
HAL Id: hal-01583324
https://inria.hal.science/hal-01583324

Submitted on 7 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Counterexample Generation for Markov Chains Using
SMT-Based Bounded Model Checking

Bettina Braitling, Ralf Wimmer, Bernd Becker, Nils Jansen, Erika Ábrahám

To cite this version:
Bettina Braitling, Ralf Wimmer, Bernd Becker, Nils Jansen, Erika Ábrahám. Counterexample Gen-
eration for Markov Chains Using SMT-Based Bounded Model Checking. 13th Conference on Formal
Methods for Open Object-Based Distributed Systems (FMOODS) / 31th International Conference
on FORmal TEchniques for Networked and Distributed Systems (FORTE), Jun 2011, Reykjavik„
Iceland. pp.75-89, �10.1007/978-3-642-21461-5_5�. �hal-01583324�

https://inria.hal.science/hal-01583324
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Counterexample Generation for Markov Chains
using SMT-based Bounded Model Checking?

Bettina Braitling1, Ralf Wimmer1, Bernd Becker1,
Nils Jansen2 and Erika Ábrahám2

1 Albert-Ludwigs-University Freiburg, Germany
{braitlin,wimmer,becker}@informatik.uni-freiburg.de

2 RWTH Aachen University, Germany
{abraham,nils.jansen}@informatik.rwth-aachen.de

Abstract. Generation of counterexamples is a highly important task in
the model checking process. In contrast to, e. g., digital circuits where
counterexamples typically consist of a single path leading to a critical
state of the system, in the probabilistic setting counterexamples may
consist of a large number of paths. In order to be able to handle large
systems and to use the capabilities of modern SAT-solvers, bounded
model checking (BMC) for discrete-time Markov chains was established.
In this paper we introduce the usage of SMT-solving over linear real
arithmetic for the BMC procedure. SMT-solving, extending SAT with
theories in this context on the one hand leads to a convenient way
to express conditions on the probability of certain paths and on the
other hand allows to handle Markov reward models. We use the former
to find paths with high probability first. This leads to more compact
counterexamples. We report on some experiments, which show promising
results.

1 Introduction

The verification of formal systems has gained great importance both in research
and industry. Model checking proves or refutes automatically (i. e. without user
interaction) that a system exhibits a given set of properties (see, e. g., [1]). In
many cases model checking also provides helpful diagnostic information; in case
of a defective system a counterexample in form of a witnessing run is returned.
The usage of symbolic representations like ordered binary decision diagrams
(OBDDs) [2] assures the usability of model checking for many kinds of large
systems. However, there are classes of practically relevant systems for which even
these OBDD-based methods fail. To fill this gap, bounded model checking (BMC)
was developed [3]. Thereby the existence of a path of fixed length that refutes
the property under consideration is formulated as a satisfiability (SAT) problem.

? This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS) and the DFG-Project “CEBug –
CounterExample Generation for Stochastic Systems using Bounded Model Checking”

As the size of the corresponding formula is relatively small and as modern SAT-
solvers have strongly evolved over the last 15 years, it is not surprising that this
approach is very successful.

To model real-life scenarios it is often necessary to cope with specific un-
certainties using probabilities. For instance, properties can be formulated in
probabilistic computation tree logic (PCTL) [4] for models called discrete-time
Markov chains (DTMCs). The classical model checking approach for this setting
is based on the solution of a linear equation system [4]. However, it lacks the
generation of counterexamples, since the solution of the equation system yields
only the mere probabilities without further information.

To provide a user with such diagnostic information for probabilistic systems,
there have been some recent developments during the last few years [5–9]. Contrary
to, e. g., LTL model checking for digital systems, counterexamples for a PCTL
property may consist of a large number of paths to reach certain probability
bounds. Various techniques have been proposed to obtain compact representations :
incrementally adding the paths with the highest probability [6, 8], reducing the
strongly connected components of the underlying digraph of a DTMC [5, 9], and
using regular expressions to describe whole sets of counterexamples [6]. All these
techniques rely on an explicit representation of the state space.

Bounded model checking for probabilistic systems in the context of coun-
terexample generation was introduced in [7], which represents the state space
symbolically. This procedure can be used to refute probabilistic reachability prob-
lems. They can be formulated in PCTL [4] as P≤p(aU b) with atomic propositions
a and b. The meaning of this formula is that the probability to reach a b-state,
passing only a-states, may be at most p. The refutation is shown by using a
SAT-solver to find paths satisfying the property whose joint probability measure
exceeds the bound p. The input of the solver are propositional formulae that are
satisfied iff the assignment of the variables corresponds to a sequence of states of
the DTMC that represents a path to a target state. This process is significantly
accelerated by a loop-detection mechanism, which is used to handle sets of paths
which differ only in the number of unfoldings of the same loops.

A drawback of the state-of-the-art BMC procedure for DTMCs is that paths
are found in an arbitrary order while for the size of counterexamples it is often
advantageous to start with paths of high probability. Moreover, it is desirable to
use this procedure for Markov reward models (MRMs), which extend DTMCs
by the possibility to model costs (or dually rewards) of operations. MRMs allow
to verify properties like “The probability to finish the computation with costs
larger than c is at most 10−3.”

In this paper we therefore extend stochastic BMC in order to handle these
problems. Instead of using a SAT-solver, we use the more powerful approach of
SMT-solving. SMT stands for satisfiability modulo theories and is a generalization
of SAT [10]. It allows to express propositional formulae representing paths to target
states together with conditions on the probability of such paths. Furthermore,
real numbers that are allocated to the states by a cost-function can be added up
and restrictions on the accumulated costs of paths can be imposed. We will also

show how this counterexample generation can be combined with minimization
techniques for Markov chains in order not only to speed up the counterexample
generation but also to obtain more abstract counterexamples.

Organization of the paper. At first, we give a brief introduction to the foun-
dations of DTMCs, counterexamples, Markov reward models, and bisimulation
minimization. Section 3 then explains the concept of SMT-solving for this context.
In Sect. 4 we describe the results of some experiments we did on well-known test
cases. In Sect. 5 we draw a short conclusion and give an outlook to future work
on this approach.

2 Foundations

In this section we take a brief look at the basics of discrete-time Markov chains,
Markov reward models, and bisimulation minimization.

2.1 Stochastic Models

Definition 1. Let AP be a set of atomic propositions. A discrete-time Markov
chain (DTMC) is a tuple M = (S, sI , P, L) such that S is a finite, non-empty set
of states; sI ∈ S, the initial state; P : S × S → [0, 1], the matrix of the one-step
transition probabilities; and L : S → 2AP a labeling function that assigns each
state the set of atomic propositions which hold in that state.

P has to be a stochastic matrix that satisfies
∑
s′∈S P (s, s′) = 1 for all s ∈ S. A

(finite or infinite) path π is a (finite or infinite) sequence π = s0s1 . . . of states
such that P (si, si+1) > 0 for all i ≥ 0. A finite path π = s0s1 . . . sn has length
|π| = n; for infinite paths we set |π| =∞. For i ≤ |π|, πi denotes the ith state of
π, i. e., πi = si. The ith prefix of a path π is denoted by π↑i= s0s1 . . . si. The set
of finite (infinite) paths starting in state s is called Pathfin

s (Pathinf
s).

In order to obtain a probability measure for sets of infinite paths we first
need to define a probability space for DTMCs:

Definition 2. Let M = (S, sI , P, L) be a DTMC and s ∈ S. We define a
probability space Ψs = (Pathinf

s , ∆s,Prs) such that

– ∆s is the smallest σ-algebra generated by Pathinf
s and the set of basic cylinders

of the paths from Pathfin
s . Thereby, for a finite path π ∈ Pathfin

s , the basic
cylinder over π is defined as ∆(π) = {λ ∈ Pathinf

s |λ↑|π|= π}.
– Prs is the uniquely defined probability measure that satisfies the equation

Prs(∆(ss1s2 . . . sn)) = P (s, s1) · P (s1, s2) · · · · · P (sn−1, sn) for all basic
cylinders ∆(ss1s2 . . . sn).

The properties we want to consider are formulated in PCTL [4] and are of the
form P≤p(aU b) with a, b ∈ AP. This means that the probability to walk along
a path from the initial state to a state in which b holds, with all intermediate
states satisfying a, is less than or equal to p. More formally: A path π satisfies

aU b, written π � aU b, iff ∃i ≥ 0 :
(
b ∈ L(πi) ∧ ∀ 0 ≤ j < i : a ∈ L(πj)

)
.

A state s ∈ S satisfies the formula P≤p(aU b) (written s � P≤p(aU b)) iff

Prs
(
{π ∈ Pathinf

s |π � aU b}
)
≤ p.

Let us assume that such a formula P≤p(aU b) is violated by a DTMC M .

That means PrsI
(
{π ∈ Pathinf

s |π � aU b}
)
> p. In this case we want to compute

a counterexample which certifies that the formula is indeed violated. Hence a
counterexample is a set of paths that satisfy aU b and whose joint probability
measure exceeds the bound p.

Definition 3. Let M = (S, sI , P, L) be a discrete-time Markov chain for which
the property ϕ = P≤p(aU b) is violated in state sI . An evidence for ϕ is a

finite path π ∈ Pathfin
sI such that π � aU b, but no proper prefix of π satisfies

this formula. A counterexample is a set C ⊆ Pathfin
sI of evidences such that

PrsI (C) > p.

Han and Katoen have shown that there is always a finite counterexample if
P≤p(aU b) is violated [11].

In order to be able to express properties like “The probability to reach a target
state with costs larger than c is at most p”, Markov chains have to be extended
by so-called reward functions.

Definition 4. A Markov reward model (MRM) is a pair (M,R) where M =
(S, sI , P, L) is a DTMC and R : S → R a real-valued reward function.

Rewards can be used to model costs of certain operations, to count steps or to
measure given gratifications. The variant of rewards we use here are state rewards.
One could also assign reward values to transitions instead of states (so-called
transition rewards). We restrict ourselves to state rewards; all techniques that
are developed in this paper can also be applied to transition rewards.

Let π ∈ Pathfin
s be a finite path and R a reward function. The accumulated

reward of π is given by R(π) =
∑|π|−1
i=0 R(πi). Note that the reward is granted

when leaving a state.
We extend the PCTL-properties from above to Markov reward models. For

a (possibly unbounded) interval I ⊆ R, a path π satisfies the property aUI b,
written π � aUI b, if there is 0 ≤ i ≤ |π| such that b ∈ L(πi), R(π↑i) ∈ I, and
a ∈ L(πj) for all 0 ≤ j < i. A state s ∈ S satisfies P≤p(aUI b) if Prs

(
{π ∈

Pathinf
s |π � aUI b}

)
≤ p. Our techniques can be extended in a straightforward

way to I being the union of a finite set of intervals. Please note that the bounded
until operator of PCTL is a special case of a reward condition.

Our goal is to compute counterexamples to refute such reward properties
using bounded model checking (BMC).

2.2 Bisimulation Minimization

For the generation of counterexamples we work with a symbolic representation
of the DTMC and the reward function. Symbolic representations have the ad-
vantage that the size of the representation is not directly correlated with the

size of the represented system. The representation can be smaller by orders of
magnitude. By using algorithms whose running time only depends on the size of
the representation, very large state spaces can be handled.

But even if the symbolic representation of a system is small, the number of
paths that are needed for a counterexample can be very large. In order to reduce
the number of paths, we first compute the smallest system that has the same
behavior w. r. t. probabilities and rewards as the original one. This in general
not only reduces the number of states, but also the number of paths, because all
paths that stepwise consist of equivalent states are mapped onto a single path in
the minimized system.

The methods for computing such minimal systems are based on bisimulation
relations. A bisimulation groups states whose behavior is indistinguishable into
equivalence classes [12]:

Definition 5. Let M = (S, sI , P, L) be a DTMC and R : S → R a reward
function for M . A partition P of S is a bisimulation if the following holds for
all equivalence classes C of P and for all s, t ∈ S such that s and t are contained
in the same block of P:

L(s) = L(t), R(s) = R(t), and P (s,C) = P (t,C),

where P (s,C) =
∑
s′∈C P (s, s′). Two states s, t ∈ S are bisimilar (s ∼ t) if

there exists a bisimulation P such that s and t are contained in the same block
of P.

The equivalence classes of bisimilarity and the coarsest bisimulation partition
coincide. The equivalence class of a state s ∈ S w. r. t. a bisimulation P is denoted
by [s]P . The classes of the bisimulation now become the states of a new DTMC.

Definition 6. Let M = (S, sI , P, L) be a DTMC, R a reward function for M ,
and P be a bisimulation. The bisimulation quotient is the DTMC (P,CI , P

′, L′)
with reward function R′ such that

– For all C,C′ ∈ P: P ′(C,C′) = P (s,C′) for an arbitrary s ∈ C,
– CI is the block that contains the initial state sI of M ,
– ∀C ∈ P : L′(C) = L(s) for an arbitrary state s ∈ C, and
– ∀C ∈ P : R′(C) = R(s) for an arbitrary state s ∈ C.

The quotient can be considerably smaller than the original system. At the
same time it still satisfies the same PCTL and reward properties. All analyses
can therefore be carried out on the quotient system instead of the larger original
Markov model. For symbolic algorithms to compute the bisimulation quotient of
a DTMC or MRM, we refer the reader to, e. g., [13, 14].

3 SMT-based Bounded Model Checking for
Counterexample Generation

In this section we show how counterexamples can be computed using an SMT-
based formulation of bounded model checking (BMC). BMC has already been

applied in [7] for this purpose but in a purely propositional variant. The main
drawback of the existing approach is that the propositional BMC formula only
contains information about the mere existence of a path, but not about its
probability measure. Hence there is no direct possibility to control the SAT-solver
such that paths with high probability measure are preferred.

Here we propose the usage of a more powerful formulation than purely propo-
sitional logic. The satisfiability modulo theories (SMT) problem is a generalization
of the propositional satisfiability (SAT) problem. It combines propositional logic
with arithmetic reasoning. Using SMT we can create a formula that is only satis-
fied by paths with a certain minimal probability. This enables us to apply binary
search to find paths first whose probability measures differ from the probability
of the most probable path of the current unrolling depth by at most a constant
ε > 0. Furthermore, this formulation allows us to compute counterexamples for
Markov reward models.

Since often even counterexamples of minimal size are too large to be useful,
we minimize the DTMC or MRM before determining a counterexample. The
counterexample obtained for the minimized system is much more compact since
all equivalent evidences of the original system are merged into a single path of
the minimized system. Given a counterexample of the minimized system, it can
easily be translated back to the original system – either resulting in an ordinary
counterexample or in one representative evidence per equivalence class.

We first describe the SMT-based BMC formula and compare it to the SAT-
based approach of [7]. Then we show how to handle Markov reward models with an
arbitrary number of reward functions. Finally we demonstrate how minimization
can be applied to make the counterexample generation more efficient.

3.1 SMT-based and SAT-based SBMC

Stochastic bounded model checking (SBMC) as proposed in [7] is based on the
formulation as a (propositional) satisfiability problem that a path of a certain
length exists which exhibits a given property. To handle formulae of the form
P≤p(aU b), states that satisfy either ¬a or b are made absorbing by removing all
out-going edges. This reduces the problem to reaching a b-state.

After this preprocessing step, SBMC uses a SAT-solver to determine satisfying
solutions for the BMC formula, which has the following structure:

SBMC(k) := I(s0) ∧
k−1∧
i=0

TSAT(si, si+1) ∧ Lb(sk). (1)

I(s0) is a formula that is satisfied iff the assignment of s0 corresponds to the
initial state sI . Accordingly, TSAT(si, si+1) represents the transition from a state
si to a successor si+1, such that TSAT(si, si+1) is satisfied iff P (si, si+1) > 0, and
Lb(sk) is the property which holds for sk iff b ∈ L(sk). Each satisfying assignment
of formula (1) corresponds to a path of length k that is an evidence for aU b.
The authors of [7] describe how this formula can efficiently be constructed
from a BDD-based representation of the Markov chain. First they construct an

OBDD for the underlying directed graph by mapping positive probabilities in
the MTBDD representation of the probability matrix to 1. Then they apply
Tseitin-transformation [15] to the OBDDs to construct the different parts of the
BMC formula. Fig. 1 gives a rough overview of the BMC procedure for a DTMC
M = (S, sI , P, L) and a formula ϕ = P≤p(aU b).

The probability measure of a path, however, is not considered within this
formula. The probability measure has to be computed after the path has been
found. Using an SMT-based formulation we can create a modified version of the
BMC formula that allows us to put restrictions on the probability measure of
evidences.

procedure Counterexample
preprocess(M,ϕ);
C ← ∅;
k ← 0;
Pr(C)← 0;
ϕ← BMCformula(k,M,ϕ);
while Pr(C) ≤ p do

solution← solve(ϕ)
if solution = UNSAT then

k ← k + 1;
ϕ← BMCformula(k,M,ϕ);

else
π ← CreatePath(solution);
C ← C ∪̇ {π};
Pr(C)← Pr(C) + Pr(π);
ϕ← ϕ ∧ ExcludePath(π);

end if
end while
return C

end procedure

Fig. 1. Counterexample generation

We define an extended transition
formula TSMT(si, si+1, p̂i) that is sat-
isfied iff P (si, si+1) > 0 and the vari-
able p̂i is assigned the logarithm of
this probability. Following [6], the
logarithm is used in order to turn
the multiplication of the probabilities
along a path into a summation. This
leads to SMT formulae over linear real
arithmetic that can be decided effi-
ciently. This variant of the transition
predicate can also be generated from
an MTBDD representation of the ma-
trix P (s, s′) of transition probabilities
using Tseitin-transformation. In con-
trast to the propositional case, where
‘true’ and ‘false’ are used as atomic
formulae for the terminal nodes, we
use ‘p̂ = log v’ for leaves with value
v > 0 and ‘false’ for the leaf 0.

To let the solver find only evi-
dences with a probability measure of
at least pt ∈ [0, 1], we add the condi-

tion
∑k−1
i=0 p̂i > log pt to the BMC formula:

SSBMC(k) := I(s0) ∧
k−1∧
i=0

TSMT(si, si+1, p̂i) ∧ Lb(sk) ∧

(
k−1∑
i=0

p̂i ≥ log pt

)
. (2)

This formula is given to an SMT-solver. If the solver returns SAT, the satisfying
assignment represents an evidence with a probability measure of at least pt. If
we get UNSAT, there is no such path of the current length.

This enables us to do a binary search for evidences with a high probability
measure in Pathfin

sI . In principle we could determine the most probable path of
the current unrolling depth first, then the one with the second highest probability,
and so on. For efficiency reasons we apply a different strategy: First, we look for
paths which already exceed our probability threshold p. If this fails, we search

for paths with a probability greater or equal to p/2. If we have found all existing
paths with such a probability and the accumulated probability mass is still less
than p, we start looking for paths with a probability greater or equal p/4, and
so on. The value pt is decreased, until either all paths with length k have been
found or the accumulated probability of the set of evidences is high enough. If
the latter is not the case, we proceed to depth k + 1.

The optimizations for SBMC – exploiting loops and improvements of the
clauses to exclude paths from the search space –, which are proposed in [7], work
for SSBMC as well and without further modification.

3.2 Counterexamples for MRMs

With the proposed method, we are not only able to handle DTMCs, but to handle
MRMs as well. To consider the reward structure of an MRM during the search
for paths, we need to integrate the rewards into the transition relation. In the
preprocessing step, which is needed to turn the PCTL-Until property P≤p(aUI b)
into a reachability property, we must not cut the transitions from all b-states.
There must be the possibility to extend a path if its accumulated reward is not
within I. Thus we cut the transitions only from states s with a 6∈ L(s).

After that we extend the transition formula by a formula for the rewards in a
similar way as we have done for the probabilities. For each time frame 0 ≤ i < k
we introduce a variable r̂i such that the formula R(si, r̂i) is satisfied iff r̂i carries
the value R(si). This formula can be created from an MTBDD representation of
the reward function using Tseitin-transformation. The resulting SMT-formula,
which takes rewards into account, has the following structure:

R-SSBMC(k) := SSBMC(k)

∧
k−1∧
i=0

R(si, r̂i) ∧

[
min(I) ≤

(
k−1∑
i=0

r̂i

)
≤ max(I)

]
.

(3)

Since b-states are no longer absorbing when using this formula, we have to make
sure that we do not find paths of which we have already found a proper prefix.
This can be guaranteed by adding clauses to the formula that exclude all paths
that were found in previous iterations.

Using this technique it is possible to handle an arbitrary number of reward
functions at the same time. We just add distinct variables for each reward function
and build several reward sums which are checked against the corresponding
intervals.

3.3 Bisimulation Minimization

We can use bisimulation minimization (cf. Sec. 2.2) as a further preprocessing step
after cutting unnecessary transitions, but before constructing a counterexample.
Since in many cases the quotient system is considerably smaller than the original
system, fewer paths are needed for a counterexample.

Every path in the bisimulation quotient represents a set of paths in the
original system. To be more precise, let π, π′ ∈ Pathfin(s) be two evidences in a
DTMC M = (S, sI , P, L). They are equivalent if |π| = |π′| and for all 0 ≤ i ≤ |π|:
πi ∼ π′ i. All equivalent paths correspond to the same path in the quotient system,
namely to the path πQ = [π0]∼[π1]∼ . . . [π

|π|]∼. The probability of πQ is the sum
of the probabilities of the represented original paths that start in sI . Therefore
in general fewer paths are needed in the quotient system for a counterexample.

Once a counterexample has been determined for the quotient DTMC, its
paths can be translated back to the original system. The result is a tree that
contains all evidences that are stepwise equivalent to the given path. Let us
assume that πQ = C0C1 . . . Cn with C0 = [sI]∼ is such a path in the quotient
system. We set succ(s) = {s′ ∈ S |P (s, s′) > 0}. The root of the tree is the initial
state sI that corresponds to C0 on πQ. If si is a node of the tree that corresponds
to Ci on πQ, its successor nodes in the tree are succ(s) ∩ Ci+1. They correspond
to Ci+1. The probability measures of the resulting tree and of πQ coincide.

In the next section we show the effectiveness of SMT-based counterexample
generation and of this optimization on a set of example benchmarks.

4 Experimental Results

We have implemented the SSBMC-tool in C++ with the refinements we presented
above, including the optimizations from [7]. We used Yices [16] as the underlying
SMT-solver.

Our benchmarks are instances of the following four case studies:
(1) The contract signing protocol [17, 18] (contract) provides a fair exchange

of signatures between two parties A and B over a network. If B has obtained
the signature of A, the protocol ensures that A will receive the signature of B as
well. In our experiments we examine the violation of this property.

(2) The task of the crowds protocol [19] (crowds) is to provide a method
for anonymous web browsing. The communication of a single user is hidden by
routing it randomly within a group of similar users. The model contains corrupt
group members who try to discern the source of a message. We explore the
probability that these corrupt members succeed.

(3) The leader election protocol [20] (leader) consists of N processors in a
synchronous ring. Every processor chooses a random number from {0, . . . ,M}.
The numbers are passed around the ring, the processor with the highest number
becomes the leader if this number is unique. If this fails, a new round starts. We
provide a certificate that the probability to eventually elect a leader exceeds a
given bound.

(4) The self-stabilizing minimal spanning tree algorithm [21] (mst) computes
a minimal spanning tree in a network with N nodes. Due to, e. g., communication
failures the system may leave the state where a result has been computed, and
recover after some time. For our experiments we explore the probability that
the algorithm does not recover within a given number of k steps. This model
is of particular interest to us, because it has a large number of paths, but only

a few have a notable probability mass. Because SAT-based BMC does not find
paths with high probability first, the hope is that the SMT approach finds much
smaller counterexamples in less time.

We used the probabilistic model checker PRISM [22] to generate symbolic
representations of these case studies. All experiments were run on a Dual Core
AMD Opteron processor with 2.4 GHz per core and 4 GB of main memory. Any
computation which took more than two hours (“– TO –”) or needed more than
2 GB of memory (“– MO –”) was aborted.

In order to compare the results we ran the same benchmarks under the same
conditions also with the SBMC-tool from [7].

4.1 Counterexamples for DTMCs

In this section we present the results for the SSBMC procedure. The evaluation of
bisimulation minimization and counterexamples for MRMs follows in subsequent
sections.

Table 1 contains the results for counterexample generation for DTMCs using
the SMT- and the SAT-approach. The first and the second column contain
the names of the model and the probability threshold p. In the third column
the maximal unrolling depth kmax is listed. The blocks titled “SSBMC” and
“SBMC” present the results for SMT-based approach and the SAT-based approach,
respectively. The columns “#paths”, “time”, and “memory” contain the number
of paths in the counterexample, the needed computation time in seconds, and
the memory consumption in megabytes.

Both tools are able to solve a subset of the instances within the given limits.
The SSBMC-tool was aborted due to the memory limit for one instance of
the contract benchmark, most instances of the crowds benchmark, and some
instances of the leader protocol. The reason is the high memory consumption
of the SMT-solver Yices compared to the SAT-solver MiniSAT, which is used
in SBMC. The contract and leader benchmarks exhibit the property that all
evidences of the same length have the same probability. Therefore the number of
paths coincide for both tools. The running time of SSBMC for these instances is
slightly higher due to the modified binary search (cf. Sec. 3.1) which increases
the number of calls to the solver. The search strategy is also the reason why
SSBMC may need slightly more evidences than SBMC, which is the case here
for crowds02 07, where the probabilities of the different evidences differ only by
a small amount.

Notable are the mst instances. They contain a large number of evidences
with very different probabilities. SBMC is not able to compute a counterexample
within the given time limit, while SSBMC returns less than 5000 paths in under
3 minutes. A more detailed look showed that SBMC had computed 633 729 paths
for mst-14 before the timeout occurred. This is because the SMT-approach is
able to compute the more probable evidences first, only few of which are needed
for a counterexample.

Table 1. Counterexample generation for DTMCs using SMT- and SAT-based BMC

SSBMC SBMC
Name p kmax #paths time mem. #paths time mem.

contract05 03 0.500 37 513 14.85 124.72 513 25.04 74.84
contract05 08 0.500 87 513 134.92 889.32 513 399.08 694.71
contract06 03 0.500 44 2049 70.21 388.81 2049 140.36 124.79
contract06 08 0.500 92 – MO – 2049 2620.12 1181.76
contract07 03 0.500 51 8193 474.59 1510.28 8193 627.56 198.27
crowds02 07 0.100 39 21306 1006.05 1394.26 21116 417.89 96.11
crowds04 06 0.050 34 – MO – 80912 1468.94 278.17
crowds04 07 0.050 34 – MO – 80926 1773.83 286.38
crowds05 05 0.050 36 – MO – – MO –
crowds10 05 0.025 27 – MO – 52795 1654.83 188.51
leader03 04 0.990 8 276 0.70 27.45 276 0.76 14.55
leader03 08 0.990 8 1979 28.21 101.41 1979 25.76 66.48
leader04 03 0.990 20 – MO – 347454 3959.88 720.56
leader05 02 0.900 42 – MO – – MO –
leader06 02 0.900 84 – MO – – TO –
mst14 0.990 14 426 11.64 42.99 – TO –
mst15 0.049 15 4531 98.58 148.82 – TO –
mst16 0.047 16 4648 107.27 158.25 – TO –
mst18 0.036 18 4073 109.26 164.24 – TO –
mst20 0.034 20 452 19.57 58.21 – TO –

4.2 Bisimulation

In Table 2 we evaluate the impact of bisimulation minimization on running time
and memory consumption for SSBMC and SBMC. In Table 3 we show the results
of bisimulation with subsequent back-translation of the abstract evidences. In
the latter case, we converted the minimized paths completely, i. e., we obtained
all original paths which were represented by an abstract path. The running time
listed in Table 2 and Table 3 include the time for bisimulation minimization,
counterexample generation, and, in Table 3, path conversion. Again, the block
titled “SSBMC” (“SBMC”) contains the result for the SMT-based (SAT-based)
approach.

As we can see, bisimulation minimization causes in most cases a significant
decrease in computation time and required memory of SSBMC and SBMC. This
effect is somewhat alleviated when the paths are translated back to the original
system, although not dramatically. Some instances of the contract and the crowds
protocol which could not be solved by SSBMC within the given time and memory
bounds become actually solvable, even with path conversion.

However, there is also an exception to this trend: The path conversion for
the minimal spanning tree benchmark cannot be done within the given memory
bounds. This is due to the fact that one abstract path in these benchmarks
represents a great number of original paths, too many to convert them all. While
the SMT-based approach without bisimulation minimization can pick the paths

Table 2. Counterexample generation with bisimulation minimization

SSBMC SBMC
Name p kmax #paths time mem. #paths time mem.

contract05 03 0.500 37 7 23.41 61.42 7 48.50 54.55
contract05 08 0.500 87 7 467.88 179.29 7 829.43 94.72
contract06 03 0.500 44 8 57.75 84.94 8 144.06 64.56
contract06 08 0.500 97 8 1205.37 209.47 8 2213.94 120.83
contract07 03 0.500 51 9 169.37 123.93 9 407.63 79.13
crowds02 07 0.100 39 21069 629.24 633.34 21279 191.31 101.34
crowds04 06 0.050 34 3459 106.17 164.95 3624 44.19 48.76
crowds04 07 0.050 34 3459 123.32 167.61 3555 46.97 50.67
crowds05 05 0.050 36 6347 184.06 251.70 8435 55.20 50.47
crowds10 05 0.025 27 251 12.74 71.20 347 10.22 47.84
leader03 04 0.990 8 2 0.12 21.68 2 0.10 12.06
leader03 08 0.990 8 2 0.64 33.93 2 0.68 24.31
leader04 03 0.990 20 4 0.31 25.12 4 0.32 15.50
leader05 02 0.900 42 7 0.24 22.94 7 0.24 12.05
leader06 02 0.900 84 12 0.79 26.19 12 0.89 14.09
mst14 0.990 14 9 2.28 38.10 396 0.78 16.85
mst15 0.049 15 13 1.85 39.36 1648 1.40 17.92
mst16 0.047 16 13 2.19 39.73 5632 4.00 25.99
mst18 0.036 18 9 3.57 43.64 27475 30.82 69.69
mst20 0.034 20 7 5.02 44.91 20290 25.83 56.63

with the highest probability, leading to a small counterexample, this is not
possible after bisimulation minimization. If we compute the most probable paths
in the minimized system, they can correspond to huge numbers of paths in the
original system each of which has only negligible probability.

4.3 Rewards

For the reward model checking we integrated rewards into the leader election
protocol. A reward of 1 is granted whenever a new round starts, i. e., when each
processor chooses a new ID. We want to analyze how high the probability measure
is that at least three rounds are needed until a leader has been elected. For the
experiments we restricted our search to a maximal path length of depthmax. We
computed all paths with the given property up to this length.

The results are shown in Table 4. The first column contains the name of
the model, the second the maximal depth depthmax. The subsequent columns
contain the accumulated probability measure p, the number of found paths, the
computation time (in seconds) and the required memory (in megabytes).

Compared to the results in Section 4.1 we need more and longer paths to get
a noteworthy probability measure. The computation time and the amount of
consumed memory are higher accordingly.

We also integrated bisimulation minimization for Markov reward models with
state rewards. In this case only an appropriate initial partition has to be provided

Table 3. Counterexample generation with bisimulation and path conversion

SSBMC SBMC
Name p kmax #paths time mem. #paths time mem.

contract05 03 0.500 37 520 27.87 72.87 520 50.86 54.36
contract05 08 0.500 87 520 859.34 182.64 520 1259.94 98.06
contract06 03 0.500 44 2064 72.27 91.44 2064 168.28 75.50
contract06 08 0.500 97 2064 4181.45 224.31 2064 5927.5 131.68
contract07 03 0.500 51 8224 230.69 149.60 8224 450.20 103.13
crowds02 07 0.100 39 21069 812.51 699.80 21279 313.99 168.42
crowds04 06 0.050 34 81227 408.69 406.16 81138 218.81 289.62
crowds04 07 0.050 34 81227 426.69 409.29 80705 221.80 290.00
crowds05 05 0.050 36 – MO – – MO –
crowds10 05 0.025 27 54323 198.30 194.38 53507 119.83 168.93
leader03 04 0.990 8 300 0.21 21.68 300 0.16 12.06
leader03 08 0.990 8 4536 4.12 33.93 4536 3.67 24.31
leader04 03 0.990 20 583440 483.99 1123.74 583440 300.24 1108.83
leader05 02 0.900 42 – MO – – MO –
leader06 02 0.900 84 – MO – – MO –
mst14 0.990 14 – MO – – MO –
mst15 0.049 15 – MO – – MO –
mst16 0.047 16 – MO – – MO –
mst18 0.036 18 – MO – – MO –
mst20 0.034 20 – MO – – MO –

for bisimulation computation. The results are shown in Table 5. For the leader

benchmarks bisimulation minimization results in a enormous compression of the
state space and a respective reduction of the number of evidences. Since the
back-translation can be done efficiently and yields for the leader benchmark the
same counterexample as the version without minimization, using bisimulation
minimization as a preprocessing and back-translation as a postprocessing step
reduces the overall computation time and memory consumption.

5 Conclusion

In our paper we showed how SMT and BMC can be combined to efficiently
generate counterexamples for DTMCs. Our SSBMC method can handle systems
which could not be handled with the previously presented SAT-based approach [7].
With SSBMC it is also possible to analyze Markov reward models with an arbitrary
number of reward functions. This enables us to refute reachability properties
which impose restrictions on the accumulated reward of paths.

Furthermore we presented bisimulation minimization as a preprocessing step
for SSBMC. It reduces the number of evidences needed for a counterexample by
merging equivalent paths. This way the counterexample generation is accelerated
and the memory consumption is reduced. We are able to convert these minimized
paths back to the original ones.

Table 4. Counterexample generation for MRMs using SMT-based BMC

Model depthmax p #paths time mem.

leader03 04 23 0.00391 20160 290.62 434.45
leader03 05 19 0.00160 18000 290.16 379.25
leader03 06 19 0.00077 52920 2134.05 1147.73
leader03 08 15 0.00024 32256 1050.96 709.98
leader04 02 25 0.21875 37376 912.11 1110.54
leader04 03 19 0.04979 26460 589.94 761.34
leader05 02 23 0.14771 4840 40.16 163.06
leader06 02 25 0.12378 32448 907.33 1360.11
leader08 02 28 – MO –

Table 5. Counterexample generation for MRMs with bisimulation minimization

without conv. with conv.
Model depthmax p #paths time mem. p #paths time mem.

leader03 04 23 0.00391 3 0.15 21.70 0.00391 20160 9.37 59.36
leader03 05 19 0.00160 2 0.25 24.84 0.00160 18000 10.68 54.93
leader03 06 19 0.00077 2 0.38 26.96 0.00077 52920 34.30 119.10
leader03 08 15 0.00024 1 0.66 33.96 0.00024 32256 25.95 69.56
leader04 02 25 0.21875 3 0.11 21.29 0.21875 37376 20.43 92.57
leader04 03 19 0.04979 1 0.29 25.15 0.04979 26460 18.55 72.67
leader05 02 23 0.14771 1 0.18 22.12 0.14771 4840 3.23 31.45
leader06 02 25 0.12378 1 0.30 23.74 0.12378 32448 31.71 87.96
leader08 02 28 0.05493 1 0.98 31.33 – MO –

As future work we will carry out a more detailed experimental evaluation of
our methods on appropriate models. Furthermore, there are still many possible
optimizations for our tool. So far, reward model checking and bisimulation
minimization only work without the loop detection optimization from [7]. These
combinations have to be implemented.

We plan to optimize the search for paths with higher probabilities. We want
to include the BDD-based method from [23], which applies Dijkstra’s shortest
path algorithm to compute the most probable evidences, into our tool as another
preprocessing step. The advantage of this method is that it yields counterexamples
of minimal size. Preliminary experiments have shown that this method is efficient
as long as the number of paths is small. Since the BDD sizes grow with each path
that has been found, memory consumption and running time grow accordingly.
We want to combine this approach with the SMT-approach by using the BDD-
based method as long as it is efficient and switch to the SMT-approach when the
BDD-approach becomes too expensive.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)

2. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8) (1986) 677–691

3. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using
satisfiability solving. Formal Methods in System Design 19(1) (2001) 7–34

4. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5) (1994) 512–535

5. Andrés, M.E., D’Argenio, P., van Rossum, P.: Significant diagnostic counterexamples
in probabilistic model checking. In: Haifa Verification Conference. Volume 5394 of
LNCS, Springer (2008) 129–148

6. Han, T., Katoen, J.P., Damman, B.: Counterexample generation in probabilistic
model checking. IEEE Trans. on Software Engineering 35(2) (2009) 241–257

7. Wimmer, R., Braitling, B., Becker, B.: Counterexample generation for discrete-time
Markov chains using bounded model checking. In: Proc. of VMCAI. Volume 5403
of LNCS, Springer (2009) 366–380

8. Aljazzar, H., Leue, S.: Directed explicit state-space search in the generation of coun-
terexamples for stochastic model checking. IEEE Trans. on Software Engineering
36(1) (2010) 37–60

9. Ábrahám, E., Jansen, N., Wimmer, R., Katoen, J.P., Becker, B.: DTMC model
checking by SCC reduction. In: Proc. of QEST, IEEE CS (2010) 37–46

10. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems (TOPLAS) 1 (1979) 245–257

11. Han, T., Katoen, J.P.: Counterexamples in probabilistic model checking. In: Proc.
of TACAS. Volume 4424 of LNCS, Springer (2007) 72–86

12. Katoen, J.P., Kemna, T., Zapreev, I., Jansen, D.N.: Bisimulation Minimisation
Mostly Speeds Up Probabilistic Model Checking. In: Proc. of TACAS. Volume
4424 of LNCS, Springer (2007) 87–101

13. Derisavi, S.: Signature-based symbolic algorithm for optimal Markov chain lumping.
In: Proc. of QEST, IEEE CS (2007) 141–150

14. Wimmer, R., Derisavi, S., Hermanns, H.: Symbolic partition refinement with
automatic balancing of time and space. Perf. Eval. 67(9) (2010) 815–835

15. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic Part 2 (1970) 115–125

16. Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In:
Proc. of CAV. Volume 4144 of LNCS, Springer (2006) 81–94

17. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Communications of the ACM 28(6) (1985) 637–647

18. Norman, G., Shmatikov, V.: Analysis of probabilistic contract signing. Journal of
Computer Security 14(6) (2006) 561–589

19. Reiter, M., Rubin, A.: Crowds: Anonymity for web transactions. ACM Transactions
on Information and System Security (TISSEC) 1(1) (1998) 66–92

20. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and
Computation 88(1) (1990) 60–87

21. Collin, Z., Dolev, S.: Self-stabilizing depth-first search. Information Processing
Letters 49(6) (1994) 297–301

22. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic
verification of probabilistic systems. In: Proc. of TACAS. Volume 3920 of LNCS,
Springer (2006) 441–444

23. Günther, M., Schuster, J., Siegle, M.: Symbolic calculation of k-shortest paths
and related measures with the stochastic process algebra tool Caspa. In: Int’l
Workshop on Dynamic Aspects in Dependability Models for Fault-Tolerant Systems
(DYADEM-FTS), ACM Press (2010) 13–18

