitored and managed by
industrial control systems. Historically, industrial control systems were isolated
and designed for robustness rather than security. Today, security requirements
rival availability as industrial control systems have become increasingly inter-
connected, exposed to the Internet and accessible to attackers.

The programmable logic controller (PLC), a common industrial control de-
vice, is particularly important to securing industrial control systems. These
devices contain custom programs that support data collection and actuator
control. Modern malware, such as Stuxnet, have successfully compromised pro-

84 CRITICAL INFRASTRUCTURE PROTECTION X

grammable logic controllers with destructive results [2]. To complicate matters,
the need for uninterrupted critical infrastructure services makes it very diffi-
cult to update or patch industrial control systems in the traditional manner.
Although security measures are desperately needed, they must be implemented
appropriately. To accomplish this, network administrators and security experts
need to know exactly how to best defend industrial control networks.

Honeypots are a deception-based technology that is commonly employed for
network state detection, threat analysis and data collection. A honeypot is a
bait device added to a network that attracts attackers and collects suspicious
traffic [5]. This chapter describes an enhanced production honeypot configu-
ration for industrial control systems that incorporates secondary emulation at
the application layer. The emulator combines protocol-agnostic replay with
dynamic updating via a proxy to produce a device that is easily integrated into
existing honeypot frameworks.

1.1 Honeypots

A honeypot is a passive device designed for information gathering [5]. A
physical honeypot is a hardware duplicate of the target system. A virtual
honeypot is a software simulation designed to behave in a similar manner as a
target system.

The degree of honeypot interaction is characterized as high or low depending
on how much of the target system is replicated by the honeypot. A high
interaction honeypot is a full computer system that operates with complete
functionality [6]. Leveraging physical hardware or a virtual machine (VM),
such a honeypot provides real services and genuine interactions to an attacker.
In contrast, a low interaction honeypot does not provide an entire, functional
computer system for attacker interactions. Instead, it can only emulate specific
services, network stacks or other aspects of a real system [6].

Honeypots are evaluated based on three operational characteristics: (i) per-
formance; (ii) authenticity; and (iii) security [6]. Performance refers to the
ability of a honeypot to handle heavy traffic loads and project multiple virtual
devices simultaneously. Authenticity indicates how closely a honeypot mimics
the functionality of a real device. Security describes the vulnerability of a hon-
eypot in the event an intruder obtains access to the honeypot and pivots to
real devices on the network.

1.2 Industrial Control System Honeypots

Due to the substantial differences between traditional information technol-
ogy hardware and industrial control devices such as programmable logic con-
trollers, deploying an industrial control system honeypot can be a challenging
task. High interaction honeypots are difficult to scale because a single pro-
grammable logic controller can cost thousands of dollars; in addition, these
devices are rarely virtualized with success. Low interaction honeypots have

Girtz, Mullins, Rice & Lopez 85

arduous configuration processes and lack authenticity due to the difficulty of
virtualizing proprietary hardware and networking protocols.

The CryPLH research effort [1] has attempted to create a custom industrial
control system honeypot using an Ubuntu virtual machine. The goal is to create
an authentic honeypot that is easy to configure and that can be modified to
emulate similar programmable logic controllers relatively quickly. The design
incorporates a stripped down virtual machine configured to look exactly like
a Siemens Simatic 300(1) programmable logic controller. Using iptables as
a firewall/filter, the virtual machine is able to provide a variety of services,
including HTTP and HTTPS, SNMP and the ISO-TSAP protocol used by
Siemens in its STEP7 programming software. The design is flexible, but it
requires the manual configuration of each service provided by the honeypot.

A similar design based on custom Linux configurations is the highly portable
industrial control system honeypot created by Jaromin [3] using a Gumstix
device. Like CryPLH, this honeypot provides chosen services using manually-
configured firewall rules and custom scripts. The honeypot emulates a single
device — a Koyo Direct LOGIC 405 programmable logic controller with HTTP
and Modbus services. Although the honeypot performs well, it has limited ap-
plicability because the Gumstix hardware is restricted to a single programmable
logic controller configuration and each service must be configured manually.

1.3 Current Technology

Two recent industrial control system honeypot frameworks, Honeyd+ and
ScriptGenE, provide partial solutions using opposite approaches.

The Honeyd system is not a single honeypot, but a framework for creat-
ing virtual networks of honeypots [5]. It enables users to create arbitrarily
many virtual, low interaction honeypots and virtually network them together
to consume unused IP space in a real network. In addition, Honeyd offers great
flexibility via service scripts, allowing the virtual honeypots to run any service
or protocol desired by a user. To increase authenticity, Honeyd also projects
operating systems using signatures from the same databases referenced by scan-
ning tools such as nmap. To enhance flexibility and authenticity, Honeyd allows
users to install subsystems and user-specified external applications that run as
components of a honeypot [6].

Winn et al. [8, 9] have extended Honeyd using a proxy to provide en-
hanced authenticity. The resulting Honeyd+ is designed to be an inexpen-
sive production-level industrial control system honeypot framework. It can be
deployed on a Linux Raspberry Pi and configured to proxy to a physical pro-
grammable logic controller at a remote location. With the Honeyd foundation,
Honeyd+ enables honeypots to be deployed at multiple geographical locations,
each honeypot emulating the same back-end programmable logic controller that
is queried for requests at the application layer. The Honeyd+ system also im-
proves on Honeyd by adding a search-and-replace function to the web pages
retrieved by the proxy. This ensures that an attacker cannot identify a honey-
pot by a discrepancy in its IP or MAC addresses.

86 CRITICAL INFRASTRUCTURE PROTECTION X

While Honeyd+ forwards application traffic to a real programmable logic
controller, ScriptGen creates a new Honeyd service script from an observed
network trace [4]. ScriptGen uses state machines to determine the structure of
a traffic dialog without any knowledge of the protocol or its implementations
on a server or client. The state machine can be simplified and converted into
a Python script usable by Honeyd. Protocol agnosticism enables ScriptGen to
automatically replay protocols that may be proprietary or simply unexpected.

ScriptGenE, an extension of ScriptGen created by Warner [7], can handle
difficult cases such as session looping and default responses during replay. The
protocol-agnostic design is ideal for industrial control systems that use pro-
prietary protocols. As an extension of ScriptGen, the ScriptGenE framework
constructs a protocol tree (p-tree) as a finite state machine. The p-tree can be
converted to a Honeyd script or ScriptGenE can access it directly to replay the
conversation as a subsystem of Honeyd or as an independent deployment.

2. Emulator Methodology

This section describes the emulator design considerations and features.

2.1 Design Considerations

While Honeyd+ is a cost-effective honeypot framework, its primary weak-
ness is scalability with regard to performance. All application layer traffic is
forwarded to a programmable logic controller to ensure authenticity. The back-
end programmable logic controller is easily overloaded by substantial traffic and
large numbers of deployed honeypots [9]. Programmable logic controllers are
not typically designed for optimal networking performance.

Replacing the programmable logic controller with an application layer em-
ulator like ScriptGenE is a reasonable solution. However, authenticity suffers
due to emulator capabilities, or, in the case of ScriptGenE, the extent of the
training data. If the honeypot forwards a request that the emulator cannot
handle, the response is generally less authentic than if the response had come
from a real device.

The ideal emulator solution alleviates programmable logic controller load
without compromising authenticity. The goal of this research was to create an
enhanced emulator that has this characteristic. ScriptGenE, a replay emulator,
which provides the foundation, is extended to include dynamic updating via
a proxy. Figure 1 shows how the emulator may be inserted into an existing
Honeyd+ network to reduce traffic load on a programmable logic controller.

2.2 Proxy and Update Features

The complete ScriptGenE suite includes Python tools for automatically gen-
erating generic p-trees from observed traffic and replaying the trees. During a
replay, ScriptGenE maintains a context node in the preloaded p-tree. Incoming
client messages are matched against the outgoing edge of the current context

Girtz, Mullins, Rice & Lopez 87

- Modified Honeyd+

Original Honeyd+ ﬁmﬁﬁ% _ Configuration
Configuration Proxy

Proxy

PLC
Honeyd+ Instances

S

¢ Y
é\&@ Attacker A\@

Figure 1. Honeyd+ configuration modification.

{i%’
ﬁf}

node. A correct match indicates that the child node along the edge holds the
appropriate server response. If no match is found, a backtracking algorithm
can search the tree for a potential response in a different context. This enables
the emulator to handle session looping. A default error message is sent if no
match is found in the entire tree.

The design assumes a properly-built tree and extends the replay functionality
exclusively. The enhanced emulator substitutes the default error message with
a proxy-and-update process when an unrecognized client message is received.
The process incorporates the following steps:

m Synchronize the conversation context with the programmable logic con-
troller according to the chosen context algorithm.

m Replace the environmental information in the unrecognized packet.
m Send the unrecognized packet to the programmable logic controller.
m Collect the programmable logic controller response.

m Replace the environmental information in the programmable logic con-
troller response.

m Create a new node in the p-tree to store the response.

m Change the current p-tree context to the new node and send the server
response to the client.

m Handle the programmable logic controller connection according to the
chosen context algorithm.

88

CRITICAL INFRASTRUCTURE PROTECTION X

Some of these steps may be omitted or reordered depending on the context
synchronization algorithm that is employed. Synchronization is an interesting
problem that is discussed in the next section. The other steps are:

2.3

Environmental Information Replacement: Environmental informa-
tion, such as IP addresses, port numbers and host names, vary for hosts,
even in the case of identical conversation content. P-tree generation iden-
tifies these items for replay and replacement as necessary. However, an
unrecognized client message may contain environmental information. Be-
cause this information is not in the p-tree, an exhaustive search for all pos-
sible environment fields is necessary before the message can be forwarded
to the programmable logic controller. Similarly, the programmable logic
controller response must be searched and revised before it is sent to the
client.

Programmable Logic Controller Interaction: The emulator creates
a separate thread for each new connection so that the emulator can handle
concurrent client connections. Each thread maintains a unique proxy
connection to the programmable logic controller to ensure the correct
context for the conversation. If errors occur in a programmable logic
controller connection, the proxy is abandoned and the emulator reverts
to a default error message.

Protocol Tree Update: A new child node is added to the current con-
text in the p-tree. The connecting edge contains the unrecognized client
message and the new node contains the programmable logic controller
response. Future requests of this type are replayed directly instead of be-
ing proxied again. Unfortunately, this solution is temporary; the updated
tree is not saved when the emulator is terminated. A p-tree is a generic
structure constructed from multiple traces containing the same kind of
traffic. Updates add a single, real message instance to an abstract p-tree.
Bytes that vary in the messages of the new type are not detected. It is
safer to record all proxy traffic from outside the emulator and build a new
p-tree for future emulation.

New Response to Client: The new server response is forwarded to the
client in place of a default error message. This enhances the authenticity
of the emulator.

Synchronization Algorithms

One of the challenges in updating emulation capabilities using a proxy is
to synchronize conversation context with the programmable logic controller.
The problem arises when an unknown client request occurs while the replay
state is deep in the p-tree. In order for the programmable logic controller to
return the appropriate response to this new request, it must be caught up on
the current context of the conversation. Synchronizing the client conversation
with the programmable logic controller requires sending each client message

Girtz, Mullins, Rice & Lopez 89

along the path from the current p-tree node up to the root in reverse order.
These messages can be sent all at once or individually as they are received from
the client or in any combination. Note that all the messages should be sent to
guarantee the correct context. Failure to transfer the full context may not be
a problem in every case, but it is difficult to know when it is necessary without
detailed prior knowledge of the device and protocol functionality.

Two naive synchronization approaches are available. In the first approach,
synchronization occurs entirely on demand (catch up). The programmable
logic controller is ignored until an unrecognized request has to be forwarded.
At this point, full synchronization occurs, the request is sent and the connec-
tion is terminated until another unrecognized request arrives and the process
restarts. While this approach is ideal with regard to the performance of the pro-
grammable logic controller, it may unnecessarily resend synchronization traffic
that could lead to significant delays from the attacker’s perspective if the tree
is very large.

The second (opposite) approach is to maintain the exact mirrored context
with the programmable logic controller at all times (lockstep). All the received
traffic is forwarded immediately so that the programmable logic controller is
always ready to respond to an unrecognized request. This approach is ideal from
the perspective of the emulator because delays are minimized and the context
is never a problem. However, the approach does not alleviate the traffic load
on the back-end programmable logic controller.

An understanding of the two extremes in synchronization is useful to de-
velop an intermediate solution that alleviates programmable logic controller
load while enhancing emulator efficiency. One possibility is to perform syn-
chronization on demand for the first unrecognized request and then maintain
the context until the connection ends (latelock).

An improvement on latelock is to maintain the context only as long as unrec-
ognized requests are received (templock). The proxy connection is terminated
at the first sign of a recognizable request for which the programmable logic
controller is not needed.

An altogether different approach is to maintain the synchronized context
whenever the client conversation is below a specified depth in the p-tree (trig-
gerlock). This enables the emulator to avoid large synchronization delays with-
out overwhelming the programmable logic controller.

Figure 2 provides a visual comparison of all the message-triggered algo-
rithms. The bar for each algorithm denotes the duration of the proxy connec-
tion. The left side of a bar represents the initial synchronization, upon which
the context is maintained; the right side of the bar denotes the point at which
the proxy connection is closed.

A final consideration is the “setup phase” of many connections. The setup
phases tend to be linear in a p-tree. After a session is established, a request
may be sent in any order (corresponding to the branches of the p-tree). It is
possible that minimal synchronization may be more efficient for some protocols.
Only the linear path from the root to the first branch is synchronized. This

90 CRITICAL INFRASTRUCTURE PROTECTION X

CchUp | | @@ | | ®» = » ® | @ |
| I | | I I | I | | I I
Lockstep
| I I | I I | I I | I I
Latelock | |
| I | | I I | I | | I I
Templock | |] |] |]
Client
Messages
Over Time
Untrained
Messages

Figure 2. Comparison of context synchronization algorithms.

allows the proxy connection to synchronize much more quickly regardless of the
current conversation context. This optimization may be combined with any of
the other approaches that have a synchronization phase.

The correct choice of algorithm depends heavily on the nature of the pro-
tocol being emulated. For example, the catch up algorithm performs ideally
on a stateless protocol, but it performs poorly on complex protocols with long
conversations. Thorough protocol knowledge is required to determine the al-
gorithm that should be chosen. Even then, the actual performance depends on
the traffic that is received.

24 Design Limitations

The enhanced emulator has some limitations. Like its ScriptGenE founda-
tion, it can only handle IPv4 addresses and TCP protocols. Encrypted pro-
tocols are not supported. While ScriptGenE is intended to be automated and
fully protocol agnostic, the current enhancements require some manual config-
uration. If a protocol uses a field that is consistent across all packets during
a connection (e.g., session ID), the current p-tree generation algorithm fails to
identify the global field. New responses from the programmable logic controller
may have different values from what are expected by a client. The enhanced
emulator can replace these values to ensure authenticity, but the location and
length of the field must be manually provided in the current software iteration.

3. Emulator Evaluation

The primary design goals for the emulator were to reduce the load on the
back-end programmable logic controller in Honeyd+ networks and to enhance
the authenticity in the presence of p-tree deficiencies. An additional goal was
to determine the best choice of synchronization algorithm for real protocols.
The evaluation of the emulator involved testing the design on diverse tasks
and protocols to determine the performance with regard to load reduction and
authenticity.

Girtz, Mullins, Rice & Lopez 91

VM

i1 /3
(‘ % VM il
Hmﬂmw < Windows XP SP3 A VM

H&r = RSLinx -
| Allen-Bradley ~ 172:16.0.101
L61 PLC Honeydrive 3
.16.0. wget Kali Linux 1.0
172160105 172.16.0.103 SUT
172.16.0.104

Figure 3. Experimental network configuration.

3.1 Experimental Design

The test environment consisted of an Allen-Bradley ControlLogix L61 pro-
grammable logic controller with a 1756-EWEB module connected via a private
local network to a Dell Latitude E6520 laptop through a Cisco SG 100D-08
switch. The laptop hosted three virtual machines (i.e., two clients and the
system under test). A Windows XP virtual machine running RSLinx acted as
a browsing client for the EtherNet/IP protocol while a Honeydrive 3.0 virtual
machine ran wget to provide an HTTP client. The system under test executed
on a Kali Linux 1.0 virtual machine and acted as the honeypot in the network.
Specific tasks involving the HTTP and EtherNet /TP protocols were chosen and
automated using the SikuliX GUI automation software. All task coordination,
emulator creation and traffic collection occurred on the Kali virtual machine
to facilitate the automation of the experiments. Figure 3 shows the network
configuration.

Each experimental task involved a chosen protocol (HTTP or EtherNet/IP),
synchronization algorithm and modified p-tree. The synchronization algorithms
evaluated were latelock, templock, minimal sync templock, triggerlock and no
proxy usage (off mode), which provided a baseline. The algorithms were cho-
sen because they are most likely to be deployed in a live system. The modified
p-trees were generated from a baseline tree that accurately replayed the chosen
task for its protocol. Modifications involved removing one random, non-root
node from the baseline p-tree and deleting the descendants of the chosen node.
The full experiment randomly ordered the tasks corresponding to all combina-

92

CRITICAL INFRASTRUCTURE PROTECTION X

Success
FINISHED --2015-12-16 16:43:01--
Total wall clock time: 2.9s
Downloaded:|65 flies, 122K|in 1.2s5 (99.2 KB/s)

Failure
FINISHED --2015-12-16 16:42:57--
Total wall clock time: 2.9s
Downloaded:l64 Flfes, 121K|in 1.2s5 (99.2 KB/s)

Figure 4. Success and failure in the wget results.

tions of the two protocols, five algorithms and seven p-trees (one baseline and
six modified).

3.2

While the ultimate goal of application layer emulation is automated proto-

m Programmable Logic Controller Load Testing: For each task, two

packet capture files were generated, one for the client connection and the
other for the proxy connection. Each capture was filtered to determine
the number of data-bearing messages sent by the “client” (the emulator is
the client on the proxy side). The ratio of proxy messages to actual client
messages reveals the amount of received traffic that had to be forwarded
by the emulator to the programmable logic controller. A ratio less than
100% indicates a load reduction on the programmable logic controller in
a Honeyd+ network. Comparison of the load metrics for the synchroniza-
tion algorithms reveals the relative performances for each protocol and
p-tree.

Authenticity Testing: Each task was declared a success or failure by
the GUI automation software. SikuliX searched the client screen for the
required images and decided whether or not a task was completed suc-
cessfully. Figure 4 compares the wget results for successful and failed
tasks. A failed task was unable to provide all the needed files during
download.

Figure 5 shows the results for RSLinx browsing of the test network. The
programmable logic controller shows up at 172.16.0.105 while the em-
ulator at 172.16.0.104 only shows up when it can successfully pass the
experimental task. The overall success rate when the proxy is used can be
compared against the rate for default error messages. If the overall suc-
cess rate is higher for the proxy, it can be concluded that proxy updates
enhance the overall authenticity of the emulator.

Limitations

col agnostic replay, the experimental evaluation only provides an indication of

Girtz, Mullins, Rice & Lopez 93

Success

(=] @ kg E TH-1, Ethernet
ﬂ 172.16.0. 104,'1?56-EWEB, eWeb_xxxI
172.16.0,105, 1756-EWEE, eWeb _xxx
Failure
=l TH-1, Etherngt

172.16.0. 104|Unrecognized Device I
172.16.0.105, 1756-EWEE, eWeb_xx

Figure 5. Success and failure in the RSLinx results.

emulator performance for the chosen protocols and configurations. Timing con-
siderations, including variances in replaying recorded conversations and delays
observed by the client during programmable logic controller synchronization,
were not considered in the evaluation.

4. Experimental Results

All the evaluation tasks completed without errors. The programmable logic
controller load test indicates that the emulator can reduce or maintain the same
programmable logic controller load in all cases, except for one synchronization
algorithm. The authenticity tests reveal that task success rates increase when
the proxy updates replace default error messages. In the case of general proxy
analysis, the synchronization algorithms are not distinguishable. The proxy
was either considered to be on or off.

Note that the performance metrics generated by this experiment reflect the
worst-case emulator performance. Each task was performed once for each em-
ulation instance so that all untrained traffic required forwarding. In a live
implementation, the tasks would likely be repeated over the life of a single em-
ulation instance so that untrained requests would be proxied the first time and
subsequently replayed from the updated p-tree.

4.1 Load Testing

Figure 6 shows the programmable logic controller load data for the HTTP
protocol. Because each modified tree lacked exactly one random node and
HTTP sends each individual request over a separate connection, the forwarding
rate percentages are consistently 1.5%, a drastic improvement over 100%.

In some cases, two messages were received at a connection, doubling the
forwarding rate. Even the worst case of 3% is much lower than the 100%
target, indicating a large reduction in programmable logic controller traffic on
a Honeyd+ network.

Figure 7 shows the programmable logic controller load data for the Ether-
Net/IP protocol. EtherNet/IP tree modifications varied widely due to the small
number of branches in the p-tree. Almost all the client traffic was proxied or

94 CRITICAL INFRASTRUCTURE PROTECTION X

% Fowarding Rate

Proxy Mode
Figure 6. HTTP forwarding rates for tasks with and without the proxy.

754

% Fowarding Rate
o
o

N
o
1

On Off
Proxy Mode

Figure 7. EtherNet/IP forwarding rates for tasks with and without the proxy.

sent to the programmable logic controller during context synchronization. This
results in the high average forwarding rate seen in Figure 7. The values range
from 0% to 90% and depend heavily on the extent of the p-tree modifications.
Because of the linear structure, a missing node may disconnect a very small

Girtz, Mullins, Rice & Lopez 95

L4
2 -
Q
=
©
o
)]
£
kel
4
©
8
[T
R
0 .
T T T T
latelock min_templock templock triggerlock
Proxy Algorithm

Figure 8. HTTP forwarding rates for the proxy algorithms.

portion or a large portion of the tree. Although the individual results vary, the
aggregated data shows a reduction in traffic forwarded to the programmable
logic controller.

4.2 Synchronization Algorithm Comparison

Because HTTP is a stateless protocol, HTTP tasks do not reveal useful
information about the performance of synchronization algorithms. This is il-
lustrated in Figure 8, where the algorithms have nearly identical performance.

Figure 9 shows that the triggerlock algorithm performs worse than the other
algorithms for EtherNet /IP. This can be attributed to the session looping within
the task, which causes the triggerlock algorithm to connect and disconnect from
the programmable logic controller when the proxy is not always necessary. This
occurs because the triggerlock algorithm creates and closes connections based
on the depth in the tree instead of an actual need for the proxy.

The other algorithms exhibit very similar performance. This suggests that
the experimental tasks did not provide sufficient variability to distinguish be-
tween the very similar algorithm behaviors. Because this variability is tied
directly to the structure of the p-tree, entirely new protocols are necessary to
extract the subtleties. The investigation of this issue is a component of future
research.

96 CRITICAL INFRASTRUCTURE PROTECTION X

E

75

% Fowarding Rate
o
o

N
(4]
1

T T T T
latelock min_templock templock triggerlock

Proxy Algorithm
Figure 9. FEtherNet/IP forwarding rates for the proxy algorithms.

Table 1. Pass rate results (%).

Protocol Proxy Expt. 1 Expt. 2 Expt. 3 Mean

Off 0.00 0.00 0.00 0.00
HTTP On 79.17 100.00 91.67 90.28
ENIP Off 33.33 33.33 33.33 33.33
On 48.00 45.83 48.94 47.59

4.3 Authenticity Testing

Table 1 shows the pass/fail results for all the modified-tree tasks in terms of
percentage passing rates. With the proxy, the emulator was able to successfully
complete nearly all the HT'TP tasks while the default error messages failed to
complete any task. This shows that the proxy can correctly supplement the
p-tree during replays in order to provide authentic results. The results of the
EtherNet/IP tests are less than ideal, with just 14% average improvement.

Some modified trees failed for all the synchronization algorithms. This indi-
cates some tree modifications negatively impact the ability of the emulator to
update correctly using the proxy connection. Manual inspection revealed that
the emulator incorrectly expects more data when encountering a short message
for the first time. Waiting for a second message causes the emulator to get out
of sync with the client and reply to each request with the wrong response. All
the other trees had 100% pass rates for all the algorithms.

Girtz, Mullins, Rice & Lopez 97

It is also important to note that some minor modifications to the Ether-
Net/IP tree were not enough for the default error messages to cause the tasks
to fail. This is a testament to the robustness of the foundational ScriptGenE
replay framework.

5. Conclusions

The ScriptGenE framework provides a powerful tool for automated protocol
replay. The improvements described in this chapter make ScriptGenE a prac-
tical application layer emulator. In a Honeyd+ network, adding the emulator
as an intermediate to the programmable logic controller target can reduce the
network load on the programmable logic controller to a degree that depends on
the protocol. In the case of HTTP, the load reduction can be very large with
thorough training data.

The problem when adding the emulator to a Honeyd+ network is that emu-
lated traffic does not always match the programmable logic controller behavior
exactly, as demonstrated by the occasional task failures. However, experiments
reveal that proxy updates provide improved authenticity over the original de-
fault error message responses.

The experimental tests do not conclusively identify the proxy algorithm that
provides the best performance. The algorithms are similar enough in that very
specific tests are required to distinguish their performance gains and losses.
However, it is clear that the triggerlock algorithm should be used carefully
because it can actually increase the amount of traffic sent to the programmable
logic controller.

Additional research and development is necessary to make ScriptGenE a
practical product. The manual configuration of session IDs in protocols could
be replaced by full protocol-agnostic automation. Further testing is needed
to determine the optimal context synchronization algorithm. Additionally, the
emulator has not been tested to determine if p-tree updates can provide per-
formance improvements over time because fewer requests need to be proxied.
The resolution of these issues and a more streamlined design would result in a
product that can be added effortlessly to an existing Honeyd+ deployment to
provide increased awareness of malicious intrusions into critical infrastructure
assets.

Note that the views expressed in this chapter are those of the authors and
do not reflect the official policy or position of the U.S. Air Force, U.S. Army,
U.S. Department of Defense or U.S. Government.

References

[1] D. Buza, F. Juhasz, G. Miru, M. Felegyhazi and T. Holczer, CryPLH: Pro-
tecting smart energy systems from targeted attacks with a PLC honeypot,
in Smart Grid Security, J. Cuellar (Ed.), Springer, Cham, Switzerland, pp.
181-192, 2014.

98

2]

CRITICAL INFRASTRUCTURE PROTECTION X

Y. Huang, A. Cardenas, S. Amin, Z. Lin, H. Tsai and S. Sastry, Under-
standing the physical and economic consequences of attacks on control
systems, International Journal of Critical Infrastructure Protection, vol.
2(3), pp. 73-83, 2009.

R. Jaromin, Emulation of Industrial Control Field Device Protocols, M.S.
Thesis, Department of Electrical and Computer Engineering, Air Force
Institute of Technology, Wright-Patterson Air Force Base, Ohio, 2013.

C. Leita, K. Mermoud and M. Dacier, ScriptGen: An automated script
generation tool for Honeyd, Proceedings of the Twenty-First Annual Com-
puter Security Applications Conference, pp. 203-214, 2005.

N. Provos, A virtual honeypot framework, Proceedings of the Thirteenth
USENIX Security Symposium, article no. 1, 2004.

N. Provos and T. Holz, Virtual Honeypots: From Botnet Tracking to In-
trusion Detection, Addison-Wesley Professional, Upper Saddle River, New
Jersey, 2007.

P. Warner, Automatic Configuration of Programmable Logic Controller
Emulators, M.S. Thesis, Department of Electrical and Computer Engi-
neering, Air Force Institute of Technology, Wright-Patterson Air Force
Base, Ohio, 2015.

M. Winn, Constructing Cost-Effective and Targetable ICS Honeypots
Suited for Production Networks, M.S. Thesis, Department of Electrical
and Computer Engineering, Air Force Institute of Technology, Wright-
Patterson Air Force Base, Ohio, 2015.

M. Winn, M. Rice, S. Dunlap, J. Lopez and B. Mullins, Constructing cost-
effective and targetable industrial control system honeypots for production

networks, International Journal of Critical Infrastructure Protection, vol.
10, pp. 47-58, 2015.

